第十一章(理) 第四节 正态分布、线性回归

第十一章(理)  第四节  正态分布、线性回归
第十一章(理)  第四节  正态分布、线性回归

第十一章(理) 第四节 正态分布、线性回归

1.111222

则有 ( )

A .μ1<μ2,σ1<σ2

B .μ1<μ2,σ1>σ2

C .μ1>μ2,σ1<σ2

D .μ1>μ2,σ1>σ2

解析:μ反映正态分布的平均水平,x =μ是正态曲线的对称轴,由图知μ1<μ2,σ 反映正态分布的离散程度,σ越大,曲线越“矮胖”,表明越分散,σ越小,曲线越 “高瘦”,表明越集中,由图知σ1<σ2. 答案:A

2.已知随机变量ξ服从正态分布N (3,σ2),则P (ξ<3)= ( ) A.15 B.14

C.13

D.12

解析:根据正态分布的知识可知此正态分布图象的对称轴为x =3,而P (ξ<3)表示对 称轴左边图象的面积,对称轴左右两边图象面积相等,整个图象的面积为1. 答案:D

3.设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ

解析:由题意得随机变量ξ相应的正态密度曲线关于直线x =2对称,又P (ξ>c +1) =P (ξ

答案:B

4.设随机变量ξ服从标准正态分布N (0,1),已知Φ(-1.96)=0.025,则P (|ξ|<1.96)=( ) A .0.025 B .0.050 C .0.950 D .0.975 解析:P (|ξ|<1.96)=Φ(1.96)-Φ(-1.96) =1-2Φ(-1.96)=0.950. 答案:C

5.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ≤0)= ( ) A .0.16 B .0.32

C .0.68

D .0.84

解析:根据正态分布曲线的对称性,得P (ξ≤0)=1-P (ξ≤4)=1-0.84=0.16. 答案:A

6.对有线性相关关系的两个变量建立的回归直线方程y =a +bx 中,回归系数b ( ) A .可以小于0 B .大于0 C .能等于0 D .只能小于0

解析:因为b =0时,r =0,这时不具有线性相关关系,但b 能大于0也能小于0. 答案:A

7.以下是两个变量x 和y 的一组数据:

则这两个变量间的回归直线方程为 ( ) A.y ^=x 2 B.y ^

=x C.y ^=9x -15 D.y ^

=15x -9 解析:根据数据可得x =4.5,y =25.5, ∑i =1

n x 2i =204,∑i =1

n

x i y i =1 296.

b =

1

22

1

n

i

i

i n

i

i x y

nx y x

nx ==--∑∑=1 296-8×4.5×25.5204-8×4.52

=9,

a =y -

b x =25.5-9×4.5=-15. ∴y ^

=9x -15. 答案:C

8.已知回归直线方程y ^

=4.4x +838.19,则可估计x 与y 的增长速度之比约为________. 解析:x 与y 的增长速度之比即为回归直线方程的斜率的倒数14.4=1044=522.

答案:5

22

9.某肉食鸡养殖小区某种病的发病鸡只数呈上升趋势,统计近4个月这种病的新发病

鸡只数的线性回归分析如下表所示:

该养殖小区这种病的新发病鸡总只数约为________.

解析:由上表可得:y ^

=94.7x +1 924.7,当x 分别取9,10,11,12时,得估计值分别 为:2 777,2 871.7,2 966.4,3 061.1,则总只数约为2 777+2 871.7+2 966.4+3 061.1≈11 676. 答案:11 676

10.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的 生产能耗y (吨标准煤)的几组对照数据:

(1)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^

=bx +a ;

(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的回归 直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解:(1)∑i =1

4

x i y i =3×2.5+4×3+5×4+6×4.5=66.5,

x —

=3+4+5+6

4=4.5, y —

2.5+3+4+4.5

4

=3.5,

∑i =1

4x 2i =32+42+52+62=86,

b =66.5-4×4.5×3.586-4×4.52=66.5-6386-81

=0.7,

a =y —

-b x —

=3.5-0.7×4.5=0.35. 故回归直线方程为y ^

=0.7x +0.35.

(2)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35,

故耗能减少了90-70.35=19.65(吨).

第十一章 一元线性回归分析

第十一章一元线性回归 11.1从某一行业中随机抽取12家企业,所得产量与生产费用的数据如下: 要求: (1)绘制产量与生产费用的散点图,判断二者之间的关系形态。 (2)计算产量与生产费用之间的线性相关系数。 (3)对相关系数的显著性进行检验(α = 0.05),并说明二者之间的关系强度。 解:(1)利用Excel的散点图绘制功能,绘制的散点图如下: 从散点图的形态可知,产量与生产费用之间存在正的线性相关。 (2)利用Excel的数据分析中的相关系数功能,得到产量与生产费用的线性相关系数r = 0.920232。 (3)计算t统计量,得到t = 7.435453,在α = 0.05的显著性水平下,临界值为2.6337,统计量远大于临界值,拒绝原假设,产量与生产费用之间存在显著

的正线性相关关系。r大于0.8,高度相关。 11.2 学生在期末考试之前用于复习的时间(单位:h)和考试分数(单位:分)之间是否有关系?为研究这一问题,以为研究者抽取了由8名学生构成的一个随机样本,得到的数据如下: 要求: (1)绘制复习时间和考试分数的散点图,判断二者之间的关系形态。 (2)计算相关系数,说明两个变量之间的关系强度。 解:(1)利用Excel的散点图绘制功能,绘制的散点图如下: 从散点图的形态来看,考试分数与复习时间之间似乎存在正的线性相关关系。 (2)r = 0.862109,大于0.8,高度相关。 11.3根据一组数据建立的线性回归方程为?100.5 =-。 y x

要求: ?β的意义。 (1)解释截距 ?β意义。 (2)解释斜率 1 (3)计算当x = 6时的E(y)。 解:(1)在回归模型中,一般不能对截距项赋予意义。 ?β的意义为:当x增加1时,y减小0.5。 (2)斜率 1 (3)当x = 6时,E(y) = 10 – 0.5 * 6 = 7。 11.4 设SSR = 36,SSE = 4,n = 18。 要求: (1)计算判定系数R2并解释其意义。 (2)计算估计标准误差s e并解释其意义。 解:SST = SSR+SSE = 36+4 = 40, R2 = SSR / SST = 36 /40 = 0.9,意义为自变量可解释因变量变异的90%,自因变量与自变量之间存在很高的线性相关关系。 s== 0.5,这是随机项的标准误差的估计值。 (2) e 11.5一家物流公司的管理人员想研究货物的运送距离和运送时间的关系,因此,他抽出了公司最近10辆卡车运货记录的随机样本,得到运送距离(单位:km)和运送时间(单位:天)的数据如下:

计量经济学 第三章、经典单方程计量经济学模型:多元线性回归模型

计量经济学第三章、经典单方程计量经济学模型:多元线性回归模型

第三章、经典单方程计量经济学模型:多元线性 回归模型 一、内容提要 本章将一元回归模型拓展到了多元回归模型,其基本的建模思想与建模方法与一元的情形相同。主要内容仍然包括模型的基本假定、模型的估计、模型的检验以及模型在预测方面的应用等方面。只不过为了多元建模的需要,在基本假设方面以及检验方面有所扩充。 本章仍重点介绍了多元线性回归模型的基本假设、估计方法以及检验程序。与一元回归分析相比,多元回归分析的基本假设中引入了多个解释变量间不存在(完全)多重共线性这一假设;在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。 本章的另一个重点是将线性回归模型拓展到非线性回归模型,主要学习非线性模型如何转化为线性回归模型的常见类型与方法。这里需要注

意各回归参数的具体经济含义。 本章第三个学习重点是关于模型的约束性检验问题,包括参数的线性约束与非线性约束检验。参数的线性约束检验包括对参数线性约束的检验、对模型增加或减少解释变量的检验以及参数的稳定性检验三方面的内容,其中参数稳定性检验又包括邹氏参数稳定性检验与邹氏预测检验两种类型的检验。检验都是以F检验为主要检验工具,以受约束模型与无约束模型是否有显著差异为检验基点。参数的非线性约束检验主要包括最大似然比检验、沃尔德检验与拉格朗日乘数检验。它们仍以估计无约束模型与受约束模型为基础,但以最大似然原理进行估计,且都适用于大样本情形,都以约束条件个数为自由度的2χ分布为检验统计量的分布特征。非线性约束检验中的拉格朗日乘数检验在后面的章节中多次使用。 二、典型例题分析 例1.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为 . 10+ 36 + = - .0 .0 medu fedu sibs edu210 131 .0 094

g3.1100 12.4 正态分布、线性回归(1)

12.4 正态分布、线性回归 一、 知识梳理 1.正态分布的重要性 正态分布是概率统计中最重要的一种分布,其重要性我们可以从以下两方面来理解:一方面,正态分布是自然界最常见的一种分布。一般说来,若影响某一数量指标的随机因素很多,而每个因素所起的作用都不太大,则这个指标服从正态分布。 2.正态曲线及其性质 正态分布函数:22 ()2()x f x μσ-- = ,x ∈(-∞,+∞) 3.标准正态曲线 标准正态曲线N (0,1)是一种特殊的正态分布曲线,00()1()x x Φ-=-Φ,以及标准正态总体在任一区间(a ,b)内取值概率)()(a b P Φ-Φ=。 4.一般正态分布与标准正态分布的转化 由于一般的正态总体),(2σμN 其图像不一定关于y 轴对称,对于任一正态总体),(2σμN ,其取值小于x 的概率)( )(σ μ -Φ=x x F 。只要会用它求正态总体 ),(2σμN 在某个特定区间的概率即可。 5.“小概率事件”和假设检验的基本思想 “小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。这种认识便是进行推断的出发点。关于这一点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,我们也有5%的犯错误的可能。

课本是借助于服从正态分布的有关零件尺寸的例子来介绍假设检验的基本思想。进行假设检验一般分三步: 第一步,提出统计假设。课本例子里的统计假设是这个工人制造的零件尺寸服从正态分布),(2σμN ; 第二步,确定一次试验中的取值a 是否落入范围(μ-3σ,μ+3σ); 第三步,作出推断。如果a ∈(μ-3σ,μ+3σ),接受统计假设;如果 )3,3(σμσμ+-?a ,由于这是小概率事件,就拒绝统计假设。 6.相关关系 研究两个变量间的相关关系是学习本节的目的。对于相关关系我们可以从下三个方面加以认识:⑴相关关系与函数关系不同。函数关系中的两个变量间是一种确定性关系。相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系。 ⑵函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。 ⑶函数关系与相关关系之间有着密切联系,在一定的条件下可以相互转化。 7.回归分析 本节所研究的回归分析是回归分析中最简单,也是最基本的一种类型——一元线性回归分析。 对于线性回归分析,我们要注意以下几个方面: ⑴回归分析是对具有相关关系的两个变量进行统计分析的方法。两个变量具有相关关系是回归分析的前提。 ⑵散点图是定义在具有相关系的两个变量基础上的,对于性质不明确的两组数据,可先作散点图,在图上看它们有无关系,关系的密切程度,然后再进行相关回归分析。

贾俊平第四版统计学-第十一章一元线性回归练习答案

第十一章一元线性回归练习题答案 二.填空题 1. 不能;因为该相关系数为样本计算出的相关系数,它的大小受样本数据波动的影响,它是否显著尚需 检验;t 检验; 2. 图1;不能;因为图1反映的是线性相关关系,图2反映的是非线性性相关关系,相关系数只能反映 线性相关变量间的相关性的强弱,不能反映非线性相关性的强弱。 三.计算题 1.(1) SSR 的自由度是1,SSE 的自由度是18。 (2)2418 /6080220/1/==-= SSE SSR F (3)判定系数%14.57140 802 === SST SSR R 在y 的总变差中,由57.14%的变差是由于x 的变动说引起的。 (4)7559.05714.02-=-=-=R r 相关系数为-0.7559。 (5)线性关系显著和:线性关系不显著 和y x y x H 10H : 因为414.424=>=αF F ,所以拒绝原假设,x 与y 之间的线性关系显著。 2.(1) 方差分析表 df SS MS F Significance F 回归分析 1 425 425 85 0.017 残差 15 75 5 - - 总计 16 500 - - - (2)判定系数%8585.0500 425 2 ==== SST SSR R 表明在维护费用的变差中,有85%的变差可由使用年限来解释。 (3)9220.085.02===R r 二者相关系数为0.9220,属于高度相关 (4) x y 248.1388.6?+= 分布;显著。 的自由度为t n r n r t 2);12 ||2 ---=

回归系数为1.248,表示每增加一个单位的产量,该行业的生产费用将平均增长1.248个单位。 (5)线性关系显著性检验: 线性关系显著 :生产费用和产量之间性关系不显著生产费用和产量之间线10:H H 因为Significance F=0.017<05.0=α,所以线性关系显著。 (6) 348.3120248.1388.6248.1388.6?==?++=x y 当产量为10时,生产费用为31.348万元。

第三章 一元线性回归模型

第三章 一元线性回归模型 一、预备知识 (一)相关概念 对于一个双变量总体),(i i x y ,若由基础理论,变量x 和变量y 之间存在因果关系,或x 的变异可用来解释y 的变异。为检验两变量间因果关系是否存在、度量自变量x 对因变量y 影响的强弱与显著性以及利用解释变量x 去预测因变量 y ,引入一元回归分析这一工具。 将给定i x 条件下i y 的均值 i i i x x y E 10)|(ββ+= (3.1) 定义为总体回归函数(Population Regression Function,PRF )。定义 )|(i i i x y E y -为误差项(error term ),记为i μ,即)|(i i i i x y E y -=μ,这样i i i i x y E y μ+=)|(,或 i i i x y μββ++=10 (3.2) (3.2)式称为总体回归模型或者随机总体回归函数。其中,x 称为解释变量(explanatory variable )或自变量(independent variable );y 称为被解释变量(explained variable )或因变量(dependent variable );误差项μ解释了因变量的变动中不能完全被自变量所解释的部分。误差项的构成包括以下四个部分: (1)未纳入模型变量的影响 (2)数据的测量误差 (3)基础理论方程具有与回归方程不同的函数形式,比如自变量与因变量之间可能是非线性关系 (4)纯随机和不可预料的事件。 在总体回归模型(3.2)中参数10,ββ是未知的,i μ是不可观察的,统计计量分析的目标之一就是估计模型的未知参数。给定一组随机样本 n i y x i i ,,2,1),,( =,对(3.1)式进行估计,若10,),|(ββi i x y E 的估计量分别记为^ 1^ 0^ ,,ββi y ,则定义3.3式为样本回归函数 i i x y ^ 1^ 0^ ββ+= (n i ,,2,1 =) (3.3) 注意,样本回归函数随着样本的不同而不同,也就是说^ 1^ 0,ββ是随机变量,它们的随机性是由于i y 的随机性(同一个i x 可能对应不同的i y )与x 的变异共同引起的。定义^ i i y y -为残差项(residual term ),记为i e ,即^ i i i y y e -=,这样 i i i e y y +=^ ,或 i i i e x y ++=^ 1^0ββ (n i ,,2,1 =) (3.4)

平均分布,正态分布,一阶滑动和,一阶线性回归 C语言编程

#include #include #include #include #include # define pi 3.1415926 # define sqr 0.707106781//在一阶线性回归出现了参数a double uni[2000]={0};//程序中出现大数组时,很可能导致堆栈溢出,为了避免double nor[2000]={0};//这个问题,把数组声明为全局变量, double ovlap[1000]; double linreg[1000]; double nor_num[10]; double nor_num_theory[10]={0.0}; double mean( double a[]) { int i; double ever=0.0; for(i=0;i<2000;i++) ever+=a[i]/2000.0; return ever; } double std(double a[],double mean) { int i; double stda=0.0; for(i=0;i<2000;i++) stda+=(a[i]-mean)*(a[i]-mean)/2000.0; return stda; } double integral(double a,double b) { double i,num=0.0; for(i=a;i

正态分布和线性回归

专题:正态分布和线性回归 一、 基础知识回顾 1 ( x )2 1. 正态分布:若总体密度曲线就是或近似地是函数 f ( x) e 2 2 的图象 2 , x, 其中:π是圆周率; e 是自然对数的底; x 是随机变量的取值 , 为正态分布的平均值; 是 正态分布的标准差.这个总体是无限容量的抽样总体,其分布叫做正态分布.正态分布由参 数 , 唯一确定,记作 ~ N ( , 2 ) ,E( )= ,D( )= 2 . 2. 函数 f(x) 图象被称为正态曲线 . (1) 从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为 x=μ,并在 x=μ时 .... .......... 取最大值 。(2) 从 x=μ点开始,曲线向正负两个方向递减延伸,不断逼近 x 轴,但永不与 x .... 轴相交,因此说曲线在正负两个方向都是以 x 轴为渐近线的 ,(3) 当μ的值一定时 , σ越大,曲线越“矮胖”,总体分布越分散;σ越小,曲线越“高”.总体分布越集中. 3. 把 ~ N (0,1) 即μ =0, σ=1 称为标准正态分布,这样的正态总体称为标准正态总体 , 其密度函 1 1 x 2 数为 f ( x) e 2 2 ,x ∈(- ∞,+∞) ,相应的曲线称为标准 正 态曲线. 4. 利用标准正态分布表可求得标准正态总体在某一区间内取 值 的概率 . (1) 对于标准正态总体 N (0,1) , ( x 0 ) 是总体取值小于 x 0 的概率,即: ( x 0 ) P(x x 0 ) , 其中 x 0 0 ,其值可以通过 “标准正态分布表” 查得,也就是图中阴影部分的面积,它表示 总体取值小于 x 0 的概率. (2) 标准正态曲线关于 y 轴对称。因为当 x 0 0 时, ( x 0 ) P(x x 0 ) ; 而当 x 0 0 时,根据正态曲线的性质可得: ( x 0 ) 1 ( x 0 ) ,并且可以求得在任一区间(x 1 , x 2 ) 内 取值的概率: P(x 1 x x 2 ) ( x 2 ) ( x 1 ) , 显然Φ(0)=0.5. 5. 对于任一正态总体 ~ N ( , 2 ) , 都可以通过 使之标准化 ~ N (0,1) , 那么 , P( x )=P( < x )= ( x ) ,求得其在某一区间内取值的概率 . 例如: ~ N(1,4), 那么 , 设 = 1 , 则 ~ N (0,1) , 有 P( <3)=P( <1)= (1)=0.8413. 2 6. Φ(1)=0.8413 、Φ (2)=0.9772 、Φ(3)=0.9987 二、例题

logistic回归与线性回归的比较分析

1 logistic回归 logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等。因此因变量就为是否胃癌,值为“是”或“否”,自变量就可以包括很多了,如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。然后通过logistic回归分析,可以得到自变量的权重,从而可以大致了解到底哪些因素是胃癌的危险因素。同时根据该权值可以根据危险因素预测一个人患癌症的可能性。 1.1 logistic回归概述 logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w‘x+b 作为因变量,即y =w‘x+b,而logistic回归则通过函数L将w‘x+b对应一个隐状态p,p =L(w‘x+b),然后根据p 与1-p的大小决定因变量的值。如果L是logistic 函数,就是logistic回归,如果L是多项式函数就是多项式回归。 logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释,多类可以使用softmax方法进行处理。实际中最为常用的就是二分类的logistic回归。 Logistic回归模型的适用条件 1 因变量为二分类的分类变量或某事件的发生率,并且是数值型变量。但是需要注意,重复计数现象指标不适用于Logistic回归。 2 残差和因变量都要服从二项分布。二项分布对应的是分类变量,所以不是正态分布,进而不是用最小二乘法,而是最大似然法来解决方程估计和检验问题。 3 自变量和Logistic概率是线性关系 4 各观测对象间相互独立。 原理:如果直接将线性回归的模型扣到Logistic回归中,会造成方程二边取值区间不同和普遍的非直线关系。因为Logistic中因变量为二分类变量,某个概

第11章 一元线性回归

第11章一元线性回归 1.具有相关关系的两个变量的特点是() A.一个变量的取值不能由另一个变量唯一确定 B.一个变量的取值由另一个变量唯一确定 C.一个变量的取值增大时,另一个变量的取值也一定增大 D.一个变量的取值增大时,另一个变量的取值肯定变小 2.下面的各问题中,哪个不是相关分析要解决的问题() A.判断变量之间是否存在关系 B.判断一个变量数值的变化对另一个变量的影响 C.描述变量之间的关系强度 D.判断样本所反映的变量之间的关系能否代表总体变量之间的关系 3.下面的假定中,哪个属于相关分析中的假定()

A.两个变量之间是非线性关系 B.两个变量都是随机变量 C.自变量是随机变量,因变量不是随机变量 D.一个变量的数值增大,另一个变量的数值也应增大 4.如果变量之间的关系近似地表现为一条直线,则称两个变量之间为()A.正线性相关关系 B.负线性相关关系 C.线性相关关系 D.非线性相关关系 5.如果一个变量的取值完全依赖于另一个变量,各观测点落在一条直线上,称为两个变量之间为() A.完全相关关系 B.正线性相关关系 C.非线性相关关系 D.负线性相关关系 6.下面的陈述哪一个是错误的() A.相关系数是度量两个变量之间线性关系强度的统计量

B.相关系数是一个随机变量 C.相关系数的绝对值不会大于1 D.相关系数不会取负值 7.如果相关系数r=0,则表明两个变量之间() A.相关程度很低 B.不存在任何关系 C.不存在线性相关关系 D.存在非线性相关关系 8.在回归分析中,被预测或被解释的变量称为() A.自变量 B.因变量 C.随机变量 D.非随机变量 9.在回归分析中,描述因变量y如何依赖于自变量x和误差项的方程称为()A.回归方程 B.估计的回归方程 C.回归模型 D.经验回归方程 中,ε反映的是10. 在一元回归模型ε β β+ + y =x 1

正态分布和线性回归

专题:正态分布和线性回归 一、 基础知识回顾 1.正态分布: 若总体密度曲线就是或近似地是函数()2 2 ()2(),,x f x x μσ--=∈-∞+∞的图象 其中:π是圆周率;e 是自然对数的底;x 是随机变量的取值,μ为正态分布的平均值;σ是正态分布的标准差.这个总体是无限容量的抽样总体,其分布叫做正态分布.正态分布由参数μ,σ唯一确定,记作ξ~2(,)N μσ,E(ξ)=μ,D(ξ)=2σ. 2.函数f(x)图象被称为正态曲线. (1)从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为....x=..μ.,并在...x=..μ.时. 取最大值.... 。(2)从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x 轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x 轴为渐近线的,(3)当μ的值一定时, σ越大,曲线越“矮胖”,总体分布越分散;σ越小,曲线越“高”.总体分布越集中. 3. 把ξ~(0,1)N 即μ=0,σ=1称为标准正态分布,这样的正态总体称为标准正态总体,其密度函 数为21 2 ()x f x -=,x ∈(-∞,+∞),相应的曲线称为标准正态曲线. 4.利用标准正态分布表可求得标准正态总体在某一区间内取值的概率. (1)对于标准正态总体(0,1)N ,)(0x Φ是总体取值小于0x 的概率,即:)()(00x x P x <=Φ, 其中00>x ,其值可以通过“标准正态分布表”查得,也就是图中阴影部分的面积,它表示总体取值小于0x 的概率. (2)标准正态曲线关于y 轴对称。因为当00>x 时,)()(00x x P x <=Φ; 而当00

一元线性回归模型与多元线性回归模型对比

参数估计量的性质 线性性、无偏性、有效性 线性性、无偏性、有效性 参数估计量的概率分布 ) , (~?), (~?22 2002211σββσββ∑∑∑i i i x n X N x N --- 样本容量问题 ---- 样本容量n 必须不少于模型中解释变量的个数(包括常数项), 即1+≥k n 才能得到参数估计值,8-≥k n 时t 分布才比较稳定,能够进行变量的显著性检验,一般认为30≥n 活着至少 ()13+≥k n 时才能满足模型估计要求。如果样本量过小,则只 依靠样本信息就是无法完成估计的,需要用其她方法去估计。 统计检验 一元线性回归模型 多元线性回归模型 拟合优度检验 总离差平方与的分解 TSS=ESS+RSS TSS ESS R = 2,[]1,02 ∈R 越接近于1,拟合优度越高。 总离差平方与的分解 TSS=ESS+RSS TSS RSS TSS ESS R -== 12,(即总平方与中回归平方与的比例) []1,02∈R 对于同一个模型,2R 越接近于1,拟合优度越高。 ) 1/() 1(12---- =n TSS k n RSS R (调整的思路就是残差平方与 RSS 与总平方与 TSS 各自除以它们的自由度) 为什么要对2 R 进行调整?解释变量个数越多,它们对 Y 所能解释的部分越 大(即回归平方与部分越大),残差平方与部分越小,2R 越高,由增加解释变量引起的 2R 的增大与拟合好坏无关,因此在多元回归模型之间比较拟合优度, 2R 就不就是一 个合适的指标,必须加以调整。 方程总体显著性检验 ------ 目的:对模型中被解释变量与解释变量之间的线性关系在总体上就是否成立做出判断。 原假设 备择假设: 统计量的构造: 判断步骤:①计算F 统计量的值 ②给定显著性水平,查F 分布的临界值表获得 )

计量经济学ch4 正态假定 经典线性回归模型

Ch4 正态性假定: 经典正态线性回归模型 对于模型 i i i u X Y ++=21ββ (4.1) 我们首先讨论扰动的分布。 i u 4.1. 的概率分布 i u 没有分布假设,不可能对参数估计量作出任何推断,也不可能对任何有关总体的假定作出检验 4.2. 的概率分布假定为正态分布 i u 经典正态线性回归假定具有正态分布,且 i u 均值: 0)(=i u E 方差: ,表示对每一个,方差相同 22)(σ=i u E i u 协方差 j i u u j i ≠=0),cov( 概率密度函数: 22 221 )(σ π σi u i e u f ?= 概率分布函数 ∫ ∞ ??=x i i du e u F i 22221 )(σ μπ σ

上述假定采取记为 2~(0,i u NID )σ (4.2) 简称为为独立同分布。其分布特征如图所示. i u 正态分布特征: 为什么假定为正态分布? 1. 中心极限定理 独立同分布随机变量X i , 其均值为μ, 方差为σ2, 则: )/,(/2 n N n X X n i σμ??→?=∞ →∑ )1,0() (/N X n n X z n ??→??= ?= ∞ →σ μσμ 正是中心极限定理,为的正态假设提供了理论支持。 i u 2. 正态变量所具有的性质: 线性变换仍为正态变量,分布函数仅有两个参数即均值和方差。

4.3.正态假定下OLS 估计量的性质 用OLS 方法所得到的估计量,在正态假定下具有性质: )2,1(?=i i β1. 无偏性; 2. 最小方差; 3. 一致性,即随着样本个数的无限增大,估计量将收敛于它们的真值。用公式表示 {} 01?lim >=

统计学-第11章一元线性回归学习指导

第11章一元线性回归(相关与回归)学习指导 一、本章基本知识梳理 基本知识点 含义或公式 相关关系 客观现象之间确实存在的、但在数量表现上不是严格对应的依存关系。 函数关系 客观现象之间确实存在的、而且数量表现上是严格对应的依存关系。 因果关系 有相关关系的现象中能够明确其中一种现象(变量)是引起另一种现象(变量)变化的原因,另一种现象是这种现象变化的结果。起影响作用的现象(变量)称为“自变量”;而受自变量影响发生变动的现象(变量)称为“因变量”。 因果关系?相关关系,但相关关系中还包括互为因果关系的情况。 相关关系的种类 按涉及变量多少分为单相关、复相关;按相关方向分为正相关、负相关;按 相关形态分为线性相关、非线性相关等。 线性(直线) 相关系数 简称相关系数,反映具有直线相关关系的两个变量关系的密切程度。 () () ∑∑∑∑∑∑∑ - - -= = 2 2 2 2 y y n x x n y x xy n S S S r y x xy 相关系数的 显著性检验 ——t 检验 ()(). 2;,212:0 :,0:0 2 02 2 1 H n t t H n t t r n r t H H ,拒绝 不能拒绝 检验统计量-?-?--= ≠=α α ρρ 回归方程中的 参数β0和β1 为回归直线的截距、起始值,表示在没有自变量x 的影响(即x =0)时, 其他各种因素对因变量y 的平均影响; β1为回归系数、斜率,表示自变量x 每变动一个单位,因变量y 的平均变动 量。 β1的最小平方估计:∑∑∑∑∑ ?? ? ??--= 2 2 1 x x n y x xy n β 估计标准误差 反映因变量实际值与其估计值之间的平均差异程度,表明其估计值对实际值的代表性强弱。其值越大,实际值与估计值之间的平均差异程度越大,估计值的代表性越差。 ()代替。用大样本条件下,分母可 ;n n y y S e 2 ?2 --= ∑ 总离差平方和S S T 反映因变量的n 个观察值与其均值的总离差。 回归离差平方和S S R 反映自变量x 的变化对因变量y 取值变化的影响;或者说,是由于x 与y 之间的线性关系引起的y 取值的变化,也称为可解释的平方和。 残差平方和(剩余)S S E 反映除x 以外的其他因素对y 取值的影响,也称为不可解释的平方和或残差平方和。

第三章一元线性回归分析

第三章 一元线性回归 一元线性回归分析的对象是两个变量的单向因果关系,模型的核心是两变量线性函数,分析方法是回归分析。一元线性回归是经典计量经济分析的基础。 第一节 一元线性回归模型 一、变量间的统计关系 社会经济现象之间的相互联系和制约是社会经济的普遍规律。在一定的条件下,一些因素推动或制约另外一些与之联系的因素发生变化。这种状况表明在经济现象的内部和外部联系中存在着一定的因果关系,人们往往利用这种因果关系来制定有关的经济政策,以指导、控制社会经济活动的发展。而认识和掌握客观经济规律就要探求经济现象间经济变量的变化规律。 互有联系的经济变量之间的紧密程度各不相同,一种极端的情况是一个变量能完全决 定另一个变量的变化。比如:工业企业的原材料消耗金额用y 表示,生产量用1x 表示,单位产量消耗用2x 表示,原材料价格用3x 表示,则有:123y x x x =。这里,y 与123,,x x x ,是一种确定的函数关系。 然而,现实世界中,还有不少情况是两个变量之间有着密切的联系,但它们并没有密切到由一个可以完全确定另一个的程度。 例如:某种高档费品的销售量与城镇居民的收入;粮食产量与施肥量之间的关系;储蓄额与居民的收入密切相关。 从图示上可以大致看出这两种关系的区别:一种是对应点完全落到一条函数曲线上;另一种是并不完全落在曲线上,而有的点在曲线上,有的点在曲线的两边。对于后者这种不能用精确的函数关系来描述的关系正是计量经济学研究的重要内容。 二、一元线性回归模型 1.模型的建立 一个例子,见教材66页: 总体回归模型:01i i i Y X ββε=++ 理解:(1)误差的随机性使得Y 和X 之间呈现一种随机的因果关系;(2)Y i 的取值由两部分组成,一类是系统内影响,一类是系统外影响。 样本回归直线:01i i Y X ββ=+ 样本回归模型:01i i i Y X e ββ=++ 2.模型的假设 (1) 误差项i ε的数学期望无论I 取什么值都是零。 (2) 误差项i ε的方差为常数2 σ (3) 误差项i ε对于I 的取值不同,不相关。 (4) 解释变量X 是确定性的变量,而非随机变量。 (5) 误差项i ε服从正态分布。

高三数学正态分布和线性回归(知识点和例题)

正态分布和线性回归 高考要求 1.了解正态分布的意义及主要性质 2.了解线性回归的方法和简单应用 知识点归纳 1.正态分布密度函数: 2 2 () 2 () x f x μ σ - - =,(σ>0,-∞<x<∞) 其中π是圆周率;e是自然对数的底;x是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差.正态分布一般记为) , (2 σ μ N 2.正态分布) , (2 σ μ N)是由均值μ和标准差σ唯一决定的分布 例1、下面给出三个正态总体的函数表示式,请找出其均值μ和标准差σ.(1)2 2 2 1 ) ( x e x f- = π ,(-∞<x<+∞) (2 ) 2 (1) 8 () x f x - - =,(-∞<x<+∞) 解:(1)0,1 (2)1,2 3.正态曲线的性质:正态分布由参数μ、σ唯一确定,如果随机变量ξ~N(μ,σ2),根据定义有:μ=Eξ,σ=Dξ。 正态曲线具有以下性质: (1)曲线在x轴的上方,与x轴不相交。 (2)曲线关于直线x =μ对称。 (3)曲线在x =μ时位于最高点。 (4)当x <μ时,曲线上升;当x >μ 时,曲线下降。并且当曲线向左、

右两边无限延伸时,以x 轴为渐近线,向它无限靠近。 (5)当μ一定时,曲线的形状由σ确定。σ越大,曲线越“矮胖”,表示总体越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中。 五条性质中前三条较易掌握,后两条较难理解,因此应运用数形结合的原则,采用对比教学 4.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其 相应的函数表示式是2 221)(x e x f - = π ,(-∞<x <+∞) 其相应的曲线称为标准正态曲线 标准正态总体N (0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题 5.标准正态总体的概率问题: 对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率, 即 )()(00x x P x <=Φ, 其中00>x ,图中阴影部分的面积表示为概率0()P x x < 只要有标准正态 分布表即可查表解决.从图中不难发现:当00

贾俊平第四版统计学-第十一章一元线性回归练习题

第十一章一元线性回归练习题 一. 选择题 1.具有相关关系的两个变量的特点是( ) A .一个变量的取值不能由另一个变量唯一确定 B .一个变量的取值由另一个变量唯一确定 C .一个变量的取值增大时另一个变量的取值也一定增大 D .一个变量的取值增大时另一个变量的取值肯定变小 2.下面的各问题中,哪个不是相关分析要解决的问题 A .判断变量之间是否存在关系 B .判断一个变量数值的变化对另一个变量的影响 C .描述变量之间的关系强度 D.判断样本所反映的变量之间的关系能否代表总体变量之间的关系 3.根据下面的散点图,可以判断两个变量之间存在( ) A. 正线性相关关系 B. 负线性相关关系 C. 非线性关系 D. 函数关系 4.下面的陈述哪一个是错误的( ) A.相关关系是度量两个变量之间线性关系强度的统计量 B .相关系数是一个随机变量 C .相关系数的绝对值不会大于1 D .相关系数不会取负值 5.根据你的判断,下面的相关系数取值哪一个是错误的( ) A. -0.86 B. 0.78 C. 1.25 D. 0 6.如果相关系数r=0,则表明两个变量之间( ) A.相关程度很低 B. 不存在任何关系 C .不存在线性相关关系 D.存在非线性关系 7. 下列不属于相关关系的现象是( ) A. 银行的年利息率与贷款总额 B.居民收入与储蓄存款 C.电视机的产量与鸡蛋产量 D.某种商品的销售额与销售价格 8.设产品产量与产品单位成本之间的线性相关系数为-0.87,这说明二者之间存在着( ) A. 高度相关 B.中度相关 C.低度相关 D.极弱相关 9.在回归分析中,被预测或被解释的变量称为( ) A.自变量 B.因变量 C.随机变量 D.非随机变量 10. 对两变量的散点图拟合最好的回归线,必须满足一个基本的条件是( ) A. 2?()y y ∑-最小 B. 2 )(y y ∑-最大 C. 2?()y y ∑-最大 D. 2 )(?y y ∑-最小 11. 下列哪个不属于一元回归中的基本假定( ) A.误差项i ε服从正态分布 B. 误差项i ε的期望值为0

第三章-K元线性回归模型

第三章 K 元线性回归模型 一、填空题 1. 对于模型i ik k i i i u X X X Y +++++=ββββΛ22110,i=1,2,…,n ,一般经验认为,满足模型估计的基本要求的样本容量为_ _ 2. 对于总体线性回归模型i i i i i u X X X Y ++++=3322110ββββ,运用最小二乘法欲得到参数估计量,所要求的最小样本容量n 应满足 或至少_________。 3. 多元线性计量经济学模型的矩阵形式 ,对应的样本线性回归模型的矩阵形式 ,模型的最小二乘参数估计量 及其方差估计量 。 4. 总平方和可以分解为 回归平方和 和 残差平方和 ,可决系数为 。 5. 多元回归方程中每个解释变量的系数β(偏回归系数),指解释变量变化一个单位引起的被解释变量平均变化 β 个单位。 6. 线性模型的含义,就变量而言,指的是回归模型变量的 ;就参数而言,指的是回归模型中参数的 。通常线性回归模型指的是 。 二、问答题 1. 什么是多元回归模型?它与一元、二元回归模型有何区别? 2. 极大似然法(maximum likehood )的原理是什么? 3. 什么是拟合优度(R 2)检验?有什么作用? 指对样本回归直线与样本观测值之间的拟合程度的检验。 4. 可决系数R 2低的可能的原因是什么? 5. 多元回归的判断系数R 2具有什么性质?运用R 2时应注意什么问题? 6. 多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有 效性的过程中,哪些基本假设起了作用? 7. 说明区间估计的含义。 三、实践题 1.下表给出三变量模型的回归结果: 方差来源 平方和(SS ) 自由度(d.f.) 均方差(MSS) 回归平方和(ESS) 65965 3 21988.33 残差平方和(RSS) 77 11 7 总平方和(TSS) 66042 14 4717.48

第十一章(理) 第四节 正态分布、线性回归

第十一章(理) 第四节 正态分布、线性回归 1.111222 则有 ( ) A .μ1<μ2,σ1<σ2 B .μ1<μ2,σ1>σ2 C .μ1>μ2,σ1<σ2 D .μ1>μ2,σ1>σ2 解析:μ反映正态分布的平均水平,x =μ是正态曲线的对称轴,由图知μ1<μ2,σ 反映正态分布的离散程度,σ越大,曲线越“矮胖”,表明越分散,σ越小,曲线越 “高瘦”,表明越集中,由图知σ1<σ2. 答案:A 2.已知随机变量ξ服从正态分布N (3,σ2),则P (ξ<3)= ( ) A.15 B.14 C.13 D.12 解析:根据正态分布的知识可知此正态分布图象的对称轴为x =3,而P (ξ<3)表示对 称轴左边图象的面积,对称轴左右两边图象面积相等,整个图象的面积为1. 答案:D 3.设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξc +1) =P (ξ

新人教高考数学总复习专题训练正态分布线性回归

新人教高考数学总复习专题训练正态分布线性回归 The following text is amended on 12 November 2020.

正态分布、线性回归 1.已知从某批材料中任取一件时,取得的这件材料的强度ε~N (200,18),则取得的这件材料的强度不低于180的概率为( ) A . B . C . D . 2.已知连续型随机变量x 的概率密度函数是??? ??>≤≤<=b x 0b x a A a x 0)(x f 其中常数A>0,则A 的值为 ( ) A .1 B .b C . a b -1 D .b-a 3.某工厂某产品产量x (千件)与单位成本y (元)满足回归直线方程 x y 82.136.77^-=,则以下说法中正确的是 ( ) A .产量每增加1000件,单位成本下降元 B .产量每减少1000件,单位成本上升元 C .产量每增加1000件,单位成本上升元 D .产量每减少1000件,单位成本下降元 4.工人月工资(元)依劳动生产率(千元)变化的回归方程为x y 9060^ +=,下列判断正确的是 ( ) A .劳动生产率为1000元时,工资为150元 B .劳动生产率提高1000元时,工资提高150元 C .劳动生产率提高1000元时,工资提高90元 D .劳动生产率为1000元时,工资为90元 5.若随机变量ε~N (5,2),且P(ε

正态分布与线性回归

正态分布、线性回归 一、 知识梳理 1.正态分布的重要性 正态分布是概率统计中最重要的一种分布,其重要性我们可以从以下两方面来理解:一方面,正态分布是自然界最常见的一种分布。一般说来,若影响某一数量指标的随机因素很多,而每个因素所起的作用都不太大,则这个指标服从正态分布。 2.正态曲线及其性质 正态分布函数: 22 ()2()x f x μσ-- = ,x ∈(-∞,+∞) 3.标准正态曲线 标准正态曲线N (0,1)是一种特殊的正态分布曲线,00()1()x x Φ-=-Φ,以及标准正态总体在任一区间(a ,b)内取值概率)()(a b P Φ-Φ=。 4.一般正态分布与标准正态分布的转化 由于一般的正态总体),(2 σμN 其图像不一定关于y 轴对称,对于任一正态总体),(2 σμN ,其取值小于x 的概率)( )(σ μ -Φ=x x F 。只要会用它求正态总体),(2σμN 在某个特定区间的概率即可。 5.“小概率事件”和假设检验的基本思想 “小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。这种认识便是进行推断的出发点。关于这一点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,我们也有5%的犯错误的可能。 课本是借助于服从正态分布的有关零件尺寸的例子来介绍假设检验的基本思想。进行假设检验一般分三步: 第一步,提出统计假设。课本例子里的统计假设是这个工人制造的零件尺寸服从正态分布),(2 σμN ; 第二步,确定一次试验中的取值a 是否落入范围(μ-3σ,μ+3σ); 第三步,作出推断。如果a ∈(μ-3σ,μ+3σ),接受统计假设;如果)3,3(σμσμ+-?a ,由于这是小概率事件,就拒绝统计假设。 6.相关关系 研究两个变量间的相关关系是学习本节的目的。对于相关关系我们可以从下三个方面加以认识:⑴相关关系与函数关系不同。函数关系中的两个变量间是一种确定性关系。相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系。 ⑵函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。 ⑶函数关系与相关关系之间有着密切联系,在一定的条件下可以相互转化。 7.回归分析 本节所研究的回归分析是回归分析中最简单,也是最基本的一种类型——一元线性回归分析。 对于线性回归分析,我们要注意以下几个方面: ⑴回归分析是对具有相关关系的两个变量进行统计分析的方法。两个变量具有相关关系是回归分析的前提。 ⑵散点图是定义在具有相关系的两个变量基础上的,对于性质不明确的两组数据,可先作散点图,在图上看它们有无关系,关系的密切程度,然后再进行相关回归分析。 ⑶求回归直线方程,首先应注意到,只有在散点图大至呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义。 8.相关系数 有时散点图中的各点并不集中在一条直线的附近,仍可以按照求回归直线方程的步骤求得回归直线方程。显然这种情形下求得的回归直线方程没有实际意义。那么,在什么情况下求得的回归直线方程才能对相应的一组观测数据具有代表意义?课本中不加证明地给出了相关系数的公式。相关系数公式的作用在于,我们对一组数据之间的线性相关程度可作出定量的分析,而不是仅凭画出散点图,直觉地从散点图的形状粗浅地得出数据之间的线性相关程度。 9.线性相关性检验 相关性检验是一种假设检验,它给出了一个具体检验y 与x 之间线性相关与否的具体办法。限于要求,中学阶段只要求掌握这种检验方法的操作步骤,而不要求对这种方法包含的原理进行深入研究。其具体检验的步骤如下:

相关文档
最新文档