雷达机动目标跟踪技术研究

雷达机动目标跟踪技术研究
雷达机动目标跟踪技术研究

1 绪论

1.1 课题背景及目的

目标跟踪问题实际上就是目标状态的跟踪滤波问题,即根据传感器已获得的目标量测数据对目标状态进行精确的估计[1]。它是军事和民用领域中一个基本问题,可靠而精确地跟踪目标是目标跟踪系统设计的主要目的。在国防领域,目标跟踪可用于反弹道导弹的防御、空防预警、战场区域监视、精确制导和低空突防等。在民用领域,则用于航空和地面交通管制、机器人的道路规划和障碍躲避、无人驾驶车的跟踪行驶、电子医学等。作为科学技术发展的一个方面,目标跟踪问题可以追溯到第二次世界大战的前夕,即1937年世界上出现第一部跟踪雷达站SCR-28的时候。之后,许多科学家和工程师一直努力于该项课题的研究,各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。

运动目标的机动会使跟踪系统的性能恶化,对机动目标进行跟踪是人们多年来一直关注的问题。随着现代航空航天技术的飞速发展,机动目标在空间飞行的速度、角度、加速度等参数不断变化,使得目标的位置具有很强的相关性,因此,提高对这类目标的跟踪性能便成为越来越重要的问题,迫切需要研究更为优越的跟踪滤波方法。机动目标的跟踪研究,已成为当今电子战的研究热点之一。今天,精密跟踪雷达不仅广泛应用于各类武器控制和各类实验靶场,而且还广泛应用于各种空间探测、跟踪和识别领域,以及最先进的武器控制系统。

跟踪模型和匹配滤波是机动目标跟踪的两个关键部分,机动目标的精确跟踪在过去和现在都是一个难题,最根本原因在于跟踪滤波采用的目标动力学模型和机动目标实际动力学模型不匹配,导致跟踪滤波器发散,跟踪性能严重下降。本文将机动目标作为研究对象,从目标的运动建模和匹配滤波算法入手,提出或修正跟踪算法,从而实现对机动目标的精确跟踪。

1.2 机动目标跟踪技术及其发展状况

目标机动是指运动当中的目标,其运动方式在不断地发生变化,从一种形式变化为另一种形式,目标的运动可能从匀速到变速,也可能送直线到转弯,它的运动方式并不会从一而终。通俗地说,就是“目标速度的大小和方向发生变化”。

一般情况下,机动目标跟踪方法概括来讲可以分为以下两类:具有机动检测的跟踪算法和无需机动检测的自适应跟踪算法。机动目标的跟踪需要综合运用统计决策、滤波

算法以及其它的数学方法,将传感器所接受到的信号数据进行处理,得到目标的位置、速度、加速度等估计信息。图1.1给出了机动目标跟踪的基本原理图。

图1.1 机动目标跟踪基本原理图

对于机动目标跟踪来说,所面临的主要挑战是两种离散的不确定性:量测起源的不确定性和目标运动方式不确定性。量测起源的不确定性是指由传感器系统提供的量测数据可能是外部的干扰数据,它有可能是由杂波、虚警和相邻的目标所引起的,也可能是被跟踪目标的对抗系统所主动发出的虚假信息。目标运动方式的不确定性是指目标在未知的时间段内可能作已知的或未知的机动。一般情况下,目标的非机动方式以及目标发生机动时所表现出的不同机动形式都可以通过数学模型来加以描述。机动目标跟踪过程中,采用不正确的目标运动模型会导致跟踪系统的跟踪性能严重下降。本文的重点是如何处理目标运动的机动以及对其的跟踪问题。

1.2.1 机动目标跟踪模型

现代跟踪系统一般都采用类似卡尔曼滤波的迭代算法,因此对机动目标进行建模就显得尤为重要。机动目标模型是机动目标跟踪与预测的基本要素之一,也是一个关键而又棘手的问题。早期,人们在构造目标运动建模时,由于缺乏有关目标运动的精确数据及存在许多不可预测的现象,一般认为目标作匀速直线运动,而随机加速度常常被看成是具有随机特性的扰动输入,并假定其服从零均值的高斯白噪声分布,这时,建立在线性无偏、最小均方差准则下的递推的卡尔曼滤波算法可直接使用。然而,当目标发生诸如拐弯或躲避等机动动作时,上述假定则不尽合理。由于目标的动力学特点及目标性能限制,使得机动具有一定的相关性。对机动目标建模不仅是滤波器的重要组成,也是从运动学机理上解决目标机动的方法[2]。

1、基于直线运动的机动目标模型

(1) 微分多项式模型

笛卡尔坐标系中,若用()(),(),()x t y t z t 来表示目标在时刻t 的位置,则其运动轨迹可以用多项式来逼近。尽管用多项式逼近目标运动轨迹,其近似性好,但对跟踪系统来说并不合适,因为跟踪系统所要求的是对目标运动状态的估计,而不是轨迹曲线的拟合和平滑。

(2)匀速(CV )和匀加速(CA )模型

CV 和VA 模型将目标的运动先验地定义为匀速或匀加速运动,机动被看做是一种随机

的输入,其大小体现在过程噪声的协方差矩阵中。当目标无机动,即目标作匀速或匀加速直线运动时,可分别采用二阶CV 或三阶CA 模型[3]。

(3)时间相关模型(Singer 模型)

机动目标建模问题的本质是如何准确地描述加速度()a t 。对于处于一般机动情况下的运动目标,均可采用二阶系统一阶时间相关模型很好地描述[4]。该模型形式简单,只比CA 模型多了一个表述机动频率的量,对于匀速和匀加速范围之间的目标机动,有很好的描述能力。

(4)Jerk 模型

Jerk 是目标加速度的导数,对于机动性的运动目标,利用目标的Jerk 描述目标机动更为方便。K.Mehrotra 指出,各种机动目标模型在跟踪复杂机动时性能不佳的主要原因是状态向量的导数阶数不足[5]。为此,在目标机动模型的状态分量中加入了目标位置的三阶导数,及加速度的变化率或Jerk 。

2、基于圆周的机动目标模型

(1) 圆周模型

1992年,Watson 和Blair 提出了圆周模型,该模型将目标的运动近似为匀速圆周运动,根据角速度、加速度和速度之间的运动学关系,可以将目标的圆周运动包含在一个以角速度ω为参数的转移矩阵中[6]。该模型是用圆弧代替直线来近似采样周期内的目标运动,当采样周期趋于零时,该模型与CV 模型的形式一致。

(2) 弧线模型

Best 和Norton 设目标法向加速度的变化率远远小于切向速度的变化率,推出弧线模型[7],该模型的转移矩阵与匀速圆周运动的转移矩阵相同,但多了切向加速度,是更一般的弧线情况。

(3) Helferty 模型

Helferty 将Singer 建模的思想推广到圆周运动,提出Helferty 模型[8]

。该模型假设目标加速度a 在x 、y 轴上的分量彼此独立,其转弯的角速度ω均匀分布于[],ππ-,并假设加速度指数相关。但该模型需要增广三个状态变量,维数太大,相应计算量大。

1.2.2 机动目标跟踪中的状态估计技术

20世纪40年代,Kolmogorov 和Wiener 等提出了平稳随机过程的最优线性滤波问题,首先实现了动态估计,其主要结果及时通过Wiener —Hopf 方程求出滤波器的最优传递函

数。这种最优线性滤波,通常称为维纳滤波(Wiener filtering)。维纳滤波具有完整的滤波器传递函数的解析解,并可以估计与有效信号相关的多种信息。但维纳滤波要求被估计量和量测必须是平稳的随机过程,且工程上不宜实现。

针对维纳滤波在应用上的缺点,卡尔曼滤波算法提供了比较好的解决办法。卡尔曼滤波采用目标的状态空间描述方法,能方便地引入模型的过程噪声,从而不需要待估计的状态在数据的采样期间保持常数。

在卡尔曼滤波的基础上,Bar-Shalom认为当数据的概率分布具有“长拖尾”现象时,使用最大似然估计(MLE)要远比最小方差估计的精度高。因此,当在跟踪过程中,数据关联不准确,或者量测数据出现强烈色噪声时,可以考虑使用基于最大似然估计的方法来估计目标的状态。Moose给出了一种实时最大似然估计算法,目标的机动和非机动能实时地检测出来,而在这两种状态之间切换时,前一状态可以为后一状态提供有效地初始值。

扩展的卡尔曼滤波器是线性系统卡尔曼滤波器在非线性系统中的一种直接而又自然地推广,它是基于非线性对象的近似线性化模型进行设计的,也得到了广泛的应用。

1.2.3 机动目标跟踪方法

机动目标跟踪算法可以分为两类:单模型算法和多模型算法。在单模型算法中,一个滤波周期内有且仅有一个设定的目标运动模型;多模型机动目标跟踪算法是指在一个滤波周期内村子多个不同目标运动模型的滤波算法,算法整体状态估计通常为各滤波器状态估计的组合。

1.3 本论文的主要工作

本论文的研究工作是在已有理论方法的基础上,对机动目标跟踪技术进行深入研究。本文包括以下主要内容。

1、概述机动目标跟踪技术发展状况。

2、介绍雷达系统模型,重点讨论一般雷达系统量测方程和状态方程的建立。

3、详细介绍了雷达的目标跟踪算法—卡尔曼滤波算法。鉴于要实现对机动目标的有效跟踪,因而对基于机动检测的跟踪算法进行研究。

4、论文重点对MATLAB仿真的流程以及实验结果进行了介绍与分析。

5、对主要工作进行总结,给出进一步研究的建议和设想。

2系统模型

雷达目标跟踪的基础是估计理论,它要求建立系统模型来描述目标动态特性和雷达

量测过程。状态变量法是描述系统模型的一种很有价值的方法,其所定义的状态变量应是能够全面反映系统动态特性的一组维数最少的变量[9],该方法把某一时刻的状态变量表示为前一时刻的状态变量表示为前一时刻状态变量的函数,系统的输入输出关系是用状态转移模型和输出观测模型在时域内加以描述的。状态反映了系统的“内部条件”,输入可以由确定的时间函数和代表不可预测的变量或噪声的随机过程组成的状态方程来描述,输出是状态向量的函数,通常受到随机观测误差的扰动,可由量测方程描述。状态方程和量测方程之间的关系如图2.1所示。

图2.1 滤波问题的图解说明

2.1 状态方程

状态方程是目标运动规律的假设,例如假设目标在平面内做匀速直线运动,则离散时间系统下k t 时刻的状态(),k k x y 可表示为

00k x k x x x v t x v kT =+=+

(2.1)

00k y k y y y v t y v kT =+=+

(2.2)

式中,()00,x y 为初始时刻目标的位置,x v 和y v 分别为目标在x 轴和y 轴的速度,T 为采样间隔。

式(2.1)和式(2.2)用递推形式可表示为

1k k x k k x x v T x x T +=+=+&

(2.3)

1k k y k k y y v T y y T +=+=+&

(2.4)

目标状态方程用矩阵形式可表示为

()()()1X k F k X k +=

(2.5)

式中,状态向量()X k 和系统状态转移矩阵()F k 分别为

()[]k k k k X k x x y y '=&&

(2.6)

()10001000010001T F k T ??????=??????

(2.7)

若假设目标在平面内做匀加速直线运动,则目标的状态(k x ,k y )用递推形式可表示为 211

()/22

k k xk k k k x x v aT T x x T x T +=++=++&&& (2.8) 211

()/22k k yk k k k y y v aT T y y T y T +=++=++&&&

(2.9)

目标状态方程用矩阵形式仍可表示为

()()()1X k F k X k +=

(2.10)

式中,

()[]k k k k k k X k x x x y y y '=&&&&&&

(2.11)

()2211

00020

10000010001000120

0001000001T T T F k T T T ????????????=????????????

(2.12)

状态向量维数增加估计会更准确,但估计的计算量也会相应地增加,因此在满足模型的精度和跟踪性能的条件下,尽可能地采用简单的数学模型。考虑不肯能获得目标精确模型以及许多不可预测的现象,所以这里要引入过程噪声。

考虑到目标运动过程中有可能有控制信号,所以目标状态方程的一般形式可表示为

()()()()()()1X k F k X k G k u k V k +=++

(2.13)

式中,()G k 为输入控制项矩阵,()u k 为已知输入或控制信号,()V k 为过程噪声序列,通常假定为零均值的附加高斯白噪声序列,且假定过程噪声序列与量测噪声序列及目标初始状态时相互独立的。

2.2 量测方程

量测方程是雷达测量过程的假设,对于线性系统而言量测方程可表示为

()()()()Z k H k X k W k =+

(2.14)

式中,()Z k 为量测向量,()H k 为量测矩阵,()X k 为状态向量,()W k 为量测噪声序列,一般假定其为零均值的附加高斯白噪声序列。

当在二维平面中以匀速或匀加速运动的目标进行建模时,对应的状态向量()X k 可分别用式(2.6)和式(2.11)表示,此时这两种情况下的量测向量()Z k 均为

()[]k k Z k x y '=

(2.15)

而量测矩阵()H k 分别为

()10000010H k ??=????

(2.16)

()100000000100H k ??=????

(2.17)

2.3 小结

本章重点介绍了雷达数据处理的系统模型,其状态方程和量测方程。状态变量法是描述系统的一种很有价值的方法。状态方程描述了由确定的时间函数和代表不可预测的变量或噪声的随机过程的输入关系;量测方程描述了输出的关系。状态方程和量测方程的确定为后面进行目标跟踪算法的分析奠定了基础。

3 目标跟踪算法

机动目标跟踪算法概括来讲可以分为以下两类:具有机动检测的跟踪算法;无需机动检测的自适应跟踪算法。本论文中重点介绍卡尔曼滤波器[10]和具有机动检测的跟踪算法——变维滤波器[11]。

3.1 卡尔曼滤波器

在状态估计中,位置参数是个时间函数,因此在对观测数据进行处理时,未知参数和观测数据的时间演变都必须加以考虑。卡尔曼滤波器适用于有限观测间隔的非平稳问题,是适合于计算机计算的递推算法,在状态估计中得到了广泛地应用。

3.1.1 系统模型

状态变量法是描述动态系统的一种很有价值的方法,采用这种方法,系统的输入输出关系是用状态转移模型和输出观测模型在时域内加以描述的。输入可以由确定的时间函数和代表不可预测的变量或噪声的随机过程组成的动态模型进行描述,输出是状态向量的函数,通常受到随机观测误差的扰动,可由量测方程描述。

离散时间系统的动态方程(状态方程)可表示为

()()()()()()1X k F k X k G k u k V k +=++

(3.1)

式中,()F k 为状态转移矩阵;()X k 为状态向量;()G k 为输入控制项矩阵;()u k 为已知输入或控制信号;()V k 是零均值、白色高斯过程噪声序列,其协方差为()Q k ;如果过程噪声()V k 用()()k v k Γ代替,则()Q k 变为()()k q k 'ΓΓ,()k Γ为过程噪声分布矩阵。

()()()kj V k V j Q k δ'E =????

(3.2)

式中,kj δ为Kronecker Delta 函数,该性质说明不同时刻的过程噪声是相互独立的。

离散时间系统的量测方程为

()()()()1111Z k H k X k W k +=++++

(3.3)

式中,()1H k +为量测矩阵,()1W k +为具有协方差()1R k +的零均值、白色高斯量测噪声序列,即

()()()kj W k W j R k δ'E =????

(3.4)

该性质说明不同时刻的量测噪声也是相互独立的。

上述离散时间线性系统也可由图3.1的框图来表示,该系统包含了如下先验信息:

● 初始状态()0X 是高斯的,具有均值()?0|0X

和协方差()0|0P ; ● 初始状态与过程噪声和量测噪声序列不相关;

● 过程噪声和量测噪声序列互不相关。

图3.1 离散时间线性系统

在上述假定条件下,状态方程[见式(3.1)]和量测方程[见式(3.3)]的线性性质可保持状态和量测的高斯性质。根据已知的j 时刻和j 以前时刻的量测值对k 时刻的状态

()X k 做出某种估计,记为()?|X

k j ,则按照状态估计所指的时刻,估计问题可归纳为以下三种:

● 当k j =时,是滤波问题,()?|X

k j 为k 时刻状态()X k 的滤波值; ● 当k j >时,是滤波问题,()?|X

k j 为k 时刻状态()X k 的预测值; ● 当k j <时,是滤波问题,()?|X

k j 为k 时刻状态()X k 的平滑值; 3.1.2 滤波模型

动态(时变)情况下的最小均方误差估计可定义为

()()??||k x X k k X k Z ??→=E ??

(3.5)

式中,

(){},1,2,,k Z Z j j k ==L

(3.6)

与式(3.5)相伴的状态误差协方差矩阵定义为

()()()()()()(){}??|||||||k k P k k X k X k k X k X k k Z X k k X k k Z ??'????'=E --=E ????????%%

(3.7)

把以k Z 为条件的期望算子应用到式(3.1)中,得到状态的一步预测为

()()()()()()()()()()()?1|1||?|k k x X k k X k Z F k X k G k u k V k Z F k X k k G k u k ????→+=E +=E ++????

=+

(3.8)

预测值的误差为

()()()()()()?1|11||X k k X k X k k F k X k k V k +=+-+=+%% (3.9)

一步预测协方差为

()()()()()()()()(){}

()()()()1|1|1||||||k xx k P P k k X k k X k k Z F k X k k V k F k X k k V k Z F k P k k F k Q k '??→+=E ++??

'''????=E ++????

'=+%%%% (3.10)

注意:一步预测协方差()1|P k k +为对称阵,它可用来衡量预测的不确定性,()1|P k k +越小则预测越精确。

通过对式(3.3)取在1k +时刻、以k Z 为条件的期望值,可以类似地得到量测的预测是

()()()()()()()?1|1|111|?(1)1|k k Z Z k k Z k Z H k X k W k Z H k X k k ????→+=E +=E ++++????

=++

(3.11)

进而可求得量测的预测值和量测值之间的差值为

()()()()()()?1|11|11|1Z k k Z k Z k k H k X k k W k +=+-+=++++%%

(3.12)

量测的协方差(或新息协方差)为

()()()()()()()()(){}

()()()()

11|1||11|11|11|11|11k

zz k P S k Z k k Z k k Z H k X k k W k X k k H k W k Z H k P k k H k R k '??→+=E ++??

'''????=E ++++++++????'=+++++%%%% (3.13)

注意:新息协方差()1S k +也为对称阵,它是用来衡量信息的不确定性,新息协方差越小,则说明量测值越精确。

状态和量测之间的协方差为

()()()()()()()()1|1||1|11|1|1|1k k xz P X k k Z k k Z X k k H k X k k W k Z P k k H k ?

?''????→E ++=E +++++????????

'=++%%%

%

3

.

1

4

增益为

()()()()1111|11xz zz P P K k P k k H k S k --'→+=+++

(3.15) 进而,可求得1k +时刻的估计(状态更新方程)为

()()()()

??1|11|11X k k X k k K k v k ++=++++ (3.16)

式中,()1v k +为新息或量测残差,即

()()()()

?11|11|v k Z k k Z k Z k k +=+=+-+% (3.17)

式(3.17)说明1k +时刻的估计()?1|1X k k ++等于该时刻的状态预测值()?1|X k k +再加上一个修正项,而这个修正项与增益()1K k +和新息有关。

协方差更新方程为

()()()()()()()

()()()

()()()()

11|11|1|1111|111|1|111P k k P k k P k k H k S k H k P k k I K k H k P k k P k k K k S k K k -'++=+-+++++=-+++????'=+-+++

(3.18)

图3.2给出了卡尔曼滤波器所包含的方程及滤波流程。 该图也是本论文静态滤波的主要设计流程。

3.1.3 卡尔曼滤波器的初始化

本节讨论状态估计的初始化问题是运用卡尔曼滤波器的一个重要前提条件,只有进行了初始化,才能利用卡尔曼滤波器对目标进行跟踪。

1、平面内四维状态向量估计的初始化

对平面内雷达的数据处理问题,此时系统的状态向量若表示为()[]X k x x y y '=&&,而直角坐标系下的量测值()Z k 为

()()()()()12cos sin Z k x k Z k Z k y k ρθρθ??????===????????????

(3.19)

式中,ρ和θ分别极坐标系下雷达的目标径向距离和方位角测量数据。则系统的初始状态可利用前两个时刻的测量值()0Z 和()1Z 来确定,即

()()()()()()()1122121010?1|111Z Z Z Z X Z Z T T '

--??=????

(3.20)

图3.2 卡尔曼滤波器算法框图

k 时刻量测噪声在直角坐标系下的协方差为

()211

122122200r r R k A A r r ρθσσ????'==????????

(3.21)

式中,2ρσ和2θσ分别为径向距离和方位角测量误差的方差,而

cos sin sin cos A θρθθρθ-??=?

???

(3.22) 由量测噪声协方差的各元素可得四维状态向量情况下的初始协方差矩阵为

()()()()()()()()()()()()()

()()()()11111212221111121212122222221212222211111211211|11111121121r r T r r T r T r r T r P r r T

r r T r T r T r T r T ??????=????????

(3.23)

并且滤波器从2k =时刻开始工作。

2、平面内六维状态向量估计的初始化

该情况下系统的状态向量若表示为()[]X k x x x y y y '=&&&&&&,则此时直角坐标系

下的目标量测值()Z k 、量测噪声协方差()R k 仍和四维情况相同。

由于此时含加速度,所以系统的初始状态需利用前三个时刻的测量值()0Z 、()1Z 和()2Z 确定,即

()()()()()()()()()()()()()()()()()()()()()11111112222222Z 2Z 2-Z 1Z 2-Z 1T -Z 1-Z 0T T ?2|2Z 2Z 2-Z 1Z 2-Z 1T -Z 1-Z 0T T X ??????????????=????????????????

(3.24)

初始协方差矩阵为

()11

121222P P P 2|2P P ??=????

(3.25)

式中,11P 、12P 和22P 为分块矩阵,且

()()()()()()()()()()()

()()()223234222221221P ,1,2,3;1,2,322212410ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij r r r T T r r r r r i j T

T T r r r r r r T T T ????????++===??????+++????

(3.26)

并且滤波器从3k =时刻开始工作。

3.2 具有机动检测的跟踪算法

所谓目标的机动检测,其实质上是一种判别机制,它是利用目标的量测信息和数理统计的理论进行检测。具有机动检测的跟踪算法的基本思想是,机动的发生将使原来的模型变差,从而造成目标状态估计偏离真实状态,滤波残差特性发生变化。因此,人们便可以通过观测目标运动的残差变化来探测目标是否发生机动或机动结束,然后使跟踪算法进行相应的调整,即进行噪声方差调整或模型转换,以便能够更好地跟踪目标。图

3.3为这类机动目标跟踪算法的基本原理图。从图中我们可以看出:首先由量测Z 与状态

预测()?1|HX

k k +构成新息向量v ,然后通过观察v 的变化进行机动检测,最后按照某一准则或逻辑调整滤波增益或者滤波器的结构,从而达到对机动目标的跟踪[12]。本节重点介绍变维滤波算法(VD 算法)[13]。

图3.3 机动目标跟踪基本原理图

变维滤波算法是由Bar-Shalom 和Birmiwal 于1982年提出来的,该方法不依赖于目标机动的先验假设,把机动看做目标动态特性的内部变化,而不是作为噪声建模。检测手段采用平均信息法,调整方式采用“开关”型转换,在没有机动的情况下,跟踪滤波器采用原来的模型,一旦检测到机动,滤波器就要使用不同的、具有较高维数的状态量测,新的状态量被附加上。再由非机动检测器检测机动消除病转换到原来的模型。

这里采用两种模型,即未机动时的等速模型和对于机动目标的近似等加速模型。在匀速模型中,平面运动的状态分量为

[]k k k k X x x y y '=&&

(3.27)在机动模型中状态分量为

[]m X x x y y x y '=&&&&&& (3.28)

在等速模型条件下,机动检测按如下方法进行。设()k ρ为基于等速模型滤波新息()v k ε的衰减记忆平均值,即

()()()

1v k k k ραρε=-+

(3.29) ()()()()

1v k v k S k v k ε-'=

(3.30)

式中,α为折扣因子, 11window α=-,window 为滑窗长度,且01μ<<,按这个长度检测机动的存在;()v k ε为归一化信息的平方。 设max ε是某一门限,β为显着性水平,基于非机动情况的目标模型,阈值这样设定

(){}max Pr 1v k εεβ≤=-

(3.31)

超过这个阈值,则认为目标发生机动,需增大过程噪声协方差()1Q k -,以后一直采用增大的过程噪声协方差()1Q k -直到()v k ε小于阈值max ε为止;若()v k ε小于阈值max ε,则认为目标机动结束,便恢复原来的滤波模型。

如果()k ρ超过式(3.31)所设定的阈值,则接收发生机动的假设,在阈值点上估计器从非机动模型转换为机动模型;反之,用估计的加速度与他们的标准偏差进行比较,如果它不是统计显着的,则拒绝机动假设,从机动模型转为非机动模型。

对于加速度估计显性检验的统计量为

()()()()1??|||m a a k a k k P k k a k k δ-'??=??

(3.32)

式中,?a

是加速度分量的估计,m a P 是来自机动模型的协方差矩阵相对应的块,当在长度为p 的滑窗上的和

()()1k a a j k p k j ρδ=-+=

(3.33)

落在阈值以下时,则认为加速度是不显着的。

当出现加速度突然下降到0的情况时(即机动突然结束),可能导致机动模型产生很大的新息,这可以用下面的方法缓解,即当机动模型的新息超过95%置信区间时,就可以转换到较低阶的模型。

当在k 时刻检测到机动时,滤波器设定:目标在1k s --时刻开始有等加速度,其中s 为有效滑窗的长度。然后对k s -时刻的状态估计进行适当地修正。首先在k s -时刻,对加速度的估计为

()()422??(|)|1,1,2m i i i X k s k s z k s z k s k s i T +--=-----=????

(3.34)

在k s -时刻,估计的位置分量取做对应的量测值,即

()21?(|),1,2m i i X k s k s z k s i ---=-=

(3.35)

与此同时,估计的速度分量用加速度估计修正如下

224???(|)(|1)(|),1,2m m i i i X k s k s X k s k s TX k s k s i +--=---+--= (3.36)

与修正的状态估计相伴的协方差矩阵是(|)m P k s k s --,它的推导过程可参考文献[14]。具体表示式为

()()()()()()112534211,121115112221111221232111122122332222362244(|)(|)2,(|)2(|)4*4(|)4*26(|),(|)2,(|)2(|m m m m m m m m m P k s k s R P k s k s R P k s k s R T P k s k s T R P P P T P k s k s T R P T P P P k s k s R P k s k s R T P k s k s R T

P k s k --=--=--=--=+++--=+++--=--=--=--()()()()()()()()()()222334434324622334434425511111222426622333444131416232426354556)4*4(|)4*26(|)4*2(|)4*20,,1,2,m m m m m m m m m m m m m m ij ji s T R P P P T P k s k s T R P T P T P P k s k s T R P TP T P P k s k s T R P TP T P P P P P P P P P P P P i j =+++--=+++--=+++--=+++===========,6?????????????????

??L

(3.37)

当探测到机动时,通过引入额外的状态分量,即目标加速度,以此来改变目标的状

态模型。当目标机动时,递归估计按加速度建模的机动以及与位置和速度有关的其他状态。

从上面可以看出,变维滤波算法的机动检测手段是采用基于衰减记忆新息量的2χ检验,采用切换策略的调整方式。当目标非机动时,算法工作在CV模型;若在k时刻检测到目标机动,算法假定目标在1

--时刻出现机动,并与k s

-时刻启动CA模型,利用

k s

其后的量测信息修正此前的状态估计,扩充目标状态。而当检测到目标从机动状态切换到非机动状态时,算法并不重新修正此前基于CA模型所获得的状态估计,其原因是基于CA模型跟踪非机动目标时,算法的跟踪性能下降相对较小。

变维滤波器有相对较好的机动目标跟踪适应能力,而该滤波器的主要缺点是当改变到机动模型时,必须完全重建滑动窗口内状态变量的估计。而这种滤波器的重新预置不可避免地会在处理负载中出现明显的不连续性,因而从计算机观点来看这可能是不太现实的,另外这种重置也可能会增加目标的跟踪误差。

3.3 小结

本章重点介绍了两种雷达目标跟踪的算法——卡尔曼滤波算法和VD滤波算法。对卡尔曼算法,本章详细介绍了算法的流程及所用到的算法方程,并且介绍了卡尔曼滤波器的初始化问题。变维滤波算法具有较好的机动目标跟踪适应能力,但是当目标出现机动时,就必须完全重建滑动窗口内状态变量的估计——状态方程和协方差方程,其算法在本章中也有比较详细的介绍。

4 雷达目标跟踪及仿真技术

系统仿真的基本思想是建立一个实验模型,这个模型与我们要研究的系统十分相似。通过对这个模型的运行,获得我们要研究的系统所必要的信息、参数、资料,从而为研制实际系统提供科学依据。系统仿真是用模型代替实际系统进行试验。它是在不破坏真实系统环境的情况下,为研究系统的特性而构造并运行这种真实系统模型的方法。本节的目的在于提供仿真方法来分析和设计雷达目标跟踪系统,概述系统仿真的基础知识,模拟各种算法并分析系统性能的估算结果。

4.1 MATLAB仿真平台简介

MATLAB[15]是矩阵实验室(Matrix Laboratory)之意。除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相

似。故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多。

MATLAB包括拥有数百个内部函数的主包和三十几种工具包(Toolbox).工具包又可以分为功能性工具包和学科工具包。功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能。学科工具包是专业性比较强的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类。

开放性使MATLAB广受用户欢迎.除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改或加入自己编写程序构造新的专用工具包。

正如同FORTRAN和C等高级语言使人们摆脱了需要直接对计算机硬件资源进行操作一样,被称作为第四代计算机语言的MATLAB,利用其丰富的函数资源,使编程人员从繁琐的程序代码中解放出来。MATLAB最突出的特点就是简洁。MATLAB用更直观的,符合人们思维习惯的代码,代替了C和FORTRAN语言的冗长代码。MATLAB给用户带来的是最直观,最简洁的程序开发环境。

下面简单介绍一下MATLAB的主要特点。

1、语言简洁紧凑,使用方便灵活,库函数极其丰富。MATLAB程序书写形式自由,利用起丰富的库函数避开繁杂的子程序编程任务,压缩了一切不必要的编程工作。由于库函数都由本领域的专家编写,用户不必担心函数的可靠性。可以说,用MATLAB进行科技开发是站在专家的肩膀上。

2、运算符丰富。由于MATLAB是用C语言编写的,MATLAB提供了和C语言几乎一样多的运算符,灵活使用MATLAB的运算符将使程序变得极为简短。

3、MATLAB既具有结构化的控制语句(如for循环,while循环,break语句和if 语句),又有面向对象编程的特性。

4、程序限制不严格,程序设计自由度大。例如,在MATLAB里,用户无需对矩阵预定义就可使用。

5、程序的可移植性很好,基本上不做修改就可以在各种型号的计算机和操作系统上运行。

6、MATLAB的图形功能强大。在FORTRAN和C语言里,绘图都很不容易,但在MATLAB 里,数据的可视化非常简单。MATLAB还具有较强的编辑图形界面的能力。

7、MATLAB的缺点是,它和其他高级程序相比,程序的执行速度较慢。由于MATLAB 的程序不用编译等预处理,也不生成可执行文件,程序为解释执行,所以速度较慢。

8、功能强大的工具箱是MATLAB的另一特色。MATLAB包含两个部分:核心部分和各种可选的工具箱。核心部分中有数百个核心内部函数。其工具箱又分为两类:功能性工具箱和学科性工具箱。功能性工具箱主要用来扩充其符号计算功能,图示建模仿真功能,文字处理功能以及与硬件实时交互功能。功能性工具箱用于多种学科。而学科性工具箱是专业性比较强的,如control,toolbox,signl proceessing toolbox,commumnication toolbox等。这些工具箱都是由该领域内学术水平很高的专家编写的,所以用户无需编写自己学科范围内的基础程序,而直接进行高、精、尖的研究。

9、源程序的开放性。开放性也许是MATLAB最受人们欢迎的特点。除内部函数以外,所有MATLAB的核心文件和工具箱文件都是可读可改的源文件,用户可通过对源文件的修改以及加入自己的文件构成新的工具箱。

4.2 仿真与分析

对设计和实验来说,仿真与分析师不可缺少的步骤,只要这样才能找到合理的实验方法和设计参数,从而达到实验或设计的目标。

4.2.1 仿真流程图

目标跟踪仿真流程图如图4.1所示。

基于卡尔曼滤波器的雷达目标跟踪(完整资料).doc

此文档下载后即可编辑 随机数字信号处理期末大作业(报告) 基于卡尔曼滤波器的雷达目标跟踪 Radar target tracking based on Kalman filter 学院(系):创新实验学院 专业:信息与通信工程 学生姓名:李润顺 学号:21424011 任课教师:殷福亮 完成日期:2015年7月14日

大连理工大学Dalian University of Technology

摘要 雷达目标跟踪环节的性能直接决定雷达系统的安全效能。由于卡尔曼滤波器在状态估计与预测方面具有强大的性能,因此在目标跟踪领域有广泛应用,同时也是是现阶段雷达中最常用的跟踪算法。本文先介绍了雷达目标跟踪的应用背景以及研究现状,然后在介绍卡尔曼滤波算法和分析卡尔曼滤波器性能的基础上,将其应用于雷达目标跟踪,雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时刻的位置进行预测。最后对在一个假设的情境给出基于卡尔曼滤波的雷达目标跟踪算法对单个目标航迹进行预测的MATLAB仿真,对实验的效果进行评估,分析预测误差。 关键词:卡尔曼滤波器;雷达目标跟踪;航迹预测;预测误差;MATLAB 仿真 - 1 -

1 引言 1.1 研究背景及意义 雷达目标跟踪是整个雷达系统中一个非常关键的环节。跟踪的任务是通过相关和滤波处理建立目标的运动轨迹。雷达系统根据在建立目标轨迹过程中对目标运动状态所作的估计和预测,评估船舶航行的安全态势和机动试操船的安全效果。因此,雷达跟踪环节工作性能的优劣直接影响到雷达系统的安全效能[1]。 鉴于目标跟踪在增进雷达效能中的重要作用,各国在军用和民用等领域中一直非常重视发展这一雷达技术。机动目标跟踪理论有了很大的发展,尤其是在跟踪算法的研究上,理论更是日趋成熟。在跟踪算法中,主要有线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、β α-滤波和卡尔曼滤波,其中卡尔曼滤波算法在目标跟踪理论中占据了主导地位。

动态视频目标检测和跟踪技术(入门)

动态视频目标检测和跟踪技术 传统电视监控技术只能达到“千里眼”的作用,把远程的目标图像(原始数据)传送到监控中心,由监控人员根据目视到的视频图像对现场情况做出判断。智能化视频监控的目的是将视频原始数据转化为足够量的可供监控人员决策的“有用信息”,让监控人员及时全面地了解所发生的事件:“什么地方”,“什么时间”,“什么人”,“在做什么”。将“原始数据”转化为“有用信息”的技术中,目标检测与跟踪技术的目的是要解决“什么地方”和“什么时间”的问题。目标识别主要解决“什么人”或“什么东西”的问题。行为模式分析主要解决“在做什么”的问题。动态视频目标检测技术是智能化视频分析的基础。 本文将目前几种常用的动态视频目标检测方法简介如下: 背景减除背景减除(Background Subtraction)方法是目前运动检测中最常用的一种方法,它是利用当前图像与背景图像的差分来检测出运动目标的一种技术。它一般能够提供相对来说比较全面的运动目标的特征数据,但对于动态场景的变化,如光线照射情况和外来无关事件的干扰等也特别敏感。实际上,背景的建模是背景减除方法的技术关键。最简单的背景模型是时间平均图像,即利用同一场景在一个时段的平均图像作为该场景的背景模型。由于该模型是固定的,一旦建立之后,对于该场景图像所发生的任何变化都比较敏感,比如阳光照射方向,影子,树叶随风摇动等。大部分的研究人员目前都致力于开发更加实用的背景模型,以期减少动态场景变化对于运动目标检测效果的影响。 时间差分时间差分(Temporal Difference 又称相邻帧差)方法充分利用了视频图像的特征,从连续得到的视频流中提取所需要的动态目标信息。在一般情况下采集的视频图像,若仔细对比相邻两帧,可以发现其中大部分的背景像素均保持不变。只有在有前景移动目标的部分相邻帧的像素差异比较大。时间差分方法就是利用相邻帧图像的相减来提取出前景移动目标的信息的。让我们来考虑安装固定摄像头所获取的视频。我们介绍利用连续的图像序列中两个或三个相邻帧之间的时间差分,并且用阈值来提取出视频图像中的运动目标的方法。我们采用三帧差分的方法,即当某一个像素在连续三帧视频图像上均有相

目标跟踪的研究背景意义方法及现状

目标跟踪的研究背景意义方法及现状 1目标跟踪的研究背景及意义 (1) 1.1电视监控 (2) 1.2视频压缩编码 (2) 1.3智能交通系统 (2) 1.4人机交互 (3) 2研究现状及研究面临的问题 (3) 2.1研究现状 (3) 2.2研究面临的难题 (4) 3目标跟踪的主要方法 (4) 3.1基于检测的方法 (5) 3.2基于识别的方法 (5) 1目标跟踪的研究背景及意义 感觉是人类与外界联系的窗口和交流的桥梁,它的主要任务是识别周边物体,判断与这些物体之间的联系,使人类的思维与周围世界建立某种对应的关系。而视觉系统是人类感觉的最主要来源,是获取外界信息的最主要途径,它是一种高清晰度的媒介,为人类提供着丰富的外界资源信息。据统计,大约有80%的外界信息是通过眼睛被人接收的。然而,由于人类的精力毕竟是有限的,人类的视野也是有限的,所以人类的视觉在各种领域的应用都受到很大限制甚至是低效的。 因而,随着数字计算机技术的飞速发展,让计算机能够处理视觉信息、完善人类视觉上的诸多短板就成了一项非常诱人的研究课题,也因此推动了计算机视觉这一学科的产生和发展。计算机视觉是融合了图像处理、计算机图形学、模式识别、人工智能、人工神经网络、计算机、心理学、物理学和数学等领域的一门交叉性很强的学科。计算机视觉研究的目的是使计算机感知环境中的物体的几何信息,包括它的形状、位置、姿态、运动等,并对其进行描述、存储、识别与理解,因此成为当今最热门的课题之一。 运动目标跟踪属于视频分析的内容,而视频分析则融合了计算机视觉研究领域的中层和高层处理阶段,即对图像序列进行处理,从而研究运动目标的规律,或者为系统的决策报警提供语义和非语义的信息支持,包括运动检测、目标分类、目标跟踪、行为理解、事件检测等。视频目标跟踪方法的研究和应用作为计算机视觉领域的一个重要分支,正日益广泛地应用到科学技术、国防建设、航空航天、医药卫生以及国民经济的各个领域,因而研究目标跟踪技术有着重大的实用价值

机动目标跟踪反跟踪

参赛密码 (由组委会填写)第十一届华为杯全国研究生数学建模竞赛 学校东南大学 参赛队号10286119 队员姓名1.吕亮 2.荆丽 3.巨晓正

参赛密码 (由组委会填写) 第十一届华为杯全国研究生数学建模竞赛 题目机动目标的跟踪与反跟踪 摘要: 目标跟踪是指根据传感器(如雷达等)所获得的对目标的测量信息,连续地对目标的运动状态进行估计,进而获取目标的运动态势及意图。目标跟踪理论在军、民用领域都有重要的应用价值。目标机动是指目标的速度大小和方向在短时间内发生变化,通常采用加速度作为衡量指标。 机动目标跟踪的难点在于以下几个方面:(1) 描述目标运动的模型即目标的状态方程难于准确建立。通常情况下跟踪的目标都是非合作目标,目标的速度大小和方向如何变化难于准确描述;(2) 传感器自身测量精度有限加之外界干扰,传感器获得的测量信息如距离、角度等包含一定的随机误差,用于描述传感器获得测量信息能力的测量方程难于完全准确反映真实目标的运动特征; (3) 当存在多个机动目标时,除了要解决(1)、(2)两个问题外,还需要解决测量信息属于哪个目标的问题,即数据关联。本文主要对监测传感器的得到的目标数据进行分析,建立适当的跟踪模型,从而获取目标的运动态势及意图,达到跟踪的目的。由于以上多个挑战因素以及目标机动在战术上主动的优势,机动目标跟踪已成为近年来跟踪理论研究的热点和难点。 关键词:单目标模型目标跟踪

一、问题重述 现有3组机动目标的测量数据,数据分别包含在Data1.txt,Data2.txt,Data3.txt文件中,其中Data1.txt为多个雷达站在不完全相同时刻获得的单个机动目标的测量数据,Data2.txt为某个雷达站获得的两个机动目标的测量数据,Data3.txt为某个雷达站获得的空间目标的测量数据。 数据文件中观测数据的数据结构如下: 其中Data1.txt和Data2.txt数据的坐标系表示如下:原点O为传感器中心,传感器中心点与当地纬度切线方向指向东为x轴,传感器中心点与当地经度切线方向指向北为y轴,地心与传感器中心连线指向天向的为z轴,目标方位指北向顺时针夹角(从y轴正向向x轴正向的夹角,范围为0~360°),目标俯仰指传感器中心点与目标连线和地平面的夹角(即与xOy平面的夹角,通常范围-90°到90°)。 Data1.txt中的雷达坐标和测量误差如下: Data2.txt雷达坐标为[0,0,0]。对应两个目标的测量误差如下: Data3.txt的雷达坐标和测量误差为: 其余格式与Data1.txt和Data2.txt相同。 需完成的问题:

第一章 目标跟踪基本原理与机动目标模型1

第一章目标跟踪基本原理与机动目标模型1.1 引言目标跟踪问题作为科学技术发展的一个方面,设计的主要目的是可靠而精确的跟踪目标,其历史可以追溯到第二次世界大战前夕,即1937 年世界上出现第一部跟踪雷达站SCR-28 的时候、之后各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。传统的跟踪系统是一对一系统,即一个探测器仅连续地瞄准和跟踪一个目标。随着科学技术的进步和现代战略战术的发展,人们发现提出新的目标跟踪概念和体制是完全可能的,在过去20 多年中,多目标跟踪的理论和方法已经获得很大发展,并已成为当今国际上十分活跃的热门研究领域之一,有些成果也已付诸于工程实际。简单地说,目标跟踪问题可以划分为下列四类:一个探测器跟踪一个目标(OTO)一个探测器跟踪多个目标(OTM)多个探测器跟踪一个目标(MTO)多个探测器跟踪多个目标(MTM)1.2 目标跟踪的基本原理1.2.1 单机动目标跟踪基本原理发展现代边扫描边跟踪(TWS)系统的目的是,仅在一个探测器条件下同时跟踪多个目标。然而,为达此目的,边扫描边跟踪系统必须首先很好地跟踪单个目标。一般地说,常速直线运动目标的跟踪与估计问题较为简单,而且易于处理。困难的情况表现在被跟踪目标发生机动,即目标速度的大小和方向发生变化的场合。图 1.1 为单机动目标跟踪基本原理框图。图中目标动态特性由包含位置、速度和加速度的状态向量X 表示,量测(观测)量Y 被假定为含有量测噪声V 的状态向量1的线性组合(HX+V);残差(新息)向量 d 为量测(Y)与状态预测量H X k k 之差。我们约定,用大写字母XY 表示向量,小写字母xy表示向量的分量。一般情况下,单机动目标跟踪为一自适应滤波过程。首先由量测(观测)量(Y)和状态预1测量H X k 构成残差(新息)向量d,然后根据d 的变化进行机动检测或者机k动辨识.其次按照某一准则或逻辑调整滤波增益与协方差矩阵或者实时辨识出目标机动特性,最后由滤波算法得到目标的状态估计值和预测值,从而完成单机动目标跟踪功能。图 1.1 单机动目标跟踪基本原理框图1.2.2 单机动目标跟踪基本要素单机动目标跟踪基本要素主要包括量测数据形成与处理,机动目标模型,机动检测与机动辨识,滤波与预测以及跟踪坐标系和滤波状态变量的选取。现分别简述之。1.2.2.1 量测数据形成与处理量测数据通常指来自探测器输出报告的所有观测量的集合。这些观测量一般包括目标运动参数,如位置和速度,目标属性,目标类型,数目或形成以及获取量测量的时间序列等。在单机动目标跟踪技术中,量测数据主要指目标运动学参数。量测数据既可以等周期获取,也可以变周期获取。在实际问题中常常遇到等速,为了提高目标状态率数据采集。量测数据大多含有噪声和杂波(多目标检测情况)估计精度,通常采用数据预处理技术以提高信噪比。目前常用的方法有数据压缩,包括等权和变权预处理以及量测资料中野值的剔除方法等技术。1.2.2.2 机动目标模型众所周知,估计理论特别是卡尔曼滤波理论要求建立数学模型来描述与估计问题有关的物理现象。这种数学模型应把某一时刻的状态变量表为前一状态变量的函数。所定义的状态变量应为能够全面反应系统动态特性的一组维数最少的变量。一般地,状态变量与系统的能量有关,譬如在目标运动模型中,状态变量中所包含的位置元素与势能有关,速度元素与动能有关。在目标模型构造过程中,考虑到缺乏有关目标运动的精确数据以及存在着许多不可预测的现象,如周围环境的变化及驾驶员主观操作等,只是需要引入状态噪声的概念。当目标作匀速直线运动时,加速度常常被看作是具有随机特性的扰动输入(状态噪声),并假设其服从零均值白色高斯分布,这时,卡尔曼滤波可直接使用。当目标发生诸如转弯或逃避等机动现象时,上述假设则不尽合理,机动加速度变成为非零均值时间相关的有色噪声。此时,为满足滤波需要常常采用白化噪声和状态增广方法。机动目标模型除了考虑加速度非零均值时间相关噪声假设外,还要考虑加速度的分布特性。客观上,要求加速度函数应尽可能的描述目标机动的实际情况。从目前的机动目标模型来看,所有建模方法均考虑了目标发生机动的可能性,并建立了一种适合任何情况和任何类型目标的机动模型,我们称这种模型为全局统计模型,其典型代表是传统的Singer 模型。然而,根据全局统计模型思想,每一种具体战术情况下的每

雷达机动目标跟踪技术研究

1 绪论 1.1 课题背景及目的 目标跟踪问题实际上就是目标状态的跟踪滤波问题,即根据传感器已获得的目标量测数据对目标状态进行精确的估计[1]。它是军事和民用领域中一个基本问题,可靠而精确地跟踪目标是目标跟踪系统设计的主要目的。在国防领域,目标跟踪可用于反弹道导弹的防御、空防预警、战场区域监视、精确制导和低空突防等。在民用领域,则用于航空和地面交通管制、机器人的道路规划和障碍躲避、无人驾驶车的跟踪行驶、电子医学等。作为科学技术发展的一个方面,目标跟踪问题可以追溯到第二次世界大战的前夕,即1937年世界上出现第一部跟踪雷达站SCR-28的时候。之后,许多科学家和工程师一直努力于该项课题的研究,各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。 运动目标的机动会使跟踪系统的性能恶化,对机动目标进行跟踪是人们多年来一直关注的问题。随着现代航空航天技术的飞速发展,机动目标在空间飞行的速度、角度、加速度等参数不断变化,使得目标的位置具有很强的相关性,因此,提高对这类目标的跟踪性能便成为越来越重要的问题,迫切需要研究更为优越的跟踪滤波方法。机动目标的跟踪研究,已成为当今电子战的研究热点之一。今天,精密跟踪雷达不仅广泛应用于各类武器控制和各类实验靶场,而且还广泛应用于各种空间探测、跟踪和识别领域,以及最先进的武器控制系统。 跟踪模型和匹配滤波是机动目标跟踪的两个关键部分,机动目标的精确跟踪在过去和现在都是一个难题,最根本原因在于跟踪滤波采用的目标动力学模型和机动目标实际动力学模型不匹配,导致跟踪滤波器发散,跟踪性能严重下降。本文将机动目标作为研究对象,从目标的运动建模和匹配滤波算法入手,提出或修正跟踪算法,从而实现对机动目标的精确跟踪。 1.2 机动目标跟踪技术及其发展状况 目标机动是指运动当中的目标,其运动方式在不断地发生变化,从一种形式变化为另一种形式,目标的运动可能从匀速到变速,也可能送直线到转弯,它的运动方式并不会从一而终。通俗地说,就是“目标速度的大小和方向发生变化”。 一般情况下,机动目标跟踪方法概括来讲可以分为以下两类:具有机动检测的跟踪算法和无需机动检测的自适应跟踪算法。机动目标的跟踪需要综合运用统计决策、滤波

机动目标跟踪_张泽兵_05040056

(1) 算法描述 在该问题中,机动目标经历三个阶段:初始匀速直线阶段、匀速圆周运动阶段、返回匀速直线阶段。在此过程中线速度大小v 保持不变。 图1 如图1所示:θ为轨迹切线与横轴正向夹角。在初始匀速阶段和返回匀速直线阶段θ分别为0,π。在匀速圆周运动阶段θ从0到π均匀变化。 由 2/mv r ma =及/w v r =得 /w a v =(w 为角速度) 所以容易得到: /wt vt r θ==

cos x v v θ= sin y v v θ=- 状态变量 [,,,,]T x y s r r v a θ= 状态方程为: [][1][1]cos x x x x r n r n v T r n v T θ=-+=-+ [][1][1]sin y y y x r n r n v T r n v T θ=-+=-- [][1][1]a n n wT n T v θθθ=-+=-+ [][1][]v v n v n u n =-+ [][1][]a a n a n u n =-+ 即 []([1])[]s n a s n u n =-+,其中[][0,0,0,[],[]]'v a u n u n u n = 所以状态转换矩阵为 211,0,sin ,cos ,0210,1,cos ,sin ,02 0,0,1,,/0,0,0,1,00,0,0,0,1v T T v T T a a A T T v s v θθθθ??-???? ??--???????==-??? ????????????

假设[]v u n 和[]a u n 不相关,方差分别为2 v σ、2 a σ,因此得驱动噪 声 220,0,0,0,00,0,0,0,00,0,0,,00,0,0,0,v a Q σσ???? ? ?=???????? 观测矢量 [][][][]x y r n x n w n r n ??=+???? 其中[][][]x y u n w n u n ?? =???? 所以观测矩阵 1,0,0,0,00,1,0,0,0H ?? =???? , 假设[]x u n 、[]y u n 不相关且方差分别为2 x σ和2 y σ 观测噪声 22,00,x y C σσ??=?????? 总结上述式子,得到这个问题的扩展卡尔曼滤波方程为 ??[|1]([1|1])s n n a s n n -=--

雷达机动目标跟踪技术研究精编

雷达机动目标跟踪技术 研究精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

1 绪论 课题背景及目的 目标跟踪问题实际上就是目标状态的跟踪滤波问题,即根据传感器已获得的目标量测数据对目标状态进行精确的估计[1]。它是军事和民用领域中一个基本问题,可靠而精确地跟踪目标是目标跟踪系统设计的主要目的。在国防领域,目标跟踪可用于反弹道导弹的防御、空防预警、战场区域监视、精确制导和低空突防等。在民用领域,则用于航空和地面交通管制、机器人的道路规划和障碍躲避、无人驾驶车的跟踪行驶、电子医学等。作为科学技术发展的一个方面,目标跟踪问题可以追溯到第二次世界大战的前夕,即1937年世界上出现第一部跟踪雷达站SCR-28的时候。之后,许多科学家和工程师一直努力于该项课题的研究,各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。 运动目标的机动会使跟踪系统的性能恶化,对机动目标进行跟踪是人们多年来一直关注的问题。随着现代航空航天技术的飞速发展,机动目标在空间飞行的速度、角度、加速度等参数不断变化,使得目标的位置具有很强的相关性,因此,提高对这类目标的跟踪性能便成为越来越重要的问题,迫切需要研究更为优越的跟踪滤波方法。机动目标的跟踪研究,已成为当今电子战的研

究热点之一。今天,精密跟踪雷达不仅广泛应用于各类武器控制和各类实验靶场,而且还广泛应用于各种空间探测、跟踪和识别领域,以及最先进的武器控制系统。 跟踪模型和匹配滤波是机动目标跟踪的两个关键部分,机动目标的精确跟踪在过去和现在都是一个难题,最根本原因在于跟踪滤波采用的目标动力学模型和机动目标实际动力学模型不匹配,导致跟踪滤波器发散,跟踪性能严重下降。本文将机动目标作为研究对象,从目标的运动建模和匹配滤波算法入手,提出或修正跟踪算法,从而实现对机动目标的精确跟踪。 机动目标跟踪技术及其发展状况 目标机动是指运动当中的目标,其运动方式在不断地发生变化,从一种形式变化为另一种形式,目标的运动可能从匀速到变速,也可能送直线到转弯,它的运动方式并不会从一而终。通俗地说,就是“目标速度的大小和方向发生变化”。 一般情况下,机动目标跟踪方法概括来讲可以分为以下两类:具有机动检测的跟踪算法和无需机动检测的自适应跟踪算法。机动目标的跟踪需要综合运用统计决策、滤波算法以及其它的数学方法,将传感器所接受到的信号数据进行处理,得到目标的位置、速度、加速度等估计信息。图给出了机动目标跟踪的基本原理图。

机动目标跟踪技术发展浅析

机动目标跟踪技术发展浅析 对机动目标进行跟踪,无论是在军事任务中还是民用领域内亦或是在情报获取方面,都 是研究信息处理的重要内容。同时,对于怎样使用探测设备(如雷达)更好的实现对机动目 标的跟踪,一直以来都是各国专家学者们关注的重点[1]。 机动目标跟踪的主要任务是对机动目标的状态和运动轨迹在一定条件下进行估计。在机 动目标跟踪中,在对机动目标建立合适的运动模型的同时,也要采用稳定的跟踪滤波算法。 以下将从目标模型、跟踪滤波算法这两个方面对机动目标跟踪技术的发展进行阐述。 一、目标运动模型 几乎所有的机动目标跟踪算法都要依据一定的目标运动模型,同时一个合适的目标运动 模型也能大幅改善机动目标跟踪系统的性能。简单的目标运动模式有匀速运动和匀加速运动。相应的,对目标可以建立匀速(CV)模型和匀加速(CA)模型。此外,当目标进行转弯机动时,可以建立匀速率转弯(CT)模型,在此过程中,虽然目标的速度大小不改变,由于受到 一个恒定的转弯角速率()的影响,发生变化的是速度的方向[2]。 以上三种模型较为简单,在跟踪系统中是最基础的。但是,由于匀速和匀加速模型都将 白噪声作为扰动,当目标发生机动时,将会导致扰动增大,跟踪误差也会变大,这就意味着 模型不再适用。对此,上世纪七十年代,R. A. Singer等人提出了一种相关噪声模型,即Singer模型。Singer模型认为,机动控制项应该是有色噪声类型的而不是白噪声类型的[3]。 它将目标加速度作为具有指数自相关的零均值随机过程从而实现对目标的建模,并且它的时 间函数呈现出的变化规律以指数的形式衰减。这虽然更符合实际,但是该模型只能适用于目 标在某些特定情况下的机动。然而,在实际的目标跟踪过程中,当目标发生机动,其加速度 便会随着时间而变化,均值是不可能时时都为零的,因此这种假设也是不恰当的。针对这一 问题,我国目标跟踪领域知名学者周宏仁在上世纪八十年代初提出了当前统计(CS)模型。这 是对Singer模型改进而得到的机动目标运动模型,其改进主要有两点:一是利用修正的瑞利 分布来表示加速度的概率密度分布;二是采用上一时刻加速度的估计作为当前加速度的均值[4]。上世纪九十年代末,Kishore Mehrotra在一阶时间模型上加入了加速度的导数项,提出 了Jerk模型。该模型假设目标机动加速度的导数项(加速度的变化率)服从一阶时间相关过 程且均值为零,其时间相关函数与Singer模型相一致,也呈现出指数形式上的衰减。 二、跟踪滤波算法 目标运动模型是机动目标跟踪系统的基础,而跟踪滤波算法则是设计一个目标跟踪系统 的核心内容。上个世纪四十年代,美国控制论著名学者N. Wiener在火力控制系统中为解决 如何进行精确跟踪的问题时提出一种线性最佳滤波理论,即维纳滤波。维纳滤波是一种频域 滤波方法,它要求信号必须是一维条件下的严格平稳信号,适用条件严苛,适用范围小。上 个世纪六十年代,美国学者卡尔曼(Kalman)在对美国航空航天局(NASA)访问后,提出了 一种时间域上基于最小均方误差估计的滤波算法,即卡尔曼滤波算法,自此现代滤波理论开 始形成。随着科学技术的不断发展,机动目标跟踪领域已经涌现出了诸多更成熟的算法,其 中研究较热门,应用前景较广阔的主要有自适应跟踪算法和多模型跟踪算法。 上世纪五十年代末,美国通用电气公司(GE)的工程师霍尔斯(P. Howells)和阿普鲍 姆(P. Applebaum)两人在对天线辐射进行研究时,为了提高天线的方向性,率先给出了自适 应滤波的概念。发展至今,自适应滤波算法的理论成果大致可以分为三类,第一类是基于最 小均方误差(LMS)的自适应滤波算法。该算法最早是由美国斯坦福大学的学者霍夫(M. Hoff)和维德罗(B. Widrow)基于维纳滤波的原理所提出的。后来,针对LMS算法中步长因 子对算法的收敛速度和稳态失调量影响较大的问题,又形成了多种LMS的扩展与改进算法,例如变步长最小均方误差算法(VSSLMS)、归一化最小均方误差算法(NLMS)。第二类是基 于递推最小二乘法(RLS)的自适应滤波算法。递推最小二乘算法(RLS)是利用递推计算的

图像目标跟踪技术

图像目标跟踪技术 ?作者:王鑫,徐立中著 ?出版社:人民邮电出版社 ?出版时间:2012-12-1 ?版次:1页数:178字数:221000 ?印刷时间:2012-12-1开本:16开纸张:胶版纸 ?印次:1I S B N:9787115288974包装:平装 内容推荐 《图像目标跟踪技术》系统阐述了图像目标跟踪的有关概念、原理和方法,共分9章,第1章介绍图像目标跟踪的意义、应用及分类,第2章介绍非线性优化序贯拟蒙特卡洛滤波,第3章介绍融合背景信息的序贯拟蒙特卡洛滤波目标跟踪,第4章讨论基于概率图模型的粒子滤波多目标跟踪,第5章介绍基于序贯拟蒙特卡洛滤波的多摄像机目标跟踪,第6章介绍基于信息融合技术的目标跟踪,第7章讨论受机械参数影响的多摄像机深度估计,第8章介绍基于自适应多信息融合的均值漂移红外目标跟踪,第9章介绍融合均值漂移和粒子滤波优点的实时目标跟踪。本书是图像目标跟踪方面的专著,反映作者近年来在这一领域的主要研究成果。《图像目标跟踪技术》内容新颖,理论联系实际,可作为大专院校及科研院所图像处理、计算机视觉和视频处理等领域的高年级本科生、研究生的教学和参考用书,也可供相关领域的教师、科研人员及工程技术人员作参考。 目录 第1章绪论 1.1 图像目标跟踪的意义和应用 1.2 单摄像机目标跟踪 1.2.1 目标表示模型 1.2.2 目标动态模型 1.2.3 目标状态估计模型 1.3 多摄像机目标跟踪 1.3.1 目标匹配 1.3.2 摄像机标定及拓扑关系估计 1.3.3 数据关联 1.4 红外图像中目标的跟踪 1.5 智能视频监控系统 1.5.1 智能视频监控的背景和意义 1.5.2 智能视频监控系统 参考文献 第2章非线性优化序贯拟蒙特卡洛滤波 2.1 引言 2.2 基于贝叶斯框架的跟踪问题描述 2.2.1 贝叶斯滤波的蒙特卡洛实现 2.2.2 贝叶斯滤波的拟蒙特卡洛实现 2.3 非线性优化序贯拟蒙特卡洛滤波 2.3.1 信赖域方法 2.3.2 基于信赖域的序贯拟蒙特卡洛滤波算法 2.4 实验与分析 2.4.1 非线性动态模型 2.4.2 二维点目标跟踪中的应用

雷达机动目标跟踪源程序

附录 附录A 机动目标跟踪与实现源程序 T=2;alpha=0.8; % 加权衰减因子 window=round(1/(1-alpha)); % 检测机动的有效窗口长度 dt=100; % dt=dt_x=dt_y=100 Th=25; % 机动检测门限 Ta=9.49; % 退出机动的检测门限 N=800/T; %采样次数 M=50; %模拟次数 %真实轨迹数据 t=2:2:400; xo0=2000+0*t; yo0=10000-15*t; t=402:2:600; xo1=2000+0.075*((t-400).^2)/2; yo1=10000-15*400-(15*(t-400)-0.075*((t-400).^2)/2); t=602:2:610 ; xo2=xo1(100)+15*(t-600); yo2=yo1(100)+0*t; t=612:2:660; xo3=xo2(5)+(15*(t-610)-0.3*((t-610).^2)/2); yo3=yo2(5)-0.3*((t-610).^2)/2; t=662:2:800; xo4=xo3(25)+0*t; yo4=yo3(25)-15*(t-660);

x=[xo0,xo1,xo2,xo3,xo4]; y=[yo0,yo1,yo2,yo3,yo4]; e_x1=zeros(1,N); e_x2=zeros(1,N); e_y1=zeros(1,N); e_y2=zeros(1,N); px=zeros(1,N); qy=zeros(1,N); u=zeros(1,N); u_a=zeros(1,N); for j=1:M no1=100*randn(1,N); % 随机白噪 no2=100*randn(1,N); for i=1:N; zx(i)=x(i)+no1(i); % 观测数据 zy(i)=y(i)+no2(i); z(:,i)=[zx(i);zy(i)]; end X_estimate(2,:)=[zx(2),(zx(2)-zx(1))/T,zy(2),(zy(2)-zy(1))/T]; X_est=X_estimate(2,:); P_estimate=[dt^2,dt^2/T,0,0;dt^2/T,(dt^2)*2/(T^2),0,0;0,0,dt^2,dt^2/T;0,0,dt^2/T,(dt^2)*2/(T ^2)]; x1(1)=zx(1); y1(1)=zy(1); x1(2)=X_estimate(2,1); y1(2)=X_estimate(2,3); u(1)=0; u(2)=0; u1=u(2); pp=0;% 0表示非机动,1表示机动 qq=0; rr=1;k=3; while k<=N

机动目标预测跟踪方法研究

机动目标预测跟踪方法研究 【摘要】在目标被遮挡条件下的自动预测跟踪中,研究了跟踪机动目标过程中的角位置自适应卡尔曼预测算法。针对估计与预算中出现的发散现象,推导了导引头框架角位置预测方法。建立了目标遮挡预测跟踪测试系统,设计多种不同的目标运动形式,并通过转台实现,测试改进的自适应位置预测算法在典型测试条件下的有效性和准确程度。实验结果表明:当目标进入遮挡区域时,改进的自适应位置预测算法能够有效地实现预测跟踪,保证目标退出遮挡时能够顺利重新捕获和跟踪。 【关键词】机动目标跟踪;自适应预测;卡尔曼滤波 1引言 日趋复杂的作战环境,对成像导引头的探测和跟踪能力提出了更高的要求,尤其是由于隐身、伪装、热障等条件下发生目标短时间丢失时,如何解决目标的预测跟踪问题显得尤为重要。合理的预测跟踪算法能够准确地对目标实施预测引导跟踪,为图像处理赢得算法调整时间,并且保证目标再次出现在视场内时较小的跟踪误差,顺利实现目标的再捕获和跟踪。 机动目标的滤波与预测是估计当前和未来时刻目标运

动参数(如位置、速度和加速度)的必要技术手段。当目标做非机动运动时,采用基本的滤波和预测方法即可很好地达到目的。但是,在实际的目标估计与预测过程中,目标往往会发生机动,这时采用基本的滤波和预测方法以及先前的目标运动模型,已不能满足问题求解的需要,估计与预测也会出现发散现象。这时就需要对基本的滤波和预测方法加以改进以求能够更加有效地解决问题。 2目标预测跟踪测试系统构成 2.1目标预测跟踪测试系统硬件 双轴电视导引头以俯仰框为内框,方位框为外框,内框中安装双轴微机械速度陀螺仪用于敏感内外轴系的惯性角速度,角位置传感器为光电编码器,执行器采用直流有刷力矩电机。目标采用LED光源,安装在用于模拟目标运动的转台上,该转台可以模拟目标俯仰方向的运动,俯仰轴角度范围为±35°。 应用图1所示的开发测试系统,可以方便地进行导引头系统的跟踪测试实验,伺服控制器和图像处理算法都可以快速更改和测试,大大加快了系统的开发进度。 2.2跟踪测试系统的工作原理 导引头通过面阵可见光CCD相机获取LED光源的图像,然后对所获取的图像进行对比度分析,识别目标以后输出目标在靶面上的形心坐标。在导引头伺服系统中,需要通

基于卡尔曼滤波器的雷达目标跟踪

随机数字信号处理期末大作业(报告) 基于卡尔曼滤波器的雷达目标跟踪 Radar target tracking based on Kalman filter 学院(系):创新实验学院 专业:信息与通信工程 学生姓名:李润顺 学号:21424011 任课教师:殷福亮 完成日期:2015年7月14日 大连理工大学 Dalian University of Technology

摘要 雷达目标跟踪环节的性能直接决定雷达系统的安全效能。由于卡尔曼滤波器在状态估计与预测方面具有强大的性能,因此在目标跟踪领域有广泛应用,同时也是是现阶段雷达中最常用的跟踪算法。本文先介绍了雷达目标跟踪的应用背景以及研究现状,然后在介绍卡尔曼滤波算法和分析卡尔曼滤波器性能的基础上,将其应用于雷达目标跟踪,雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时刻的位置进行预测。最后对在一个假设的情境给出基于卡尔曼滤波的雷达目标跟踪算法对单个目标航迹进行预测的MATLAB仿真,对实验的效果进行评估,分析预测误差。 关键词:卡尔曼滤波器;雷达目标跟踪;航迹预测;预测误差;MATLAB仿真

1 引言 1.1 研究背景及意义 雷达目标跟踪是整个雷达系统中一个非常关键的环节。跟踪的任务是通过相关和滤波处理建立目标的运动轨迹。雷达系统根据在建立目标轨迹过程中对目标运动状态所作的估计和预测,评估船舶航行的安全态势和机动试操船的安全效果。因此,雷达跟踪环节工作性能的优劣直接影响到雷达系统的安全效能[1]。 鉴于目标跟踪在增进雷达效能中的重要作用,各国在军用和民用等领域中一直非常重视发展这一雷达技术。机动目标跟踪理论有了很大的发展,尤其是在跟踪算法的研究上,理论更是日趋成熟。在跟踪算法中,主要有线性自回归滤波、两点外推滤波、维纳 α-滤波和卡尔曼滤波,其中卡尔曼滤波算法在目标跟踪滤波、加权最小二乘滤波、β 理论中占据了主导地位。 雷达跟踪需要处理的信息种类多种多样。除了目标的位置信息外,一般还要对目标运动速度进行估计,个别领域中的雷达还要对目标运动姿态进行跟踪。雷达跟踪的收敛速度、滤波精度和跟踪稳定度等是评估雷达跟踪性能的重要参数。因此提高雷达跟踪的精度、收敛速度和稳定度也就一直是改善雷达跟踪性能的重点。随着科技的发展,各类目标的运动性能和材质特征有了大幅度的改善和改变,这就要求雷达跟踪能力要适应目标特性的这种变化。在不断提高雷达跟踪性能的前提下,降低雷达跟踪系统的成本也是现代雷达必须考虑的问题。特别是在民用领域中由于雷达造价不能过高,对目标跟踪进行快收敛性、高精度和高稳定性的改良在硬件上是受到一些制约的,因此雷达跟踪算法的研究就越来越引起学者们的关注。通过跟踪算法的改进来提高雷达的跟踪性能还有相当大的挖掘潜力。考虑到雷达设备的造价,民用雷达的跟踪系统首要的方法就是对于雷达的跟踪算法进行开发。

扩展卡尔曼滤波雷达目标在线跟踪轨迹算法

基于扩展卡尔曼滤波的雷达目标在线跟踪轨迹的算法摘要:目标跟踪是指根据传感器(如雷达等)所获得的对目标的测量信息,连续地对目标的运动状态进行估计,进而获取目标的运动态势及意图。目标跟踪理论在军、民用领域都有重要的应用价值。在军用领域,目标跟踪是情报搜集、战场监视、火力控制、态势估计和威胁评估的基础;在民用领域,目标跟踪被广泛应用于空中交通管制,目标导航以及机器人的道路规划等行业。本文利用差分方程模型计算目标点的速度与加速度,基于卡尔曼滤波算法建立扩展型卡尔曼滤波算法的目标跟踪模型。 0 引言 目前,对机动目标的跟踪滤波与预测算法主要有线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、与滤波、简化的卡尔曼滤波和卡尔曼滤波。线性自回归滤波完全忽视了状态噪声对估值的影响;两点外推滤波利用最后一个数据点和最后两个数据点分别确定目标位置与目标速度,因此,之前所测的数据点并不能起到预测作用;维纳滤波不适合机动目标的瞬间变化过程,从而在一定程度上限制了它的应用范围;与滤波是两种简单并且易于工程实现的常增益滤波方法,最大优点在于其增益矩阵可以离线计算,而且在每次滤波循环中可节约大约70%的计算量;卡尔曼滤波与预测执行的是均方根误差最小准则,并且通过协方差矩阵可以很方便的对估计精度进行度量,目前应用较多而且误差相对较小的目标跟踪算法是卡尔曼滤波算法。但基本的卡尔曼滤波算法在跟踪机动目标时存在不足:当系

统达到稳态时,其预测协方差很小,使得滤波器的增益也趋于极小值,此时若目标发生机动,系统残差增大,预测的协方差和滤波器的增益不能随残差随时改变,系统将不能保证对突变状态的跟踪能力。 1用扩展卡尔曼滤波算法预测机动目标轨迹 首先由目标初始准确的状态对下一状态进行预测,得到下一状态的预测值,同时由计算所得的对应于初始状态的协方差得到下一状态的协方差预测值;接着由雷达观测误差、状态向量及所得协方差预测值可以得到卡尔曼增益值,进而最终得到下一状态的最优估算值,同时更新对应的协方差。至此,第一轮目标轨迹预测已完成,同理,进行下一轮的目标轨迹预测。模型的具体方程如下:本时刻系统的状态向量由上一时刻系统的最优预测状态向量求得,初始状态需要知道目标的状态向量。这里通过差分方程数学模型计算出目标在三个坐标上速度变化情况: 其中、、表示所测数据第i时刻速度沿着方向三个的速度分量值。 然后使用卡尔曼滤波预测目标的运动轨迹,假定离散时间控制系统状态方程和观测方程为: 式中是k时刻的非线性实值状态向量,是k时刻的系统量测向量,表示系统状态噪声,表示系统测量噪声,A和B为状态向量,H为非线性函数。 由公式4和公式5构成的系统状态方程和测量方程均为线性方程,其过程噪声都为高斯白噪声,可用标准卡尔曼滤波算法进行滤波。

目标检测、跟踪与识别技术与现代战争

《图像检测、跟踪与识别技术》论文 论文题目: 图像检测、跟踪与识别技术与现代战争 专业:探测制导与控制技术 学号:35152129 姓名:刘孝孝

目标检测、跟踪与识别技术与现代战争 【摘要】本文讨论目标检测、跟踪与识别技术在现代战争各个领域中的应用,总结目标识别技术的发展方向,提出目标识别技术工程化实现方法,同时本文介绍了国外目标识别的现状及发展趋势,提出了现代战争应采用综合识别系统解决目标识别问题的建议。 关键词目标检测;目标跟踪;目标识别;雷达;人工神经网络;精确制导 1.引言 随着现代科学技术的飞速发展及其在军事领域内日益广泛的应用,传统的作战思想、作战方式已发生根本性的变化。从第一次海湾战争到科索沃战争,特别是刚刚结束的海湾战争,空中精确打击和空地一体化作战已经成为最重要的作战形式。集指挥、控制、通信、计算机、情报、监视侦察于一体的C ISR 已成为取得战场主动权,赢得最后胜利的关键因素。目标识别技术是雷达智能化、信息化的重要技术支撑手段。在现代化战争中,目标识别技术在预警探测、精确制导、战场指挥和侦察、敌我识别等军事领域都有广泛的应用前景,已受到了世界各国的关注。 现代战争中取得战场制信息权的关键之一是目标属性识别。现代战争的作战环境十分复杂,作战双方都在采用相应的伪装、隐蔽、欺骗和干扰等手段和技术,进行识别和反识别斗争。因此仅仅依靠一种或少数几种识别手段很难准确地进行目标识别,必须利用多个和多类传感器所收集到的多种目标属性信息,综合出准确的目标属性,进行目标检测,跟踪后进行识别。 2.目标检测、跟踪与识别技术在现代战争中的应用 2.1 目标检测、跟踪与识别技术在预警探测上的应用 目标检测、跟踪与识别技术对于弹道导弹的预警工作有重要的作用。弹道导弹一般携带多个弹头,其中可能包含核弹头或大规模杀伤的弹头以及常规弹头,预警雷达必须具备对目标进行分类和识别真假弹头的能力,将核弹头或大规模杀伤的弹头分离出来,为弹道导弹防御(BMD)系统进行目标攻击和火力分配提供依据。早期的BMD系统假设只有一个核弹头,多弹头分导技术的出现,使问题转化为雷达的多目标识别问题,加上电子对抗技术的广泛使用,给目标识别技术带来很大困难。另外,预警雷达还要对空中目标或低空目标进行探测,对来袭目标群进行分类识别。利用星载雷达以及远程光学望远镜等观测设备,可以对外空目标进行探测,对外空来袭目标进行分类和识别,达到早期预警的工作。 2.2 目标检测、跟踪与识别技术在精确制导上的应用 精确制导方式很多,包括主动式、半主动式和被动式寻的制导方式,通过设在精确制导武器

本科毕业设计__基于视频的目标跟踪及人群密度估计方法研究开题报告

上海交通大学 2012 级硕士学位论文开题报告登记表 学号姓名导师李建勋学科控制科学与工程学院(系、所) 电子信息与电气工程学院 学位论文题目稳健对地目标跟踪方法研究 研究课题来源国家自然科学基金、航天创新基金、中航613横向项目 课题的意义以及研究的主要内容 运动目标跟踪是视觉图像处理中的一个非常热门的话题,在多个领域有着广泛的应用。运动目标跟踪的应用领域和环境主要有:对大型公共场所进行智能化视频监控、基于视频的人机交互、交通流量监测、医疗诊断等。 本文从计算机视觉角度研究对地目标跟踪方法。由于视觉跟踪系统能在比较复杂的背景下,提取与分离市场内的目标、确定目标位置、估计目标运动趋势、实现对目标的实时跟踪,且具有跟踪精度高、跟踪状态平稳、抗干扰能力强、分辨率高和成本低等特点,在军事上很受重视。在民用领域,对地目标跟踪也有着广泛的应用:对大型公共场所进行智能化视频监控。例如在机场、商场、地铁站等场所进行智能化监控,其主要目的都是为了保障公众财产和信息安全。在人群监测、交通管理上实现智能化有非比寻常的意义。 以以上应用为背景,本文的对地目标跟踪技术包含以下几个主要技术模块:单目标跟踪技术、多目标跟踪技术、密集目标跟踪技术。分出这几个模块是为了应对不同的应用场景,或是在同一场景需要各模块的协同合作。例如地铁站的人群流量具有明显时段特征,早晚上下班高峰人流极大,而其他时段人流量明显减少,这就需要对不同时段采用不同的跟踪方法以达到最好的效果。在上下班高峰期,采用密集目标跟踪技术,而在其他时段,采用多目标跟踪技术,而在有特殊需要的时候,例如跟踪特定犯罪嫌疑人时,可采用单目标跟踪技术。 本文研究的主要内容具体有: ①粒子滤波基本方法研究,这是单目标跟踪方法的框架。在图像跟踪应用中,目标状态的后验概率分布往往是非线性非高斯多模态的,粒子滤波方法对于系统模型没有特殊要求,且能够保持状态的多模态分布,在跟踪领域得到了很大的发展。但常规粒子滤波跟踪算法存在计算量大、采样效率低等问题。 ②粒子群最优化思想研究,改进常规粒子滤波采样效率低的问题,提高采样效率。针对常规粒子滤波跟踪算法存在计算量大、采样效率低等问题,引入粒子群优化思想对目标状态后验分布进行最优搜索,找到后验分布的高似然区,并依据此高似然区来进行重采样。 ③变结构多模型的设计,以更好的表征目标的运动模型。几乎所有的方法对目标的运动状态都假定为平滑的,或者将运动限制在恒速或恒加速运动状态。而实际情况并非如此,例如机动目标的运动状态就很难用单一模型来表征。本文引入变结构多模型方法为目标建立变结构多运动模型。变结构多模型方法能够很好的表征目标的运动模型却又不增加过多的计算量,因此相比单一运动模型能够更好的估计目标的运动。

相关文档
最新文档