复合材料论文碳纤维复合材料的成型工艺与应用现状

复合材料论文碳纤维复合材料的成型工艺与应用现状
复合材料论文碳纤维复合材料的成型工艺与应用现状

复合材料概论

课程论文

碳纤维复合材料的成型工艺与应用现状院、部:材料与化学工程学院

专业班级:

学生姓名:

指导教师:

完成时间:2020/11/3

摘要

本文简述了碳纤维复合材料的性能、特点、成型工艺及应用领域现状、碳纤维复合材料的主流加工工艺,阐述了碳纤维复合材料在航空航天、汽车、风电、体育休闲等领域的应用现状,研究了该产业的发展趋势,并且提出了相关建议。

关键字:碳纤维;复合材料;成型工艺;应用;趋势

Abstract

In this paper, the performance, characteristics, molding technology and application field status of carbon fiber composite materials, the mainstream processing technology of carbon fiber composite materials are briefly described. The application of carbon fiber composite materials in aerospace, automobile, wind power, sports and leisure fields is described. The development trend of the industry is studied, and relevant suggestions are put forward.

Keywords:carbon fiber;composite material;molding process;applicaton; tren

1

引言

碳纤维复合材料(CFRP)是20世纪兴起的一种新材料。1879年爱迪生曾用纤维素纤维,如竹、亚麻、棉纱为原料,首先制得碳纤维并获得专利,但当时的碳纤维力学性能低,工业化程度也低,并未得到发展。到1950年,由于火箭、航天及航空等尖端技术的发展,迫切需要比强度、比模量高和耐高温的新型材料,另一方面,采用前驱纤维为原料经热处理的工艺可制得碳纤维连续长丝,这一工艺奠定了碳纤维工业化的基础。在美国空军基地,人们首先通过在2000℃拉伸人造丝来准备CFRP,然后CFRP进入了一个快速发展的时期。它是由聚丙烯腈(PAN)、粘胶纤维和沥青经预氧化、碳化制成的耐高温、高强、高模的特种材料。其中,聚丙烯腈(PAN)基复合材料具有优异的力学性能和广泛的应用领域,是当今碳纤维的主要产品,其产量占世界所有碳纤维总产量的90%以上[1]。

1碳纤维复合材料概述

1.1碳纤维复合材料的特性

与其它材料比,CFRP具有如下特性[2]:

(1)比强度、比模量高:CFRP的比强度比钢高5倍,比模量也比刚高。

(2)密度小,强度高:CFRP的密度是其它金属材料密度的0.5倍左右。高性能的CFRP强度能达到钢材的十几倍。

(3)抗疲劳特性好:CFRP的疲劳极限是拉伸强度的70%~80%,远大于一般金属的疲劳极限(40%~50%)。

(4)抗震性能好:CFRP中基体纤维界面可以吸收较大

的震动能量,因此抗震性能好。

(5)可设计性强:CFRP具有各向异性,可以通过改变各

铺层的方向和层数来得到满足强度、刚度和各种特殊需求。

(6)高温性能好:CFRO在400℃的高温下强度和弹性模

量几乎无变化,而铝合金在400℃下强度显著下降,弹性模量几乎下降到零。

(7)成型性好:易于大面积整体成型。

1.2碳纤维复合材料的分类

碳纤维是一种含碳量在95%以上的高强度、高模量特种纤维,但几乎所有的碳纤维都将进一步加工成复合材料以供终端使用。碳纤维复合材料是以碳纤维为增强材料,以树脂、金属、陶瓷等作为基体材料,经过复合成型制成的结构材料。

与传统的金属材料相比,其具有密度小、比强度/比刚度高、耐腐蚀、抗疲劳、耐高温、便于设计、易于大面积整体成型加工等优点[3]。按基体的不同,可分为树脂基复合材料(CFRP)、碳/碳复合材料(C/C)、金属基复合材料(CFRM)、陶瓷基复合材料(CFRC)及橡胶基复合材料(CFRR)等。CFRP是碳纤维最主要的消费领域,其在全球碳纤维复合材料市场中的消费占比约为80%。本文主要介绍我国CFRP的成型工艺、应用领域及现状。碳纤维复合材料分类如图1所示。

图1碳纤维复合材料分类示意

1.3碳纤维增强复合材料

(CFRP)通常以碳纤维为增强体,热固性树脂(以环氧树脂居多)为基体制

备的复合材料,纤维承担了大部分负载,并且是材料性能的主要贡献者。而树脂有助于在纤维之间转移载荷,防止纤维弯曲,并将材料黏合在一起。碳纤维增强板具有显著的高比强度和高比模量,使其成为航空航天、汽车工业等轻量化、高性能应用的首选。碳纤维性能优异,与金属材料相比,在力学性能上有着明显优势,如表1所示。

碳纤维材料一般不单独使用,通常用于复合材料的增强体,并起到承载负荷的作用,而基体材料主要用于传递应力。纤维通过与不同的基体材料复合,可以形成不同种类的复合材料,其中CFRP、C/C复合材料、CFRM、CFRC和CFRR是最常见的几种复合材料,应用最广泛的是碳纤维增强树脂基复合材料。

表1碳纤维复合材料与其他材料性能及优缺点对比

2碳纤维复合材料的成型工艺

CFRP的成型技术很多,以预浸料的铺层固化应用最为常见,其可用于模压成型、热压罐、拉挤成型等工艺。最近发展起来的预成型件成型技术,采用液态注塑、整体成型,不仅可减少零件数目、降低成本,而且解决了分层剥离技术的难题,使层间剪切强度和冲击后压缩强度得到了大幅提高,在汽车、航空飞机等结构件的制备得到广泛应用。CFRP成形技术分类如图2所示。

图2碳纤维复合材料成型技术分类示意

2.1模压成型工艺

模压成型是复合材料生产中一种传统常用的成型方法,由普通的塑料制品模压成型演变而来。工艺流程为:将碳纤维预浸料置于上下模之间,合模将模具置于液压成型台上,经过一定时间的高温高压使树脂固化后,取下CFRP制品。这种成型技术具有高效、制件质量好、尺寸精度高、受环境影响小等优点,适用于批量化、强度高的复合材料制件的成型,其缺点是前期模具制造复杂,投入高,且制件大小受压机尺寸的限制。

2.2热压罐成型工艺

热压罐成型是最早开发用于航空结构复合材料制造并仍普遍使用的一种技

术,特别是针对于一些大尺寸、形状复杂的制件。热压罐成型工艺流程为:将单层预浸料按预定方向铺叠成的复合材料坯料放在热压罐内,在一定温度和压力下完成固化过程。这种成型工艺采用的原料也是碳纤维预浸料中间体,其具有可固化不同厚度的层合板、可制造复杂曲面零件、使用范围广泛、工艺稳定可靠等优点,但也存在设备投资成本高、工艺生产成本高、制品大小受热压罐尺寸限制等缺点,适用于制造飞机舱门、整流罩、机载雷达罩,支架、机翼、尾翼等产品。

2.3树脂转移模塑成型工艺

树脂转移模塑成型(RTM:ResinTransferMolding)技术是一种低成本复合材料的制造方法,最初主要用于飞机次承力结构件,如舱门和检查口盖,现已经成为近几年航空航天材料加工、汽车组件装配领域研究最为活跃的方向之一[4]。RTM技术具有高效、低成本、制件质量好、尺寸精度高、受环境影响小等优点,可应用于体积大、结构复杂、强度高的复合材料制件的成型。RTM工艺的主要原理是在模腔(模腔需要预先制作成特定尺寸)中铺放按性能和结构要求设计的增强材料预成形体,在一定压力范围内,采用注射设备将专用树脂体系注入闭合模腔,通过树脂与增强体的浸润固化成型。它是一种不采用预浸料,也不采用热压罐的成形方法。RTM主要的派生技术有真空导入模塑工艺、柔性辅助RTM、共注射RTM及高压RTM(HPRTM)等。其中,HP-RTM采用预成型件、钢模、真空辅助排气,高压注射和高压下完成高性能热固性复合材料的浸渍和固化工艺,实现低成本、短周期(大批量)、高质量生产,宝马在德国兰茨胡特工厂的碳纤维车身生产便是采用该工艺,康得复材年产150万件碳纤维复合材料部件项目也将采用该工艺。HP-RTM可以生产高质量、高精度、低孔隙率、高纤维含量的复杂复合材料构件,具有生产效率高、数分钟内即可固化、模具产品采用CAD设计、制造容易并可多次使用等优点。

3碳纤维复合材料的应用现状

3.1航空航天

CFRP是大型整体化结构的理想材料,目前我国航空航天碳纤维主要应用于航空装备制造领域[5]。与常规材料相比,CFRP可使飞机减重20%~40%,可克服金属材料容易出现疲劳和被腐蚀的缺点,增强了飞机的耐用性。CFRP的良好成型性可以使结构设计成本和制造成本大幅度降低。航空航天领域对CFRP的需求主要来自两大方面,一是新研制飞机不断增加的CFRP的应用比例,二是新增的飞机订单,尤其是商用飞机[6]。

3.2汽车工业

随着汽车工业的不断发展,市场对汽车的轻量、节能、环保等提出了更高的要求。碳纤维具有比模量和比强度高、减重潜力大、安全性好等突出优点,是汽车轻量化的最佳选择。欧洲铝协研究数据表明[7],若汽车整车质量降低10%,燃油效率可提高6%~8%;从绝对量来说,汽车重量每降低100kg,每百公里可节约0.6L燃油,二氧化碳排放可减少约10g/km。

3.3风电领域

出于经济性考虑,当前主流的风电叶片为玻璃钢材质(GFRP),但随着低速风机和海上风机的不断发展,叶片长度的不断增加,GFRP在大型复合材料叶片制造中逐渐显现出性能方面的不足,叶片刚度和轻质要求均不能满足,因此部分结构使用碳纤维或碳纤/玻纤混合材料在性能及综合成本上将更具优势[8]。根据测算,40m以上的风电叶片中关键结构如梁帽、主梁使用碳纤维复合材料一方面可使叶片自重减少38%,成本降低14%;另一方面可以提高叶片抗疲劳性能,提高输出功率。低风速风场和海上风电共同推进了叶片的大型化发展,从而进一步推动CFRP在风电领域的高速增长。2018年国内风电叶片CFRP消费量约为1.2万t,光威复材是国内Vestas和Tpi在国内的风电碳梁供应商,2019年该公司碳梁的产销量较2018年增长一倍,国内风电叶片领域对CFRP的需求增长迅猛。

3.4体育休闲

碳纤维复合材料在高尔夫球杆、球拍、雪橇、滑雪板、曲棍球棒、钓鱼竿和自行车等体育休闲产品中广泛应用,主要生产国家及地区为中国大陆、美国及中国台湾。体育休闲用品是我国碳纤维第一大应用领域,目前,我国文体休闲制品的碳纤维消费市场已经趋于饱和,产品多以出口国际市场为主,该领域CFRP生产量约2.1万t[9],未来发展速度将逐步放缓。同时,随着碳纤维在新兴工业领域应用的逐步扩展,其在整个消费结构中所占比例将进一步降低。

3.5碳纤维的回收应用

碳纤维复合材料在回收技术上目前分为物理回收法、化学回收法和能量回收

法三大类。

物理回收法是将复合材料废弃件碾磨,破碎或压碎,获得短纤维,颗粒,粉末等物质[10]。但是该方法只能回收未被污染的碳纤维,再利用价值低,真正能进一步再回收利用还是用到化学回收法,如热裂解法、流化床法、超/亚临界流体法和溶剂解离法。目前只有热裂解法实现了工业化推广,其余三种都尚处于实验室阶段或者受限与工业化程度无法推广。

3.6发展趋势与建议

随着我国航天、国防、军工等战略性新兴产业的发展,以及汽车和轨道交通轻量化的不断推进,碳纤维复合材料仍将是我国急需发展的关键战略材料。未来,碳纤维复合材料的发展将呈现以下主要趋势:

(1)成型技术和设备的国产化。国内企业开始重视3D打印碳纤维复合成型技术等新技术的研究,致力于成型工艺设备的国产化。

(2)树脂基体技术的发展。碳纤维或复合材料生产企业和树脂企业加快开发适用于高端碳纤维复合材料的改性树脂基体,如国产大型飞机用改性、增韧、耐湿热环氧树脂[11]。

(3)调整产业需求结构,向高端发展。随着我国航空航天的产业化发展和汽车轻量化的快速推进,航空航天、汽车和轨道交通将是未来碳纤维复合材料需求的主要驱动力[12]。

根据国内外碳纤维复合材料市场发展趋势和国内市场现状,提出以下建议:

(1)发展低成本碳纤维,降低碳纤维复合材料成本,增强国内碳纤维复合材料竞争力;

(2)实现碳纤维及其复合材料主要设备的国产化;

(3)加强企业间的纵向合作,通过生产、学习、研发、应用的有机结合,即产品研发-复合材料配比-模具设计-末端应用,提高碳纤维生产企业提供全套解决方案的能力。

4结语

目前,我国碳纤维复合材料正处于快速发展的关键时期,航空航天、国防军工、汽车制造等领域都迫切需要碳纤维复合材料。根据不同的应用领域,通过成本质量控制、工业应用示范和完整的产品解决方案,开发稳定的高性能、大规模、低成本的碳纤维复合材料,完善产业链,实现我国碳纤维复合材料产业快速健康发展。

参考文献

[1]李奇辉,刘向阳,房晓斌.碳纤维复合材料的应用现状及我国碳纤维工业的发展方向[J].价值工程,2016,35(17):113-115.

[2]张菡英,刘明.碳纤维复合材料的发展及应用[J].工程塑料应

用,2015,43(11):132-135.

[3]樊星.碳纤维复合材料的应用现状与发展趋势[J].化学工

业,2019,37(04):12-16+25.

[4]张宗强,万怡灶,王玉林.三维编织碳纤维增强尼龙复合材料合成工艺的研究[J].材料导报,2003(04):63-65.

[5]韩艳霞.碳纤维增强复合材料及其应用研究[J].中国设备工

程,2020(19):230-231.

[6]崔小云.研究性学习理念下的主体性教学模式探索[J].河南科技学院学报,2010(8):87-89.

[7]王海滨.探究高职碳纤维复合材料的教学中研究性学习的应用[J]. 高职教育,2017(2):33-34.

[8]张定金.碳纤维复合材料产业化发展和应用[J].江苏建

材,2018(05):13-16.

[9]胡炜.体育设施用碳纤维复合材料的性能与工艺优化[J].金属功能材料,2020,27(04):61-65.

[10]Howarth J, Mareddy S, Mativenga P. Energy intensity and environmental analysis of mechanical recycling of carbon fibrecomposite[J ]. Journal of Cleaner Production,2014,81: 46-50. [11]丁亚林,等 . 光学精密工程,2003,11(3):287–290. Ding Yalin,et al. Optics and Precision Engineering,2003, 11(3):287–290.

[12]张晓虎,等 . 纤维复合材料,2004,24(1):50–53. Zhang Xiaohu,et al. Fiber Composites,2004,24(1):50–53.

复合材料加工工艺综述

复合材料加工工艺综述 前言: 复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。 复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。 复合材料是一种混合物。在很多领域都发挥了很大的作用,代替了很多传统的材料。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。 60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×106厘米(cm),比模量大于4×108cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属

先进复合材料主要制造工艺和专用设备

先进复合材料主要制造工艺和专用设备 中国航空工业第一集团公司科技发展部 郝建伟 中国航空工业发展研究中心 陈亚莉 先进复合材料具有轻质、高强度、高模量、抗疲劳、耐腐蚀、可设计、成型工艺性好和成本低等特点,是理想的航空结构材料,在航空产品上得到了广泛应用,已成为新一代飞机机体的主体结构材料。复合材料先进技术的成熟使其性能最优和低成本成为可能,从而大大推动了复合材料在飞机上的应用。一些大的飞机制造商在飞机设计制造中,正逐步减少传统金属加工的比例,优先发展复合材料制造。本文旨在介绍在复合材料制造过程中所涉及到的主要工艺和先进专用设备。 复合材料在飞机上的应用 随着复合材料制造技术的发展,复合材料在飞机上的用量和应用部位已经成为衡量飞机结构先进性的重要标志之一。复合材料在飞机上的应用趋势有如下几点: (1)复合材料在飞机上的用量日益增多。 复合材料的用量通常用其所占飞机机体结构重量的百分比来表示,世界上各大航空制造公司在复合材料用量方面都呈现增长的趋势。最有代表性的是空客公司的A380客机和后续的A350飞机以及波音公司的B787飞机。A380上复合材料用量约30t。B787复合材料用量达到50%。而A350飞机复合材料用量更是达到了创纪录的52%。复合材料在军机和直升机上的用量也有同样的增长趋势,近几年得到迅速发展的无人机更是将复合材料用量推向更高水平。 (2)应用部位由次承力结构向主承力结构发展。 最初采用复合材料制造的是飞机的舱门、整流罩、安定面等次承力结构。目前,复合材料已经广泛应用于机身、机翼等主承力结构。主承载部位大量应用复合材料使飞机的性能得到大幅度提升,由此带来的经济效益非常显著,也推动了复合材料的发展。 (3)在复杂外形结构上的应用愈来愈广泛。 飞机上用复合材料制造的复杂曲面制件也越来越多,如A380和B787飞机上的机身段,球面后压力隔框等,均采用纤维铺放技术和树脂膜渗透(RFI)工艺制造。 (4)复合材料构件的复杂性大幅度增加,大型整体、共固化成型成为主流。 在飞机上大量采用复合材料的最直接的效果是减重,复合材料制件

复合材料整体成型关键技术现状分析研究

复合材料整体成型关键技术现状分析研究 摘要:复合材料具有减轻结构重量,适合整体成型,提升结构安全性,降低生产成本等诸多优势,目前复合材料已经成为航空工业的研究热点,未来航空市场的竞争,很大一部分也是先进复合材料应用的竞争,目前在这块市场上,我国的基础实力较为薄弱,而发达国家对于先进的复合材料技术对我国高度保密,因此充分利用专利信息,研究复合材料整体成型技术的发展现状具有非常重要的意义。本文从专利的角度对航空复合材料整体成型技术的应用进行了分析,并从几个关键技术点上进行重点专利分析,以期能给复合材料的研发应用提供指导。 关键词:复合材料自动铺放液态成型热压罐真空袋挤压成型 中图分类号:tb33 文献标识码:a 文章编号: 1674-098x(2011)12(a)-0000-00 复合材料整体成型技术正广泛的应用在航空航天及其他技术领域,由于复合材料的整体成型具有降低制造成本,减轻结构重量,提升航天器的经济环保性等诸多优点。飞机上的复合材料使用量已经成为衡量其先进性的重要标准[1]。 飞机设计领域向来有为减轻每1g重量而奋斗的原则,因此发展复合材料成型技术的符合民机技术发展的趋势,也反映了目前低碳节能,绿色环保的飞机设计理念的要求。

目前如空客公司的a350,波音公司的b787的复合材料的用量已经达到了50%。当前各国都将先进复合材料制造技术作为研发重点,而从“产品未动,专利先行”的角度出发,大量复合材料技术都可以在专利文献中找到,因此积极利用专利信息开展现状分析,挖掘具有借鉴价值的专利具有十分积极的意义。 1复材整体成型技术发展概况 现代先进复合材料起源于20世纪60年代,70年代复合材料开始应用在飞机结构上,复合材料的加入对飞机结构轻质化、模块化起着中重要的作用。近年来先进复合材料在现代飞机上的用量不断扩大,已经成为铝,钢、钛之外的第四大航空结构材料[2]。复合材料整体成型技术经过了几个阶段的发展,已经逐渐从次承力件过度到主承力件,波音空客两大民机巨头在民机市场竞争 日趋激烈,在复合材料方面也不断抢占技术制高点,推出的机型中无一不把提高复合材料用量作为经济性,先进性的象征性指标。从专利领域来看,近几年两大航空企业的复合材料相关专利的申请量也在不断剧增,波音公司凭借其一直以来在复合材料应用领域的雄厚基础,申请了大量极具技术价值的基础专利,同时针对这些基础专利不断进行改进形成新的专利申请。空客公司作为后起竞争者凭借欧洲航空工业在复材领域的雄厚基础,不断进行大胆创新,在该领域申请的大量的专利也大有后来居上的态势。可见现代民机企业都在不遗余力的提升复合材料的研发力度。 当前复合材料的成型技术主要包括真空袋-热压罐成型技术,自

复合材料工艺大全

复合材料工艺大全 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业生产。如: (1)手糊成型工艺--湿法铺层成型法; (2)喷射成型工艺; (3)树脂传递模塑成型技术(RTM技术); (4)袋压法(压力袋法)成型; (5)真空袋压成型; (6)热压罐成型技术; (7)液压釜法成型技术; (8)热膨胀模塑法成型技术; (9)夹层结构成型技术; (10)模压料生产工艺; (11)ZMC模压料注射技术; (12)模压成型工艺; (13)层合板生产技术; (14)卷制管成型技术; (15)纤维缠绕制品成型技术; (16)连续制板生产工艺; (17)浇铸成型技术; (18)拉挤成型工艺; (19)连续缠绕制管工艺; (20)编织复合材料制造技术; (21)热塑性片状模塑料制造技术及冷模冲压成型工艺; (22)注射成型工艺; (23)挤出成型工艺; (24)离心浇铸制管成型工艺; (25)其它成型技术。 视所选用的树脂基体材料的不同,上述方法分别适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。

复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成 一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。 (2)制品成型比较简便 一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅需一套模具便能生产。 ◇成型工艺层压及卷管成型工艺 1、层压成型工艺 层压成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。 层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。 层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序。 2、卷管成型工艺 卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

复合材料成型工艺大全及说明

复合材料成型工艺大全及说明 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业 生产。 视所选用的树脂基体材料的不同,各方法适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。(2)制品成型比较简便一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅 需一套模具便能生产。 ◇ 层压及卷管成型工艺1、层压成型工艺层压 成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,

放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序。2、卷管成型工艺卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品 成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。卷管成型按其上布方法的不同而可分为手工上布法和连续机械法两种。其基本过程是:首先清理各辊筒,然后将热辊加热到设定温度,调整好胶布张力。在压辊不施加压力的情况下,将引头布先在涂有脱模剂的管芯模上缠上约1圈,然后放下压辊,将引头布贴在热辊上,同时将胶布拉上,盖

热塑性复合材料成型工艺

热塑性复合材料成型工艺 热塑性复合材料是以玻璃纤维、碳纤维、芳纶纤维等增强各种热塑性树脂的总称,国外称FRTP (Fiber Rinforced Thermo Plastics)。由于热塑性树脂和增强材料种类不同,其生产工艺和制成的复合材料性能差别很大。 从生产工艺角度分析,塑性复合材料分为短纤维增强复合材料和连续纤维增强复合材料两大类:(1)短纤维增强复合材料①注射成型工艺;②挤出成型工艺;③离心成型工艺。(2)连续纤维增强及长纤维增强复合材料①预浸料模压成型;②片状模塑料冲压成型;③片状模塑料真空成型;④预浸纱缠绕成型;⑤拉挤成型。 热塑性复合材料的特殊性能如下: (1)密度小、强度高热塑性复合材料的密度为1.1~1.6g/cm3,仅为钢材的1/5~1/7,比热固性玻璃钢轻1/3~1/4。它能够以较小的单位质量获得更高的机械强度。一般来讲,不论是通用塑料还是工程塑料,用玻璃纤维增强后,都会获得较高的增强效果,提高强度应用档次。 (2)性能可设计性的自由度大热塑性复合材料的物理性能、化学性能、力学性能,都是通过合理选择原材料种类、配比、加工方法、纤维含量和铺层方式进行设计。由于热塑性复合材料的基体材料种类比热固性复合材料多很多,因此,其选材设计的自由度也就大得多。 (3)热性能一般塑料的使用温度为50~100℃,用玻璃纤维增强后,可提高到100℃以上。尼龙6的热变形温度为65℃,用30%玻纤增强后,热形温度可提高到190℃。聚醚醚酮树脂的耐热性达220℃,用30%玻纤增强后,使用温度可提高到310℃,这样高的耐热性,热固性复合材料是达不到的。热塑性复合材料的线膨胀系数比未增强的塑料低1/4~1/2,能够降低制品成型过程中的收缩率,提高制品尺寸精度。其导热系数为0.3~0.36W(㎡·K),与热固性复合材料相似。 (4)耐化学腐蚀性复合材料的耐化学腐蚀性,主要由基体材料的性能决定,热塑性树脂的种类很多,每种树脂都有自己的防腐特点,因此,可以根据复合材料的使用环境和介质条件,对基体树脂进行优选,一般都能满足使用要求。热塑性复合材料的耐水性优于热固性复合材料。 (5)电性能一般热塑性复合材料都具有良好的介电性能,不反射无线电电波,透过微波性能良好等。由于热塑性复合材料的吸水率比热固性玻璃钢小,故其电性能优于后者。在热塑性复合材料中加入导电材料后,可改善其导电性能,防止产生静电。 (6)废料能回收利用热塑性复合材料可重复加工成型,废品和边角余料能回收利用,不会造成环境污染。 由于热塑性复合材料有很多优于热固性玻璃钢的特殊性能,应用领域十分广泛,从国外的应用情况分析,热塑性复合材料主要用于车辆制造工业、机电工业、化工防腐及建筑工程等方面。 1、注射成型工艺 注射成型是热塑性复合材料的主要生产方法,历史悠久,应用最广。其优点是:成型周期短,能耗最小,产品精度高,一次可成型开关复杂及带有嵌件的制品,一模能生产几个制品,生产效率高。缺点是不能生产纤维增强复合材料制品和对模具质量要求较高。根据目前的技术发展水平,注射成型的最大产品为5kg,最小到1g,这种方法主要用来生产各种机械零件,建筑制品,家电壳

环氧树脂碳纤维复合材料的成型工艺

环氧树脂/碳纤维复合材料的成型工艺 环氧树脂(EP)/碳纤维(CF)复合材料是CF增强复合材料的一个重要分支。近年来,随着人们对EP/CF复合材料认识的不断深入,其优异的性能不断凸现,促使其用量不断上升。20世纪70年代以前,EP/CF复合材料被视为昂贵的材料,价格约为玻璃纤维(GF)增强复合材料的10倍,只用于军工、宇航等尖端技术行业。20世纪80年代以后,CF工业和EP工业迅速发展,EP/CF复合技术不断进步,加入到EP中的CF比例不断上升,目前CF的体积分数已可达60%以上,使EP/CF复合材料的质量提高而价格下降,拓宽了其应用领域,进一步促进了EP/CF复合材料的发展。 1 CF及其EP复合材料的基本特点 1.1 CF的特点和基本成分 CF主要是由碳元素组成,其含碳量一般在90%以上。CP具有耐高温、耐摩擦、导电、导热及耐腐蚀等特性,与一般碳素材料不同的是,其各向异性显著,柔软,可加工成各种织物,沿纤维轴向表现出很高的强度。制备CF的主要原材料有人造丝(粘胶纤维)、聚丙烯腈(PAN)纤维和沥青等。通常制备高强度、高模量CF多选用PAN为原料。制备CF需经过拉丝、牵伸、稳定、炭化、石墨化5个阶段。 1.2 EP基体的作用 EP具有优良的加工性能和力学性能,其固化收缩率低,粘结性能优异。复合材料中EP的主要作用是把CF粘在一起,分配CF间的载荷,保护CF不受环境影响。 1.3 EP/CF复合材料的特性 EP/CF复合材料的特性主要取决于CF、EP及EP与CF之间的粘结特性。EP/CF复合材料具有优异的性能,与钢相比,EP/CF复合材料的比强度为钢的4.8-7.2倍,比模量为钢的3.1-4.2倍,疲劳强度约为钢的2.5倍、铝的3.3倍,而且高温性能好,工作温度达400℃时其强度与模量基本保持不变。此外还具有密度和线膨胀系数小、耐腐蚀、抗蠕变、整体性好、抗分层、抗冲击等,在现有结构材料中,其比强度、比模量综合指标最高。在加工成型过程中EP/CF复合材料具有易大面积整体成型、成型稳定等独特的优点。 2 EP/CF复合材料的成型工艺 2.1 手糊成型 手糊成型是依次在模具型腔表面涂布或铺迭脱模剂、胶衣、粘度适中的EP(胶衣凝胶后涂覆)和CF,手持辊子或刷子使EP浸渍CP,并驱除气泡,压实基层。铺层操作反复多次,直到达到制品的设计厚度。该工艺的主要优点是可室温成型,设备投资少,模具折旧费低;可制造大型制品。主要缺点是属于劳动密集型生产,制品质量由工人技术熟练程度决定;手糊用树脂分子量低,通常可能较分子量高的树脂有害于人的健康和安全。

复合材料的预浸料模压成型工艺

复合材料的预浸料模压成型工艺 模压成型工艺基本过程是:将一定量经一定预处理的模压料放入预热的模具内,施加较高的压力使模压料填充模腔。在一定的压力和温度下使模压料逐渐固化,然后将制品从模具内取出,再进行必要的辅助加工即得产品。 1.压制前的准备 (1)装料量的计算 在模压成型工艺中,对于不同尺寸的模压制品要进行装料量的估算,以保证制品几何尺寸的精确,防止物料不足造成废品,或者物料损失过多而浪费材料。常用的估算方法有①形状、尺寸简单估算法,将复杂形状的制品简化成一系列简单的标准形状,进行装料量的估算:②密度比较法,对比模压制品及相应制品的密度,已知相应制品的重量,即可估算出模压制品的装料量:③注型比较法,在模压制品模具中,用树脂、石蜡等注型材料注成产品,再按注型材料的密度、重量及制品的密度求出制品的装料量。 (2)脱模剂的涂刷 在模压成型工艺中,除使用内脱模剂外,还在模具型腔表面上涂刷外脱模剂,常用的有油酸、石蜡、硬脂酸、硬脂酸锌、有机硅油、硅脂和硅橡胶等。所涂刷的脱模剂在满足脱模要求的前提下,用量尽量少些,涂刷要均匀。一般情况下,酚醛型模压料多用有机油、油酸、硬脂酸等脱模剂,环氧或环氧酚醛型模压料多用硅脂和有机硅油脱模剂,聚酯型模压料多用硬脂酸锌、硅脂等脱模剂。 (3)预压 将松散的粉状或纤维状的模压料预先用冷压法压成重量一定、形状规整的密实体。采用预压作业可提高生产效率、改善劳动条件,有利于产品质量的提高。 (4)预热 在压制前将模压料加热,去除水分和其它挥发份,可以提高固化速率,缩短压制周期;增进制品固化的均匀性,提高制品的物理机械性能,提高模压料的流动性。

(5)表压值的计算 在模压工艺中,首先要根据制品所要求的成型压力,计算出压机的表压值。成型压力是指制品水平投影面上单位面积所承受的压力。它和表压值之间存在的函数关系: 复合材料的预浸料模压成型工艺 在模压成型工艺中,成型压力的大小决定于模压料的品种和制品结构的复杂程度,成型压力是选择压机吨位的依据。 2、压制工艺 (1)装料和装模 往模具中加入制品所需用的模压料过程称为装料,装料量按估算结果,经试压后确定。装模应遵循下列原则:物料流动路程最短:物料铺设应均匀;对于狭小流道和死角,应预先进行料的铺设。 (2)模压温度制度 模压温度制度主要包括装模温度、升温速率、成型温度和保温时间的选择。 ①装模温度 装模温度是指将物料放入模腔时模具的温度,它主要取决于物料的品种和模压料的质量指标。一般地,模压料挥发份含量高,不溶性树脂含量低时,装模温度较低。反之,要适当提高装模温度。制品结构复杂及大型制品装模温度一般宜在室温-90℃范围内。 ②升温速率 指由装模温度到最高压制温度地升温速率。对快速模压工艺,装模温度即为压制温度,不存在升温速率问题。而慢速模压工艺,应依据模压料树脂的类型、制品的厚度选择适当的升温速率。 ③成型温度

《碳纤维复合材料》阅读练习及答案

阅读文章,回答问题。 碳纤维复合材料 ①2018年11月6日,两年一度的珠海航展上,中俄合作研制的280座远程宽体客机CR929,以1:1的展示样机首次亮相国际航展。在这款最新一代的大型飞机上,复合材料的使用比例有望..超过50%。同样,在去年5月5日首飞的C919大客机上,使用的复合材料占到飞机结构重量的12%。这里的复合材料,主要就是碳纤维复合材料。 ②碳纤维是火箭、卫星、导弹、战斗机和舰船等尖端武器装备必 不可少的战略基础材料。它不存在腐蚀生锈的问题。由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的卫星、火箭等宇宙飞行器,噪音小,质 量小,动力消耗少,可节约大量燃料。 ③碳纤维还是让大型民用飞机、汽车、高速列车等现代交通工具 实现“轻量化”的完美材料。航空应用中对碳纤维的需求正在不断增多,新一代大型民用客机空客A380和波音787使用了约为50%的碳纤维复合材料。这使飞机机体的结构重量减轻了20%,比同类飞机可节省20%的燃油,从而大幅降低了运行成本、减少二氧化碳排放。碳 纤维作为汽车材料,最大的优点是质量轻、强度大。它的重量仅相当 于钢材的20%到30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。 ④随着航空航天、汽车轻量化、风电、轨道交通等行业领域对碳

纤维的需求爆发,碳纤维工业应用开始进入规模化生产。业内预测, 预计到2020年,全球碳纤维需求量将超过16万吨,到2025年,将超过33万吨。面对如此巨大而重要的市场,国内企业既要通过掌握 关键技术来实现碳纤维的稳定批量生产和大规模工程化应用,同时也要瞄准国产新一代碳纤维及其复合材料及早研发和布局,2016年2月15日,中国突破日本管制封锁研制出高性能碳纤维。2018年2月,中国完全自主研发出第一条百吨级T1000碳纤维生产线,这标志着我国已经牢牢站稳全球高端碳纤维市场的一席之地。 101.阅读选文第①段和第③段,回答问题。 (1)选文第①段加点词“有望”能删去?请说出理由。 (2)选文第③段画线句运用了哪些说明方法?有何作用? 102.随着科学技术的发展,请你设想一下生活中将会有哪些碳纤维 复合材料的产品。 【答案】 101.(1)不能删去,“有望”是有希望的意思,说明“在这款最新 一代的大型飞机上,复合材料的使用比例”未来有希望超过“50%”,该词体现了说明文语言的准确性和科学性。 (2)列数字、作比较,具体准确地说明了碳纤维作为汽车材料,最 大的优点是质量轻、强度大。 102.碳纤维复合材料制成的羽毛球拍、登山器械等体育休闲用品; 汽车、地铁等交通工具;以及碳纤维复合材料制成的衣服、家具等日

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维复合材料的应用与机械加工

碳纤维复合材料的应用与加工 1 应用领域 目前,碳纤维广泛用于民用,军用,工业,航天以及超级跑车领域。 图碳纤维复合材料不同领域所占比例 国外将碳纤维复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能。 由于碳纤维增强复合材料不但是轻质高强的结构材料,还具有隐身的重要功能,能有效地吸收雷达波,美国已用来制造最新型的隐形轰炸机。美国的P-22 超音速飞机的主要结构就是采用了中等模量的碳纤维增强的特种工程塑料。幻影III战斗机的减速降落伞盖和弹射的弹射装置也由这种材料制成。碳纤维已成功地用于飞机的肋条、蒙皮及一些连接件、紧固件等雷达波的吸收件。战斧式巡航导弹壳体、B-2隐型轰炸机的机身基材,F117A隐型飞机的局部也都采用了碳纤维改性的高分子吸波材料。 图美国B-2隐身轰炸机(机身基材) 图幻影III战斗机(减速降落伞盖和弹射装置) 图美F117A隐身轰炸机(肋条及蒙皮等) 英国ICI公司用碳纤维复合材料生产战斗机上的阀门,使飞机阀门在很宽的温度范围内与燃料长期接触也能保持其性能和形状的稳定;其它国家的飞机F/A-18、RAH-66、A330 / A340、B77、Y-22上面也都采用了这种材质来制造机翼、蒙皮、主承力结构、中央冀盒、地板、尾冀、设备箱体及结构件。 在民用领域,飞机25%重量的部件由复合材料制造,其中22%为碳纤维增强材料(CFRP)。这些部件包括:减速板、垂直和水平稳定器(用作油箱)、方向舵、升降舵、副翼、襟翼扰流板、起落架舱门、整流罩、垂尾翼盒、方向舵、升降舵、上层客舱地板梁、后密封隔框、后压力舱、后机身、水平尾翼和副翼均采用CFRP制造。 2 加工特点 碳纤维复合材料一般以叠合制成多层板使用,通常有两种复合形式,一种是碳纤维在基体中呈同向排列,即每层的纤维方向相同,通常称这种复合材料为单向纤维复合材料;一种

复合材料的手糊成型工艺

毕业设计报告(论文) 报告(论文)题目:聚合物基复合材料手糊成型工艺 作者所在系部:材料工程系 作者所在专业:高分子材料应用技术 作者所在班级: 07841 作者姓名:赵向男 作者学号: 20073084128 指导教师姓名:彭燕 完成时间: 2010年5月25日 北华航天工业学院教务处制

随着社会科技与经济的飞速发展,复合材料在国内外有很大的应用与发展,并且在各个领域占据了越来越重要的地位。复合材料的成型工艺方法很多,本文着重介绍手糊成型工艺方法的特点、工艺流程以及成型过程中遇到的问题和解决方法等。 关键字:复合材料手糊成型工艺流程。

Along with the social economy and the rapid development of science and technology, composite materials at home and abroad, has great development and application in different fields and occupy a more and more important role. Composites forming process, this paper introduces many methods to hand lay-up molding method, process and molding process problems and solving methods. Key words: composite materials molding paste hand process.

热塑性碳纤维复合材料成型工艺研究

热塑性碳纤维复合材料成型工艺研究 碳纤维质量比金属轻,但是强度却高于钢铁,并且耐腐蚀,在非氧化环境下耐超高温,膨胀系数小且 具有各向异性,但是传统使用碳纤维除了用作隔热保温材料之外,一般是不会单独使用的,多是会作为增 强材料加入到金属、瓷器、树脂等材料中作为复合材料使用。碳纤维复合材料具有碳材料的固有本性特征,同时又兼具纺织纤维的柔软可加工性,是一种力学性能优异的新一代增强纤维,可用作人工韧带、飞机结 构材料、火箭外壳、工业等等领域,市场需求巨大。 热塑性碳纤维复合材料是铝镁合金、钢铁等金属的理想替代材料,但是在基于国外技术封锁等原因,热塑性碳纤维复合材料在国内的发展时间并不是很长,国内的热塑性碳纤维复合材料发展缓慢。苏州挪恩 复合材料有限公司专注碳纤维相关技术的研究,在热塑性碳纤维增强PEEK复合材料、热塑性碳纤维增强PPS复合材料、热塑性碳纤维增强PEI复合材料、热塑性碳纤维增强PC复合材料方面苦心孤诣,与日本美国等知名企业的合作,也让挪恩拥有了成熟的产品生产经验。 现在国内的热塑性碳纤维复合材料成型工艺主要是由热固性树脂基复合材料和金属成型技术移植而来。按照设备的不同可以分为纤维缠绕成型、真空袋成型、模压成型、热压罐成型、双膜成型等等方法,其中 纤维成型缠绕型、真空袋成型、模压成型、双膜成型是目前用的较多的热塑性碳纤维复合材料成型方法。 1、纤维缠绕成型 纤维缠绕成型工艺是指浸过树脂的连续纤维按照一定的规律缠绕在芯模上,继而经过固化、脱模而得 的碳纤维复合材料制品。根据纤维缠绕成型时树脂基体的物理化学状态不同,也可分为干法缠绕、半干法 缠绕和湿法缠绕三种。干法缠绕工艺最大的特点是生产效率比较高,制作环境卫生环境好,但是相应的干 法缠绕设备较贵,投资较大;半干法缠绕是利用纤维浸胶后至缠绕芯模的途中,多加了一套烘干设备,省 却了预浸胶的工序;湿法缠绕则是将纤维浸胶后直接缠绕在芯模上,在成本方面比干法缠绕可以降低约35%,纤维排列平行度也会更好,但是操作环境差、树脂浪费也是湿法缠绕的明显缺点。 2、真空袋成型 真空袋成型是将预浸料铺放在模具中,利用真空袋和密封胶将真空袋抽至真空状态,将模具加热,预 浸料即可在高温和大气压的作用下成型。 3、模压成型 将预浸料裁剪至合适的大小铺设在模具中升温加热,等温度升至可成型温度后,再在压机台面上加压,待温度降温后就可脱模取出。此时需要注意压机表面必须拥有较高的平行度和平整度,否则很容易导致产 品发生翘曲。 4、双膜成型 双膜成型是将裁剪后的预浸料放置于两层可变形的金属膜或树脂膜之间,在膜的四周做好密封,成型 的过程中需要将温度调至成型温度并施加一定的成型压力,最后冷却定型,需要注意的是,在双膜成型的 过程中需要处于密封环境中进行。

碳纤维复合材料LY模板演示教学

复合材料基础 姓名:梁雨 专业:化学 学号:2014122

碳纤维复合材料 碳纤维是由碳元素组成的一种高性能增强纤维。不仅强度高,密度小,并且具有低热膨胀、高导热、耐磨、耐高位等优异性能,是一种很有发展前景的高性 能纤。这些优异的性能使得人们对它的重视到了一个很高的高度。那么接下来我就来介绍一下有关碳纤维复合材料在各方面的的一些知识。 一、碳纤维复合材料发展史 碳纤维复合材料的发展史应包含碳纤维的发展史何其复合材料应用史。碳纤维是碳材料的一种新形式。我们已经知道碳材料结构由四种类型,一是无定形碳、而是石墨、三是金刚石、四是白碳。碳纤维含碳99%以上,主要是石墨和无定形碳,纤维形状是一种新的应用形式。1880年人类制造了第一批电灯泡,那是电 灯泡的灯丝就是当时人类研制的第一批碳纤维,直到1901年发明钨丝后才不用它做灯丝了。到1950年美国空军材料研究所由于军工的需求,加紧对碳纤维研究,1959年由联合碳化合物公司实现了高强碳纤维的生产工艺。与此同时,1962年日本旭炭公司在远藤教授研究的基础上实现以聚丙腈纤维为原料,经过预氧化(不熔化)、1300℃以上高温炭化而得到有实用价值的通用碳纤维的工业生产线。1970年以后东丽公司、东邦公司相继参加聚丙烯腈基碳纤维的生产开发,形成2吨╱年的规模。1978年产量达1000t。20世纪80年代后期批量生产的M30、M60、T1000等石墨化程度更高的碳纤维。随后碳纤维在全世界需求量随年逐增 中国碳纤维的发展 我国从1968年开始研究碳纤维,很快研究出碳纤维1#,相当于T200的水平,1976年建成中试线,那是与日本东丽公司的差距为5年。后来碳纤维2#的研究久攻不下。差距已拉大20多年,无竞争可言。同时由于发达国家对我国几 十年的技术封锁,至今没能实现大规模工业化生产,工业及民用领域的需求长时 间依赖进口,严重影响了我国高技术的发展,尤其制约了航天及国防军工事业的 发展,与我国经济社会发展的进程极不相称。所以,研究生产高性能、高质量的 碳纤维,以满足军工和民用产品的需求,扭转大量口的局面,是当前我国碳纤维工业发展的迫切任务。

复合材料结构及其成型原理

碳纤维复合材料 (西北工业大学机电学院, 陕西西安710072) 摘要:碳纤维复合材料与金属材料相比,其密度小、比强度、比模量高,具有优越的成型性和其他特性,具有极大的发展潜力。本文介绍了碳纤维复合材料的特点及其应用,总结了碳纤维复合材料的成型工艺及每种成型工艺的特点,并从材料和成型两个方面指出了它的发展方向。 关键词:复合材料;碳纤维;成型工艺;工艺流程 Carbon Fiber Reinforce Plastic (School of Mechatronics, Northwes tern Polytechnical University, Xi’an 710072, China) Abstract: Compared to metals, carbon fiber reinforce plastic has great potential for development with lower density, higher specific strength and modulus, and excellent moldability and other characteristics. This article describes the characteristics and applications of carbon fiber reinforce plastic and sum up the manufacturing process of carbon fiber reinforce plastic and their characteristics. Finally, this article points out the development of carbon fiber reinforce plastic from two aspects: material and manufacturing process. Key words: composites; carbon fiber; manufacturing process; process

碳纤维及其复合材料的发展和应用(精)

·开发与创新· Development and Applications of Carbon Fiber and Its Composites GAO Bo ,XU Zi-Li (Wuhan Textile University ,Wuhan Hubei 430073,China Abstract:This paper introduces performance and features of carbon fiber,briefly overviews the history,including both foreign and domestic.And analyses the properties and applications of carbon fiber composite material,emphasizes the related performance that carbon fiber adds to the metal matrix composites and points out its research prospects.Key words:carbon fiber ;composite ;metal matrix 0引言 碳纤维是含碳量高于90%的无机高分子纤维,是由有机母体纤维(聚丙烯睛、粘胶丝或沥青等采用高温分解法在1000~3000℃高温的惰性气体下碳化制成的。它是一种力学性能优异的新材料,比重不到钢的1/4,能像铜那样导电,比不锈钢还耐腐蚀,而其复合材料抗拉强度一般都在3500Mpa 以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa ,也高于钢。碳纤维按其原料可分为三类:聚丙烯腈基(PAN 碳纤维、石油沥青基碳纤维和人造丝碳纤维三类。其中聚丙烯腈基碳纤维用途最广,需求也最大[1]。 1碳纤维的发展史 1.1国外碳纤维的发展历史 20世纪50年代美国开始研究粘胶基碳纤维,1959 年生产出了粘胶基纤维Thormel-25,这是最早的碳纤维产品。同一年,日本发明了用聚丙烯腈基(PAN 原丝

复合材料成型工艺及设备

无机非金属复合材料的成型工艺—纤维增强水泥基复合材料 【摘要】纤维增强水泥基复合材料作为新型工程材料已在土木工程多领域中得到广泛地应用。目前在水泥复合材料中掺加一定量的纤维,可以改善并且提高水泥复合材料的物理、力学等性能指标。 【关键词】纤维增强复合材料水泥 1、发展及应用 自60年代开始,纤维增强水泥基复合材料的研究和开发有较大进展。1964年,丹麦科学家应用复合材料理论探讨纤维增强无机与有机凝胶材料的机理。1967年英国人试制成功抗碱玻璃纤维增强波特兰水泥砂浆。随后美、日等国也相继投产。我国进入80年代用抗碱玻璃纤维增强低碱铝硅酸盐水泥,现已取得一定成效。目前广泛用于各种建筑物中以及工程装备中。 2、特点 纤维增强水泥基复合材料与普通混土相比,其显著特点是轻质高强,具有良好的断裂韧性。其拉压比一般可达1/4~1/6(普通混凝土为1/10)。 3、复合材料的组成 1、纤维增强水泥原材料 3.1.增强材料 纤维加入脆性的水泥基体中,其作用是提高水泥集体的抗拉强度和韧性,改善其冲击强度和疲劳性能。增强水泥所用纤维按其化学组成可分为金属纤维,无机纤维和有机纤维三大类。 用于增强水泥的纤维可分为短切纤维、连续纤维或纤维织物等。目前国内外使用最多的为短切纤维。 2.水泥基体材料 硅酸盐水泥、氯氧镁水泥、高铝矿渣水泥等 4、成型工艺及设备 GRC的成型方法有喷射法、预拌法、注射法、铺网法、缠绕法等多种方法。其中玻璃纤维增强水泥复合材料使用最多的方法是喷射成型法。 1、成型工艺 A:直接喷射法 用人工手动或通过机械移动装置使切割喷射机在模型上方作往复移动,将纤维水泥砂浆喷在模型表面。

相关文档
最新文档