人教版 初三数学竞赛专题:平面几何的定值问题(含答案)

人教版 初三数学竞赛专题:平面几何的定值问题(含答案)
人教版 初三数学竞赛专题:平面几何的定值问题(含答案)

人教版 初三数学竞赛专题:平面几何的定值问题(含答案)

【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD

⌒上任意一点.求证:PA PC PB

为定值.

【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变

C.等分DB

⌒ D.随C 点的移动而移动

【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线

的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角.

【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是AB ⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .

(1)求证:四边形OGCH 是平行四边形;

(2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度;

(3)求证:CD 2+3CH 2是定值.

P A

B C

D

A

P

B

【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标;

(2)连接MG ,BC ,求证:MG ∥BC ;

(3)如图2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时,PF

OF

的比值是否发 生变化?若不变,求出比值;若变化,说明变化规律.

(图1)

(图2)

【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点.求证:P A 2+PB 2+PC 2为定值.

【能力训练】

1.如图,点A ,B 是双曲线x

y 3

=上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则=+21S S _______.

B

O

A

C

E H

G D A

3题图)

(第4题图)

2.从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是__________.

3.如图,OA ,OB 是⊙O 任意两条半径,过

B 作BE ⊥OA 于E ,又作OP ⊥AB

于P ,则定值OP 2+EP 2为_________.

4.如图,在菱形ABCD 中,∠ABC =120°,F 是DC 的中点,AF 的延长线交BC 的延长线于点E ,则直线BF 与直线DE 所夹的锐角的度数为( ) A.30° B.40° C.50° D.60°

5.如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作A A '⊥AB ,AB B B ⊥',且A A '=AP ,B B '=BP .连接B A '',当点P 从点A 移动到点B 时,B A ''的中点的位置( )

A .在平分A

B 的某直线上移动 B.在垂直AB 的某直线上移动 C.在弧AMB 上移动 D.保持固定不移动

(第5题图) (第6题图) 6.如图,A ,B 是函数x

k

y =

图象上的两点,点C ,D ,E ,F 分别在坐标轴上,且分别与点A ,B ,O 构成正方形和长方形.若正方形OCAD 的面积为6,则长方形OEBF 的面积是( ) A.3 B.6 C.9 D.12

7.(1)经过⊙O 内或⊙O 外一点P 作两条直线交⊙O 于A ,B 和C ,D 四点,得到如图①~⑥所表示的六种不同情况.在六种不同情况下,P A ,PB ,PC ,PD 四条线段之间在数量上满足的关系式可以用同一个式子表示出来.请你首先写出这个式子,然后只就如图②所示的圆内两条弦相交的一般情况给出它的证明.

A A

B

C

D

E

F

A

B'

(2)已知⊙O 的半径为一定值r ,若点P 是不在⊙O 上的一个定点,请你过点P 任作一直线交⊙O 于不重合的两点E ,F . PE ·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文字叙述出来.

8.在平面直角坐标系中,边长为2的正方形OABC 的两顶点A ,C 分别在y 轴,x 轴的正半轴上,点O 在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线x y =上时停止旋转.旋转过程中,AB 边交直线x y =于点M ,BC 边交x 轴于点N .

(1)求OA 在旋转过程中所扫过的面积;

(2)旋转过程中,当MN 与AC 平行时,求正方形OABC 旋转度数;

(3)设△MBN 的周长为P ,在正方形OABC 旋转的过程中,P 值是否有变化?请证明你的结论.

9.如图,AB 是半圆的直径,AC ⊥AB ,AC =AB .在半圆上任取一点D ,作DE ⊥CD ,交直线AB 于点E ,

P

(B )

A P

B

BF ⊥AB ,交线段AD 的延长线于点F . (1)设弧AD 是x °的弧,若要点E 在线段BA 的延长线上,则x 的取值范围是_______.

(2)不论点D 取在半圆的什么位置,图中除AB =AC 外,还有两条线段一定相等.指出这两条相等的线段,并予证明.

(第9题图) (第10题图)

(第11题图)

10.如图,内接于⊙O 的四边形ABCD 的对角线AC 与BD 垂直相交于点K ,设⊙O 的半径为R .求证: (1)2222DK CK BK AK +++是定值; (2)2222DA CD BC AB +++是定值.

11.如图,设P 是正方形ABCD 外接圆劣弧弧AB 上的一点,求证:

DP

CP BP

AP ++的值为定值.

1.等腰△ABC 的底边BC 为定长2,H 为△ABC 的垂心.当顶点A 在保持△ABC 为等腰三角形的情况下 改变位置时,面积S △ABC ·S △HBC 的值保持不变,则S △ABC ·S △HBC =________.

2.已知A ,B ,C ,D ,E 是反比例函数x

y 16

=

(x >0)图象上五个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是__________(用含π的代数式表示).

P D C

B A A

折叠,使点A ,B 落在六边形ABCDEF 的内部,记∠C +∠D + ) A. ∠1+∠2=900°

-2α B. ∠1+∠2=1080°-

2α C. ∠

1+∠2=720°-α D. ∠1+∠2=360°-

2

1

α

(第3题图) (第4题图)

4.如图,正△ABO 的高等于⊙O 的半径,⊙O 在AB 上滚动,切点为T ,⊙O 交AO ,BO 于M ,N ,则弧MTN ( ) A.在0°到30°变化 B.在30°到60°变化 C.保持30°不变 D.保持60°不变

5.如图,AB 是⊙O 的直径,且AB =10,弦MN 的长为8.若MN 的两端在圆上滑动时,始终与AB 相交,记点A ,B 到MN 的距离分别为h 1,h 2,则∣h 1-h 2∣等于( )

A.5

B.6

C.7

D.8

(第5题图) 6.如图,已知△ABC 为直角三角形,∠ACB =90°,AC =BC ,点A ,C 在x 轴上,点B 坐标为(3,m )(m >0),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B ,D . (1)求点A 的坐标(用m 表示)

12

G F E D C H

B A B

(2)求抛物线的解析式;

(3)设点Q 为抛物线上点P 至点B 之间的一动点,连接PQ 并延长交BC 于点E ,连接BQ 并延长交AC 于点F .试证明:FC (AC +EC )为定值.

7.如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A ,B 的点M .设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N .证明线段AK 和BN 的乘积与M 点的选择无关.

(第7题图) (第8题图)

8.如图,设H 是等腰三角形ABC 两条高的交点,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积S △ABC ·S △HBC 的值变小、变大,还是不变?证明你的结论.

9.如图,在平面直角坐标系xOy 中,抛物线109

4

1812--=

x x y 与x 轴的交点为点A ,与y 轴的交点为点B .过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC .现有两动点P ,Q 分别从O ,C 两点同时出

发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动.点P 停止运动时,点Q 也同时停止运动.线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒). (1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;

(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当2

9

0<

B A

C H C

B A

(第9题图) (第10题图) 10.已知抛物线C 1:12

12

1+-=

x x y ,点F (1,1). (1)求抛物线C 1的顶点坐标;

(2)若抛物线C 1与y 轴的交点为A ,连接AF ,并延长交抛物线C 1于点B ,求证:

211=+BF

AF . (3)抛物线C 1上任意一点P (x P ,y P )(0<x P <1),连接PF ,并延长交抛物线C 1于点 Q (x Q ,y Q ),试判断

21

1=+QF

PF 是否成立?请说明理由.

11.已知A ,B 是平面上的两个顶点,C 是位于AB 一侧的一个动点,分别以AC ,BC 为边在△ABC 外作正方形ACDE 和正方形BCFG .求证:不论C 在直线AB 同一侧的任何位置,EG 的中点P 的位置不变. 参考答案

例 1 延长PC 至E ,使CE =AP ,连结BE ,则△BCE ≌△BAP ,及△PBE 为等腰直角三角形,故

PA PC CE PC PE

PB PB PB

++=== 例2 B 提示:

连结AC ,BC ,可以证明P 为APB 的中点. 例3 ∵SP ⊥OP ,OM ⊥ST ,∴S ,M ,O ,P 四点共圆,于是∠SPM =∠SOM =

1

2

∠SOT 为定角. 例4 (1)连结OC 交DE 于M ,则OM =CM , EM =DM ,而DG = HE ,则HM =GM 故四边形OGCH 是平行四

边形. (2)DG 不变.DE =OC =OA =3 .DG =13DE =1

3×3=1. (3)设CD =x ,延长OG 交CD 于N ,

则CN =DN =

12 x ,229CE x =- , 2214DN x = .∴22394ON x =-,而ON =3

2

CH ,∴22143CH x =-

.故CD 2+3CH 2=x 2+3(4-1

3

x 2)=x 2+12-x 2为定值. 例5 ⑴C (0,4) ⑵先求得AM =CM =5,连接MC 交AE 于N ,由△AO G ∽△ANM ,得O G A O M N A N =,O G =32,3

8

OG OM OC OB ==,

又∠BOC =∠G OM ,∴△G OM ∽△COB ,∠G MO =∠CBO ,得M G ∥BC .⑶连结DM ,则DM ⊥PD ,DO ⊥PM ,DO 2=OM ?OP ,OP =

163.动点F 在⊙M 的圆周上运动时,从特殊位置探求OF

PF

的值.当F 与点A 重合

时,

2316523OF AO PF AP ===-;当点F 与点B 重合时,83

165

83

OF OB PF PB ===+;当点F 不与点A ,B 重合时,连接OF 、PF 、MF ,∴DM 2=MO ?MP ,∴FM 2=MO ?MP ,即FM MP

OM FM

=

,又∠OMP =∠FMP ,∴△MFO ∽△MPF ,

35OF MO PF MF ==,故

OF PF 的比值不变,比值为3

5

. 例6 ∠BPC =120°,在△BPC 中,由余弦定理得BC 2=PB 2+PC 2-2PB ?PC =BC 2,又由上托勒密定理得BC ?P A +PC ?AB ,而AB =BC =AC ,∴P A =PB +PC ,从而P A 2+ PB 2+ PC 2= (PB +PC )2+ PB 2+ PC 2=2 (PB 2+PC 2+PB ?PC )=2BC 2=

2

=6.故P A 2+PB 2+PC 2

1.4

提示:

∵S 1+S

= S 2+S 阴=xy =3,∴S 1+S 2

=2xy -2S 阴=6-2=4. 2.

提示:

1+3+5=9是等边三角形的高.

3.r 2

提示:先考查OB 与OA 垂

直的情形.4.D 提示:延长BF 交DE 于点M ,连接BD ,则

△BCD 为等边三角形,BF 平分∠CBD .∵F 为CD 中点,且AD ∥CE ,∴△ADF

△ECF 关于点F 中心对称.∴CE =AD =CD ,∴∠CEM=30°,∠

DMF=60°,

5.D 提示:A′B′的中点均在⊙O 的上半圆的中点处. 6.B 提示:S 正方形OCAD =OD ?OC =A A x y k ==6,∴S OEBF =OE ?OF =x B ?y B k ==6. 7.⑴略 ⑵当点P 在⊙O 内时,过P 作直径CD ,则PE ?PF =PD ?PC =r 2-OP 2为定值;当点P 在⊙O 外时,PE ?PF 为定值22OP r -.结论:过不在圆上的一个定点任作一条直线与圆相交,则这点到直线与圆相交点的两条线段长的积为定值. 8.⑴

2

π

⑵22.5° ⑶P 值无变化.理由如下:如图,延长BA 交y 轴于E 点,可证明△OAE ≌△OCN ,得OE =ON ,AE =CN ,又∠MOE =∠MON =45°,OM =ON ,∴△OME ≌△OMN ,得MN =ME =AM +AE =AM +CN .∴P =MN +BN +BM =AM +CM +CN +BN +BM =AB +AC =4.9.⑴0<x <90 ⑵BE =BF 提示:连接BD ,可证明△BDF ∽△ADB ,△BDE ∽△ADC . 10.⑴作OP ⊥BD 于P ,OQ ⊥AC 于Q ,连接AO ,则AO 2

=()()2

2

1122BK DK CK AK ????

-++????????

,又AK ?CK =BK ?DK ,得AK 2+BK 2+CK 2+DK 2=4R 2为定

值. ⑵作直径DE ,连接AE ,BE ,CE ,AB 2+CD 2=4R 2,AD 2+BC 2=4R 2,故AB 2+BC 2+CD 2+DA 2=8K 2为定值.

11.设正方形的边长为a ,根据托勒密定理,对于四边形APBC 和四边形APBD ,有CP ?a =AP ?a +BP

DP ?a =BP ?a +AP

(CP +DP )a =

(AP +BP )(a ),从而

1AP BP

CP DP

+-+为定值.

1.1 提示:不妨设∠A 为锐角,AD ,BE ,CF 为△ABC 的三条高,H 为垂心,由AB =AC 知

∠HBD =∠HCD =∠HAE ,∠HDC =∠CDA =90°,故R t △CHD ∽R t △ACD .∴

AD DC DC HD =

,即AD ?HD =DC 2=1

4

BC 2=1.∴S △ABC ?S △HBC =2

111224BC AD BC HD BC ???????= ? ?????

=1.

当∠A ≥90°时,结论成立.2.13π-26 提示:∵A ,B ,C ,DE 是反比例函数y =

16

x

(x >0)图象上五个整数点,由图象可知,这些点的横坐标分别为1,2,4,8,16.∴五个正方形的边长分

别为1,3,4,2,1.∴这五人橄榄形的

面积

总和是

22211111122111222224444

24242πππ????????

?-??+?-??+?-?? ? ? ???????????=5π-10+8π-16=13π-

26. 3.B 提示:如图,设F A 的延长线与CB 的延长线交于点P ,G A ′的延长线与HB ′的延长线交

于点P ′.由对称性可知∠1=2∠APP ′,∠2=2∠BPP ′.∴∠1+∠2=2∠APB .∵∠APB =540°-α,∴∠1+∠2=1080°-2α. 4.D 5.B 提示:如图,设AB 与MN 交于

点C ,过点O 作OD ⊥MN 于D ,连接FO 并延长交EB 于G .由垂径定理,得

OD =3.由△AFO ≌△B G O ,得AF =B G ,即h 1=B G .由AF ⊥MN ,

BE ⊥MN ,得△FOD ∽△F G E .∴

1

2

OD FO GE FG ==.∴E G =2OD =6,∴

12h h AF BE -=-=E G =6. 6.⑴A (3-m ,0) ⑵y =x 2-2x +1

⑶过点Q 作QM ⊥AC 于M ,过点Q 作QN ⊥BC 于N ,设Q 点的坐标为(x ,

x 2-2x +

1),则QM =CN =(x -1)2,MC =QN =3-x .∵QM ∥CE ,∴PQM

∽△PEC .∴QM PM

EC PC

=

,即()2

112x x EC --=,得EC =2(x -1).∵QN ∥CF ,∴

△BQN ∽△BFC .∴QN BN

FC BC =

,即()2

4134x x FC ---=,得FC =4

1

x +.又AC =4,∴FC (AC +EC )=

()4

4211x x +-???

?+=8为定值. 7.提示:易证

△ABK ∽△BNA ,故AK ?BN =AB 2为定值,即AK 与BN 的乘积与M 点的选择无关. 8.提示:S △ABC ?S △HBC =

1

16

BC 4,由于BC 是不变的,所以当点A 至BC 的距离变小时,乘积S △ABC ?S △HBC 保持不变. 9.⑴A (18,0),B (0,-10),顶点坐标为(4,-

98

9

) ⑵若四边形PQCA 为平行四边形,由于QC ∥P A ,故只要QC =P A 即可,而P A =18-4t ,CQ =t ,故18-4t =t ,得t =

18

5

. ⑶设点P 运动t s ,则OP =4t ,CQ =t ,0<t <4.5.说明P 在线段OA 上,且不与点O ,A 重合.由于QC ∥OP 知△QDC ∽△PDO ,故144QD QC t DP OP t ===.同理QC ∥AF ,故14QC CE AF EA ==,即1

4

t AF =,∴AF =4t =OP .∴PF =P A +AF =P A +OP =18.又点Q 到直线PF 的距离d =10,∴S △PQF =

12?PF ?d =1

2

×18×10=90.于是S △PQF 的面积

总为定值90. ⑷由前面知道,P (4t ,0),F (18+4t ,0),Q (8-t ,

-10),0≤t ≤4.5.构造直角三角形后易得PQ 2=(4t -8+t )2+102=,FQ 2=(18+4t -8+t )2+102=(5t +10)2+100.①若FP =FQ ,244

25

.∵即182=(5t +10)2+100,故25(t +2)2=224,(t +2)2=

2≤t +2≤6.5,∴t +2==

.∴t = -2. ②若QP =QF ,即(5t -8)2+100=(5t +10)2+100,即(5t -8)2

=(5t +

10)2,无0≤t ≤4.5的t 满足. ③若PQ =PF ,即(5t -8)2+100=182,∴(5t -8)2=224,又0≤5t ≤22.5,∴-8≤5t -8≤14.5,14.52

=2

29841

24??= ???

<224.故没有t (0≤t ≤4.5)满足此方程.综上所述,

当t =

2时,△PQ R 为等腰三角形. 10.⑴C 1的顶点坐标为(1,1

2

). ⑵略 ⑶作PM ⊥AB 于M ,作QN ⊥AB 交AB 延长线于N ,∴PM =1-y P ,FM =1-x P .在R t △PMF 中,PF 2=(1-y P )2+(1

-x P )2=1-2y P +y P 2+1-2x P +x P 2,又∵点P 在抛物线上,∴y P =

12

x P 2

-x P +1,∴PF 2=1-x P 2+2x P -2+y P 2+1-2x P +x P 2=y P 2,∴PF =y P ,同理,QF =y Q ,易证△PMF ∽△QNF ,则P M Q N

P F Q F

=,∴

1

1Q P y y PF QF

--=,即

11PF QF PF QF --=,∴11

PF QF

+

=2. 11.先从特殊情况出发.当△ABC 是等腰直角三角形时,点P 与点C 重合,此时点P 的位置在AB 的中垂线上,且到AB 的距离为

1

2

AB ,如图①所示.下面就一般情况来证明上面的结论(结论②所示).过C ,E ,G 分别作直线AB 的垂线CH ,EM ,G N ,垂足分别是H ,M ,N .容易证明△AEM ≌△ACH ,△B G N ≌△BCH .从而有AM =CH =BN ,EM =AH ,G N =BH .这样,线段AB 的中点O 也是线段MN 的中点,连接OP ,则OP 是梯形EMN G 的中位线,从而OP ⊥AB ,OP =12(EM +G N )= 12(AH +BH )=1

2

AB .∴无论点C 在AB 同一侧的位置如何,E G 中点P 的位置不变.

高中数学竞赛讲义(16)平面几何

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

高中数学竞赛专题精讲27同余(含答案)

27同余 1.设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a 与b 对模同余,记作,否则,就说a 与b 对模m 不同余,记作,显然,; 每一个整数a 恰与1,2,……,m ,这m 个数中的某一个同余; 2.同余的性质: 1).反身性:; 2).对称性:; 3).若,则; 4).若,,则 特别是; 5).若,,则; 特别是 ; 6).; 7).若 ; 8).若, ……………… ,且 例题讲解 1.证明:完全平方数模4同余于0或1; 2.证明对于任何整数,能被7整除; )(mod m b a ≡)(mod m b a ≡)(|)(,)(mod b a m Z k b km a m b a -?∈+=?≡)(mod m a a ≡)(mod )(mod m a b m b a ≡?≡)(mod m b a ≡)(mod m c b ≡)(mod m c a ≡)(m od 11m b a ≡)(m od 22m b a ≡)(m od 2121m b b a a ±≡±)(mod )(mod m k b k a m b a ±≡±?≡)(m od 11m b a ≡)(m od 22m b a ≡)(m od 2121m b b a a ≡)(m od ),(m od m bk ak Z k m b a ≡?∈≡则)(m od ),(m od m b a N n m b a n n ≡?∈≡则)(mod )(m ac ab c b a +≡+)(m od 1),(),(m od m b a m c m bc ac ≡=≡时,则当)(mod )(mod ).(mod ),(m b a mc bc ac d m b a d m c ≡?≡≡=特别地,时,当)(m od 1m b a ≡)(m od 2m b a ≡)(mod 3m b a ≡)(mod n m b a ≡)(m od ],,[21M b a m m m M n ≡??=,则0≥k 153261616+++++k k k

初中数学几何最值问题综合测试卷(含答案)

初中数学几何最值问题综合测试卷 一、单选题(共6道,每道16分) 1.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数为( ) A.100° B.110° C.140° D.80° 答案:A 解题思路:作定点P关于直线OM,ON的对称点,然后利用两点之间线段最短解题. 试题难度:三颗星知识点:最值问题 2.如图,当四边形PABN的周长最小时,a的值为( ) A. B.1 C.2 D. 答案:A 解题思路:先平移AP或BN使P,N重合,然后作其中一个定点关于定直线l的对称点,然后利用两点之间线段最短解题. 试题难度:三颗星知识点:最值问题 3.如图,已知两点A,B在直线l的异侧,A到直线l的距离AC=6,B到直线l的距离BD=2,CD=3,点

P在直线l上运动,则的最大值为( ) A. B.3 C.1 D.5 答案:D 解题思路:作其中一个定点关于定直线l的对称点,然后利用三角形三边关系解题. 试题难度:三颗星知识点:最值问题 4.如图,直角梯形纸片ABCD中,AD⊥AB,AB=4,AD=2,CD=3,点E,F分别在线段AB,AD上,将△AEF 沿EF翻折,点A的落点记为P.当点P落在直角梯形ABCD内部时,PD的最小值为( ) A.2 B.1 C. D.3 答案:C 解题思路:找运动过程中的不变特征进行转化,转化成求DP+PE+EB的最大值,减少变量,然后利用两点之间线段最短来解题. 试题难度:三颗星知识点:最值问题 5.如图,∠MON=90°,等腰Rt△ABC的顶点A,B分别在OM,ON上,当点B在ON上运动时,点A

数学竞赛平面几何重要知识点绝对精华

数学竞赛平面几何重要知识点 梅涅劳斯定理: 设D 、E 、F 分别是ABC ?三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=??EA CE FC BF DB AD 。 斯德瓦特定理:设P 是ABC ?的边BC 边上的任一点,则 BC PC BP AP BC AB PC AC BP ??+?=?+?222 西摩松定理: 设P 是ABC ?外接圆上任一点,过P 向ABC ?的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

6、共角定理:设ABC ?和C B A '''?中有一个角相等或互补(不妨设A=A ')则 C A B A AC AB S S C B A ABC ' '?''?='''?? 与圆有关的重要定理 4.四点共圆的主要判定定理 (1)若∠1=∠2,则A 、B 、C 、D 四点共圆; (2)若∠EAB=∠BCD ,则A 、B 、C 、D 四点共圆; (3)若PA ?PC=PB ?PD ,则A 、B 、C 、D 四点共圆; 三角形的五心 三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。三角形的垂心、重心、外心共线(欧拉线),并且重心把连结垂心和外心的线段分成2∶1的两段。三角形的外心和内心的距离)2(r R R d -=。此公式称为欧拉式,由此还得到r R 2≥。当且仅当△ABC 为正三角形时,d=0,此时R=2r.其中R 和r 分别是三角形外接圆半径和内切圆半径。 与△的一边及另两边的延长线均相切的圆称为△的旁切圆,旁切圆的圆心称为旁心。

重要例题 例1.设M 是任意ABC ?的边BC 上的中点,在AB 、AC 上分别取点E 、F,连EF 与AM 交于N ,求证:)(21AF AC AE AB AN AM +=(1978年辽宁省中学数学竞赛) 例 2. 已知点O 在ABC ?内部,022=++OC OB OA .OCB ABC ??与的面积之比为_________________. 例3. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. ⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. ⑵在△ABC 中,∠A <∠B <∠C . ①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.

初中数学几何最值问题

初中数学几何最值问题面面观 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量 (如线段的长 度、图形的周长或面积、角的度数以及它们的和与差 )的最大值或最小值问题,称为几何最 值问题?近年来,各地中考题常通过几何最值问题考查学生的实践操作能力、空间想象能力、 分析问题和解决问题的能力 ?本文针对不同类型的几何最值问题作一总结与分析,希望对大 家有所帮助? 最值问题的解决方法通常有如下两大类 : 一、应用几何性质 1?三角形的三边关系 例1如图1, MON 90,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上?当分 在边ON 上运动 时,A 随之在边 OM 上运动,矩形 ABCD 的形状保 持不变, 其中 AB 2,BC 1,运动过程中,点 D 到点0的最大距离为( QOD OE DE , OE AE 丄 AB 1.DE 2 ..AD 2 AE 2 、12 12 0D 的最大值为 2 1. 故选A. 2?两点间线段最短 2cm,高为9 cm ,点A, B 分别是回柱两底面圆周上的点, 当O,D,E 三点共线时,点 D 到点0的距离最大,此时, AB 2,BC 1 , (A) 、、2 1 (B) 分析如图1,取AB 的中点 E ,连结 OE,DE,OD . 例2如图2,圆柱底面半径为 且A,B 在同一母线上,用一棉线从 A 顺着圆柱侧面绕 3圈到B ,求棉线长度最短

分析 如图3,将圆柱展开后可见,棉线最短是三条斜线的长度,第一条斜线与底面 回周长、圆柱的三分之一高组成直角三角形 由周长公式知底面圆一周长为 4 cm ,圆柱的三分之一高为 3 cm ,根据勾股定理,得 一条斜线长为5 cm ,根据平行四边形的性质,棉线长度最短为 15 cm. 3.垂线段最短 例3如图4,点A 的坐标为(1,0),点B 在直线y X 运动,当线段 AB 最短时,点 B 的坐标为( ) 1 1 (A)(0,0) (B)(-,-) 2 2 (C)(子, (D )(乎, 分析 如图4,过点A 作 AB' OB ,垂足为点B',过B'作B'C x 轴,垂足为C . 由垂线段最短可知,当 B'与点B 重合时,AB 最短. T 点B 在直线y x 上运动, ??? VAOB'是等腰直角三角形 ??? VB'CO 为等腰直角三角形 ???点A 的坐标为(1,0), 1 1 1 OC CB' OA 1 -, 2 2 2

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

历年全国高中数学联赛二试几何题汇总汇总

历年全国高中数学联赛二试几何题汇总 2007 联赛二试 类似九点圆 如图,在锐角?ABC 中,AB

高中数学竞赛训练题(0530)

数学竞赛训练题 1、函数()x x x x x f 44cos cos sin sin ++=的最大值是_______。 2、已知S n 、T n 分别是等差数列{}n a 与{}n b 的前n 项的和,且2412-+=n n T S n n ,则=+++15 61118310b b a b b a _______。 3、若函数()?? ? ?? +=x a x x f a 4log 在区间上为增函数,则a 的取值范围是为_______。 4、在四面体ABCD 中,已知DA ⊥平面ABC ,△ABC 是边长为2的正三角形,则当二面角A-BD-C 的正切值为2时,四面体ABCD 的体积为_______。 5、已知定义在R 上的函数()x f 满足: (1)()11=f ; (2)当10<x f ; (3)对任意的实数x 、y 均有()()()()y f x f y x f y x f -=--+12。则=??? ??31f _______。 6、已知x 、y 满足条件484322=+y x ,则542442222++-+++-+y x y x x y x 的最 大值为_______。 7、对正整数n ,设n x 是关于x 的方程nx 3 +2x-n=0的实数根,记()[]()11>+=n x n a n n (符号表示不超过x 的最大整数),则()=++++20114321005 1a a a a _______。 8、在平面直角坐标系中,已知点集I={(x ,y )|x 、y 为整数,且0≤x ≤5,0≤y ≤5},则以 集合I 中的点为顶点且位置不同的正方形的个数为_______。 9、若函数()x x x x f 2cos 24sin sin 42+?? ? ??+=π。 (1)设常数0>w ,若函数()wx f y =在区间??????- 32,2ππ上是增函数,求w 的取值范围; (2)集合??????≤≤=326ππx x A ,(){} 2<-=m x f x B ,若B B A =?,求实数m 的取值范围。

2018中考数学专题复习 几何最值问题综合课(pdf,无答案)

知识板块 考点一:几何图形中的最小值问题 方法: 1.找对称点求线段的最小值; 步骤:①找已知点的对称点,动点在哪条线上动,就是对称轴; ②连接对称点与另一个已知点; ③与对称轴的交点即是要找的点;通常用勾股定理求线段长; 2.利用三角形三边关系:两边之差小于第三边; 3.转化成其他线段,间接求线段的最小值;例如:用点到直线的距离最短,通过作垂线求最值; 4.用二次函数中开口向上的函数有最小值; 考点二:几何图形中的最大值问题 方法: 1.当两点位于直线的同侧时,与动点所在的直线的交点,这三点在同一直线时,线段差有最大值; 2.当两点位于直线的异侧时,先找对称点,同样三点位于同一直线时,线段差有最大值; 3.利用三角形三边关系:两边之和大于第三边; 4.用二次函数中开口向下的函数有最大值; 例题板块 考点一:几何图形中的最小值问题 例1.如图1,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 _________ . 图1 图2 图3 例2.如图2,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 . 例3.如图3,点P 是Rt △ABC 斜边AB 上的一点,PE ⊥AC 于E ,PF ⊥BC 于F ,BC=6,AC=8,则线段EF 长的最小值为 ; 第一节 几何最值问题专项

例4.如图,在Rt △ABC 中,AB=BC=6,点E ,F 分别在边AB ,BC 上,AE=3,CF=1,P 是斜边AC 上的一个动点,则△PEF 周长的最小值为 . 图4 图5 例5.如图,在平面直角坐标系中,Rt △OAB 的顶点A 的坐标为(9,0),点C 的坐标为(2,0),tan ∠BOA= A .67 B .231 C. 6 D .193+ 例6.如图6,等腰Rt △ABC 中,∠ACB=90°,AC=BC=4,⊙C 的半径为1,点P 在斜边AB 上,PQ 切⊙O 于点Q ,则切线长PQ 长度的最小值为( ) 图6 图7 图8 例7.如图7,矩形ABCD 中,AB=4,BC=8,E 为CD 的中点,点P 、Q 为BC 上两个动点,且PQ=3,当CQ= _________ 时,四边形APQE 的周长最小. 考点二:几何图形中的最大值问题 例1.已知点A (1,2)、B (4,-4),P 为x 轴上一动点. (1)若|PA |+|PB |有最小值时,求点P 的坐标; (2)若|PB |-|PA |有最大值时,求点P 的坐标. 例2.如图8所示,已知A 11 (,y )2,B 2(2,y )为反比例函数1y x =图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 .

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利 用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE . 由∠BAF =∠BCE ,可知 ∠BAF =∠BPE . 有P 、B 、A 、E 四点共圆. 于是,∠EBA =∠APE . 所以,∠EBA =∠ADE . 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2 欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3 在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ . 证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GD CG ,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是, PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷. 3 为了线段比的转化 ∥= A D B P Q 图1P E D G A B F C 图2 A N E B Q K G C D M F P 图3

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

人教版九年级数学竞赛专题:平面几何的定值问题(含答案) 【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧上任意一点.求证:为定值. AD ⌒ PA PC PB P A B C D 【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦 CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变 C.等分 D.随C 点的移动而移动 DB ⌒ A

【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂 线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角. B 【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是上异于A ,B 的动点,过点C AB ⌒ 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形; (2)当点C 在上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段AB ⌒ 的长度; (3)求证:CD 2+3CH 2是定值. B O A C E H G D 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8.

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

高中数学竞赛试题附详细答案

高中数学竞赛试题 一选择题(每题5分,满分60分) 1. 如果a,b,c 都是实数,那么P ∶ac<0,是q ∶关于x 的方程ax 2 +bx+c=0有一个正根和一个 负根的( ) (A )必要而不充分条件 (B )充要条件 (C )充分而不必要条件 (D )既不充分也不必要条件 2. 某种放射性元素,100年后只剩原来质量的一半,现有这种元素1克,3年后剩下( )。 (A ) 100 5 .03?克 (B )(1-0.5%)3克 (C )0.925克 (D )100125.0克 3. 由甲城市到乙城市t 分钟的电话费由函数g (t )=1.06×(0.75[t ]+1)给出,其中t >0,[t ]表示 大于或等于t 的最小整数,则从甲城市到乙城市5.5分钟的电话费为( )。 (A )5.83元 (B )5.25元 (C )5.56元 (D )5.04元 4. 已知函数 >0, 则 的值 A 、一定大于零 B 、一定小于零 C 、等于零 D 、正负都有可能 5. 已知数列3,7,11,15,…则113是它的( ) (A )第23项 (B )第24项 (C )第19项 (D )第25项 6. 已知等差数列}{n a 的公差不为零,}{n a 中的部分项 ,,,,,321n k k k k a a a a 构成等比数 列,其中,17,5,1321===k k k 则n k k k k ++++ 321等于( ) (A) 13--n n (B) 13-+n n (C) 13+-n n (D)都不对 7. 已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4 π = x 处取得最小 值,则函数)4 3( x f y -=π 是( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,2 3(π 对称 C .奇函数且它的图象关于点)0,2 3(π 对称 D .奇函数且它的图象关于点)0,(π对称 8. 如果 A A tan 1tan 1+-= 4+5,那么cot (A +4 π )的值等于 ( ) A -4-5 B 4+5 C - 5 41+ D 5 41+ 9. 已知︱︱=1,︱︱=3,?=0,点C 在∠AOB 内,且∠AOC =30°,设 =m +n (m 、n ∈R ),则 n m 等于

中考数学中的最值问题解法

中考数学几何最值问题解法 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。 应用两点间线段最短的公理(含应用三角形的三边关系)求最值 典型例题: 例1. 如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【】 A1B C. 55 D. 5 2 例2.在锐角三角形ABC中,BC=2 4,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN 的最小值是▲ 。 例3.如图,圆柱底面半径为2cm,高为9cm π,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为▲ cm。

练习题: 1. 如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开 始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】 A.13cm B.12cm C.10cm D.8cm 2.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC= 23 BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】 A 、6 (4)π+㎝ B 、5cm C 、㎝ D 、7cm 3.如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ ▲ . 二、应用垂线段最短的性质求最值:典型例题: 例1. (2012山东莱芜4分)在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 ▲ .

全国高中数学联赛平面几何题

全国高中数学联赛平面几何题 1.(2000) 如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE =∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等. 2. (2001) 如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ; (2) OH ⊥MN . 3.(2002) 4.(2003) 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点,C 在P ,D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC . A B C D E F M N

5.(2004)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K 。已知BC=25,BD=20,BE=7,求AK 的长。 6.(2005) 7.(2006)以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于点 C i (i =0,1). 在AB 0的延长线上任取点P 0,以B 0为圆心,B 0P 0 为半径作圆弧P 0Q 0⌒ 交C 1B 0的延长线于Q 0;以C 1为圆心,C 1Q 0 为半径作圆弧Q 0P 1⌒ 交B 1A 的延长线于点P 1;以B 1为圆心,B 1P 1 为半径作圆弧P 1Q 1⌒ 交B 1C 0的延长线于Q 1;以C 0为圆心,C 0Q 1 为半径作圆弧Q 1P 0'⌒ ,交AB 0的延长线于P 0'. 试证: ⑴ 点P 0'与点P 0重合,且圆弧P 0Q 0⌒与P 0Q 1⌒ 相切于点P 0; ⑵ 四点P 0,Q 0,Q 1,P 1共圆. P B 1 B 0 C 1P 1 P 0 Q 1Q 0 A C 0

高中数学联赛组合专题

课程简介:全国高中数学联赛是中国高中数学学科的最高等级的数学竞赛,其地位远高于各省自行组织的数学竞赛。在这项竞赛中取得优异成绩的全国约90名学生有资格参加由中国数学会主办的“中国数学奥林匹克(CMO)暨全国中学生数学冬令营”。优胜者可以自动获得各重点大学的保送资格。各省赛区一等奖前6名可参加中国数学奥林匹克,获得进入国家集训队的机会。中小学教育网重磅推出“全国高中数学联赛”辅导课程,无论是有意向参加竞赛的初学者,还是已入围二试的竞赛选手,都有适合的课程提供。本套课程由中国数学奥林匹克高级教练熊斌、人大附中数学教师李秋生等名师主讲,轻松突破你的数学极限! 课程招生简章:https://www.360docs.net/doc/4e11170903.html,/webhtml/project/liansaigz.shtml 选课中心地址: https://www.360docs.net/doc/4e11170903.html,/selectcourse/commonCourse.shtm?courseeduid=170037#_170037_ 第二章组合专题 一、重要的概念与定理 1、完全图:每两个顶点之间均有边相连的简单图称为完全图,有个顶点的完全图(阶完全图)记为. 2、顶点的度:图中与顶点相关联的边数(环按2条边计算)称为顶点的度(或次数), 记为.与分别表示图的顶点的最小度与最大度.度为奇数的顶点称为奇顶点,度 为偶数的顶点称为偶顶点. 3、树:没有圈的连通图称为树,用表示,其中度为1的顶点称为树叶(或悬挂点).阶树常表示为. 4、部图:若图的顶点集可以分解为个两两不相交的非空子集的并,即 并且同一子集内任何两个顶点没有边相连,则称这样的图为部图,记作 . 2部图又叫做偶图,记为. 5、完全部图:在一个部图中, ,若对任意 均有边连接和,则称图为完全部图,记为. 6、欧拉迹:包含图中所有边的迹称为欧拉迹.起点与终点重合的欧拉迹称为闭欧拉迹. 欧拉图:包含欧拉迹的图为欧拉图. 欧拉图必是连通图. 哈密顿链(圈):经过图上各顶点一次并且仅仅一次的链(圈)称为哈密顿链(圈).包含哈密顿圈的图称为哈密顿图. 7、平面图:若一个图可画在平面上,即可作一个与同构的图,使的顶点与边在同一

高中数学竞赛试题及答案

浙江省高中数学竞赛试题及答案 一、选择题(本大题共有10小题,每题只有一个正确答案,将正确答案的序号填入题干后的括号里,多选、不选、错选均不得分,每题5分,共50分) 1.集合{,11P x x R x =∈-<},{,1},Q x x R x a =∈-≤且P Q ?=?,则实数a 取值范围为( ) A. 3a ≥ B. 1a ≤-. C. 1a ≤-或 3a ≥ D. 13a -≤≤ 2.若,,R αβ∈ 则90αβ+=是sin sin 1αβ+>的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 3.已知等比数列{a n }:,31=a 且第一项至第八项的几何平均数为9,则第三项是( ) A. D. 4. 已知复数(,,z x yi x y R i =+∈为虚数单位),且2 8z i =,则z =( ) A.22z i =+ B. 22z i =-- C. 22,z i =-+或22z i =- D. 22,z i =+或22z i =-- 5. 已知直线AB 与抛物线2 4y x =交于,A B 两点,M 为AB 的中点,C 为抛物线上一个动点,若0C 满足 00min{}C A C B CA CB ?=?,则下列一定成立的是( ) 。 A. 0C M AB ⊥ B. 0,C M l ⊥其中l 是抛物线过0C 的切线 C. 00C A C B ⊥ D. 01 2 C M AB = 6. 某程序框图如下,当E =0.96时,则输出的K=( ) A. 20 B. 22 C. 24 D. 25 , 7. 若三位数abc 被7整除,且,,a b c 成公差非零的等差数列,则这样的整数共有( )个。 A.4 B. 6 C. 7 D 8 8. 已知一个立体图形的三视图如下,则该立体的体积为( )。 A.

相关文档
最新文档