基于multisim的集电极调幅与大信号检波设计与仿真

基于multisim的集电极调幅与大信号检波设计与仿真
基于multisim的集电极调幅与大信号检波设计与仿真

课程设计报告

题目:基于multisim的集电极调幅与大信号检

波设计与仿真

学生姓名:

学生学号:

系别:

专业:

届别:

指导教师:

电气信息工程学院制

2013年3月

基于multisim的集电极调幅与大信号检波设计与仿真

前言

调制器与解调器是通信设备中的重要部件。所谓的调制,就是用调制信号去控制载波某个参数的过程。调制信号是由原始消息转变成的低频或视频信号,这些信号可以是模拟的,也可以是数字的。未受调制的高频振荡信号称为载波。受调制后的振荡波称为以调波,它具有调制信号的特征。

振幅调制是由调制信号去控制载波的振幅,使之按信号的变化规律,严格的讲是使高频振荡的振幅与调制信号呈线性关系。

使受调波的幅度随调制信号而变化的电路称为调幅器。调幅器输出信号幅度与调制信号瞬时值的关系曲线叫做调幅特性。理想的调幅特性应是直线,否则便会产生失真。调幅器主要由非线性器件和选择性电路构成。非线性器件实现频率变换,产生边带和谐波分量;选择性电路用来选出所需的频率分量并滤掉其他成分,如高次谐波等。常用的非线性器件有晶体二极管、场效应晶体管等。选择性电路大多用谐振回路或带通滤波器。按照电平的高低,调幅器可分为高电平调幅和低电平调幅。大功率广播或通信发射机多采用高电平调幅器。这种调幅器输出功率大,效率高。载波电话机和各种电子仪器多采用低电平调幅器。它们对输出功率和效率要求不高,可以选用调幅特性较好的电路。

所谓的集电极调幅,就是用调幅信号来改变高频功率放大器的集电极直流电源电压,以实现调幅.集电极调幅的特点:

(1)因过压工作,η高(与m无关)

(2)用于大功率调幅发射机

提供较大的驱动功率

(3)要求U

(4)m较大时,调幅波非线性失真

不论哪种振幅调制信号,都可以采用由相乘器和低通滤波器组成的同步检波电路进行解调。但是,对于普通条幅信号来说,它的载波分量未被预制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅调制检波器称为包络检波器。目前应用最广泛的是二极管包络检波器,而在集成电路中,主要采用三极管包络检波电路。

1集电极振幅调制器的工作原理及分析

1.1集电极振幅调幅器的工作原理

集电极调幅是利用低频调制电压去控制晶体管的集电极电压,通过集电极电压的变化,使集电极高频电流的基波分量随调制电压的规律变化,从而实现调幅。实际上,它是一个集电极电源受调制信号控制的谐振功率放大器,属高电平调幅。调幅管处于丙类工作状态。要完成无线电通信,首先必须产生高频率的载波电流,然后设法将电报、电话等信号“加到”载波上去。将声音电流加在高频电流上,这个过程称为调制。一个载波电流有三个参数可以改变,即振幅、频率和相位。本次设计要求采用调幅方式。它的基本原理是,将要传送的调制信号(这里我们以话音信号为例)从低频率搬移到高频,使它能通过电离层反射进行传输,在远距离接收端我们用适当的解调装置再把原信号不失真的恢复出来,就达到了传输话音低频信号的目的。即载波的频率和相角不变,载波的振幅按照信号的变化规律而变化,高频振幅变化所形成的包络信号就是原信号的波形。

1-1集电极调幅工作原理图

图中,设基极激励信号电压(即载波电压)为:t V 000cos ωυ=则加在基射极间的瞬时电

压为t V V BE B 00cos ωυ+-=调制信号电压υΩ 加在集电极电路中,与集电极直流电压V CC 串联,因此,集电极有效电源电压为 ()t m V t V V V V a CC CC CC C Ω+=+=+=ΩΩcos 1cos 0ωυ 。式中,V CC 为集电极固定电源电压; CC a V V m Ω=为调幅指数。由式可见,集电极的有效电源电压VC 随调制信号压变化而变化。

1.2 集电极电路脉冲的变化情况

线性调幅时,由集电极有效电源CC U 所提供的集电极电流的直流分量0C I 和集电极电流的基波分量1C I 与CC U 成正比。

调制信号电压加在集电极电路中,与集电极直流电压C

E 串联,因此,集电极有效电

源电压为CC U 式中, C E 为集电极固定电源电压;m 为调幅指数。

集电极电压相对应的集电极电流脉冲的CC U 变化情形如图1-2所示:

图1-2同集电极电压相对应的集电极电流脉冲的

CC

U 变化情形

由图可见,集电极的有效电源电压CC U 随调制信号压变化而变化。由于BB U 与b U 不变,故为常数,又P R 不变,因此动态特性曲线的斜率也不变。若电源电压变化,则动态线随CC U 值的不同,沿C E 平行移动。

由图可以看出,在欠压区内,当CC U 由1CC U 变至2CC U (临界)时,集电极电流脉冲的振幅与通角变化很小,因此分解出的1cm I 的变化也很小,因而回路上的输出电压C E 的变化也很小。这就是说在欠压区内不能产生有效的调幅作用。

1.3 集电极调幅波形图

在这种情况下,分解出的1cm I 随集电极电压CC U 的变化而变化,集电极回路两端的高

频电压也随CC U 而变化。输出高频电压的振幅1CC cm P U I R =?,P R 不变,1cm I 随CC U 而变

化,而CC U 是受O U 控制的,回路两端输出的高频电压也随O U 变化,因而实现了集电极调幅。

(t)v t 0Ω

(t)

v t

00

(t)

v t

0(t)

(A )调制信号波形 (B )载波信号波形

t

(t)

v λ

(C )已调信号波形 图1-3集电极调幅波形图

1.4集电极调幅的静态调制特性

当没有加入低频调制电压U Ω(即0U Ω=)时,逐步改变集电极直流电压CC U 的大小,同样可使c i 电流脉冲发生变化,分解出的0c I 或1cm I 也会发生变化。我们称集电极高频电流1cm I (或0c I )随CC U 变化的关系线为静态调制特性曲线。根据分析结果可作出静态调制特性曲线如图1-4所示。

图1-4 集电极调幅的静态调制特性

静态调制特性曲线不能完全反映实际的调制过程,因为没有加入调制信号,输出电压中没有边频存在,只有载波频率,不是调幅波。通常调制信号角频率Ω要比载波角频率0ω低得多,因此对载波来说,调制信号的变化是很缓慢的,可以认为在载波电压交变的一周内,调制信号电压基本上不变。这样,静态调制特性曲线仍然能正确反映调制过程。我们可以利用它来确定已调波包络的非线性失真的大小。

由图1-4可知,为了减小非线性失真,当加上调制信号电压时,保证整个调制过程

都工作在过压状态,所以工作点Q 应选在调制特性曲线直线段的中央,即0

1

2CCQ CC U U =处, 0CC U 为临界工作状态时的集电极直流电压。否则,工作点Q 偏高或偏低,都会使已调波的包络产生失真。 2集电极调幅设计与仿真 2.1集电极振幅调制设计电路

图2-1集电极振幅调制设计电路

2.2集电极振幅调制仿真电路

图2-2集电极振幅调制仿真电路2.3集电极调幅输入载波信号波形

图2-3集电极调幅输入载波波形2.4集电极调幅输入调制信号波形

图2-4集电极调幅输入调制信号波形

2.5集电极调幅输出波形及分析

图2-5集电极调幅输出波形

1.输出波形原理分析

载波C U 直接加到放大器的基极。调制信号0c U 加到集电极电路且与直流电源相串联。C1、C2是高频旁路电容。集电极谐振回路LC 调谐在载频C 上。

由于0C U 与C E 相串联,因此,丙类被调放大器集电极等效电源CC U 将随0C U 变化,从而导致被调放大器工作状态发生变化,在过压状态下,集电极电流C I 的基波分量振幅1C I 随0C U 成正比变化,从而实现调幅。

集电极调幅电路具有调制线性好,集电极效率高的优点。广泛用于输出功率较大的发射机中。所需调制信号功率大是该调制电路的缺点。 2.输出波形特点分析

调幅波的振幅变化规律与调制信号波形一致,调幅度m 反映了调幅的强弱程度。 可以看出:一般m 值越大调幅越深:

0m =时,未调幅

1m =时,最大调幅(百分之百)

1m >时,过调幅,包络失真,实际电路中必须避免

3.二极管大信号检波的工作原理及分析

3.1二极管大信号检波原理

当输入信号较大(大于0.5伏)时,利用二极管单向导电特性对振幅调制信号的解调,称为大信号检波。

大信号检波原理电路如图3-1—a 所示。检波的物理过程如下:在高频信号电压的正半周时,二极管正向导通并对电容器C 充电,由于二极管的正向导通电阻很小,所以充电电流i D 很大,使电容器上的电压υc 很快就接近高频电压的峰值。充电电流的方向如图4-1—a 图中所示。

图3-1二极管检波器的原理图和波形图

这个电压建立后通过信号源电路,又反向地加到二极管D的两端。这时二极管导通与

否,由电容器C上的电压υ

c 和输入信号电压υ

i

共同决定。当高频信号的瞬时值小于υ

c

时,二极管处于反向偏置,管子截止,电容器就会通过负载电阻R放电。由于放电时间

常数RC远大于调频电压的周期,故放电很慢。当电容器上的电压下降不多时,调频信号第二个正半周的电压又超过二极管上的负压,使二极管又导通。如图3-1—b中的t

1

t

2

的时间为二极管导通的时间,在此时间内又对电容器充电,电容器的电压又迅速接近

第二个高频电压的最大值。在图3-1—b中的t

2至t

3

时间为二极管截止的时间,在此时间

内电容器又通过负载电阻R放电。这样不断地循环反复,就得到图3-1—b中电压υ

c

波形。因此只要充电很快,即充电时间常数R

d ·C很小(R

d

为二极管导通时的内阻);而

放电时间常数足够慢,即放电时间常数R·C很大,满足R

d ·C<< RC,就可使输出电压υ

c

的幅度接近于输入电压υ

i

的幅度,即传输系数接近1。另外,由于正向导电时间很短,放

电时间常数又远大于高频电压周期(放电时υ

c 的基本不变),所以输出电压υ

c

的起伏是

很小的,可看成与高频调幅波包络基本一致。而高频调幅波的包络又与原调制信号的形状相同,故输出电压υ

c

就是原来的调制信号,达到了解调的目的。

根据上述工作特点,大信号检波又称峰值包络检波。理想情况下,峰值包络检波器的输出波形应与调幅波包络线的形状完全相同。但实际上二者之间总会有一些差距,亦即检波器输波形有某些失真。本实验可以观察到该检波器的两种特有失真:即惰性失真和负峰切割失真。

惰性失真是由于负载电阻R与负载电容C选得不合适,使放电时间常数RC过大引起的。惰性失真又称对切割失真,如图4-2所示。

t

Vi

0t1t2

Vc

图5-6惰性失真

如图中t 1-t 2时间内,由于调幅波的包络下降,电容C 上的电荷不能很快地随调幅波包络变化,而输入信号电压υi 总是低于电容C 上的电压υc ,二极管始终处于截止状态,输出电压不受输入信号电压控制,而是取决于RC 的放电,只有当输入信号电压的振幅重新超过输出电压时,二极管才重新导电。为了避免这种失真,理论分析证明,R ·C 的大小应满足下列条件

max

2

1Ω-<

?a m Ma C R 式中m a 是调制系数;Ωmax 是被检信号的最高调制角频率。 负峰切割失真是由于检波器的直流负载电阻R 与交流(音频)负载电阻相差太大引起的一种失真。

检波器总是通过耦合电容C C 与低频放大器或其他电路相连接。如图3-3所示。图中C C 是耦合电容,容量较大;r i2是下一级电路的输入电阻(一般较小1K Ω左右)。由图可见:检波器的直流负载电阻为R (R L );由于C C 的容量较大,对音频(低频)来说,可以认为是短路。

图3-3 接有交流负载的检波器

因此,检波器的交流负载电阻R Ω等于R 与r i2的并联值,即

R r R r R R i i <+?=

Ω2

2

显然交、直流电阻是不同的,因而有可能产生失真。这种失真通常使检波器音频输出电压的负峰被切割,因而称为负峰切割失真或底部切割失真,如图3-4所示。

3-2堕性失真

图 3-4负峰切割失真

3.2大信号检波仿真电路图

图3-5 大信号检波仿真电路图3.3大信号检波仿真波形

图3-6 大信号检波仿真波形4软件Multisim 10介绍

4.1仿真软件概述

Multisim10是美国NI公司推出的以Windows为基础的仿真工具,适用于板级的模拟、数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。有了Multisim 软件,就相当于拥有了一个设备齐全的实验室,可以非常方便的从事电路设计、仿真、分析工作。

4.2界面概述

4.3元器件库的操作

4.4注意事项

1.不要长时间使软件处于仿真状态,以免死机;

2.删除元件、仪器、连线等,一定要在断开仿真开关的情况下进行;

3.注意数字地与模拟地的差别,使用标准符号;

4.LED数码管的极性;

5.分模块调试,最后综合调试。

5设计总结

5.1心得体会

这次课设中使我懂得了有些问题是可以自己慢慢看书摸索,在反复的尝试过程中解决,我相信这种方法还可以运用到以后的实际工作中。此次课程设计制作让我了解有关电路的原理和设计理念:在最后的仿真结果却不一定与理想的完全一样,因为在实际接线中有着各种各样的条件制约,所以,在设计时应考虑两者之间的差距,从而找出最合适的方法,通过调试来发现自己的错误,并分析排出故障。我深深感受到了所学知识的有限,明白了只学好课本上的知识是不够的,要通过图书馆和互联网等各种渠道来扩充自己的知识。另外用Multisim仿真的过程中,我熟悉了这一仿真软件的用法,掌握了更多的知识。

虽然遇到了很多问题,但在同学的帮助以及老师的耐心指导下,还是顺利的完成了任务。在此,我由衷地感谢老师及同学们的帮助。

6.参考文献

[1] 曾兴文,刘乃安,陈健.高频电子线路[M].北京:高等教育出版社,2007

[2] 张肃文等.高频电子线路[M](第四版).北京:高等教育出版社,2004

[3] 华成英,童诗白.模拟电子技术[M](第四版).北京:高等教育出版社,2006

[4] 清华大学通信教研组.高频电路[M].北京:人民邮电出版社,1979

[5] 杨欣,王玉凤.电子设计从零开始[M].北京:清华大学出版社,2009

[6] 陈尔绍. 电子控制电路实例. 电子工业出版社,2004年

[7] 李新平.实用电子仿真技术.北京:机械工业出版社,2003年

[8] 杨宝清. 实用电路手册. 机械工业出版社,2002年

[9] 胡宴茹.《高频电子线路》高等教育出版社,2005.8

[10] 王安编著《电子线路实验与课程设计》机械工业出版社2012

7.附录

1. 器件清单

器件名型号个数

示波器XSC1 4

电容250pF 1

电容20nF 2

电容10uF 1

电阻10K 2

电感450nH 1

电阻510 1 可调电阻10K 1

晶体管2N2222A 1

二极管)1BH620 1

直流电压源-0.1v 1

直流电压源12v 1

AM调幅波 1.5v,50KHz,50Hz 1

交流电源0.75v,,15MHz 1

交流电源10v,10KHz 1

2.仿真电路附图

集电极振幅调制仿真电路

大信号检波仿真电路图

Multisim课程设计正弦波发生器

东北石油大学MULTISIM电气应用训练 2012年3 月01日

MULTISIM电气应用训练任务书 课程MULTISIM电气应用训练 题目Multisim的正弦波振荡电路仿真 专业自动化姓名刘月莹学号0906******** 主要内容: 以文氏电桥正弦波振荡电路仿真为例,分析了基本及稳幅文氏电桥正弦波发生器的特点,并采用Multisim 10软件对文氏电桥正弦波发生器进行了仿真,仿真结果与理论分析结果一致。软件仿真在课堂教学、电路设计、及实验教学中的应用,使得课堂教学信息量饱满,设计、实验变得轻松,使教学的效果得到提升,在教学领域具有重要的推广、应用价值。 主要参考资料: [1] 黄智伟.全国大学生电子设计竞赛电路设计[J].北京:北京航空航天大学出版社,2006. [2] 康华光.电子技术基础[J].北京:高等教育出版社,2001. [3] 张凤言.电子电路基础[M].北京:高等教育出版社,1995. [4] 杨素行.模拟电子技术基础简明教程[M].北京:高等教育出版社,2002. [5] 岳怡.数字电路与数字电子技术[J].西安工业大学出版社,2004. [6] 路勇.电子电路实验及仿真[M].清华大学出版社,2004. [7] 张俊漠.单片机中级教程——原理与应用[M].北京航天航空大学出版社,2006. 完成期限2012.2.20——2012.3.1 指导教师李宏玉刘超 专业负责人 2012年3 月1 日

目录 1 任务和要求 (1) 2 稳幅文氏电桥正弦波发生器 (5) 3文氏电桥正弦波发生器电路仿真 (5) 4设计总结 (6) 参考文献 (6)

Multisim课程设计报告

Multisim课程设计报告 课程名称:multisim电路仿真设计题目:病房呼叫系统设计 学号:王后影110914033 专业班级:11电信本(一)班

指导老师:宇安 病房呼叫系统的设计 一.实验目的 1.掌握数字电路课程所学的理论知识以及数字电子技术在生活中的应用。2.熟悉几种常用集成数字芯片的功能和应用,并掌握其工作原理,进一步学会使用其进行电路设计。 3.进一步深化对电子技术的了解,强化实际动手操作能力以及发现问题解决问题的方法。 4.培养认真严谨的工作作风和实事的工作态度。 5.数电课程实验是大学中为我们提供的一次动手实践的机会,增强实际动手操作与研发的能力 二.实验原理 要求当一号病房的按钮按下时,无论其他病室的按钮是否按下,护士值班室的数码显示“1”,即“1”号病室的优先级别最高,其他病室的级别依次递减,7号病室级别最低,当7个病房中有若干个请求呼叫开关合上时,护士值班室的数码管所显示的即为当前优先级别最高的病室呼叫,同时在有呼叫的病房门口的指示灯闪烁。待护士按优先级处理完后,将该病房的呼叫开关打开,再去处理下一个相对最高优先级的病房的事务。全部处理完毕后,即没有病室呼叫,此时值班室的数码管显示“0”。

电路设计流程图 本例在设计中采用了8/3线优先编码器74LS148,74LS148有8个数据端(0~7),3个数据输出端(A0~A1),1个使能输入端(EI,低电平有效),两个输出端(GS,E0)。数据输出端A~C根据输入端的选通变化,分别输出000~111这0~7二进制码,经逻辑组合电路与74LS47D BCD-七段译码器/驱动器的数据输入端(A~C)相连,最终实现设计要求的电路功能,电路如图所示。电路中与门74LS08DD的输出端(3、6、8)与74LS147D BCD-七段译码器/驱动器的数据输入端的数据端(A、B、C)连接。 此例仿真可在Multisim的主界面下,启动仿真开关即可进行电路的仿真。K1~K7为病房呼叫开关,在其下方的Key=1,...Key=7分别表示按下键盘1~7数字键,即可控制相应开关的通道。L1~L7为模拟病房门口的呼叫指示灯,当呼叫开关K1~K7任何开关被按下时,相应开关上的指示灯即闪烁发光,同时护士值班室的数码管即显示相对最高优先级别的病房号,而且蜂鸣器SP会令计算机上的扬声器发声。

最详细最好的Multisim仿真教程

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。 目录 1. Multisim软件入门 2. 二极管电路 3. 基本放大电路 4. 差分放大电路 5. 负反馈放大电路 6. 集成运放信号运算和处理电路 7. 互补对称(OCL)功率放大电路 8. 信号产生和转换电路 9. 可调式三端集成直流稳压电源电路 13.1 Multisim用户界面及基本操作 13.1.1 Multisim用户界面 在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。 Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。 IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。 1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。 IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。 下面以Multisim10为例介绍其基本操作。图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

实验1:电路仿真工具multisim的基本应用

实验一电路仿真工具Multisim的基本应用 一.实验目的 1.学会电路仿真工具Multisim的基本操作。 2.掌握电路图编辑法,用Multisim对电路进行仿真。 二、实验仪器 PC机、Multisim软件 三、实验原理 MultiSim 7 软件是加拿大Electronics Workbench 公司推出的用于电子电路仿真的虚拟电子工作台软件。它可以对模拟电路、数字电路或混合电路进行仿真。该软件的特点是采用直观的图形界面,在计算机屏幕上模仿真实实验室的工作台,用屏幕抓取的方式选用元器件,创建电路,连接测量仪器。软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。 1. Multisim 7主窗口 2. 常用Multisim7 设计工具栏 元件编辑器按钮--用以增加元件仿真按钮--用以开始、暂停或结束电路仿真。 分析图表按钮--用于显示分析后的图表结果分析按钮--用以选择要进行的分析。 3.元件工具栏(主窗口左边两列) 其中右边一列绿色的为常用元器件(且为理想模型)。左边一列包含了所有元器件(包括理想模型和类实际元器件模型)。在电路分析实验中常用到的器件组包括以下三个组(主界面左边第二列):

电源组信号源基本器件组 (1)电源(点击电源组) 交流电源直流电源接地 (2)基本信号源 交流电流源交流电压源 (3)基本元器件(点击基本器件组) 电感电位器电阻可变电容电容 4.常用虚拟仪器(主窗口右侧一列) ⑴数字万用表 数字万用表的量程可以自动调整。双击虚拟仪器可进行参数设定。下图是其图标和面板: 其电压、电流档的内阻,电阻档的电流和分贝档的标准电压值都可以任意设置。从打开的面板上选Setting按钮可以设置其参数。 (2)信号发生器 信号发生器可以产生正弦、三角波和方波信号,其图标和面板如下图所示。可调节方波和三角波的占空比。双击虚拟仪器可进行参数设定。 (3)示波器 在Multisim 7中提供了两种示波器:通用双踪示波器和4通道示波器。双击虚拟仪器可进行参数设定。这里仅介绍通用双踪示波器。其图标和面板如下图所示。

调幅和检波电路的设计资料

课程设计 课程名称调幅和检波电路的设计 课题名称高频电子线路 专业电子信息工程 班级电信1401 学号21 姓名曾举正 指导老师周细凤 2016年6月24日

湖南工程学院 课程设计任务书 湖南工程学院课程设计任务书 课程名称高频电子线路题目调幅和检波电路的设计与仿真分析 学生姓名曾举正专业班级电信1401 学号21 指导老师周细凤课题审批下达日期2016年06月07日 一、设计内容 1、普通调幅电路的设计与仿真分析 2、检波电路的设计与仿真分析 二.设计要求 1、给出用模拟乘法器实现单频调幅的具体设计思路和实现电路。 2、给出用模拟乘法器实现多频调幅(要求调制信号含有三个频率)的具体设计思路和实现电路。 3、利用上一步中实现的单频调幅电路输出作为输入,用模拟乘法器和低通滤波电路实现同步检波。 4、自定义载波、调制信号的幅值及频率。采用EWB或者ORCAD等专业软件仿真,能够观察输入输出波形。 5、编写课程设计说明书;

6、课程设计说明书和所有图纸要求用计算机打印(A4纸)。 三、进度安排 第1天:下达设计任务书,介绍课题内容与要求; 第2、3天:查找资料,确定系统组成; 第4~7天:单元电路分析、设计、仿真; 第8~9天:课程设计说明书撰写; 第10天:整理资料,答辩。(共两周) 四、参考文献 1. 张肃文主编.,《高频电子线路》,高等教育出版社.。 2. 谢自美主编,《电子线路设计、实验、测试》,华中理工大学出版社。 3. 沈伟慈主编,《通信电路》,西安电子科技大学出版社。 五、说明书基本格式 1)课程设计封面;2)设计任务书;3)目录; 4)设计思路,系统基本原理和框图;5)单元电路设计分析; 6)设计总结;7)附录;8)参考文献; 9)电路原理图;10)评分表

模拟电子技术课程设计(Multisim仿真)

《电子技术Ⅱ课程设计》 报告 姓名 xxx 学号 院系自动控制与机械工程学院 班级 指导教师 2014 年 6 月18日

目录 1、目的和意义 (3) 2、任务和要求 (3) 3、基础性电路的Multisim仿真 (4) 3.1 半导体器件的Multisim仿真 (4) 3.11仿真 (4) 3.12结果分析 (4) 3.2单管共射放大电路的Multisim仿真 (5) 3.21理论计算 (7) 3.21仿真 (7) 3.23结果分析 (8) 3.3差分放大电路的Multisim仿真 (8) 3.31理论计算 (9) 3.32仿真 (9) 3.33结果分析 (9) 3.4两级反馈放大电路的Multisim仿真 (9) 3.41理论分析 (11) 3.42仿真 (12) 3.5集成运算放大电路的Multisim仿真(积分电路) (12) 3.51理论分析 (13) 3.52仿真 (14) 3.6波形发生电路的Multisim仿真(三角波与方波发生器) (14) 3.61理论分析 (14) 3.62仿真 (14) 4.无源滤波器的设计 (14) 5.总结 (18) 6.参考文献 (19)

一、目的和意义 该课程设计是在完成《电子技术2》的理论教学之后安排的一个实践教学环节.课程设计的目的是让学生掌握电子电路计算机辅助分析与设计的基本知识和基本方法,培养学生的综合知识应用能力和实践能力,为今后从事本专业相关工程技术工作打下基础。这一环节有利于培养学生分析问题,解决问题的能力,提高学生全局考虑问题、应用课程知识的能力,对培养和造就应用型工程技术人才将能起到较大的促进作用。 二、任务和要求 本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成电路的设计和仿真。完成该次课程设计后,学生应该达到以下要求: 1、巩固和加深对《电子技术2》课程知识的理解; 2、会根据课题需要选学参考书籍、查阅手册和文献资料; 3、掌握仿真软件Multisim的使用方法; 4、掌握简单模拟电路的设计、仿真方法; 5、按课程设计任务书的要求撰写课程设计报告,课程设计报告能正确反映设计和仿真结果。

Multisim电路仿真应用

Multisim电路仿真及应用 仿真实训一:彩灯循环控制器的设计与仿真分析变换的彩灯已经成为人们日常生活不可缺少的点缀。那么这些变化的灯光是如何控制的呢?这就是我们下面要讨论的课题—彩灯循环控制电路。 电路设计分析彩灯循环控制技术指标: 1.彩灯能够自动循环点亮。 2.彩灯循环显示且频率快慢可调。 3.该控制电路具有8路以上输出。 仿真实训二:交通信号灯控制系统的设计与仿真分析十字路口的交通信号灯是我们每天出行时都会遇到的,信号灯指挥着行人和各种车辆安全有序的通行。实现红、绿灯的自动控制是城市交通管理现代化的重要课题,合适的信号灯指挥系统可以提高城市交通的效率。下面我们以该课题为例进行设计与仿真分

析。 电路设计分析交通信号灯控制系统的技术指标: 1.主、支干道交替通行,主干道每次放行30s,支干道每次放行20s。 2.绿灯亮表示可以通行,红灯亮表示禁止通行。 3.每次绿灯变红灯时,黄灯先亮5s(此时另一干道上的红灯不变)。 4.十字路口要有数字显示,作为等候时间提示。要求主、支干道通行时间及黄灯亮的时间均以秒为单位作减计数。 5.在黄灯亮时,原红灯按1HZ的频率闪烁。 6.要求主、支干道通行时间及黄灯亮的时间均可在0-99s任意设定。 仿真实训三:篮球比赛24秒倒计时器的设计与仿真分析电路设计分析: 计时器在许多领域均有普遍的应用,篮球比赛中除了有总时间倒计时外,为了加快比赛节奏,新的规则还要求进攻方在24秒有一次投篮动作,否则视为违规。 本设计题目“篮球比赛24秒倒计时器”从数字电路角度讨论,实际上就是一个二十四进制递减的计数器。 电路设计技术指标: 1.能完成24秒倒计时功能。 2.完成计数器的复位、启动计数、暂停/继续计数、声光报警等功能。

调幅与检波系统实验

实验三十三、幅度调制与解调实验 一、实验目的 1、加深理解幅度调制与检波原理。 2、掌握用集成模拟乘法器构成调幅与检波电路的方法。 3、了解二极管包络检波的主要指标、检波效率及波形失真。 二、实验原理和电路说明 1、调幅与检波原理简述: 调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅呈调制信号的规律变化:而检波则是从调幅波中取出低频信号。振幅调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带调制(DSB)信号,抑制载波和一个边带的单边带调制信号。把调制信号和载波同时加到一个非线性元件上(例如晶体二极管和晶体三极管),经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。 2、集成四象限模拟乘法器MCl496简介: 本器件的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频动态增益控制等。它有两个输入端Vx、Vy和一个输出端V o。一个理想乘法器的输出为V o=KVxVy,而实际输出存在着各种误差,其输出的关系为:V o=K(Vx+Vxos)(Vy+Vyos) + Vzox。为了得到好的精度,必须消除Vxos、Vyos与Vzox三项失调电压。集成模拟乘法器MC1496是目前常用的平衡调制/解调器,内部电路含有8个有源晶体管。本实验箱MCl496的内部原理 图和管脚功能如图3-1所示: MCl496各引脚功能如下: (1)、SIG+信号输入正端 (2)、GADJ增益调节端 (3)、GADJ增益调节端 (4)、SIG-信号输入负端

(5)、BIAS偏置端 (6)、OUT+正电流输出端 (7)、空脚 (8)、CAR+载波信号输入正端 (9)、空脚 (10)、CAR-载波信号输入负端 (11)、空脚 (12)、OUT-负电流输出端 (13)、空脚 (14)、V-负电源 3、实际线路分析 U501是幅度调制乘法器,音频信号和载波分别从J50l和J502输入到乘法器的两个输入端,K501和K503可分别将两路输入对地短路,以便对乘法器进行输入失调凋零。W501可控制调幅波的调制度,K502断开时,可观察平衡调幅波,R502为增益调节电阻,R509和R504分别为乘法器的负载电阻,C509对输出负端进行交流旁路。C504为调幅波输出耦合电容,BG50l接成低阻抗输出的射级跟随器。 U502是幅度解调乘法器,调幅波和载波分别从J504和J505输入,K504和K505可分别将两路输入对地短路,以便对乘法器进行输入失调调零。R511、R517、R513和C512作用与上图相同。 D503是检波二极管,R522和C521、C522滤去残余的高频分量, R523和R524是可调检波直流负载,C523、R525、R526是可调检波交流负载,改变R524和R526可试验负载对检波效率和波形的影响。U503对输入的调幅波进行幅度放大。 三、实验仪器 1、TKGP-1高频电子线路实验箱; 2、信号发生器; 3、双踪示波器。 四、实验内容与步骤 准备工作: 幅度调制实验需要加音频信号VL和高频信号VH。调节函数信号发生器的输出为0.2Vp-p、1KHz的正弦波信号;调节高频信号发生器的输出为0.4V p-p、100KHz的正弦波信号。(一)、乘法器U50l失调调零 将音频信号接入调制器的音频输入口J501,高频信号接入载波输入口J502或TP502,用双踪示波器同时监视TP50l和TP503的波形。通过电路中有关的切换开关和相应的电位器对乘法器的两路输入进行输入失调调零(具体步骤参考如下:K501的2-3短接,调整W50l和W502,至TP503输出最小,然后将K501的1-2,K503的2-3短接,调整W503,至TP503输出最小)。 (二)、观测调幅波在是实验中Vi1=208mv 1khz .Vi2=416mv 在乘法器的两个输入端分别输入高、低频信号,调节相关的电位器(W501等),短接K502 1-2,在输出端观测调幅波V o,并记录V o的幅度和调制度。此外,在短接K5。22—3时,可观测平衡调幅波,记录V o的幅度。1,Vmin=-264mv , Vpp=520mv ,Vamp=520mv2 Vmin=-344, Vpp=696mv ,Vamp=696 mv, (三)、观测解调输出 1、参照实验步骤(一)的方法对解调乘法器进行失调调零。

数电课程设计基于Multisim的乒乓球游戏机控制电路设计

课程设计(论文) 课程名称:数字电子技术基础 题目:基于Multisim的乒乓球游戏机控制电路设计院(系): 专业班级: 姓名: 学号: 指导教师:

任务书 设计题目:基于Multisim乒乓球游戏机的控制设计电路 课题目的: 该乒乓球游戏机电路主要由3块组成:球台驱动电路,控制电路和计分电路组成。其中球台电路主要实现游戏者击球完毕后球的左右移动显示位置功能;控制电路实现游戏者A和B击球,裁判对系统初始化的功能;计分电路具有当A或B击球有效时加分和当游戏者的分数累计超过10时报警通知裁判对系统初始化以便重新开始比赛计分功能。 课题主要内容与要求: 内容:本课题设计一个以8个二极管的依次被点亮代表球的移动位置双向选择开关J2,J3控制发球,击球信号,在Multisim软件上测试结果。 要求:1、熟悉Multisim软件 2、用8个发光二极管表示球,用俩个按钮分别表示AB俩个球员的球拍; 3、A,B各有一个数码管计分。 4、裁判有一个按钮,用来对系统初始化,每次得分后按下一次。

摘要 乒乓球游戏机通过十分巧妙地设计采用数字芯片实现乒乓球左右移动,选手击球得分,累计得分超10报警灯功能。该设计三个双向开关J1,J2,J3分别作为裁判和游戏者A,B,且选手可以译码显示器上直接读出自己的得分,具有操作简单,结构清晰的优点。 对与模电课题的研究离不开电路图,不过现在都在实行电子化,所以需要借助电子产品。Multisim软件就是一款画电路图的电子软件,在此对不太熟悉或未接触过Multisim软件的朋友简短的介绍下: Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。同时具备可以根据自己的需求制造出真正属于自己的仪器;所有的虚拟信号都可以通过计算机输出到实际的硬件电路上;所有硬件电路产生的结果都可以输回到计算机中进行处理和分析等特点。该乒乓球游戏机电路主要有3块电路:台球驱动电路,控制电路和计分电路组成。其中台球驱动电路主要实现游戏者击球完毕后球的左右移动显示位置功能;控制电路实现游戏者A和B击球,裁判对系统初始化的功能;

数字时钟的Multisim设计与仿真

电子电路 设计和仿真 Multisim 学院: 专业和班级: 姓名:学号: 数字时钟的Multisim 设计和仿真 一、设计和仿真要求 学习综合数字电子电路的设计、实现和调试 1.设计一个24或12小时制的数字时钟。 2.要求:计时、显示精确到秒;有校时功能。采用中小规模集成电路设计。 3.发挥:增加闹钟功能。 二、总体设计和电路框图 1.设计思路 1).由秒时钟信号发生器、计时电路和校时电路构成电路。 2).秒时钟信号发生器可由555定时器构成。 3).计时电路中采用两个60进制计数器分别完成秒计时和分计时;24进制计数器完成时计时;采用译码器将计数器的输出译码后送七段数码管显示。 4).校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。2.电路框图

二、子模块具体设计 1.由555定时器构成的1Hz 秒时钟信号发生器。 由下面的电路图产生1Hz 的脉冲信号作为总电路的初输入时钟脉冲 图2.时钟信号发生电路 2. 分、秒计时电路及显示部分 -VC K ? OTT - ? THR ? T£L1 - O0&I H L : ? r GND ,,, 48kQ R2 48kQ —10uF 士伯 DtiF ....... ■ ■ j - ■ ■ >100Q

在数字钟的控制电路中,分和秒的控制都是一样的,都是由一个十进制计数器和一个六进制计数器串联而成的,在电路的设计中我采用的是统一的器件74LS160D 的反馈置数法来实现十进制功能和六进制功能,根据74LS160D的 结构把输出端的0110 (十进制为6)用一个与非门74LS00引到CLR端便可置0,这样就实现了六进制计数。 由两片十进制同步加法计数器74LS160级联产生,采用的是异步清零法显示部分用的是七段数码管和两片译码器74LS48D 。 图3.分秒计时电路 3.时计时电路及显示部分 由两片十进制同步加法计数器74LS160级联产生,采用的是同步置数法, u1输出端为0011 (十进制为3)与u2输出端0010 (十进制为2)经过与非门接两片的置数端。 显示部分用的是七段数码管和两片译码器74LS48D 。

电路仿真软件Multisim_11.0安装使用教程及破解

Multisim 11.0 软件免费下载汉化激活全套 Multisim 11.0目前为最新版本。嵌入式系统 安装需要需要资料:17Embed,17嵌入式 1.Multisim11.0软件,免费下载地址: https://www.360docs.net/doc/4e14790302.html,/c07n2rh7tb m 2. Multisim11.0汉化包+激活包免费下载地址: https://www.360docs.net/doc/4e14790302.html,/c0frrgfutf Multisim是美国国家仪器(NI)有限公司推出的一款优秀的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 《数字电子技术》一书就是以Mulitisim作为教材工具,其强大的功能被广大老师、同学和自由爱好者所喜爱,所以本人决定在此做个教程以共大家学习参考之用。(文末附有下载) 一、安装 1、双击应用程序(379.35MB的那个)首先会出现如下窗口,确定即可。 2、确定后会出现如下窗口,说白了,就是个解压缩过程 一起嵌入式开发

3、选择第一项,然后解压缩后紧接着会出现如下窗口,仍选择第一项 4、然后选择“Install this product for evaluation”,试用的意思

5、接下来就按照提示一路狂Next就行,然后重启就行了嵌入式系统 这样安装就算完成了,接下来就是汉化和破解了。

嵌入式系统 二、汉化 1、将ZH文件夹放到目录“...\Program Files\National Instruments\Circuit Design Suite 11.0\stringfiles”下。 记住,不是目录“X:\National Instruments Downloads”,这个文件是你安装时第二步解压缩后的文件,安装完后就可以删掉了。(好多朋友在这里犯错误)17Embed,17嵌入式2、再运行Multisim11,菜单里边的:Options\Gobal Preferences\convention\language\ZH (参考图片)

高频复习题 第6章 振幅调制、解调与混频

第5章频谱的线性搬移电路 本章与第六章整合,参见第六章 第6章振幅调制、解调与混频 6.1自测题 6.1-1调制是。 6.1-2调幅过程是把调制信号的频谱从低频搬移到载频的两侧,即产生了新的频谱分量,所以必须采用才能实现。 6.1-3 产生单边带信号的方法有和。 6.1-4大信号检波器的失真可分为、、和。 6.1-5大信号包络检波器主要用于信号的解调。 6.1-6 同步检波器主要用于和信号的解调。 6.1-7混频器的输入信号有和两种。 6.1-8变频电路功能表示方法有和两种。 6.1-9为了抑制不需要的频率分量,要求输出端的带通滤波器的矩形系数。 6.2思考题 6.2-1为什么调制必须利用电子器件的非线性特性才能实现?它和小信号放大在本质上有什么不同之处? 6.2-2写出图6.2-2所示各信号的时域表达式,画出这些信号的频谱图及形成这些信号的方框图,并分别说明它们能形成什么方式的振幅调制。 图6.2-2 6.2-3振幅检波器一般有哪几部分组成?各部分作用如何?

6.2-4下列各电路能否进行振幅检波?图中RC为正常值,二极管为折线特性。 图6.2-4 6.2-5 变频作用是怎样产生的?为什么一定要有非线性元件才能产生变频作用?变频与检波有何相同点与不同点? 6.2-6如图思6.2-6所示。设二极管的伏安特性均为从原点出发,斜率为g d的直线,且二极管工作在受u L控制的开关状态。能否构成二极管平衡混频器?求各电路输出电压u0的表示式。 图6.2-6 6.2- 7.某混频器的中频等于465KHz,采用低中频方案(f1=f s+f i)。说明如下情况是何种干扰。 (1)当接收有用信号频率f L=500KHz时,也收到频率为f M=1430KHz的干扰信号。 (2)当接收有用信号频率为f s=1400kHz时,也会收到频率为f M=700kHz的干扰信号。 (3)当收听到频率为f s=930kHz的信号时,同时听到f M1=690KHz,f M2=810kHz两个干扰信号,一个干扰信号消失另一个也随即消失。 6.2-8 晶体三极管混频器,其转移特性或跨导特性以及静态偏压V Q、本振电压u L(t)如图思6.2-8所示,试问哪些情况能实现混频?哪些不能?

根据模拟乘法器芯片MC1496的调幅与检波电路设计与实现

HUNAN UNIVERSITY 工程训练报告 题目:基于模拟乘法器芯片MC1496 的调幅与检波电路设计与实现 学生姓名:秦雨晨 学生学号:20110803305 专业班级:通信工程1103

指导老师(签名): 二〇一四年九月十五日

目录 1 项目概述---------------------------------------------------------2 1.1引言---------------------------------------------------------2 1.1 项目简介----------------------------------------------------2 1.2 任务及要求--------------------------------------------------2 1.3 项目运行环境------------------------------------------------3 2 相关介绍--------------------------------------------------------3 3 项目实施过程----------------------------------------------------5 3.1 项目原理---------------------------------------------------5 3.2 项目设计内容------------------------------------------------9 3.2.1 调幅电路仿真--------------------------------------------9 3.2.2 检波电路仿真-------------------------------------------12 4 结果分析-------------------------------------------------------14 4.1调幅电路---------------------------------------------------14 4.2 检波电路---------------------------------------------------18 5 项目总结-------------------------------------------------------21 6 参考文献-------------------------------------------------------22 7 附录--------------------------------------------------------23

实验三 集电极调幅与大信号检波

课程名称:高频电子线路 实验项目:集电极调幅与大信号检波 实验地点:多学科楼四层 专业班级:信息1 学号:2010 学生姓名: 指导教师: 2013年1月5日

一、实验目的 1、进一步加深对集电极调幅和二极管大信号检波工作原理的理解; 2、掌握动态调幅特性的测试方法; 3、掌握利用示波器测量调幅系数m a的方法; 4、观察检波器电路参数对输出信号失真的影响。 二、实验原理与线路 1、原理 (1) 集电极调幅的工作原理 集电极调幅是利用低频调制电压去控制晶体管的集电极电压,通过集电极电压的变化,使集电极高频电流的基波分量随调制电压的规律变化,从而实现调幅。实际上,它是一个集电极电源受调制信号控制的谐振功率放大器,属高电平调幅。调幅管处于丙类工作状态。 集电极调幅的基本原理电路如图5—1所示: 图5-1 集电极调幅原理电路

图中,设基极激励信号电压(即载波电压)为:t V 000cos ωυ= 则加在基射极间的瞬时电压为t V V BE B 00cos ωυ+-= 调制信号电压υΩ 加在集电极电路中,与集电极直流电压V CC 串 联,因此,集电极有效电源电压为 ()t m V t V V V V a CC CC CC C Ω+=+=+=ΩΩcos 1cos 0ωυ 式中,V CC 为集电极固定电源电压; CC a V V m Ω=为调幅指数。 由式可见,集电极的有效电源电压VC 随调制信号压变化而变化。 由图5—2所示, 图中,由于-V BB 与υb 不变,故m ax B v 为常数,又R P 不变,因此动态 特性曲线的斜率也不变。若电源电压变化,则动态线随V CC 值的不同, 沿υc 平行移动。由图可以看出,在欠压区内,当V CC 由V CC1变至V CC2 (临界)时,集电极电流脉冲的振幅与通角变化很小,因此分解出的 I cm1的变化也很小,因而回路上的输出电压υc 的变化也很小。这就是 说在欠压区内不能产生有效的调幅作用。

普通调幅(AM)信号及包络检波

东华大学 普通调幅(AM )信号及包络检波 实验报告 【实验目的】 利用multisim 对普通调幅(AM )信号及包络检波进行仿真。 【实验原理】 AM 信号的数学表达式如下: []t w t u k V t v c a m o cos )()(0Ω+= 由上式可见,将调制信号与直流相加后,再与载波信号相乘,即可实现普通调幅。 【实验仿真电路】 在Multisim 仿真电路窗口中创建如下图所示的由乘法器(K=1)组成的普通调幅(AM)电路。 【实验现象及相关分析】 载波和基波的波形图如下 载波(20kHz ,2V )、基波(1kHz ,0~5V )

调节Rp值得到Ma<1,Ma=1,Ma>1的输出波形。1)Ma<1:载波(20kHz,2V)、基波(1kHz) Rp取0.6k

2)Ma=1:载波(20kHz,2V)、基波(1kHz)Rp取0.35k 3)Ma>1:载波(10kHz,2V)、基波(1kHz)Rp取0.2k

包络检波后的波形图 1)Rp=0.85k 载波(10kHz,2V)、基波(1kHz) 2)Rp=0.65k 载波(10kHz,2V)、基波(1kHz)

【去耦滤波的实验对比】 1)输出端加了2个0.01uF的电容,Rp=0.85k ,载波(10kHz,2V)、基波(1kHz) 2)输出端加了4个0.01uF的电容,Rp=0.85k ,载波(10kHz,2V)、基波(1kHz)

【惰性失真】 将输出端电阻R2、R3从原来的10k到100k,由于输出电压降跟不上调幅波的包络变化,会出现惰性失真,如下图所示: R2=100k,Rp=0.85k ,载波(10kHz,2V)、基波(1kHz) 由于参数的选择,检波器容易惰性失真。在二级管截止期间,电容C两端电压下降的速度取决于RC的时常数。如果电容放电速度很慢,使得输出电压不能跟随输入信号包络下降的速度,那么检波输出将与输入信号包络不一样,产生失真。把由于RC时间常数过大而引起的这种失真称为惰性失真或者对角线切割失真。 对比于R2=10k,现象很直观。

模电multisim仿真设计

模拟电子技术基础课程设计说明书题目: Multisim仿真应用 学生:明 学号:1 院(系):理学院 专业:应用物理学 指导教师:冠强

2014 年 6 月 10日

目录 第0节背景 (1) 第1节Multisim应用举例——二极管的特性的研究 (1) 第2节 Multisim应用举例——Rb变化对Q点和电压放大倍数的影响 (2) 第3节 Multisim应用举例——直接耦合多级放大电路的调试 (4) 第4节 Multisim应用举例——消除互补输出级交越失真方法的研究 (6) 第5节 Multisim应用举例——静态工作点稳定电路频率影响的研究 (8) 第6节 Multisim应用举例——交流负反馈对放大倍数稳定性的影响 (10) 设计体会及今后改进意见 (12) 参考文献 (12)

第0节背景 Multisim是一个完整的设计工具系统,提供了一个非常大的元件数据库,并提供原理图输入接口、全部的数模Spice仿真功能、VHDL设计接口与仿真功能、 FPGA/CPLD综合、RF设计能力和后处理功能还可以进行从原理图到PCB布线工具包(如:Ultiboard)的无缝隙数据传输。 随着计算机的飞速发展,以计算机辅助设计为基础的电子设计自动化技术(EDA)已经成为电子学领 域的重要学科。EDA工具使电子电路和电子系统的设计产生了革命性的变化,它摒弃了靠硬件调试 来大道设计目标的繁琐过程,实现了硬件设计软件化。 Multisim具有齐全的元器件模型参数库和比较齐全的仪器仪表库,可模拟实验室的操作进行 各种实验。学习Multisim可以提高仿真能力、综合能力和设计能力,还可进一步提高实践能力。 第1节Multisim应用举例——二极管的特性的研究 1.1 题目 研究二极管对直流量和交流量表现的不同特点。 1.2 仿真电路 仿真电路如图1-1所示。因为只有在低频小信号下二极管才能等效成一个电阻所以图流信号的频率为1kHz、数值为10mV(有效值)。由于交流信号很小,输出电压不失真故可以认为直流电压表(测平均值)的读书是电阻上直流电压值。

调幅和检波电路的设计与仿真分析1

电子与信息工程学院 电子线路课程设计报告(2010 —2011 学年第二学期) 班级:____________________ 学号:__________________ 姓名:_____________________ 指导教师: ____ 2011 年 6 月

课程设计题目: 调幅和检波电路的设计与仿真分析 内容和要求: 任务一 普通调幅电路的设计与仿真分析 1.用模拟乘法器实现单频调幅。 2.用模拟乘法器实现多频调幅(要求调制信号含有三个频率)。 注:载波、调制信号的幅值及频率自定。 任务二 检波电路的设计与仿真分析 利用任务一实现的单频调幅电路输出作为输入,用模拟乘法器和低通滤波电路实现同步检波。 思考和练习: 1.单频调幅电路中改变直流电源的值,观测其对输出调幅波的影响。2.同步检波电路中改变低通电路的参数,观测其对输出波形的影响。 报告要求: 1.给出设计过程及电路工作原理。 2.仿真电路原理图、仿真说明(参数设置)、仿真结果(波形)及频谱分析。 3. 图表清晰、全面。

设计内容(原理图以及相关说明、调试过程、结果) 1.实现原理 (1)MC1496型乘法器的功能描述: MC1496型乘法器为变跨导模拟乘法器是由两个具有压控电流源的差分电路组成,称为双差分对模拟乘法器,也称为双平衡模拟乘法器。工作频率高,常用作调制解调和混频,通常X 通道作为载波或本振的输入端,而调制信号或已调波信号从Y 通道输入。当X 通道输入是小信号(小于26mV )时,输出信号是X ,Y 通道输入信号的线性乘积;当X 通道输入是角频率为Wc 的单频很大信号时(大于260mV)时,根据双差分模拟乘法器原理,输出信号应是Y 通道输入信号和双向开关函数K2(WcT )的乘积。 (1)单频调幅 u ()cos cos2m m t U t U Ft ωπΩΩΩΩ== 且c >>F f ,则 ()(())cos (1cos )cos a m AM cm a c cm c cm k U u t U k u t t U t t U ωωΩΩ=+=+ Ω (1cos )cos (1cos )cos cm cm c cm a c cm U U t t U m t t U ωω?=+ Ω=+Ω 式中cm a m U k U Ω?=是受调后载波电压振幅的最大变化量;//a a m cm cm cm m k U U U U Ω==?称为调幅系数或调幅度,它反映了载波振幅受调制信号控制的程度,a m 与m U Ω成正比。

基于Multisim的音频功率放大器设计与仿真

信息工程学院 课程设计报告书 题目: 基于Multisimde 音频功率放大器设计与仿真 课程:电子线路课程设计 专业: 班级: 学号: 学生姓名: 指导教师: 2015 年 1 月 3 日

信息工程学院课程设计任务书 学号学生姓名专业(班级) 设计题 目 基于Multisimde 音频功率放大器设计与仿真 设计技术参数电源电压:Vs (22) 输入电压:VIN ........................±V 电源V 差分输入电压:VDIFF (5) 工作温度范围:TA …………………… 0℃~70℃存贮温度:TSTG …………………… -65℃~150℃结温:Tj …………………… 150℃ 功耗(5532FE):PD …………………… 1000mW 引线温度(焊接,10S)…………………… 300℃ 设计要求1 输出功率10W/8Ω;频率响应20~20KHz;效率>60﹪;失真小。 2 选择电路方案,完成对确定方案电路的设计。 3 利用Multisim仿真设计电路原理图,确定电路元件参数、掌握电路工作原理并 仿真实现系统功能。 4 安装调试并按规范要求格式完成课程设计报告书。 参考资料1. 谢自美.电子电路设计.实验.测试.武昌:华中理工大学出版社,1994. 2. 童诗白.模拟电子技术基础.第二版.北京:人民邮电出版社,1999. 3. 康华光主编,电子技术基础(数字部分、模拟部分),高等教育出版社,1998. 4.周泽义.电子技术实验。武汉:武汉理工大学出版社,2001.5 5.梁宗善.《新型集成电路的应用-电子技术基础课程设计》.华中科技大学,2004 6.孙梅生.《电子技术基础课程设计》.高等教育出版社,2005 7.黄继昌,张海贵.《实用单元电路及其应用》.人民邮电出版社,2006 8.王卫东,江晓安.《模拟电子电路基础》.西安电子科技大学出版社,2003 9.华成英、童诗白.模拟电子技术基础.第四版.北京:高等教育出版社,2006.5 2015 年 1 月 3 日

multisim 电路仿真 课程设计

4.1 仿真设计 1、用网孔法和节点法求解电路。 如图4.1-1所示电路: 3Ω (a)用网孔电流法计算电压u的理论值。 (b)利用multisim进行电路仿真,用虚拟仪表验证计算结果。(c)用节点电位法计算电流i的理论值。 (d)用虚拟仪表验证计算结果。 解: 电路图: (a) i1=2 解得 i1=2 5i2-31-i3=2 i2=1 i3=-3 i3=-3 u=2 v (b)如图所示: (c)列出方程 4/3 U1- U2=2 解得 U1=3 v U2=2 v 2A1Ω _ + 1Ω 2V - 3A 图4.1-1 i

2U 1- U 2=2 i=1 A 结果:计算结果与电路仿真结果一致。 结论分析:理论值与仿真软件的结果一致。 2、叠加定理和齐次定理的验证。 如图4.1-2所示电路: (a)使用叠加定理求解电压u 的理论值; (b)利用multisim 进行电路仿真,验证叠加定理。 (c)如果电路中的电压源扩大为原来的3倍,电流源扩大为原来的2倍,使用齐次定理,计算此时的电压u ; (d)利用multisim 对(c )进行电路仿真,验证齐次定理。 电路图: (a ) I 1=2 7 I 2-2 I 1- I 3=0 3 I 3- I 2-2 I 4=0 解得 U 1=7(V ) I 4=-3 U 1 U 1=2(I 1- I 2) 如图所示电压源单独作用时根据网孔法列方程得: 3 I 1-2 I 2- I 3= 4 I 2=-3 U 2 7 I 3 - I 1=0 解得 U 2=9(V ) U 2=4-2 I 3 所以 U= U 1+ U 2=16(V ) (b )如图所示。 2Ω 1Ω 2Ω 4Ω 2A 3u + 4V - + u - 图4.1-2

相关文档
最新文档