间断有限元一维最简例子

间断有限元一维最简例子
间断有限元一维最简例子

间断有限元方法

2016年夏季学期研究生课程考核 (读书报告、研究报告) 考核科目:间断有限元方法及其应用 学生所在院(系):理学院数学系 学生所在学科: 学生姓名: 学号 学生类别 考核结果阅卷人

1.引言 间断Galerkin(DG)方法兼有有限元与有限体积方法的特征。如同一般有限元方法那样,DG方法利用单元多项式空间作为近似解和检验函数空间,但是与传统的有限元方法不同,有限元函数空间基函数都是完全间断的分片多项式,各个单元之间的通信也需要像有限体积方法那样通过在单元边界上构造合适的数值流通量来实现。因此DG方法既保持了一般有限元方法和有限体积方法的优点,又克服了各自的不足。该方法可采用局部高阶插值的方法构造基函数,具有灵活处理边界条件以及可显式求解间断问题的能力,克服了一般有限元方法不适于间断问题的缺点,以及有限体积方法必须通过扩大模板进行重构来提高精度的不足。因此间断Galerkin(DG)方法的出现拓展了传统有限元方法的应用范围,改 善了人们对传统有限元方法的认识。 2.DG的基本概念 间断Galerkin方法最早由Reed和Hill在1973年为解决中子输运方程问题而提出。随后众多学者对间断有限元方法提出了改进和发展特别是90年代以来,以Cockbum和舒其望为代表提出了Runge-Kutta间断Galerkin(RKDG)方法,该方法结合TVD(TVD:Total Variation Diminishing) Runge-Kutta 时间离散方法和间断有限元求解一维双曲守恒律方程(组)以至于高维双曲守恒律方程(组),能够适合复杂计算区域和边界条件,可以精确的捕捉激波和接触间断。它不但在光滑区域可以保证高精度,而且在间断区域可以保持数值无振荡,分辨率高,可以证明收敛到熵解。这些优点使得RKDG成为计算流体力学流行的方法之一,并被广泛应用到气象学、海洋学、湍流、电磁学、石油勘探、水动力学等离子物理和图像处理等领域。 同样是在20世纪70年代,内惩罚(IP: Interior Penalty)类方法被独立地提出来求解摘圆和抛物方程。内惩罚方法后来也被归为间断Galerkin方法一种,本文记为内惩罚间断Galerkin(IPDG)方法。内惩罚间断有限元的发展与同时代求解双曲守恒律的间断有限元方法保持相对对立,该方法的侧重点在于选择合适的惩罚项保持格式的稳定性,而不在于如何构造数值流通量。基于DG方法求解双曲守恒律的巨大成功,许多学者考虑运用DG方法的思想求解扩散方程,但如果只是简单地将DG方法推广到扩散方程得到的数值格式并不准确。例如考虑一维热传导

有限元法

【第1章思考题】 1、何为有限元法?其基本思想是什么? 1)“有限单元法”简称“有限元法”,是借助于电子计算机解决工程问题的近似方法。 2)“化整为零,集零为整”。也就是将一个原来连续的物体假想地分割成由有限个单元所组成的集合体,简称“离散化”。然后对每个单元进行力学特征分析,即建立单元节点力和节点位移之间的关系。最后,把所有单元的这种关系式集合起来,形成整个结构的力学特性关系,即得到一组以节点位移为未知量的代数方程组。处理后即可求解,求得结点的位移,进一步求出应变和应力 2、为什么说有限元法是近似的方法,体现在哪里?p3 用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似。 3、单元、节点的概念? 网格划分中的每一个小部分称为单元。网格间相互联结点称为节点。 4、有限元法分析过程可归纳为几个步骤?p4 结构离散化、单元分析、整体分析 5、有限元方法分几种?本课程讲授的是哪一种? 从选择基本未知量的角度来看,可分为3类: 1、位移法:以节点位移为基本未知量的求解方法称为位移法。本课程讲授的内容 2、力法:以节点力为基本未知量的求解方法称为力法; 3、混合法:一部分以节点位移,另一部分以节点力作为基本未知量的求解方法称为混合法。位移法 6、弹性力学的基本变量是什么?p8何为几何方程p11、物理方程p12及虚功方程?p14弹性矩阵的特点? 弹性力学变量:外力、应力、应变和位移。描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹性体内的需应变能相等。弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。 7、何为平面应力问题和平面应变问题p17 平面应力问题:在结构上满足a几何条件:研究对象是等厚度薄板。b载荷条件:作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作用。 平面应变问题:满足a几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。b载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力两条件的弹性力学问题 【第2章思考题】 1、何为结构的离散化?离散化的目的?何为有限元模型? 结构的离散化:把连续的结构看成由有限个单元组成的集合体②目的:建立有限元计算模型 ③通常把由节点,单元及相应的节点载荷和节点约束构成的模型称为有限元模型 2、结构离散化时,划分单元数目的多少以及疏密分布,将直接影响到什么?确定单元数量的原则?通常如何设置节点? ①单元的数量要根据计算精度的要求和计算机的容量来确定,因此在保证精度的前提,力求采用较少的单元。②节点的布置:a集中载荷的作用点b分布载荷强度的突变点 c分布载荷与自由边界的分界点d支承点e厚度不同或材料不同的区域等都应取为节点。 3、节点总码的编号原则?何为半带宽?半带宽与节点总码的编号有何关系?p21 ①节点编号时,应注意尽量使同一单元的相邻节点的号码差值尽可能地小些,以便缩小刚度矩阵的带宽,节约计算机存储。节点应顺短边编号为好②包括对角线在内的半个带状区域中每行具有的元素的个数,③半带宽B=(相关节点编号最大差值+1)*2

matlab有限元分析实例

MATLAB: MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。 MATLAB有限元分析与应用:

《MATLAB有限元分析与应用》是2004年4月清华大学出版社出版的图书,作者是卡坦,译者是韩来彬。 内容简介: 《MATLAB有限元分析与应用》特别强调对MATLAB的交互应用,书中的每个示例都以交互的方式求解,使读者很容易就能把MATLAB用于有限分析和应用。另外,《MATLAB有限元分析与应用》还提供了大量免费资源。 《MATLAB有限元分析与应用》采用当今在工程和工程教育方面非常流行的数学软件MATLAB来进行有限元的分析和应用。《MATLAB有限元分析与应用》由简单到复杂,循序渐进地介绍了各种有限元及其分析与应用方法。书中提供了大量取自机械工程、土木工程、航空航天工程和材料科学的示例和习题,具有很高的工程应用价值。

有限元原理与步骤

2.1.1 有限元法基本原理(Basic Theory of FEM) 有限元法的基本思想是离散的概念,它是指假设把弹性连续体分割成数目有限的单元,并认为相邻单元之间仅在节点处相连。根据物体的几何形状特征、载荷特征、边界约束特征等,选择合适的单元类型。这样组成有限的单元集合体并引进等效节点力及节点约束条件,由于节点数目有限,就成为具有有限自由度的有限元计算模型,它替代了原来具有无限多自由度的连续体[24][25]。 有限元法从选择基本未知量的角度来看,可分为三类:位移法、力法和混合法。以节点位移为基本未知量的求解方法称为位移法;以节点力为基本未知量的求解方法称为力法;一部分以节点位移,另一部分以节点力作为基本未知量的求解方法称为混合法。由于位移法通用性强,计算机程序处理简单、方便,成为应用最广泛的一种方法[26]。 有限元法的求解过程简单、方法成熟、计算工作量大,特别适合于计算机计算。再加上它有成熟的大型软件系统支持,避免了人工在连续体上求分析解的数学困难,使其成为一种非常受欢迎的、应用极广泛的数值计算方法[27]。 2.1.2 有限元法基本步骤(Basic Process of FEM) 有限元法求解各种问题一般遵循以下的分析过程和步骤[28][29]: 1. 结构的离散化 结构的离散化是进行有限元法分析的第一步,它是有限元法计算的基础。将结构近似为具有不同有限大小和形状且彼此相连的有限个单元组成的计算模型,习惯上称为有限元网格划分。离散后单元与单元之间利用单元的节点相互连接起来,而单元节点的设置、性质、数目等应视问题的性质、描述变形形态的需要和计算精度而定。所以有限元法分析的结构已不是原有的物体或结构物,而是同种材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果是近似的。显然,单元越小(网格越密)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此结构的离散化是有限元法的核心技术之一。有限元离散过程中又一重要环节是单元类型的选择,这应根据被分析结构的几何形状特点、载荷、约束等因素全面考虑。 2. 位移模式的选择 位移模式是表示单元内任意点的位移随位置变化的函数,位移模式的选择是有限元特性分析的第一步。由于多项式的数学运算比较简单、易于处理,所以通常是选用多项式作为位移函数。选择合适的位移函数是有限元分析的关键,它将决定有限元解的性质与近似程度。位移函数的选择一般遵循以下原则(有限元解的收敛条件):

有限元复习重点

●有限元起源于20世纪50年代中期航空工程中飞机结构的矩阵分析。 ●有限元基本思想:在力学模型上将一个原来连续的物体离散成为有限个具有一定大小的单元,这些单元仅在有限个节点上相连接,并在节点上引进等效力以代替实际作用于单元上的外力。对于每个单元,根据分块近似的思想,选择一种简单的函数来表示单元内位移的分布规律,并按弹性理论中的能量原理(或用变分原理)建立单元节点力和节点位移之间的关系。最后,把所有单元的这种关系式集合起来,就得到一组以节点位移为未知量的代数方程组,解这些方程组就可以求出物体上有限个离散节点上的位移。 “一分一合”,化整为零,集零为整,把复杂的结构看成由有限个单元组成的整体。 ●单元、节点、边界:采用8节点四边形等参数单元把受力体划分成网格,这些网格称为单元;网格间互相连接的点称为节点;网格与网格的交界线称为边界。节点数和单元数目是有限的。 ●有限元法的优点:(1)理论基础简明,物理概念清晰,且可在不同的水平上建立起对该法的理解。(2) 具有灵活性和适用性,应用范围极为广泛。(3) 该法在具体推导运算中,广泛采用了矩阵方法,便于实现程序设计的自动化。 ●有限单元法分为三类:位移法(以节点位移为基本未知量)、力法(以节点力为基本未知量)和混合法(一部分以节点位移,另一部分以节点力作为基本未知量)。 ●有限元法分析计算的基本步骤可归纳如以下五点。1.结构的离散化(将某个机械结构划分为由各种单元组成的计算模型)在平面问题用三角形、矩形或任意四边形单元。在空间问题用四面体、长方体或任意六面体单元2.单元分析①选择位移模式(位移模式是表示单元内任意点的位移随位置变化的函数式,由于所采用的函数是一种近似的试函数,一般不能精确地反映单元中真实的位移分布)位移模式或位移函数:i n i i a y φ∑=②建立单元刚度方程e e e F k =δ,e 为单元编号;e δ为单元的节点位移向量;e F 为单元的节 点力向量 ;e k 为单元刚度矩阵.③计算等效节点力:用等效的节点力来代替所有作用在单元上的力。3.整体分析:整体的有限元方程F K =δ。K 为整体结构的刚度矩阵;δ为整体节点位移向量;F 为整体载荷向量。4.求解方程,得出节点位移5.由节点位移计算单元的应变与应力 ●有限元中得一个基本近似性是几何近似性 ●有限元中的变量:应力、应变、变形。基本方程有:平衡方程、物理方程、几何方程。边界条件:力边界、位移边界。 ●弹性力学的任务是分析弹性体在受外力作用并处于平衡状态下产生的应 力、应变和位移状态及其相互关系等。 ●外力:体力(分布在物体体积内的力---重力、惯性力、电磁力)、面力(分布在物体表面上的力---流体压力、接触力、风力) ●应力:物体受外力的作用,或由于温度有所改变,其内部将发生内力。

一维有限元法

实习三、一维问题的有限元方法 一)实习问题: 设 ''1 4(0,1) (0)0,(1)x u u xe x u u e e -?-+=-∈??==-??, ~ 1()u x e e u -=--令 将原问题的边界条件齐次化 ''~~ 1 ~~4()(0,1) (0)0,(1)0 x xe x e e x u u u u -?-+=---∈??? ?==, 二)算法描述: 1 ()21,1 01101 ()1,011 101 (),1 011 10(),111 [ ()()()]1[()()()()]1[()()()()]1 [ ()(i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i a p h h q h N d h a p h h q h N N d h a p h h q h N N d h a p h h q h h x x x x x x x x ξξξξξξξξξξξξξξξ------------=+++=- +++=- +++=+++???1 2010 )()()]N N d ξξξξ?1 ()2 1,1 0110 1[ ()()()]i i i i i i i i i a p h h q h N d h x x ξξξξ----=+++? 1 ()1 0101 ()110 ()()()()i i i i i i i i i i b h f h N d b h f h N d x x ξξξ ξξξ ---=+=+?? 1,单元剖分 (1,2,,)i i n e =L 2,i=1 ~ ~ 00A b == 3,计算数值积分:()()()()()()1,11,,1,1,,,,,i i i i i i i i i i i i i i i i a a a a b b -----即得单元上的i i A b 4,将i i A b 迭加到总的~~ A b 中 5,若i<=n,则i=i+1并转到底三步;否则继续下一步 6,根据边界条件调整~ ~ A b (掐头去尾),即得 A 和b 7,解线性方程组Au=b,得u 从而的h u

传统木结构的整体有限元分析

传统木结构的整体有限元分析 1.引言 中国古建筑是中华文明的重要组成部分,是中华民族乃至世界建筑艺术的瑰宝,具有极高的文物、历史和艺术价值。而其中的木结构古建筑,不仅蕴含了丰富的历史文化信息,由于其建筑材料和建筑方式的独特性,更有其独特而优良的力学性质。 对这些古建筑的动力特性的研究,从七十年代就已经开始了,但是由于技术的限制,这些研究还远远不够。随着社会的进步,人们也开始对古建筑的维护投入了更多的关注。因此对古建筑的研究也要求进一步的深入。 本文根据2007年1月18日木结构足尺模型振动台实验结果,采用有限元计算软件对木结构动力特性进行计算模拟,并将实验数据与计算值进行对比,希望更深刻地了解木结构建筑的抗震性能和结构耗能减震的基本原理,这对木结构建筑遗产的保护修缮具有重要的意义。 2.木结构整体有限元分析方法 早在1994年Kasal[1]等就利用大型商业有限元软件ANSYS对一层木框架房屋进线性的静力分析。在此模型中,剪力墙被简华成由刚性杆和斜向弹簧组成的桁架模型线性由斜向弹簧的单元特性来实现,而屋面和楼板被简化为超级单元。 2001年,由Slovenia的研究小组提出的Slovenia模型[2][3]将木结构房屋的整体分三个阶段:钉连接模型一墙体模型一木结构房屋整体模型。其研究思路为:先根据D分析剪力墙所得的滞回曲线,将每片墙简化成一个等效支撑框架。定义斜撑单元的参模型的滞回曲线拟合而得到,并采用CANNY-E(采用Newmark 算法)程序对整体行非线性动力时程分析。 3.木结构的整体有限元分析 3.1 足尺寸实验模型概况 本文以日本防灾科学技术研究所兵库抗震工程研究中心进行的足尺寸木结构的振动台实验为原型进行有限元分析。该振动台实验主要研究带墙体覆面板结构自振以及在不同地震波程度下的动力特性。模型标准层结构平面布置层高为2.93m,柱横向间距和纵向间距均为1.92m,采用以杉木为原材料的木框架结构。柱截面和基础梁截面均为120mm×120mm,屋面外框梁截面120mm×270mm,次梁截面为120mm×210mm,其梁和柱均为榫卯连接,墙面板为干式土壁覆面板。 3.2 有限元计算模型 本工作希望从数值方法出发,用简单有效的方法,建立木结构的有限元计算模型,对其动力特性进行计算模拟,并结合实验数据评判模型。 建立的有限元计算模型主要包括以下几个方面: (1)基础模拟。地震波在地表传播时,地基是一个变形体,地震发生时结构基础处各点的运动是不同的。但是,对于一般建筑物,其长度远小于地震波的波长(它和场地介质的情况有关),因此通常情况下将建筑物的地基近似看作刚性盘体是合理的[8]。因此在本次实验中,基础梁是固定在振动台上,计算模型中假定基础为刚性连接。 (2)木框架模拟。实验中的木结构框架可视为一种梁柱结构体系。梁柱之间上下叉接,左右卡连,如图3所示是实验中梁柱榫卯连接。榫卯连接是介于刚接与铰接之间的半刚性连接,在进行有限元分析时,通常的方法是用空间二节点虚拟弹簧单元来模拟这种半刚性连接性质。在同一空间位置的梁柱各端部节点与相应梁柱构件各自对应,并选择合适的自由度赋予弹簧刚度参数,形成半刚性连接[5]。因此,在计算模型中,柱一柱、梁一梁和梁一柱之间用弹簧单元来实现它们之间半刚性的连接。 考虑到木构架材质主要发挥其顺纹力学性质,可以将材料近似看作各向同性。参考文献[4]本文采用的木构架材料弹性模量15.5×109Pa,密度为3766kg/m3,泊松比0.25。 (3)屋面板单元。实验模型中屋面刚度很大,可以认为是刚性的,因此用Shell63单元固接在屋面梁上模拟。屋面上的配重在剪力有限元模拟过程中,利用质量单元Mass21模拟,将屋盖配重按面积等效原则

有限元的MATLAB解法

有限元的MATLAB解法 1.打开MATLAB。 2.输入“pdetool”再回车,会跳出PDE Toolbox的窗口(PDE意为偏微分方程,是partial differential equations的缩写),需要的话可点击Options菜单下Grid命令,打开栅格。 3.完成平面几何模型:在PDE Toolbox的窗口中,点击工具栏下的矩形几何模型进行制作模型,可画矩形R,椭圆E,圆C,然后在Set formula栏进行编辑并(如双脊波导R1+R2+R3改为RI-R2-R3,设定a、b、s/a、d/b的值从而方便下步设定坐标) 用算术运算符将图形对象名称连接起来,若还需要,可进行储存,形成M文件。 4.用左键双击矩形进行坐标设置:将大的矩形left和bottom都设为0,width是矩形波导的X轴的长度,height是矩形波导的y轴的长度,以大的矩形左下角点为原点坐标为参考设置其他矩形坐标。 5.进行边界设置:点击“Boundary”中的“Boundary Mode”,再点击

“Boundary”中的“Specify Boundary Conditions”,选择符合的边界条件,Neumann为诺曼条件,Dirichlet为狄利克雷条件,边界颜色显示为红色。 6.进入PDE模式:点击"PDE"菜单下“PDE Mode”命令,进入PDE 模式,单击“PDE Specification”,设置方程类型,“Elliptic”为椭圆型,“Parabolic”为抛物型,“Hyperbolic”为双曲型,“Eigenmodes”为特征值问题。 7.对模型进行剖分:点击“Mesh”中“Initialize Mesh”进行初次剖分,若要剖的更细,再点击“Refine Mesh”进行网格加密。 8.进行计算:点击“Solve”中“Solve PDE”,解偏微分方程并显示图形解,u值即为Hz或者Ez。 9.单击“Plot”菜单下“Parameters”选项,打开“Plot Selection”对话框。选中Color,Height(3-D plot)和Show mesh三项,然后单击“Plot”按钮,显示三维图形解。 10.如果要画等值线图和矢量场图,单击“Plot”菜单下“Parameters”选项,打开“Plot Selection”对话框。选中Contour和Arrows两项,然后单击Plot按钮,可显示解的等值线图和矢量场图。 11.将计算结果条件和边界导入MATLAB中:点击“Export Solution”,再点击“Mesh”中“Export Mesh”。

Cahn-Hilliard方程的隐显BDF2方法

Cahn-Hilliard 方程的隐显BDF2方法 饶 婷, 王晚生 (长沙理工大学 数学与统计学院, 长沙 410114) 摘 要: Cahn-Hilliard 方程作为一类重要的四阶扩散方程已成为偏微分方程研究领域一个倍受关注的问题. 本文考虑带有Neumann 边界的Cahn-Hilliard 方程的隐显BDF2半离散格式和全离散格式, 并证明了该格式是质量守恒的. 关键词: Cahn-Hilliard 方程; 质量守恒; 隐显BDF2格式; 全离散 中图分类号: O241.8 文献标识码: A 文章编号: 1672-5298(2018)02-0009-03 IMEX-BDF2 Method for Cahn-Hilliard Equation RAO Ting, WANG Wansheng (School of Mathematics and Computational Science, Changsha University of Science and Technology, Changsha 410114, China) Abstract : The Cahn-Hilliard equation, as an important class of fourth-order diffusion equations, has become a major concern in the field of partial differential equations. In this paper, the Cahn-Hilliard equation with Neumann boundary is considered to be discretized by implicit-explicit BDF2 method. It is proved that the scheme preserves the property of mass conservation. Key words : Cahn-Hilliard equation; mass conservation; implicit-Explicit BDF2; full-discrete schemes Cahn-Hilliard 方程是一个描述两种金属物质混合时随温度变化发生亚稳相分离现象的四阶非线性抛物方程. 最初是由 Cahn 和Hilliard [1]于1958年在研究热力学中两种物质(如合金、聚合物等等)之间相互扩散现象时提出的. 后来用于描述生物种群竞争与排斥现象, 固体表面上微滴的扩散等许多扩散现象的研究中也提出了同样的数学模型. 近些年来, 越来越多的学者关注Chan-Hilliard 方程, 对Chan-Hilliard 方程的解的性质做了大量的研究工作, 获得了比较丰硕的成果. 例如, 在1996年Chen [12]等人得到了Chan-Hilliard 方程解的摄动性质; Carlen 和Bricmont [8,9]分别研究了Chan-Hilliard 方程解的稳定性质; Chen 和Zheng [10,11]等人在研究Chan-Hilliard 方程解的渐进性质方面做了大量的工作, 等等. 关于Chan-Hilliard 方程的数值解法方面的研究也越来越受到重视. 例如, Elliott 和Larsson [4]在1992 年考虑Cahn-Hilliard 方程的有限元方法, 并给出了有限元逼近的误差估计. 1998年, Chen 和Shen [5]提出Cahn-Hilliard 方程的谱方法格式, 并证明了该格式独有的高精度与数值稳定性. 2008年, He 和Liu [13]考虑 Cahn-Hilliard 方程的Galerkin 谱方法格式, 并证明了该格式的稳定性和收敛性. Feng 和Karakashian [15,16]等人在2007年提出采用局部间断Galerkin 方法(LDG)和全离散动态网格的间断Galerkin 方法研究Cahn-Hilliard 方程. 2016年, Wang 、Chen 和 Zhou [1721],采用混合有限元方法的后处理技术求解Cahn-Hilliard 方程, 且数值解继承了原有的质量守恒性质和能量递减性质, 最后还获得了相应的误差估计 以及负范数的误差估计等等. 本文在上述研究的基础上, 采用隐显BDF2方法研究Cahn-Hilliard 方程, 并讨论该格式是否保留了方程原有的质量守恒性质. 1问题和记号 首先考虑Cahn-Hilliard 模型方程: 收稿日期: 2018-03-24 基金项目: 国家自然科学基金项目(11771060, 11371074) 作者简介: 饶 婷(1994? ), 女, 湖南常德人, 硕士研究生. 主要研究方向: 微分方程数值解 通讯作者: 王晚生(1977? ), 男, 湖南株洲人, 教授. 主要研究方向: 微分方程数值解 第31卷 第2期 湖南理工学院学报(自然科学版) Vol.31No.2 2018年6月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Jun. 2018

基于Matlab语言的按平面三角形单元划分的结构有限元程序设计模板

基于Matlab语言的按平面三角形单元划分的结构有限元程序设计 专业:建筑与土木工程 班级:建工研12-2 姓名:韩志强 学号: 471220580

基于Matlab语言的按平面三角形单元划分 结构有限元程序设计 一、有限单元发及Matlab语言概述 1. 有限单元法 随着现代工业、生产技术的发展,不断要求设计高质量、高水平的大型、复杂和精密的机械及工程结构。为此目的,人们必须预先通过有效的计算手段,确切的预测即将诞生的机械和工程结构,在未来工作时所发生的应力、应变和位移因此,需要寻求一种简单而又精确的数值分析方法。有限单元法正是适应这种要求而产生和发展起来的一种十分有效的数值计算方法。 有限元法把一个复杂的结构分解成相对简单的“单元”,各单元之间通过结点相互连接。单元内的物理量由单元结点上的物理量按一定的假设内插得到,这样就把一个复杂结构从无限多个自由度简化为有限个单元组成的结构。我们只要分析每个单元的力学特性,然后按照有限元法的规则把这些单元“拼装”成整体,就能够得到整体结构的力学特性。 有限单元法基本步骤如下: (1)结构离散:结构离散就是建立结构的有限元模型,又称为网格划分或单元划分,即将结构离散为由有限个单元组成的有限元模型。在该步骤中,需要根据结构的几何特性、载荷情况等确定单元体内任意一点的位移插值函数。 (2)单元分析:根据弹性力学的几何方程以及物理方程确定单元的刚度矩阵。 (3)整体分析:把各个单元按原来的结构重新连接起来,并在单元刚度矩阵的基础上确定结构的总刚度矩阵,形成如下式所示的整体有限元线性方程: {}[]{}δ F=① K 式中,{}F是载荷矩阵,[]K是整体结构的刚度矩阵,{}δ是节点位移矩阵。 (4)载荷移置:根据静力等效原理,将载荷移置到相应的节点上,形成节点载荷矩阵。 (5)边界条件处理:对式①所示的有限元线性方程进行边界条件处理。 (6)求解线性方程:求解式①所示的有限元线性方程,得到节点的位移。在该步骤中,若有限元模型的节点越多,则线性方程的数量就越多,随之有限元分析的计算量也将越大。 (7)求解单元应力及应变根据求出的节点位移求解单元的应力和应变。

深入浅出的讲清楚有限元法

“有限元法基础及应用”补充讲义(一) 顾克秋 (2005年3月) 一、引子——弹簧单元与弹簧系统 目标:掌握离散结构直接刚度法分析的原理和形式。了解有限元位移法列式的形 式和基本概念。 1、典型弹簧单元分析 写成矩阵符号形式: ? =k F j i i j j ku ku u u k F f +-=-==)(? ?? ?????????--=??????j i j i u u k k k k f f 写成矩阵形式: kd f =(1-1) (1-2) (1-3) 1-2

式(1-2)、(1-3)为弹簧单元的刚度方程,反映了单元特性:节点力与节点位移之间的关系。式中: (注意:单元节点力是节点对单元的作用力) f d k ——单元节点力列阵 ——单元节点位移列阵 ——弹簧单元的刚度矩阵 弹簧单元刚度方程讨论: 1) 有何特点? 对称、奇异、主对角元素恒正 2) 中元素代表什么含义? 刚度系数大小等于弹簧刚度;每列元素代表一端固定、另一端产生单位 位移时加在弹簧单元上的节点力。 3)上面单元刚度方程可以求解吗?为什么? 不可以。刚度方程仅仅表征一个典型单元的弹性特性,单元水平上无法确定单元节点位移。只有把系统中所有单元特性集成后,在系统水平上才可能求出所有未知位移和反力。单元水平上,若已知单元的节点位移,可由刚 度方程求出所有单元节点力分量。若节点力已知,单元节点位移不能确定, 单元可作刚体运动(小位移) 。这也是单元刚度矩阵奇异性的物理解释。 k k 2、弹簧系统整体分析原理

以右图的一个弹簧系统为例,研究如何由单元特性集成系统特性并建立对系统进行求解的控制方程。 由前面得到的弹簧单元的刚度方程公式(1-2),分别写出2个弹簧单元的特性方程如下: 单元1 单元2 (注:右端节点力分量的下标1,2为单元节点的局部编号,上标是单元号) 下面按两个方法完成系统特性的装配和控制方程的建立。并在特定条件下求解。 1)由节点平衡方程导出: 系统处于平衡时,考虑各节点(1,2,3节点)的平衡条件: 节点受到的外载荷与节点受到与其连接的所有单元对其作用力(单元节点力 的反作用力)之和等于零。因此有下列(节点)平衡方程(组): 把单元特性(1-4),(1-5)代入(1-6)得到: 写成矩阵形式: 2 2 32 11 2211 1f F f f F f F =+==(1-4) (1-5) (1-6) 3 2223322211122 1111)(u k u k F u k u k k u k F u k u k F +-=-++-=-=(1-7) (1-8) 图 1-3

时间有限元法、连续级Runge-Kutta法及保结构算法-LSEC

时间有限元法、连续级Runge-Kutta法及保结构算法 唐文生 摘 要 动力系统的保结构算法是能够保持系统内在结构特征的数值计算方法,它的理论基础是微分几何,近年来逐渐成为国内外计算数学与科学工程计算相关领域的研究热点。本博士论文研究了时间有限元法、连续级龙格-库塔法,并建立了其与经典龙格-库塔法、保结构算法之间的关系;通过研究时空局部间断Galerkin解法对哈密顿偏微分系统提出了高阶多辛时空有限元法,并建立了其与高阶分块多辛数值方法之间的关系。 本文的主要研究成果包括: 1、通过考察时间有限元法的变分形式对四种有限元离散格式建立了一个统一的Galerkin描述框架,结合相应的数值求积公式建立了有限元离散、配置法和经典龙格-库塔法之间的关系;研究了时间有限元法的线性稳定性和超收敛性。 2、针对具有特殊结构的动力系统我们发展了时间有限元解法,特别是对哈密顿系统,我们构造了两类严格保持辛结构的Garlerkin有限元解法,同时基于系统的能量守恒律我们研究了连续有限元法的保能量特性,并建立了其与广泛使用的三种保能量算法之间的紧密联系,由此揭示了时间有限元法的保结构特点。 3、研究了Butcher于1987年提出的连续级龙格-库塔法,并在此框架下推广了由Wanner和Hairer提出的构造隐式龙格-库塔法的经典W-变换。通过推广的W-变换,我们不仅可以构造新型的辛几何算法,而且还可构造保持其他结构特点的高阶数值方法如保能量算法、对称算法及(拟)共扼辛算法等。 4、基于时间有限元法的研究,我们通过在空间方向使用局部间断Galerkin 法对哈密顿偏微分方程发展了时空有限元法;对具有特殊形式的哈密顿多辛系统我们证明了通过时空有限法建立的全离散方法等价于高阶的时空分块龙格-库塔方法;我们将基于时空有限元法构造的多辛算法用于求解非线性薛定谔方程,从理论和数值两方面考察了多辛结构、模方守恒律的保持以及数值解的收敛性。 本论文的主要创新点是:(1)对常微分方程的初值问题建立了相应的Galerkin变分形式,结合数值通量的不同选取发展了相应的时间有限元法,并揭示了其与源于不同构造思路的经典龙格-库塔法之间的紧密关系;(2)对具有特殊结构的系统应用时间有限元法,结合相应的数值求积公式揭示了时间有限元法的保结构特点;(3)时间有限元法为求解常微分方程初值问题的数值方法提供了理论框架,从而为构造新型的、满足计算需要的数值方法提供了理论基础;(4)通过发展哈密顿偏微分方程的时空有限元解法我们提供了高阶多辛分块龙格-库塔法的Galerkin变分解释,从而有助于对高阶多辛龙格-库塔方法的理解和进一步高效应用。 关键词:时间有限元法,连续级龙格-库塔法,局部间断Galerkin法,保结构算法,首次积分,辛结构,对称算法,共轭辛算法

有限元计算原理与方法..

1.有限元计算原理与方法 有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。 1.1. 有限元分析的基本理论 有限元单元法的基本过程如下: 1.1.1.连续体的离散化 首先从几何上将分析的工程结构对象离散化为一系列有限个单元组成,相邻单元之间利用单元的节点相互连接 而成为一个整体。单元可采用各种类 型,对于三维有限元分析,可采用四 面 体单元、五西体单元和六面体 单元等。在Plaxis 3D Foundation 程序中,土体和桩体主要采用包 含6个高斯点的15节点二次楔 形体单元,该单元由水平面为6 节点的三角形单元和竖直面为四 边形8节点组成的,其局部坐标 下的节点和应力点分布见图3.1,图3.1 15节点楔形体单元节点和应力点分布界面单元采用包含9个高斯点的 8个成对节点四边形单元。 在可能出现应力集中或应力梯度较大的地方,应适当将单元划分得密集些;

若连续体只在有限个点上被约束,则应把约束点也取为节点:若有面约束,则应 把面约束简化到节点上去,以便对单元组合体施加位移边界条件,进行约束处理; 若连续介质体受有集中力和分布荷载,除把集中力作用点取为节点外,应把分布 荷载等效地移置到有关节点上去。 最后,还应建立一个适合所有单元的总体坐标系。 由此看来,有限单元法中的结构已不是原有的物体或结构物,而是同样材料 的由众多单元以一定方式连接成的离散物体。因此,用有限元法计算获得的结果 只是近似的,单元划分越细且又合理,计算结果精度就越高。与位移不同,应力 和应变是在Gauss 积分点(或应力点)而不是在节点上计算的,而桩的内力则可通 过对桩截面进行积分褥到。 1.1. 2. 单元位移插值函数的选取 在有限元法中,将连续体划分成许多单元,取每个单元的若干节点的位移 作为未知量,即{}[u ,v ,w ,...]e T i i i δ=,单元体内任一点的位移为{}[,,]T f u v w =。 引入位移函数N (x,y,z )表示场变量在单元内的分布形态和变化规律,以便用 场变量在节点上的值来描述单元内任一点的场变量。因此在单元内建立的位移模 式为: {}[]{}e f N δ= (3-1) 其中:12315[][,,......]N IN IN IN IN =,I 为单位矩阵。 按等参元的特性,局部坐标(,,)ξηζ到整体坐标,,x y z ()的坐标转换也采用 与位移插值类似的表达式。经过坐标变化后子单元与母单元(局部坐标下的规则 单元)之间建立一种映射关系。不管内部单元或边界附近的单元均可选择相同的 位移函数,则为它们建立单元特性矩阵的方法是相同的。因此,对于15节点楔 形体单元体内各点位移在整体坐标系,,x y z ()下一般取:

Matlab-PDE工具箱有限元法求解偏微分方程

在科学技术各领域中,有很多问题都可以归结为偏微分方程问题。在物理专业的力学、热学、电学、光学、近代物理课程中都可遇见偏微分方程。 偏微分方程,再加上边界条件、初始条件构成的数学模型,只有在很特殊情况下才可求得解析解。随着计算机技术的发展,采用数值计算方法,可以得到其数值解。 偏微分方程基本形式 而以上的偏微分方程都能利用PDE工具箱求解。 PDE工具箱 PDE工具箱的使用步骤体现了有限元法求解问题的基本思路,包括如下基本步骤: 1) 建立几何模型 2) 定义边界条件 3) 定义PDE类型和PDE系数 4) 三角形网格划分

5) 有限元求解 6) 解的图形表达 以上步骤充分体现在PDE工具箱的菜单栏和工具栏顺序上,如下 具体实现如下。 打开工具箱 输入pdetool可以打开偏微分方程求解工具箱,如下 首先需要选择应用模式,工具箱根据实际问题的不同提供了很多应用模式,用户可以基于适

当的模式进行建模和分析。 在Options菜单的Application菜单项下可以做选择,如下 或者直接在工具栏上选择,如下 列表框中各应用模式的意义为: ① Generic Scalar:一般标量模式(为默认选项)。 ② Generic System:一般系统模式。 ③ Structural Mech.,Plane Stress:结构力学平面应力。 ④ Structural Mech.,Plane Strain:结构力学平面应变。

⑤ Electrostatics:静电学。 ⑥ Magnetostatics:电磁学。 ⑦ Ac Power Electromagnetics:交流电电磁学。 ⑧ Conductive Media DC:直流导电介质。 ⑨ Heat Tranfer:热传导。 ⑩ Diffusion:扩散。 可以根据自己的具体问题做相应的选择,这里要求解偏微分方程,故使用默认值。此外,对于其他具体的工程应用模式,此工具箱已经发展到了Comsol Multiphysics软件,它提供了更强大的建模、求解功能。 另外,可以在菜单Options下做一些全局的设置,如下 l Grid:显示网格 l Grid Spacing…:控制网格的显示位置 l Snap:建模时捕捉网格节点,建模时可以打开 l Axes Limits…:设置坐标系围 l Axes Equal:同Matlab的命令axes equal命令 建立几何模型 使用菜单Draw的命令或使用工具箱命令可以实现简单几何模型的建立,如下 各项代表的意义分别为

有限元方法讲义

第1讲抛物问题有限元方法 1、椭圆问题有限元方法 考虑椭圆问题边值问题: (1) 问题(1)的变分形式:求使满足 (2) 的性质,广义解的正则性结果。 区域的剖分,矩形剖分,三角剖分,剖分规则,正则剖分条件,拟一致剖分条件。 剖分区域上分片次多项式构成的有限元空间。 的逼近性质,逆性质: 这里,为的插值逼近。 问题(2)的有限元近似:求使满足 (3) (3)的解唯一存在,且满足。 (3)的解所满足的矩阵方程(离散方程组)形式: (4) 刚度矩阵的由单元刚度矩阵组装而成。 模误差分析:由(2)-(3)可得 (5) 由(5)可首先得到 则得到 (6) -模误差分析 设满足 用与此方程做内积,由(5)式和插值逼近性质得到 再利用模误差估计结果,得到 (7) 最优阶误差估计和超收敛估计概念。 当与时间相关时(为抛物问题准备),由(5)式得 (8) 利用(7),类似分析可得 (9) 2、抛物问题半离散有限元方法 考虑抛物型方程初边值问题:

(10) (10)的变分形式:求使满足 (11) (11)的半离散有限元近似:求使满足 (12) 令,代入(12),依次取可导出常微分方程组: (13) 其中为质量矩阵,K为刚度矩阵。。 求解常微分方程组(13),得到代回的表达式,即得半离散有限元解。 定理1.问题(12)的解唯一存在且满足稳定性估计: (14) 证明:在(12)中取得到 整理为(注意是正定的) 对此式积分,证毕。 误差分析。引进解的椭圆投影逼近:满足 (15) 根据椭圆问题的有限元结果可知 (16) 分解误差: 的估计由(16)式给出,只须估计。 由(11),(12)和(15)知,满足 取,类似稳定性论证可得 (17) 可取为的投影,插值逼近等。 由(17)式,三角不等式和(16),得到 (18) 3、抛物问题全离散有限元近似 剖分时间区间:。 引进差分算子: 规定,当为连续函数时,,则有 由此得到 (19) (20) 定义问题(11)的全离散向后Euler有限元近似:求,使满足 (21) 将代入(21)可导出全离散方程组 (22)

有限元钢架结构分析手算matlabansys模拟

有限元大作业——钢架结构分析 选题人: 日期:2016年6月2日

目录: 第一章:问题重述 (2) 一、题目内容: (3) 二、题目要求: (3) 第二章:有限元法手工求解 (3) 一、平面两单元离散化 (4) 二、单元分析 (4) 三、单元组装 (6) 四、边界条件引入及组装总体方程 (7) 五、求解整体刚度方程,计算节点2的位移和转角 (7) 六、求节点1、3支撑反力 (8) 七、设定数据,求解结果 (8) 八、绘制轴力图、弯矩图、剪力图 (9) 第三章、matlab编程求解: (11) 一、总体流程图绘制: (11) 二、输入数据: (12) 三、计算单元刚度矩阵: (12) 四、建立总体刚度矩阵: (13) 五、计算未约束点位移: (13) 六、计算支反力: (13) 七、输出数据: (13) 八、编程: (13) 第四章有限元求解 (13) 一、预处理 (13) 二、模型建立: (15) 二、分析计算 (17) 三、求解结果 (18) 四、绘制图像 (19) 第五章结果比较 (22) 第六章心得体会 (22) 第七章附录 (23) 一、matlab程序 (24) 第一章:问题重述

一、题目内容: 图示平面钢架结构 图题目内容 二、题目要求: (1)采用平面梁单元进行有限元法手工求解,要求写出完整的求解步骤,包括: a)离散化:单元编号、节点编号; b)单元分析:单元刚度矩阵,单元节点等效载荷向量; c)单元组长:总体刚度矩阵,总体位移向量,总体节点等效载荷; d)边界条件的引入及总体刚度方程的求解; e)B点的位移,A、C处支撑反力,并绘制该结构的弯矩图、剪力图和轴力图。 (2)编制通用平面钢架分析有限元Matlab程序,并计算盖提,与手工结果进行比较; (3)利用Ansys求解,表格列出B点的位移,A、C处支反力,绘制弯矩图、剪力图和轴力图,并与手算和Matlab程序计算结果比较。 (4)攥写报告,利用A4纸打印; (5)心得体会,并简要说明各成员主要负责完成的工作。 第二章:有限元法手工求解

相关文档
最新文档