小菜蛾基本知识介绍

小菜蛾基本知识介绍
小菜蛾基本知识介绍

小菜蛾基本知识介绍

小菜蛾又叫菜蛾、方块蛾,幼虫叫小青虫、吊死鬼、吊丝虫、两头尖,属于鳞翅目,菜蛾科,是十字花科蔬菜重要害虫,其中以萝卜、水萝卜、甘蓝、花椰菜、油菜、芥菜等受害严重。

一、分布

世界性的十字花科蔬菜重要害虫,各省均有分布,长江流域及以南为害尤为严重。

二、危害特点

小菜蛾以幼虫为害叶片,小龄幼虫食量小,仅啃食叶肉,叶面造成小洼坑,有时头部可潜在叶组织内为害;幼虫稍大后多在叶背面取食叶肉留下一面表皮,成透明斑状如同“小天窗”,3~4龄以后可将叶片吃成孔洞或缺刻,严重的菜叶成网状。还可为害留种菜的嫩茎幼荚及籽粒,直接影响产量。

危害症状危害症状

三、形态特征

成虫:体长6-7mm,翅展12-15mm,前后翅细长,缘毛很长,前翅前半部有浅褐色小点,中间从翅基至外缘有一条三度弯曲的黑色波状纹,后面部分灰黄色;停歇时两翅覆盖于体背成屋脊状。

卵:长约0.5mm,宽0.3mm,椭圆形,出产时淡黄色,具光泽。

幼虫:出孵时深褐色,后变为绿色。体纺锤形。成熟幼虫体长约10 mm。

蛹:体长6-8 mm,颜色变化大,初化蛹绿色,渐变淡黄绿色,最后灰褐色。

外被薄茧。

卵幼虫

茧成虫

四、生物学习性

1. 成虫习性:

昼伏夜出,羽化、取食、交尾、产卵等,多在晚上,趋光性较强。

成虫飞行力不强,但可随风远距离迁移。

性诱力强。

产卵:雌成虫羽化后即可交尾,交尾后当晚就能产卵,卵在夜间产于叶背近叶脉的凹陷处,散产或3‐5粒聚集在一起。

成虫寿命一般为11-28天,雌虫寿命长于雄虫。

2. 幼虫习性:幼虫昼夜都能孵化,共4龄,初孵幼虫钻入叶片上下表皮之间,啃食叶肉或在叶柄、叶脉内蛀食,形成细小遂道。1龄末或2龄初从潜道退出,取食下表皮厚叶肉,形成透明斑;3、4龄后将叶片吃成孔洞或缺刻。幼虫性活泼,受惊扰时可扭曲身体后退;或吐丝下垂,待惊动后再爬至叶上。

3. 抗药性:世界著名抗药性害虫,能很快对各种化学药剂及生物制剂产生抗性。

五、发生规律

全国各地普遍发生,1年生4~19代不等。在北方发生4~5代,长江流域9~14代,华南17代,台湾18~19代,世代重叠。在北方以蛹在残株落叶、杂草丛中越冬;在南方终年可见各虫态,无越冬现象。全年内为害盛期因地区不同而不同,东北、华北地区以5~6月和8~9月为害严重,且春季重于秋季。在新疆则7~8月为害最重。在南方以4~6月和9~11月是发生盛期,而且秋季重于春季。

小菜蛾发育最适温度为20~30℃。此虫喜干旱条件,潮湿多雨对其发育不利。此外若十字花科蔬菜栽培面积大、连续种植,或管理粗放都有利于此虫发生。在适宜条件下,卵期3~11天,幼虫期12~27天,蛹期8~14天。

六、预测预报

小菜蛾的虫情调查主要包括每年冬至到元旦及3月上旬进行的冬前和冬后虫口基数调查以及3月中旬至11月中旬田间种群数量动态系统调查。

常用虫态历期法对小菜蛾主要危害代发生期进行预测。根据灯诱和性诱及田间出现的发蛾盛期,用卵历期预测卵孵盛期,即卵孵盛期=发蛾盛期+产卵前期+卵历期。根据田间数量系统调查,当田间实查卵孵化率达20%左右时,为第1防治适期;卵孵化率达50%左右为第2防治适期。

七、防治方法

1、农业防治:合理布局,尽量避免大范围内十字花科蔬菜周年连作,以免虫源周而复始,对苗田加强管理,及时防治。收获后,要及时处理残株败叶可消灭大量虫源。

2、物理防治:小菜蛾有趋光性,在成虫发生期,可放置黑光灯诱杀小菜蛾,以减少虫源。

3、生物防治:用小菜蛾性引诱剂诱杀成虫。采用小菜蛾诱芯,配套三角屋式(或船式)诱捕器。一般每亩建议设置小菜蛾诱捕器5个(性信息素),悬挂至高于作物顶部20cm处,原则上外围密,中间稀,定期检查诱虫板,粘满的诱虫板需要更换。

4、药剂防治:选用高效低毒杀虫剂。小菜蛾对农药易产生抗性,必须注意

轮换使用不同类型的农药品种,或与生物农药交替使用,以延缓抗性的产生。防治适期应掌握在卵盛孵至2龄幼虫发生期。

5、综合治理:强调作物布局的策划,药剂防治和生物防治的协调应用,充分发挥天敌等自然致死因子的作用。

半导体物理学基础知识_图文(精)

1半导体中的电子状态 1.2半导体中电子状态和能带 1.3半导体中电子的运动有效质量 1半导体中E与K的关系 2半导体中电子的平均速度 3半导体中电子的加速度 1.4半导体的导电机构空穴 1硅和锗的导带结构 对于硅,由公式讨论后可得: I.磁感应沿【1 1 1】方向,当改变B(磁感应强度)时,只能观察到一个吸收峰 II.磁感应沿【1 1 0】方向,有两个吸收峰 III.磁感应沿【1 0 0】方向,有两个吸收峰 IV磁感应沿任意方向时,有三个吸收峰 2硅和锗的价带结构 重空穴比轻空穴有较强的各向异性。 2半导体中杂质和缺陷能级 缺陷分为点缺陷,线缺陷,面缺陷(层错等 1.替位式杂质间隙式杂质

2.施主杂质:能级为E(D,被施主杂质束缚的电子的能量状态比导带底E(C低ΔE(D,施主能级位于离导带底近的禁带中。 3. 受主杂质:能级为E(A,被受主杂质束缚的电子的能量状态比价带E(V高ΔE(A,受主能级位于离价带顶近的禁带中。 4.杂质的补偿作用 5.深能级杂质: ⑴非3,5族杂质在硅,锗的禁带中产生的施主能级距离导带底较远,离价带顶也较远,称为深能级。 ⑵这些深能级杂质能产生多次电离。 6.点缺陷:弗仑克耳缺陷:间隙原子和空位成对出现。 肖特基缺陷:只在晶体内部形成空位而无间隙原子。 空位表现出受主作用,间隙原子表现出施主作用。 3半导体中载流子的分布统计 电子从价带跃迁到导带,称为本征激发。 一、状态密度 状态密度g(E是在能带中能量E附近每单位间隔内的量子态数。 首先要知道量子态,每个量子态智能容纳一个电子。 导带底附近单位能量间隔内的量子态数目,随电子的能量按抛物线关系增大,即电子能量越高,状态密度越大。 二、费米能级和载流子的统计分布

安规知识大全

安规知识大全 安规知识大全 第一章安规基本知识 一. 安规的定义及目的. 1. 定义: 各国依设备使用之范围而制定之安全规范. 2. 申请安规的目的: 为保护使用者生命、财产之安全.如不受电击, 火灾等之危险. 二. 一般通用安规标准. 1. 基本上是依IEC 国际标准,各国依据国家不同之需求而制订其标准. 2. 如IEC60950 ( Information Technology Equipment 资讯类产品) 3. USA –UL60950 4. 欧盟–EN60950 5. 中国–GB 4943 6. 澳洲–AS3260 7. 日本–J60950 8. 韩国–K60950 9. 没有特别制定标准号码, 仍为IEC60950 – 10. 新加坡,阿根廷. 11. 医疗设备–IEC60601 12. 视讯产品–IEC60065 13. 家电类产品–IEC60335 IEC 安规standard 一般订名称IEC60XXX EMC standard一般订名称IEC61000- 三. 一般通用电压. 1. 北美–US, Canada 120V, 60Hz 2. 中南美–220V 较多,有的国家也有120V 3. 欧盟–230V, 50Hz (因为英国原本是240V,其他西欧国家为220V,因此折中220V ) 4. 东欧–一般为220V, 50Hz 5. 日本–100V, 50 HZ澳洲,纽西兰–240V, 50 Hz 6. 其他国家以220V居多.如:中国,韩国,东南亚国家. 四. 电源供应形式. 1. Adaptor –有塑胶外壳 a. Class I 有接地pin b. Class II没有接地pin (双重绝缘)使用Inlet 直接插墙式Open Frame –没外壳和有铁壳 五. CB Report 1. 何谓CB report . 2. CB - Certify Body 认证单位.

(整理)半导体基础知识.

1.1 半导体基础知识概念归纳 本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。 电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。 绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。 绝缘体导电性:极差。如惰性气体和橡胶。 半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧。 半导体导电性能:介于半导体与绝缘体之间。 半导体的特点: ★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。 ★在光照和热辐射条件下,其导电性有明显的变化。 晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。 自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。 空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。 本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。 载流子:运载电荷的粒子称为载流子。 导体电的特点:导体导电只有一种载流子,即自由电子导电。 本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。 本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。 复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

安规基础知识

安规基础知识 灯具安规基础知识 一、灯具防护等级分类 灯具的分类方法很多,依照安全防护等级可以分为0类、I类、II类、III类。 1、0类灯具 工作电压是高压,防触电保护采用基本绝缘,而无其他防触电保护措施的灯具。此类灯具安全性能较差,目前欧美国家已不允许生产销售。0类灯具无符号标识。 特征:高压、无接地线、单层绝缘。 2、I类灯具 工作电压是高压,防触电保护采用单层绝缘基本绝缘外,还采用接地作为防触电保护的灯具。 I类灯具无符号标识,其内部可以包含有II类结构,即I类灯具内部分电气结构可以采用双绝缘的方式。 特征:高压、有接地、单层绝缘。 3、II类灯具 工作电压是高压,防触电保护采用双层绝缘的灯具。 II类灯具用符号标识,其内部可以包含有III类结构。特征:高压、无接地、双层绝缘。 4、III类灯具 工作电压是安全电压的灯具。 III类灯具用符号 标识。 特征:安全电压供电。 二、绝缘 1、基本绝缘 基本绝缘是灯具中用于带电体防触电保护最基本的绝缘,基本绝缘应能通过2U+1000V~的高压测试。 灯具的结构应能保障正常非拆卸状态下基本绝缘不能被手(测试手)触摸到。 2、补充绝缘 在基本绝缘基础上增加的一层绝缘,用于当基本绝缘失效时的防触电 保护,补充绝缘必须要固定。补充绝缘应能通过2U+1750V~的高压测试。 3、双层绝缘 基本绝缘、补充绝缘同时合并在一起称为双层绝缘,双层绝缘也称双绝缘、双重绝缘。双层绝缘应能通过4U+2750V~的高压测试。 4、单层绝缘 单层绝缘就是指基本绝缘,其各方面要求与基本绝缘相同。 5、加强绝缘 加强绝缘也叫增强绝缘,其绝缘效果与双重绝缘相当的一种单一绝缘体。从其结构来看一般仅有一层,或由不能单独分割测量的多层组成。 加强绝缘与双层绝缘一样要能通过4U+2750V~的高压测试。 三、安全距离 1、爬电距离

机械密封安装知识

机械密封安装知识 Company Document number:WTUT-WT88Y-W8BBGB-

机械密封安装使用指导 一. 适用范围 适用于旋转轴用机械密封安装,以卧式离心泵用机械密封安装为基准,机械密封为内装、接触式,转速不超过5000转/分或端面速度≤25米/秒,密封工作温度在-40℃~260℃或介质温度低于400℃,其它设备用机械密封安装可参考使用。 二. 安全建议 安装机械密封前,必须保证相关设备、系统均已停用和处于非工作状态,并且已达到环境温度,有压部分已泄到常压,保证机械密封安装过程中人身安全。 三. 安装步骤: 准备 1. 顺序。拆泵,将旧的填料或机封拆除。 2. 检查泵上与轴套、压盖相接触的金属件表面是否完好。3. 为了避免非金属元件(如"○"圈)的损伤,应在有非金属元件滑过 的所有台肩部位加工出2x30°倒角,所有尖角倒圆并修光滑(如图面粗糙度Ra 应小于μm ,静密封圈处的金属表面粗糙度Ra 应小于μm 4. 清洁密封腔体,并检查各安装表面是否有损伤痕迹。 5. 检查与机械密封相关的安装连接尺寸是否与机械密封工作图相符。 6. 校核密封腔体中旋转件及静止件的轴向及径向跳动,不超过国家标准 规定极限值。 轴端部跳动小于0.1mm, (如图二) 轴径向跳动小于-0.05mm., (如图三) 密封腔止口端面与轴的垂直度小于0.05mm 。(如图四) 如果达不到上述要求,应更换轴承或调整相关部件。 7、擦净各部件,对滑移部位添加润滑剂,该润滑剂要与密封材料及介质相容。

3.依据密封工作图,确定密封工作长度L3(以符合DIN24960的C8U型机械密封为例)(见图五)。3-1、密封弹性组件(包括动环)的工作长度是经过计算的,即在规定的运行寿命内能保持合适的端面比压及弹性补偿量的长度。工作长度与其自由状态的长度差值,即是密封的压缩量,安装中,需计算得出实际压缩量。可根据使用经验对密封压缩量进行少量增减,否则必须保证密封工作图尺寸。 盲目或过大增减压缩量、不按密封工作图尺寸安装将导致密封不能工作或过早失效。 4、测量压盖尺寸A(含止口垫)后(见图六),将静环及静环密封圈装至压盖内,并注意静环后部的槽 对入压盖上的防转销。如果静环密封圈是“O”形圈,可将密封圈表面涂润滑剂后,套到静环上,再将静环放平用手压入压盖。如果静环密封圈是聚四氟乙烯或柔性石墨,则先将密封圈装到静环上, 测量尺寸E 整后再装配。 5、参照机封工作图,计算出B(=L1K-A)值。 6、在轴套上按B值位置固定动环组件(见图八) 可按相同办法计算安装。 注意:一些机械密封轴套上已刻有B值线或轴套上有定位台阶(图九),这样机械密封安装时仅需校核L3尺寸即可。 7 轴套。 8

(完整版)半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k

半导体基础知识学习

我们知道,电子电路是由晶体管组成,而晶体管是由半导体制成的。所以我们在学习电子电路之前, 一定要了解半导体的一些基本知识。 这一章我们主要学习二极管和三极管的一些基本知识,它是本课程的基础,我们要掌握好在学习时我们把它的内容分为三节,它们分别是: 1、1 半导体的基础知识 1、2 PN结 1、3 半导体三极管 1、1 半导体的基础知识 我们这一章要了解的概念有:本征半导体、P型半导体、N型半导体及它们各自的特征。一:本征半导体 纯净晶体结构的半导体我们称之为本征半导体。常用的半导体材料有:硅和锗。它们都是四价元素,原子结构的最外层轨道上有四个价电子,当把硅或锗制成晶体时,它们是靠共价键的作用而紧密联系在一起。 共价键中的一些价电子由于热运动获得一些能量,从而摆脱共价键的约束成为自由电子,同时在共价键上留下空位,我们称这些空位为空穴,它带正电。我们用晶体结构示意图来描述一下;如图(1)所示:图中的虚线代表共价键。 在外电场作用下,自由电子产生定向移动,形成电子电流; 同时价电子也按一定的方向一次填补空穴,从而使空穴产生定向移动,形成空穴电流。 因此,在晶体中存在两种载流子,即带负电自由电子和带正电空穴,它们是成对出现的。二:杂质半导体 在本征半导体中两种载流子的浓度很低,因此导电性很差。我们向晶体中有控制的掺入特定的杂质来改变它的导电性,这种半导体被称为杂质半导体。 1.N型半导体 在本征半导体中,掺入5价元素,使晶体中某些原子被杂质原子所代替,因为杂质原子最外层有5各价电子,它与周围原子形成共价键后,还多余一个自由电子,因此使其中的空穴的浓度远小于自由电子的浓度。但是,电子的浓度与空穴的浓度的乘积是一个常数,与掺杂无关。在N型半导体中自由电子是多数载流子,空穴是少数载流子。 2.P型半导体 在本征半导体中,掺入3价元素,晶体中的某些原子被杂质原子代替,但是杂质原子的最外层只有3个价电子,它与周围的原子形成共价键后,还多余一个空穴,因此使其中的空穴浓度远大于自由电子的浓度。在P型半导体中,自由电子是少数载流子,空穴使多数载流子。 1、2 P—N结

机械密封的基本知识分解

机械密封的基本知识 机械密封是一种依靠弹性元件对静、动环端面密封副的预紧和介质压力与弹性元件压力的压紧而达到密封的轴向端面密封装置,故又称端面密封。 其中动环和静环的端面组成一对摩擦副,动环靠密封室中液体的压力和弹性元件的推力使其压紧在静环端面上,并在两环端面上产生适当的比压和保持一层极薄的液体膜而达到密封的目的。 机械密封被广泛应用于工业泵产品中,尤其在石油化工领域内的存在易燃、易爆、易挥发、剧毒等介质场所,在国内选煤、选矿行业中泵上的应用也越来越普遍。 其主要有以下优点: ⑴.密封效果好,可达到介质无泄露; ⑵.寿命长,在普通泵中一般可运行1~2年或更长时间;MAAG 泵的机械密封在正常使用中寿命可达5~10年以上; ⑶.对轴(或轴套)无磨损; ⑷.适用范围广,可在目前常用介质、转速、温度、压力及轴径条件下使用; 当然,机械密封之所以没有在其他泵中还没得到普及,是因为它存在以下一些不足: ⑴.结构复杂、零件多,对安装人员有技术要求; ⑵.对泵轴向及径向跳动有要求,增加了泵加工成本; ⑶.密封损坏后维修不便;

⑷.选型要求高,须根据介质的物理化学性质、工艺参数及泵安装密封空间来选择合适的结构形式及材质; ⑸.成本高。 虽然机械密封有以上不足,但其密封效果已逐步得到用户的肯定,如今,机械密封在泵上的应用越来越普遍。 密封的基本知识 泄露是机械设备常产生的故障之一。造成泄露的原因主要有两方面: 一是由于机械加工的结果,机械产品的表面必然存在各种缺陷和形状及尺寸偏差,因此,在机械零件联接处不可避免地会产生间隙; 二是密封两侧存在压力差,工作介质就会通过间隙而泄 露。减小或消除间隙是阻止泄露的主要途径。密封的作用就是将接合面间的间隙封住,隔离或切断泄露通道,增加泄露通道中的阻力,或者在通道中加设小型做功元件,对泄露物造成压力,与引起泄露的压差部分抵消或完全平衡,以阻止泄露。 对于真空系统的密封,除上述密封介质直接通过密封面泄露外,还要考虑下面两种泄露形式:

半导体物理知识点梳理

半导体物理考点归纳 一· 1.金刚石 1) 结构特点: a. 由同类原子组成的复式晶格。其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成 b. 属面心晶系,具立方对称性,共价键结合四面体。 c. 配位数为4,较低,较稳定。(配位数:最近邻原子数) d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。 2) 代表性半导体:IV 族的C ,Si ,Ge 等元素半导体大多属于这种结构。 2.闪锌矿 1) 结构特点: a. 共价性占优势,立方对称性; b. 晶胞结构类似于金刚石结构,但为双原子复式晶格; c. 属共价键晶体,但有不同的离子性。 2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。 3.电子共有化运动: 原子结合为晶体时,轨道交叠。外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。 4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性函数, 5.布里渊区: 禁带出现在k=n/2a 处,即在布里渊区边界上; 允带出现在以下几个区: 第一布里渊区:-1/2a

第一章半导体基础知识(精)

第一章半导体基础知识 〖本章主要内容〗 本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。 首先介绍构成PN结的半导体材料、PN结的形成及其特点。其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。〖本章学时分配〗 本章分为4讲,每讲2学时。 第一讲常用半导体器件 一、主要内容 1、半导体及其导电性能 根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9 cm。典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。 2、本征半导体的结构及其导电性能 本征半导体是纯净的、没有结构缺陷的半导体单晶。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。在热力学温度零度和没有外界激发时,本征半导体不导电。 3、半导体的本征激发与复合现象 当导体处于热力学温度0 K时,导体中没有自由电子。当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。这一现象称为本征激发(也称热激发)。因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。 游离的部分自由电子也可能回到空穴中去,称为复合。 在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。 4、半导体的导电机理 自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。空穴导电的实质是:相邻原子中的价电子(共价键中的束缚电子)依次填补空穴而形成电流。由于电子带负电,而电子的运动与空穴的运动方向相反,因此认为空穴带正电。

半导体物理知识

半导体物理知识整理

————————————————————————————————作者:————————————————————————————————日期:

基础知识 1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电机理(两种载流子参与导电)与金属有何不同? 导体:能带中一定有不满带 半导体:T=0K,能带中只有满带和空带;T>0K,能带中有不满带 禁带宽度较小,一般小于2eV 绝缘体:能带中只有满带和空带 禁带宽度较大,一般大于2eV 在外场的作用下,满带电子不导电,不满带电子可以导电 总有不满带的晶体就是导体,总是没有不满带的晶体就是绝缘体 半导体不时最容易导电的物质,而是导电性最容易发生改变的物质,用很方便的方法,就可以显著调节半导体的导电特性 金属中的电子,只能在导带上传输,而半导体中的载流子:电子和空穴,却能在两个通道:价带和导带上分别传输信息 2.什么是空穴?它有哪些基本特征?以硅为例,对照能带结构和价键结构图理解空穴概念。 当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e和具有正有效质量|m n* | 、速度为v(k’)的粒子的情况一样,这样假想的粒子称为空穴 3.半导体材料的一般特性。 电阻率介于导体与绝缘体之间 对温度、光照、电场、磁场、湿度等敏感(温度升高使半导体导电能力增强,电阻率下降;适当波长的光照可以改变半导体的导电能力) 性质与掺杂密切相关(微量杂质含量可以显著改变半导体的导电能力) 4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?什么情况下费米分布函数可以转化为玻耳兹曼函数。为什么通常情况下,半导体中载流子分布都可以

半导体物理答案知识讲解

半导体物理答案

一、选择 1.与半导体相比较,绝缘体的价带电子激发到导带所需的能量(比半导体的大); 2.室温下,半导体Si 掺硼的浓度为1014cm -3,同时掺有浓度为1.1×1015cm -3的磷,则电子 浓度约为(1015cm -3 ),空穴浓度为(2.25×105cm -3 ),费米能级为(高于E i );将该半导 体由室温度升至570K ,则多子浓度约为(2×1017cm -3),少子浓度为(2×1017cm -3),费米 能级为(等于E i )。 3.施主杂质电离后向半导体提供(电子),受主杂质电离后向半导体提供(空穴),本征 激发后向半导体提供(空穴、电子); 4.对于一定的n 型半导体材料,温度一定时,减少掺杂浓度,将导致(E F )靠近E i ; 5.表面态中性能级位于费米能级以上时,该表面态为(施主态); 6.当施主能级E D 与费米能级E F 相等时,电离施主的浓度为施主浓度的(1/3)倍; 重空穴是指(价带顶附近曲率较小的等能面上的空穴) 7.硅的晶格结构和能带结构分别是(金刚石型和间接禁带型) 8.电子在晶体中的共有化运动指的是电子在晶体(各元胞对应点出现的几率相同)。 9.本征半导体是指(不含杂质与缺陷)的半导体。 10.简并半导体是指((E C -E F )或(E F -E V )≤0)的半导体 11.3个硅样品的掺杂情况如下: 甲.含镓1×1017cm -3;乙.含硼和磷各1×1017cm -3;丙.含铝1×1015cm -3 这三种样品在室温下的费米能级由低到高(以E V 为基准)的顺序是(甲丙乙) 12.以长声学波为主要散射机构时,电子的迁移率μn 与温度的(B 3/2次方成反比) 13.公式*/q m μτ=中的τ是载流子的(平均自由时间)。 14.欧姆接触是指(阻值较小并且有对称而线性的伏-安特性)的金属-半导体接触。 15.在MIS 结构的金属栅极和半导体上加一变化的电压,在栅极电压由负值增加到足够大 的正值的的过程中,如半导体为P 型,则在半导体的接触面上依次出现的状态为(多数载 流子堆积状态,多数载流子耗尽状态,少数载流子反型状态)。 16.在硅和锗的能带结构中,在布里渊中心存在两个极大值重合的价带,外面的能带(曲 率小),对应的有效质量(大),称该能带中的空穴为(重空穴E )。 17.如果杂质既有施主的作用又有受主的作用,则这种杂质称为(两性杂质)。 18.在通常情况下,GaN 呈(纤锌矿型 )型结构,具有(六方对称性),它是(直接带 隙)半导体材料。 19.同一种施主杂质掺入甲、乙两种半导体,如果甲的相对介电常数εr 是乙的3/4, m n */m 0值是乙的2倍,那么用类氢模型计算结果是(甲的施主杂质电离能是乙的32/9,的 弱束缚电子基态轨道半径为乙的3/8 )。 20.一块半导体寿命τ=15μs,光照在材料中会产生非平衡载流子,光照突然停止30μs 后,其中非平衡载流子将衰减到原来的(1/e 2)。 21.对于同时存在一种施主杂质和一种受主杂质的均匀掺杂的非简并半导体,在温度足够 高、n i >> /N D -N A / 时,半导体具有 (本征) 半导体的导电特性。 22.在纯的半导体硅中掺入硼,在一定的温度下,当掺入的浓度增加时,费米能级向 (Ev )移动;当掺杂浓度一定时,温度从室温逐步增加,费米能级向( Ei )移动。 23.把磷化镓在氮气氛中退火,会有氮取代部分的磷,这会在磷化镓中出现(产生等电子 陷阱)。 24.对于大注入下的直接复合,非平衡载流子的寿命不再是个常数,它与(非平衡载流子 浓度成反比)。

常用密封知识

常用密封知识 一、密封的分类、结构及工作原理 (一)密封的基本类型: 密封可分为静密封和动密封两大类。结合面静止的密封称为静密封,结合面产生相对运动的密封称为动密封;静密封主要有垫密封、胶(或带)密封和接触密封三大类;动密封可分为旋转密封和往复密封两种基本类型。按密封件与其作相对运动的零部件是否接触,可分为接触式密封和非接触式密封;一般来说,接触式密封的密封性好,但受密封面摩擦磨损限制,仅适用于密封面线速度较低的场合,非接触式密封的密封性较差,适用于线速度较高的场合,在接触式密封中,按密封件的接触位置又可分为圆周(径向)密封和端面(轴向)密封。 非接触动密封有迷宫密封和动力密封等。前者是利用流体在间隙内的节流效应限制泄漏,泄漏量较大,通常用在级间密封等密封性要求不高的场合。动力密封有离心密封、浮环密封、螺旋密封等,是靠动力元件产生压力抵消密封部位两侧压力差以克服泄漏,它有很高的密封性,但能耗大,且难以获得高压力。非接触式密封由于密封面不直接接触,起动功率小,寿命长,如果设计得合理,泄漏量也不会太大,但这类密封是利用流体力学的平衡状态而工作的,如果运转条件发生变化,就会引起泄漏量很大的波动;而且市场上不能直接购到这类密封件,基本上都由用户自行设计。 (二)密封的分类: 按密封的安装或工作状态,密封可分为以下几种: 1.挤压密封:“O”型密封圈、“D”型密封圈、“X”型密封圈、矩形密封圈、其他截面形状。 2.旋转轴唇形密封:内包骨架型、外露骨架型、装配型、组合型。

3.往复运动密封圈:Y型密封圈、U型密封圈、V型密封圈、J型密封圈、L型密封圈、蕾形密封圈、鼓形密封圈、山形密封圈、活塞环密封、组合密封圈(V形组合圈、格莱圈、多件组合结构密封)。 4.密封胶:粘着型、可剥型。 5.填料密封:垫片、填料函。 (三)密封的基本结构及工作原理: 1.静密封主要是广泛应用于端面密封,如管道、泵、阀等法兰连接处各种壳体接合面的各种截面形状的挤压型垫片密封,以及带、胶等填隙型密封。优先选用:“O”型密封圈、“D”型密封圈、矩形密封圈、密封胶、垫片等。 2.旋转动密封主要是用于旋转轴的唇形密封,通常亦称为油封。一般由橡胶材料、金属骨架、金属弹簧组成。金属弹簧通过具有柔性的唇部刃口施加给旋转轴以径向力,防止润滑介质沿轴向外泄漏及外部的灰尘、杂质等浸入。具有所需空间小、易装卸、密封效果好等优点。不足之处是耐压力范围有限,高压、高速油封设计生产技术难度高。 3.往复动密封:以油缸的活塞和活塞杆密封中Y型密封圈为典型代表。密封件唇部的过盈量设计使其获得初始密封效果。一般采用“O”形密封圈、Y形圈、V形圈、蕾形密封圈、鼓形圈、山形圈。 二、“O”型密封圈知识 (一)“O”型密封圈表示方法:(常用的共有3个标准) 1.1976年颁发的GB1235-76国家标准,是目前广泛应用的标准,规定“O”型圈的截面直径为:1.9,2.4,3.1,3.5,5.7,8.6计六种,标注为公称外径×截面直径。2.1982年、1992年、2005年颁发的GB3452.1,都引用的是国际标准,规定“O”型圈的截面直径为:1.8,2.65,3.55,5.3,7.0计五种,标记为公称内径×截面

动密封基础知识1

动密封基础知识 机械密封 1 机械密封的工作原理 机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力 和补偿机构的弹力(或磁力)作用下保持贴合并配以辅助密封而达到阻漏的轴封装置。 图29.7-1 机械密封结构 常用机械密封结构如图29.7-1所示。由静止环(静环)1、旋转环(动环)2、弹性元件3、弹簧座4、紧定螺钉5、旋转环辅助密封圈6和静止环辅助密封圈8等元件组成,防转销7固定在压盖9上以防止静止环转动。旋转环和静止环往往还可根据它们是否具有轴向补偿能力而称为补偿环或非补偿还。 机械密封中流体可能泄漏的途径有如图29.7-1中的A、B、C、D 四个通道。 C、D泄漏通道分别是静止环与压盖、压盖与壳体之间的密封,二者均属静密封。B通道是旋转环与轴之间的密封,当端面摩擦磨损后,它仅仅能追随补偿环沿轴向作微量的移动,实际上仍然是一个相对静

密封。因此,这些泄漏通道相对来说比较容易封堵。静密封元件最常用的有橡胶O形圈或聚四氟乙烯V形圈,而作为补偿环的旋转环或静止环辅助密封,有时采用兼备弹性元件功能的橡胶、聚四氟乙烯或金属波纹管的结构。 A通道则是旋转环与静止环的端面彼此贴合作相对滑动的动密封,它是机械密封装置中的主密封,也是决定机械密封性能和寿命的关键。因此,对密封端面的加工要求很高,同时为了使密封端面间保持必要的润滑液膜,必须严格腔制端面上的单位面积压力,压力过大,不易形成稳定的润滑液膜,会加速端面的磨损;压力过小,泄漏量增加。所以,要获得良好的密封性能又有足够寿命,在设计和安装机械密封时,一定要保证端面单位面积压力值在最适当的范围。 机械密封与软填料密封比较,有如下优点:①密封可靠在长周期的运行中,密封状态很稳定,泄漏量很小,按粗略统计,其泄漏量一般仅为软填料密封的1/100;②使用寿命长在油、水类介质中一般可达1~2年或更长时间,在化工介质中通常也能达半年以上;③摩擦功率消耗小机械密封的摩擦功率仅为软填料密封的10%~50%;④轴或轴套基本上不受摩损;⑤维修周期长端面磨损后可自动补偿,一般情况下,毋需经常性的维修;⑥抗振性好对旋转轴的振动、偏摆以及轴对密封腔的偏斜不敏感;⑦适用范围广机械密封能用于低温、高温、真空、高压、不同转速,以及各种腐蚀性介质和含磨粒介质等的密封。但其缺点有:①结构较复杂,对制造加工要求高;②安装与更换比较麻烦,并要求工人有一定的安装技术水平;③发生偶然性事故时,处

半导体物理与器件基础知识

9金属半导体与半导体异质结 一、肖特基势垒二极管 欧姆接触:通过金属-半导体的接触实现的连接。接触电阻很低。 金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。之间形成势垒为肖特基势垒。 在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。 影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。附图: 电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。 肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。2.开关特性肖特基二极管更好。应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。 二、金属-半导体的欧姆接触 附金属分别与N型p型半导体接触的能带示意图 三、异质结:两种不同的半导体形成一个结 小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。 2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。 10双极型晶体管 双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。 一、工作原理 附npn型和pnp型的结构图 发射区掺杂浓度最高,集电区掺杂浓度最低 附常规npn截面图 造成实际结构复杂的原因是:1.各端点引线要做在表面上,为了降低半导体的电阻,必须要有重掺杂的N+型掩埋层。2.一片半导体材料上要做很多的双极型晶体管,各自必须隔离,应为不是所有的集电极都是同一个电位。 通常情况下,BE结是正偏的,BC结是反偏的。称为正向有源。附图: 由于发射结正偏,电子就从发射区越过发射结注入到基区。BC结反偏,所以在BC结边界,理想情况下少子电子浓度为零。 附基区中电子浓度示意图: 电子浓度梯度表明,从发射区注入的电子会越过基区扩散到BC结的空间电荷区,

半导体物理基本知识

半导体物理基本知识 一、导体、半导体和绝缘体 物质就其导电性来说,可以分为绝缘体、半导体、和导体。电阻率大于109欧姆·厘米的物体称为绝缘体,小于10-4欧姆·厘米的物体为导体,电阻率介于10-4~109欧姆·厘米的物体为半导体。 二、半导体材料的种类 半导体材料种类繁多,从单质到化合物,从无机物到有机物,从单晶体到非晶体,都可以作为半导体材料。半导体材料大致可以分为以下几类: 1、元素半导体 元素半导体又称为单质半导体。在元素周期表中介于金属与非金属之间的Si、Ge、Se、Te、B、C、P等元素都有半导体的性质。 在单质元素半导体中具有实用价值的只有硅、锗、硒。而硅和锗是最重要的两种半导体材料。尤其半导体硅材料已被广泛地用来制造各种器件、数字和线性集成电路以及大规模集成电路等。硒作为半导体材料主要用做整流器,但由于硅、锗制造的整流器比硒整流器性能良好,所以硒逐渐被硅、锗取代。 2、化合物半导体 化合物半导体是AⅢBⅤ型化合物,由元素中期表中ⅢA族的Al、Ga、和ⅤA族的P、As、Sb等合成的化合物成为AⅢBⅤ型化合物。如AlP、GaAs、GaSb、InAs、InSb。在这一类化合物半导体中用最广泛的是GaAs,它可以用来制作GaAs晶体管、场效应管、雪崩管、超高速电路及微波器件等。 3、氧化物半导体 许多金属的氧化物具有半导体性质,如Cu2O、CuO、ZnO、MgO、Al2O3等等。 4、固溶体半导体 元素半导体和无机化合物半导体相互溶解而成的半导体材料成为固溶体半导体。如:Ge-Si、GaAs-GaP,而GaAs-GaP是发光二极管的材料。 5、玻璃半导体 玻璃半导体是指具有半导体性质的一类玻璃。如氧化物玻璃半导体和元素玻璃半导

安规知识培训

華儀電子股份有限公司EXTECH Electronics Co.,Ltd Seminar 2007 市場部行銷組 彭刚杰 Content 主要內容 华仪电子简介 安规测试的必要性和重要性 安规测试的基本原理及要求 安规测试仪的新型技术 安规测试的实际应用 华仪新产品的介绍 疑问讨论及解答 Extech Electronics Co ., Ltd ?2007

Company History 公司发展 成立于1978年,为台湾第一家变频电源专业制造厂,主要客户为电子产品之生产厂商 随后,扩增稳压器/变流器及充电机的设计研发与生产,成为知名的生产设备专业制造厂 90年代初期,研发安规测试器(MODEL:CRW-100)为台湾第一台4合1的安规测试仪器,正式成为T&M仪器制造厂 1998年,全系列产品通过ISO9002品质认证,及安规系列产品获得TUV/GS安全认证 1999年,推出安规自动化测试软件及系统 2001年,荣获ISO9001:2000认证 Extech Electronics Co ., Ltd ?2007 Future 愿景 成爲世界知名的儀器品牌 To be a well-known equipment manufactory on the world. Extech Electronics Co ., Ltd ?2007

Mission Statement 使命 以專業科技,提供完善品質與服務,開創永續經營 To serve our customers with quality products and service using professional technology. To create profits, so that we can perpetuate our business. Extech Electronics Co ., Ltd ?2007 Sales in the world 全球销售据点 臺北縂公司Headquarter in Taipei 中國廣州Guangzhou China 中國蘇州Suzhou China 馬拉西亞Malaysia 澳大利亞Australia 日本Japan 韓國Korea 印度India 新加坡Singapore …… Extech Electronics Co ., Ltd ?2007

半导体物理知识点总结汇总

一、半导体物理知识大纲 核心知识单元A:半导体电子状态与能级(课程基础 -------- 掌 握物理概念与物理过程、是后面知识的基础)半导体中的电子状态(第 1 章)半导体中的杂质和缺陷能级(第 2 章) 核心知识单元B:半导体载流子统计分布与输运(课程重点 ——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法) 半导体中载流子的统计分布(第 3 章)半导体的导电性 (第 4 章)非平衡载流子(第 5 章) 核心知识单元C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)半导体光学性质(第10 章) 半导体热电性质(第11 章)半导体磁和压阻效应(第12 章)

二、半导体物理知识点和考点总结 第一章半导体中的电子状态 本章各节内容提要: 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在 1.1 节,半导体的几种常见晶体结构及结合性质。(重点掌握)在 1.2 节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在 1.3 节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握) 在 1.4 节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握) 在 1.5 节,介绍回旋共振测试有效质量的原理和方法。(理解即可) 在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍山-V族化合物的能带结构,主要了解GaAs 的能带结构。(掌握能带结构特征) 本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五 族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不 同:孤立原子中的电子是在该原子的核和其它电子的势场中 运动,自由电子是在恒定为零的势场中运动,而晶体中的电 子是在严格周期性重复排列的原子间运动(共有化运动) ,单 电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原

相关文档
最新文档