飞机控制面板简介

飞机控制面板简介
飞机控制面板简介

UA747-400的面板。

1.

这个是时间: 上面的是出发地时间 11:37; 下面的是飞行时间.

2.

ILS 信标指示灯

远距信标:outer marker,缩写OM,

通过OM上空时,座舱中的OM信号灯(蓝色)点亮,摩尔斯电码声音为“长,长,长”。OM通常是飞机切入电子下滑道GS的位

置,通过OM上空时,座舱中的GS指针应在中央位置。典型情况下,此时飞机高度大约为2500-4000英尺AGL,OM距离跑道入口大约7-10海里。

中距信标,即middle marker ,缩写MM

通过MM上空时,座舱中的MM信号灯(琥珀色)点亮,摩尔斯电码声音为“短,长,短,长”。MM建在离跑道入口3500英尺(1067米)处,由于GS一般都是3度的,可以计算出,此时飞机与跑道接地区的相对高度差为200英尺(61米)

近距信标,即inner marker ,缩写IM

通过IM上空时,座舱中的IM信号灯(白色)点亮,摩尔斯电码声音为“短,短,短,短”。

3.

我管它叫做综合指示. 在Cessna小型飞机中,空速指示,高度指示什么都分开的. 喷气式客机也是,但这个集合了速度,高度,姿态,航向,看这个最方便.

左边的是空速指示(air speed indicator):383 单位 knot. 下面的是715 单位 km/h (4个红点是什么我不清楚)

中间的是姿态指示(attitude indicator):目前飞机机头是偏下,因为中间那个黑白的东东在水平线以下了. 起飞的时候也可以看下, 保持在20度左右. 有时候也不需要这么多, 现实中飞20度你会发现飞机斜得恐怖....

右边的是高度指示(altitude indicator):高度10370ft(英尺) 飞机正以1100ft/分的速度爬升. 中间的粉红色的点要注意一下,这个是你设置的vertical speed (垂直速度).

下面的是航向指示(heading indicator):目前航向 212. 不过航向可以看雷达显示那里,这里看不清楚.

这个指示里面还有很多东西,目前尚不清楚.

4.

雷达显示

紫色的线是你设定的航向白色的是飞机的飞行路径红色的是目的地机场航向

绿色的是云团圆圈是机场,上面还有它的代码三角形是山脉

右上: GS:GROUND SPEED 地速 454, 飞机对应地面的速度

TAS:T代表什么我忘了 -_&line;&line; 真空速

左上: LIRF 目的地机场的4字代码 LIRF是罗马机场香港是VHHH,悉尼是YSSY,奥克兰是NZAA 这个可以在程序里查. 起飞之前要输入到飞行管理电脑(FMC)里,电脑会算出距离.294.9NM 这个东西怪,显示的是距离目的地机场极距离,单位海里.但它永远只显示小数点前3位.也就是说,如果现在距离294NM,它显示294NM;现在是1294NM,它也显示294NM.真正的距离要看FMC.

5.

从上到下姿态指示仪(attitude indicator), 空速指示仪(airspeed indicator),高度指示仪(altitude indicator) 这些东西看刚才那个综合指示也就可以了.真实的飞机中,这些指示仪位置偏,看起来麻烦.

6.

引擎功率显示, 有些飞机中不是条状,而是圆型的.

7.

飞机出什么问题,警告都会显示在这里.

比如油量少了它会显示FUEL QTY:fuel quatity (燃料数量)

8.

自动驾驶(auto pilot) IAS/MACH:速度 HDG:航向 VIRT SPEED:垂直速度 ALT:高度

这里目前开启了保持航向和保持垂直速度两个自动驾驶功能.

别的就不介绍了大家看自动驾驶那篇文章吧.

9.

自动刹车 (auto Brakes)

在自动驾驶和起落架开关之间. 个人感觉降落的时候用这个比自己开刹车来得好. 1.降落的时候要兼顾很多操作,一个人显得手忙脚乱的,这个东西自己会刹. 2. 自己不掌握好容易刹爆,这个东西就好多了.

10.

无线电通讯

左边是正在用的频率,右边是预设的频率.可以按中间的箭头来回切换.

11.

FMC 飞行管理电脑

在这里你要输入很多东西,只是我也不是很熟悉操作. 挺麻烦的. 我现在一般输入高度和目的地. 电脑会提供相关必要数据.

在上面的FMC中我输入目的地机场LIRF和高度12000FT (一般都在35000-37000FT飞行,我这里是想看地面景色嘿嘿). 输好后,雷达显示那里会出现红色航线,电脑这里计算出了距离和预计时间. DIS:distance 距离 294.9NM, ETE:预计飞行时间38分钟.

12.

radio transponder 无线电应答机

13.

从左到右: 减速板引擎推杆副翼 ..

A380飞机结构的先进材料和工艺

A380飞机结构的先进材料和工艺 技术分类:工程材料来源:慧聪网发表时间:2008-01-09 A380的寿命要达到40-50年,因此必须选用先进且新型材料和工艺技术,为未来飞机搭建技术平台。这些技术不仅经过了大量全尺寸试验验证而且经过了航空公司维修专家的评审(符合检查和维修标准)。 A380结构设计准则(见图1)。重复的拉伸载荷加上载荷的变化将会在金属结构内产生微小的疲劳裂纹。裂纹增长速度以及残余强度(当裂纹产生时)将指导选择何种材料。为了防止结构由外物损伤,需要考虑材料的损伤容限性能。 压力载荷需要考虑采用屈服强度和刚度好的材料,以增加稳定性。抗腐蚀能力是选择材料和工艺的另一个重要准则,尤其是在机身下部。选择材料和工艺目标的一部分是使结构轻量化。因此,复合材料是很好的选择,但必须了解设计准则和维修需要。材料的选择不仅仅是考虑设计准则,同时还要考虑生产成本和采购问题。 1. 新型且先进的金属材料 从A380选材的分布来看(见图2),铝合金占的比重最大,达机体结构重量的61%,因此要实现性能改进,必须开发创新的铝合金材料和工艺技术,具体是提高强度和损伤容限,加强稳定性并提高抗腐蚀能力。尤其是在A380机翼部位(机翼的80%以上是铝合金材料) 要提高性能。

A380-800飞机在铝合金结构上取得的主要成就包括: ·在机身壁板上引用了很宽的钣金材料,减少了连接件从而减轻了重量; ·在主地板横梁上采用了先进的铝锂合金挤压件,在这一部位的应用可与碳纤维增强塑料相媲美; ·在机翼大梁和翼肋上选择了新型7085合金,这种合金在很薄的板材和很大锻件上性能优于通常的高强度合金;钛合金由于具有高强度、低密度,高损伤容限和抗腐蚀能力使其代替钢而广泛应用,但是它的高价格使其应用受到限制。在A380的结构中,钛合金用量较空中客车其它机型有所增加,达到10%。仅仅挂架和起落架的钛合金用量就增加了2%。 ·A380挂架的主要结构是空中客车公司第一次采用全钛设计。在A380飞机上采用最广泛的钛合金是Ti-6Al-4V,在B退火状态下最大的断裂韧性和最小的裂纹增长速度。 ·在A380上第一次采用了新型钛合金VST55531,这种新的钛合金是空中客车公司与俄罗斯制造商共同开发的,能够为设计者提供良好的断裂韧性和高强度综合性能。这种合金目前用于A380飞机的机翼和挂架之间的连接件,进一步的应用还在研究当中。 2. A380复合材料的应用 A380复合材料的主要应用见下图3。

飞机结构重要资料

单选 1. 直升机尾浆的作用是B A:提供向前的推力B:平衡旋翼扭矩并进行航向操纵 C:提供直升机主升力D:调整主旋翼桨盘的倾斜角 2. 正常飞行中,飞机高度上升后,在不考虑燃油消耗的前提下,要保持水平匀速飞行,则需要采取的措施为D A:降低飞行速度B:开启座舱增压设备C:打开襟翼D:提高飞行速度 3. 2.飞机高速小迎角飞行时,机翼蒙皮的受力状态是A A:上下蒙皮表面均受吸(易鼓胀)B:上下蒙皮表面均受压(易凹陷) C:上表面蒙皮受吸,下表面受压D:上表面蒙皮受压,下表面受吸 4. 3.飞机低速大迎角飞行时,蒙皮的受力状态为C A:蒙皮上表面受压,下表面受吸B:蒙皮上下表面都受吸 C:蒙皮上表面受吸,下表面受压D:蒙皮上下表面都受压 5. 4.垂直突风对飞机升力具有较大的影响主要是因为它改变了C A:飞机和空气的相对速度B:飞机的姿态C:飞机的迎角D:飞机的地速 6. 水平尾翼的控制飞机的A A:俯仰操纵和俯仰稳定性B:增升C:偏航操纵和稳定性D:减速装置 7. 2.飞机低速飞行时要作低角加速度横滚操纵一般可使用C A:飞行扰流板B:内侧高速副翼C:机翼外侧低速副翼D:飞行扰流板和外侧低速副翼 多选 1. 飞机转弯时,可能被操纵的舵面有BCD A:襟翼B:副翼C:飞行扰流板D:方向舵 2. 地面扰流板的作用有AD A:飞机着陆时减速B:横滚操纵C:俯仰操纵D:飞机着陆时卸除升力 3. 对飞机盘旋坡度具有影响的因素有A,B,C,D A:发动机推力B:飞机的临界迎角C:飞机的强度D:飞机的刚度 4. 飞机的部件过载和飞机重心的过载不相等是因为A,C,D A:飞机的角加速度不等于零B:飞机的速度不等于零 C:部件安装位置不在飞机重心上D:飞机的角速度不等于零 5. 梁式机翼主要分为A,C,D A:单梁式机翼B:整体式机翼C:双梁式机翼D:多梁式机翼 6. 从结构组成来看,翼梁的主要类型有B,C,D A:复合材料翼梁B:腹板式C:整体式D:桁架式 7. 机身的机构形式主要有A,C,D A:构架式B:布质蒙皮式C:硬壳式D:半硬壳式 8. 飞机表面清洁的注意事项有A,B,C,D A:按规定稀释厂家推荐的清洁剂与溶剂B:断开与电瓶相连的电路 C:遮盖规定部位,保证排放畅通D:防止金属构件与酸、碱性溶液接触 9. 飞机最易直接受到雷电击中的部位包括A,C,D A:雷达整流罩B:机翼上表面C:机翼、尾翼的尖端和后缘D:发动机吊舱前缘 10. 胶接的优点有: BC A:降低连接件承压能力B:减轻重量、提高抗疲劳能力 C:表面平整、光滑,气动性与气密性好D:抗剥离强度低、工作温度低

航空基础知识

飞机的分类 由于飞机构造的复杂性,飞机的分类依据也是五花八门,我们可以按飞机的速度来划分,也可以按结构和外形来划分,还可以按照飞机的性能年代来划分,但最为常用的分类法为以下两种: 按飞机的用途分类: 飞机按用途可以分为军用机和民用机两大类。军用机是指用于各个军事领域的飞机,而民用机则是泛指一切非军事用途的飞机(如旅客机、货机、农业机、运动机、救护机以及试验研究机等)。军用机的传统分类大致如下: 歼击机:又称战斗机,第二次世界大战以前称驱逐机。其主要用途是与敌方歼击机进行空战,夺取制空权,还可以拦截敌方的轰炸机、强击机和巡航导弹。 强击机:又称攻击机,其主要用途是从低空和超低空对地面(水面)目标(如防御工事、地面雷达、炮兵阵地、坦克舰船等)进行攻击,直接支援地面部队作战。 轰炸机:是指从空中对敌方前线阵地、海上目标以及敌后的战略目标进行轰炸的军用飞机。按其任务可分为战术轰炸机和战略轰炸机两种。 侦察机:是专门进行空中侦察,搜集敌方军事情报的军用飞机。按任务也可以分为战术侦察机和战略侦察机。 运输机:是指专门执行运输任务的军用飞机。 预警机:是指专门用于空中预警的飞机。 其它军用飞机:包括电子干扰机、反潜机、教练机、空中加油机、舰载飞机等等。 当然,随着航空技术的不断发展和飞机性能的不断完善,军用飞机的用途分类界限越来越模糊,一种飞机完全可能同时执行两种以上的军事任务,如美国的F-117战斗轰炸机,既可以实施对地攻击,又可以进行轰炸,还有一定的空中格斗能力。 按飞机的构造分类: 由于飞机构造复杂,因此按构造的分类就显得种类繁多。比如我们可以按机翼的数量可以将飞机分为单翼机、双翼机和多翼机;也可以按机翼的形状分为平直翼飞机、后掠翼飞机和三角翼飞机;我们还可以按飞机的发动机类别分为螺旋桨式和喷气式两种。

航空知识介绍

航空知识百科 民用航空器的国籍标志世界上每个国家的民用航空器(飞机是航空器的一种)都有国籍标志,并要取得国际民航组织的认同。中国是国际民航组织的成员国,根据国际规定,于1974年选用“B” 作为中国民用航空器的国籍标志。凡是中国民航飞机机身上都必须涂有“B”标志和编号,以便在无线电联系、导航空中交通管制、通信通话中使用,尤其是在遇险 失事情况下呼叫,以利于识别。因此,当您看到涂有中国西南航空公司飞鹰徽记的波音757飞机如“B-2820”字样时,就不会误以为“B”是代表“波音”。 世界上现有那些主要机型?美国波音商用飞机制造公司、欧洲空中客车工业公司、美国麦克唐纳.道格拉斯公司。1996年底,波音公司已同麦道合并。 波音系列:波音707、波音727、波音737、波音747、波音757、波音767、波音777 。 空中客车系列:A-300、A-310、A-320、A-330、A-340。 麦道系列:MD-80、MD-81、MD-82、MD-83、MD-87、MD-88、MD-11。 此外,还有俄罗斯制造的图-154、图-154M型,前苏联生产的伊尔-18、伊尔-86、雅克-42、安-30,英国制造的 英航-146(BAE-146)、肖特-360,荷兰的福克-100,以及中国制造的运-7、运-8、运-10、运-11、运-12等型飞机。 飞机起飞前为什么有时要在滑行道与跑道交界处等待一会儿?这有

两方面的原因。一是机场指挥塔台指挥那些要进港的飞机先降落,或让起飞的飞机依照顺序先后起飞。二是气象方面的原因,机场上空有时会出现短时间的恶劣天气,飞机要等到天气转正常时,才能听从塔台命令再起飞。 飞机为什么总是迎风起降?飞机迎风起降的原因主要有两个,一是可缩短飞机起飞或着陆的滑跑距离,二是较安全。飞机起飞时,如果有风迎面吹来,在相同速度条件下,其获得的升力就 比无风或顺风时大,因而就能较快地离地起飞。迎风降落时,就可以借风的阻力来减小一些飞机的速度,使飞机在着陆后的滑路距离缩小一些。飞机在起降时速度都 较慢,稳定性较差,若此时遭到强劲的侧风袭击,飞机就有可能偏离跑道。为避免这种危险,所以机场的跑道方向要根据当地的主要风向来选择。近年来,由于飞机 稳定性的迅速提高,风向对飞机起降影响大大降低了。飞机在空中飞行也有交通规则 俗话说:“天高任鸟飞”。对于飞机来说,是否可以在万里长空任意飞翔呢?答案是否定的。因为飞机在天上飞行必须严格遵守空中“交通规则”。根据飞机机型,航空管制部门规定了不同的航行高度:3000米以下一般是小型飞机的活动范围,3000米以上则是大中型飞机的活动范围,而且划出了8-20公里宽的固定航路。每条航路又分成了若干高度层,相邻高度层的高度都得低于600米。飞机在相对、交叉、超越飞行时,必须保持不得小于600米的垂直间隔,以确保飞行安全和交通顺畅。 为什么民航飞机没有降落伞?如果您经常乘坐飞机,会发现飞机上没有配备降落伞。这是因为如果每个乘客都配备一顶降落伞,就会大大增加飞

飞机基本结构

飞机结构详细讲解 机翼 机翼是飞机的重要部件之一,安装在机 上。其最主要作用是产生升力,同时也 在机翼内布置弹药仓和油箱,在飞行中 收藏起落架。另外,在机翼上还安装有 起飞和着陆性能的襟翼和用于飞机横向 纵的副翼,有的还在机翼前缘装有缝翼 加升力的装置。 由于飞机是在空中飞行的,因此和一般的运输工具和机械相比,就有很大的不同。的各个组成部分要求在能够满足结构强度和刚度的情况下尽可能轻,机翼自然也不外,加之机翼是产生升力的主要部件,而且许多飞机的发动机也安装在机翼上或机翼因此所承受的载荷就更大,这就需要机翼有很好的结构强度以承受这巨大的载荷,也要有很大的刚度保证机翼在巨大载荷的作用下不会过分变形。 机翼的基本受力构件包括纵向骨架、横向骨架、蒙皮和接头。其中接头的作用是将上的载荷传递到机身上,而有些飞机整个就是一个大的飞翼,如B2隐形轰炸机则根就没有接头。以下是典型的梁式机翼的结构。 一、纵向骨架 机翼的纵向骨架由翼梁、纵 樯和桁条等组成,所谓纵向是指沿翼展方 向,它们都是沿翼展方向布置的。 * 翼梁是最主要的纵向构件,它承受 全部或大部分弯矩和剪力。翼梁一般由凸 缘、腹板和支柱构成(如图所示)。凸缘通 常由锻造铝合金或高强度合金钢制成,腹板 用硬铝合金板材制成,与上下凸缘用螺钉或 铆钉相连接。凸缘和腹板组成工字型梁,承 受由外载荷转化而成的弯矩和剪力。 * 纵樯与翼梁十分相像,二者的区别在 樯的凸缘很弱并且不与机身相连,其长 时仅为翼展的一部分。纵樯通常布置在 的前后缘部分,与上下蒙皮相连,形成 盒段,承受扭矩。靠后缘的纵樯还可以 襟翼和副翼。 * 桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承力,并共同将气动力分布载荷传给翼肋。 二、横向骨架 机翼的横向骨架主要是指翼肋,而翼肋又包括普通翼肋和加强翼肋,

第一次坐飞机,必熟悉的常识!

第一次坐飞机,必熟悉的常识! 一、乘飞机常识 应尽量轻装。根据规定,手提物品不得超过五公斤,因此能托运的,可随机或分开托运。一般可随身携带雨伞、大衣、手杖、相机、手机、途中看的书报等。 抵达机场后应先办理乘机手续。将身份证交所乘航空公司窗口换取登机牌,同时将随身托运的行李过磅。乘客凭登机牌上飞机,凭行李卡到目的地机场领取行李。 直接托运的行李,在中途换乘飞机时,应关照一下行李是否转到换乘的班机上。例如,乘巴航飞机去开罗,过境卡拉奇,行李卡上应写:起点北京,中转卡拉奇,终点开罗。飞机抵达卡拉奇时,在换乘飞机前,应设法了解(就是多问一句)行李是否已转到去开罗的班机上。 上、下飞机时,空姐站在机舱门口迎送乘客,旅客应有礼貌地点头致意。机内分头等舱和公务舱、经济舱。头等舱在飞机前部。无论是否对号入座,都不要抢占座位。购经济舱票的乘客,不能坐到头等舱、公务舱座位上去。随身携带物品可放在头顶上方的行李架上,较重物品可放在座位下面。但不要把东西放在安全门前或出入通道上。 飞机起飞和降落时,不准吸烟,不得上厕所,要系好安全带,座椅要放直。这时航空小姐常常发给乘客糖果等,在飞机升降过程中咀嚼,以免由于气压变化,引起耳膜疼痛。晕飞机者可在起飞前半小时服用乘晕宁等药物,登机后安稳靠在座椅上,椅背兜中备有清洁袋。呕吐时可吐在袋中。 飞机座位上方都有吹风阀、聚光灯和呼叫航空小姐的按钮。在机舱里感到闷热时可打开吹风阀;看书报时可打开聚光灯;要喝水,购买物品等事情,均可利用按钮呼叫服务员。长途飞行,飞机上备有酒水、茶点、食品、早餐、正餐等。除烟、酒(包括啤酒)要支付现金外,其他免费供应。 飞机上备有各种文字的报刊,供旅客借阅,不得带走。大型飞机在旅途中往往放映电影,但听声音则需租用耳机(也有免费提供耳机的)。在飞机上不要大声喧哗,以免影响他人,特别是在晚间睡眠时间。自己不能入睡时,可看书报,不要与他人闲谈。在飞机上的坐卧姿势也应注意,不要影响他人坐卧。 飞机上的一切用品均不得拿走,如厕所内的卫生用品,座椅背兜中的刊物,餐用杯盘刀叉,以及小毛毯、小垫枕等。飞机中途着陆加油时,乘客一般下机休息,下机时,重要小件物品随身携带,别的物品仍放在机上。如发过境登机卡时,有时可凭卡免费供应饮料一杯。旅客不要随意离开过境候机室,以免误机。到达目的地前,飞机通常广播当地地面天气情况,供乘客下机时穿衣参考,如需更换衣服应到盥洗间。 如遇气候不好,飞机被迫改降其他城市或地区的机场时,航空公司将采取措施,或设法改乘其他交通工具,或安顿旅客等待气候好转继续飞行。这一切费用包括停留期间的食宿费等均由航空公司负责。 如某一代表团人数较多,上下飞机时应清点一下人数。但不要列队而行,不吹哨集合,不喊口令,不喧哗吵闹。 办完入境手续即可凭行李卡认领托运的行李。很多国际机场都有行李传送带的设备和备有手推车。旅客可自己用手推车将行李推出机场。如没有这些设备,可请行李搬运员协助,但要付小费。下机后,如行李一时找不到,可通过机场行李管理人员或有关航空公司查询,并填写申报单交航空公司。如行李遗失,航空

浅析飞机复合材料结构修理技术

浅析飞机复合材料结构修理技术 随着科技的不断进步,复合材料逐渐出现在航空领域,在现代航空领域的发展中被广泛应用。由于复合材料已经成为现代飞机结构的重要组成部分,并且其损伤机理与金属损伤存在差异,对复合材料结构修理技术研究具有重要的现实意义。文章主要基于飞机复合材料结构修理基础之上进行研究,促进飞机复合材料的可持续发展。 标签:飞机复合材料;结构修理;技术分析 前言 国内对于先进复合材料在航空领域的应用已经取得一定成效,但对于飞机复合材料结构修理技术的研究依旧需要不断完善。由于现代航空领域需求的不断增加,对复合材料的使用要求逐渐严格。同时在具体的应用过程中需要对复合材料进行维护,体现出飞机复合材料结构修理技术的重要性。 1 飞机复合材料结构类型以及损伤类型 目前,国内外的复合材料在航空领域的应用具有广泛性特点,材料用量占总体用量总重的25%-40%,其中民用飞机占11%-16%,直升机高达60%以上。由此可见,飞机复合材料结构在航空领域的应用具有广泛性特点。对于复合材料以及损伤类型进行分析,加深对复合材料修理技术的理解。 1.1飞机复合材料结构类型 1.1.1 压层板。复合材料当中的压层板主要是由单层板粘合而成,同时构成材料可为不同材质的单层板,也可为各向异性单层板进行构成。由于单层板构成存在复杂性以及非匀质性,导致单层板的实际构成具有各向异性的特点。 1.1.2 蜂窝夹芯结构。蜂窝夹芯机构主要是由薄面板与中间胶接低密度的夹芯构成,具体的面板结构为层压板,面板较薄。其中具体的使用材料为纤维玻璃布、单向碳纤维、编织布、芳纶有机纤维布等材料。蜂窝夹芯结构比常规金属结构具有较高的比强度、抗弯强度、高结构阻尼、消音以及耐声震、隔热性等良好的性能,在航空领域应用具有较好效果。 1.1.3 蜂窝壁板。蜂窝壁板主要是承力面以及蜂窝夹芯构成,蜂窝夹芯位于承力面板之间,使得整个蜂窝壁板的强度增加[1]。此外还有骨架元件以及众多的不锈钢板材料进行实际构成。在蜂窝壁板的实际结构当中,承力面板所承受的质量一般只是自身在平面内的负荷,骨架元件在具体应用中保证局部刚劲,提升固定地点的安全性以及耐用性。 1.2 飞机复合材料损伤类型

飞机材料

科技论坛:https://www.360docs.net/doc/4e3082865.html, 70年代 复合材料气动剪裁优化设计方法 美国通用动力公司开发的机翼气动弹性综合优化设计程序(TSO) 格鲁门公司开发的颤振和强度优化设计程序(FASTOP) 80年代 美国空军怀特实验室在1983年提出了开发自动化结构设计软件(Automated STRuctural Optimization System简称ASTROS)的计划 ASTROS系统是一个基于有限元的,能够为飞行器结构初步设计提供辅助设计功能的大型结构综合优化设计软件系统。它的最大特点在于多学科综合性,和飞行器结构设计有关的各个学科知识都可以被集成到这个系统中,比如结构的强度、刚度、稳定性、结构振动的频率、模态、气动弹性的颤振、发散、操纵效率等。在系统的统一控制下,结构设计可以同时考虑这些学科知识的设计要求,实现结构整体最优设计。经过十多年的发展,目前ASTROS已经成为美国航空宇航工业和科研院所进行结构综合优化设计和研究的标准程序洲 90年代 美国学者在对复合材料气动弹性研究的基础上,提出了主动气 动弹性机翼的概念(Active Aeroelastic Wing简称AAW),试图利用复合材料结构的柔性,加入主动控制技术。 美国学者提出了多学科设计优化(Multidisciplinary Design Optimization 简称MDO)思想,利用诸如遗传算法、神经网络和响应面法等非线性数值优化方法,开展了基于飞行器系统工程的设计优化,形成了诸如基于并行子空间的优化算法、并行子空间设计、协作优化算法等多学科设计优化方法,并将多学科设计优化方法应用于FIA-18和F-16战斗机的分系统设计。以FIA-18战斗机为基础,采用多学科设计优化技术重新设计机翼,在性能不变的条件下,结构重量只有原来的52%,扭转刚度可以降低40%。把多学科设计优化技术技术用于F-16战斗机机翼设计时,机翼外段刚度可降低25%,结构重量可降低20%,在高动压情况下,控制效能提高了10%。2001年 美国NASA提出了“变形飞机”设计概念。“变形飞机”是通过应用智能结构材料的传感器和作动装置,光滑而持续地改变机翼形状,对不断改变的飞行条件作出响应“变形飞机’,概念使得机翼不再是传统意义上的一个结构,而是一个在主动控制技术控制下的机构,因此它的分析方法将会更加复杂,和“变形飞机”相关的主动控制技术,大挠度柔性结构分析技术,智能材料结构设计技术、主动流场控制技术等新技术也将成为21世纪航空航天飞行器发展的关键技术。 国内相关著名学者和其相关著作 夏人伟教授,黄海教授从工程应用角度提出了基于包络函数和二级近似概念的优化算法。

飞行基础知识

迎角(Angle of attack) 对于固定翼飞机,机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。 对于直升机和旋翼机,迎角的表示方法与固定翼飞机略有不同,它是指与前进方向垂直的轴和旋翼的控制轴之间的夹角。 侧滑角(side slip angle) 是指飞机的轴线与飞机的飞行速度方向在水平面内的夹角。侧滑角是确定飞机飞行姿态的重要参数。

过载(overload) 作用在飞机上的气动力和发动机推力的合力与飞机重力之比称为飞机的过载。飞机所能承受过载的大小是衡量飞机机动性的重要参数。过载越大,飞机的受力越大,为保证飞机的安全,飞机的过载不能过大。飞行员在机动飞行中也会因为过载大于一或者小于一而承受超重和失重。飞行员所能承受的最大过载一般不能超过8G(8倍重力加速度)。 边条(Strake) 边条是指附加于机身或机翼机身结合处的小翼面,包括机身边条和机翼边条两种。机身边条位于机身左右两侧,宽度相等;而机翼边条则是位于机翼机身结合处近似三角形的小翼面。采用边条翼结构可以减少阻力,改善飞机的操作性。 上反角(Dihedral angle) 上反角是指机翼基准面和水平面的夹角,当机翼有扭转时,则是指扭转轴和水平面的夹角。当上反角为负时,就变成了下反角(Cathedral angle)

三角翼(Delta wing) 指平面形状呈三角形的机翼。三角翼的特点是后掠角大,结构简单,展弦比小,适合于超音速飞行。 副油箱(Droppable fuel tank) 是指挂在机身或机翼下面的中间粗、两头尖呈流线型的燃油箱。挂副油箱可以增加飞机的航程和续航时间,而飞机在空战时又可以扔掉副油箱,以较好的机动性投入战斗。 马赫数(Mach number) 常写作M数,它是高速流的一个相似参数。我们平时所说的飞机的M数是指飞机的飞行速度与当地大气(即一定的高度、温度和大气密度)中的音速之比。比如M1.6表示飞机的速度为当地音速的1.6倍。 推力重量比(Thrust-weight ratio) 表示发动机单位重量所产生的推力,简称为推重比,是衡量发动机性能优劣的一个重要指标,推重比越大,发动机的性能越优良。当前先进战斗机的发动机推重比一般都在10以上。 翼载(Wing loading) 翼载是指飞机的满载重量W和飞机的机翼面积S的比值W/S。翼载的大小直接影响到飞机的机动性能、爬升性能以及起飞着陆性能等。 襟翼(Flap) 襟翼是安装在机翼后缘附近的翼面,是后缘的一部分。襟翼可以绕轴向后下方偏转,从而增大机翼的弯度,提高机翼的升力。襟翼的类型有很多,如简单襟翼、开缝襟翼、多缝襟翼、吹气襟翼等等。 配平片(Trim)

航空安全基础知识(三篇)

航空安全基础知识(三篇) 方案计划参考范本 目录: 航空安全基础知识一 设备安全基础知识二 道路运输安全基础知识三 - 1 -

航空安全基础知识一 飞机是在空中飞行的。它比空气重,因此它必须在空气中以相当大的速度运动,才能获得托举它在空气中飞行的能力。这种由于飞机与空气之间的相对运动而产生的力称为空气动力。围绕空气动力而展开的飞行原理研究,决定了飞机在各种环境条件下的安全运行和飞机的设计与制造标准。然而,实际飞行情况要复杂得多,飞机构形和外界条件是千变万化的,其组合有可能形成多种困难的临界情况,而安全飞行原理阐明的正是在各种安全临界情况下,在尽可能考虑人机系统实际特性的条件下,如何按照基本飞行原理正确的使用和操纵飞机;分析各种特殊情况下可能发生的问题及应采取的措施。 2.航空安全的基本理论和保障安全的主要方法 航空安全的基础是优秀的飞行人员、适航的航空器、安全的交通运行和无暴力干扰的运行环境。人为因素失事仍然是到目前为止一个尚未解决的安全问题,但使人们能够理解的是国际民航组织的积极倡导并发布了一系列研究成果,民航界各个层次都重视并采取了积极反映。人为因素方面的任何进步均可望对促进飞行安全发挥重大作用。 航空安全管理同样沿用了泰罗的科学管理,即通过收集数据分析研究,明确责任分工,制定工作标准,有效地利用人力、物力、财力的一整套管理理论和方法。充分利用其科学管理的成果,又要利用现代数学手段和信息论、控制论、系统工程等学科的分析方法,发展了以系统观点为核心的现代管理科学。按照科学所揭示的客观规律来对航空生产的安全进行计划、决策、组织、控制和协调,把生产者、生产工具和生产对象构成的生产力三要素有机、协调的组织在一起,来 3 / 3

飞行器结构设计总复习

静强度设计:安全系数d e P f P d p 设计载荷 e p 使用载荷 u p 极限载荷 静强度设计准则:结构材料的极限载荷大于或等于设计载荷,即认为结构安全u p ≥d p 载荷系数定义:除重力外,作用在飞机某方向上的所有外力的合力与当时飞机重量的比值, 称为该方向上的载荷系数。 载荷系数的物理意义:1、表示了作用于飞机重心处除重力外的外力与飞机重力的比值关系; 2、表示了飞机质量力与重力的比率。 载荷系数实用意义:1、载荷系数确定了,则飞机上的载荷大小也就确定了; 2、载荷系数还表明飞机机动性的好坏。 着陆载荷系数的定义:起落架的实际着陆载荷lg P 与飞机停放地面时起落架的停机载荷lg o P 之 41.杆只能承受(或传递)沿杆轴向的分布力或集中力。 2.薄平板适宜承受在板平面内的分布载荷,包括剪流和拉压应力,不能传弯。没有加强件加 强时,承压的能力比承拉的能力小得多,不适宜受集中力。厚板能承受一定集中力等。 3.三角形薄板不能受剪。 刚度分配原则:在一定条件下(如机翼变形符合平剖面假设),结构间各个原件可直接按照 本身刚度的大小比例来分配它们共同承担的载荷,这种正比关系称为“刚度分配原则” P1l1/E1F1=P2l2/e2f2 K=EF/l p1/p2=k1/k2 p1=k1p/(k1+k2) (翼面结构的典型受力形式及其构造特点: 1.薄蒙皮梁式:蒙皮很薄,纵向翼梁很强,纵向长桁较少且弱,梁缘条的剖面与长桁相比要 大得多,当布置有一根纵梁时同时还要布置有一根以上的枞墙。常分左右机翼-----用几个集 中接头相连。 2.多梁单块式:蒙皮较厚,与长桁、翼梁缘条组成可受轴向力的壁板承受总体弯矩;纵向长 桁布置较密,长桁截面积与梁的截面积比较接近或略小;梁或墙与壁板形成封闭的盒段,增 强了翼面结构的抗扭刚度。为充分发挥多梁单块式机翼的受力特征,左右机翼一般连成整体 贯穿过机身,但机翼本身可能分成几段。 3.多墙厚蒙皮式:布置了较多的枞墙,厚蒙皮,无长桁,有少肋、多肋两种,但结合受集中 力的需要,至少每侧机翼上要布置3~5个加强翼肋。可以没有普通肋。) 大型高亚音速运输机或有些超音速战斗机采用多梁单块式翼面结构,Ma 较大的的超音速飞 机多采用多墙(或多梁)或机翼结构。 局部失稳问题:翼梁缘条受轴向压力时,由于在蒙皮平面内有蒙皮支持,在翼梁平面有腹板 支持,因此一般不会产生总体失稳,但需考虑其局部失稳问题。 翼梁的主要功用承受或传递机翼的剪力Q 和弯矩M 。 (各典型形式(梁式、单块式、多墙式)受力特点的比较: 机翼结构受力形式的发展主要与飞行速度的发展有关。速度的增加促使机翼外形改变并提高 了对结构强度、刚度、外形的要求。比较三者的受力特点可以发现,单纯的梁式、薄蒙皮和 弱长桁均不参加机翼总体弯矩的传递,只有梁的缘条承受弯矩引起的轴力。对于高速飞机, 由于气动载荷增大,而相对厚度减小又导致了机翼结构高度变小,只靠梁来承弯将使承弯构 件的有效高度减小;加之对蒙皮局部刚度和机翼扭转刚度要求的提高,促使蒙皮增厚,长桁 增多、增强。因此,在单块式、多墙式机翼中,蒙皮、长桁,乃至主要是蒙皮发展成主要的 承弯构件。由于蒙皮、长桁等受轴向力的面积较之梁缘条更为分散、更靠近外表面,故承弯 构件有效高度较大,因此厚蒙皮翼盒不仅承扭能力较高,抗弯特性也较好,因此,此种机翼

飞机基础知识

主题:飞机基础知识 飞机概况 排row(如:第5排译作row 5) 飞机A/C(是aircraft 的英文缩写形式)机头nose 机腹belly 蒙皮skin 机身airframe 翼肋rib 翼梁spar 机翼wing 翼尖wing tip 前缘leading edge 后缘trailing edge 客舱cabin 或passenger compartment 货舱cargo compartment 轮舱wheel well 缩写W/W 驾驶舱cockpit/ flight deck 设备舱equipment bay 窗window 滑窗sliding window 门窗door mounted window 旅客窗passenger cabin window 座位seat 过道aisle 地板floor 天花板ceilin 行李架stowage bin 杆lever or stick or column 操纵面control surface 操纵杆control column 控制面板control panel 手柄handle 开关/电门switch 正常位NORM 备用位ALTN 人工manual 自动auto 选择select (注:通常也用缩写形式SEL)按钮button 旋钮knob

方位描述 左left 缩写L 或LH 右right 缩写R 或RH 前部forward 缩写fwd 后部afterward 缩写aft 上面upper 下面lower 左上upper left 右下lower right 左前left forward 右后right afterward 内侧inboard 缩写I/B 外侧outboard 缩写O/B 左内侧left inboard 在…之间between…and… 航材 胶adhesive 销子pin 例如安全销safety pin 插头plug 插座socket 插针pin 电阻resistor 线路wire 引线lead 螺帽nut 螺栓bolt 螺钉screw 跳开关circuit breaker 继电器relay 隔离垫spacer 遮光板glare shield 消耗航材consumable material 故障描述 航前检查preflight (PF)check 航后检查after flight (AF)check 过站检查transit(TR) check 定检scheduled maintenance 发现find或reveal 故障trouble 或failure 或fault 失效fail 或malfunction

航空常识

非托运行李 非托运行李的体积应能置于旅客的前排座椅下或封闭式行李架内。 A.国际航班随身携带物品:免费随身携带物品的重量,每位头等舱、公务舱旅客以8千克为限,每位经济舱旅客以5千克为限;持头等舱、公务舱客票的旅客,每人可随身携带两件物品;持经济舱客票的旅客,每人可随身携带一件物品; B.国内航班随身携带物品:每位头等舱旅客可随身携带两件行李,每件行李重量不得超过5千克;每位公务舱和经济舱旅客可随身携带一件行李,重量不得超过5千克。 C.体积:每件随身携带物品的长、宽、高分别不超过55CM(21英寸)、40CM(15英寸)、20CM(7英寸); 超过上述重量、件数、体积限制的物品,应作为托运行李托运。 下列物品不得作为行李或夹入行李内托运,也不得作为免费随身携带物品带入客舱运输:危险品、枪支(猎枪和体育运动用枪支除外)、军用或警用械具类(含主要零部件)、管制刀具。活体动物、带有明显异味的鲜活易腐物品(如:海鲜、榴莲等)。 托运行李一般规定 托运行李定义:托运行李指旅客交由国航负责照管和运输,并拴挂行李识别标签的行李。 托运行李限额:每件托运行李不得低于2千克。每件托运行李的最大重量不得超过45千克。国际运输的每件托运行李重量一般不超过32千克,如超过32千克,但不超过45千克的行李必须符合达到机场和续程承运人的有关规定。每件托运行李的长、宽、高三边之和不得超过203厘米,不得小于60厘米。 超过免费托运行李限额的托运行李在支付逾重行李费后可作为托运行李运输;但超过最大体积或重量的行李,不能作为托运行李运输,应作为货物运输。 托运行李包装:托运行李应进行适当包装和固定,以保证能承受一定的压力,且在正常操作条件下可以安全地被卸载和运输。托运行李的包装还应遵守以下规定: ? 旅行箱、旅行袋和手提袋应锁好,避免遭窃。 ? 两个或两个以上行李袋不能捆扎成一个。 ? 额外物品不得填塞至托运行李包。 ? 竹制编织筐、网袋、绳子、草袋、塑料袋不得缠绕于行李四周。 ? 乘客姓名、具体地址和电话号码应在行李包内侧和外侧写明。 不允许作为托运行李或夹入行李内托运的物品 基于以下原因下列物品不适合运输:由于物品的危险性、不安全性,或由于其重量、尺寸、形状或者性质,或考虑到包括但不限于飞机机型的因素易碎或易腐物品以及锂电

飞机常识及其飞行学习知识普及其课程

飞机常识及飞行知识普及课程 本内容由[台风]发表于盛唐 第一课飞机的一般知识 飞机是目前最主要的飞行器。它广泛地用于军事和国民经济两方面。本节简要介绍飞机的主要组成部分及其功用,操纵飞机的基本方法,以及机翼的形状等问题。 一、飞机的主要组成部分及其功用 自从世界上出现飞机以来,飞机的结构形式虽然在不断改进,飞机类型不断增多,但到目前为止,除了极少数特殊形式的飞机之外,大多数飞机都是由下面五个主要部分组成,即:机翼、机身、尾翼、起落装置和动力装置。它们各有其独特的功用。 (一)机翼 机翼的主要功用是产生升力,以支持飞机在空中飞行;也起一定的稳定和操纵作用。在机翼上一般安装有副翼和襟翼。操纵副翼可使飞机滚转;放下襟翼能使机翼升力增大。另外,机翼上还可安装发动机、起落架和油箱等。机翼有各种形状,数目也有不同。历史上曾出现过双翼机,甚至还出现过多翼机。但现代飞机一般都是单翼机。 (二)机身 机身的主要功用是装载乘员、旅客、武器、货物和各种设备;还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。 (三)尾翼 尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平定面和可动的升降舵组成。垂直尾翼则包括固定的垂直安定面和可动的方向舵。尾翼的主要功用是用来操纵飞机俯仰和偏转,并保证飞机能平稳地飞行。 (四)起落装置 起落装置是用来支持飞机并使它能在地面和水平面起落和停放。陆上飞机的起落装置,大都由减震支柱和机轮等组成。它是用于起飞、着陆滑跑,地面滑行和停放时支撑飞机。 (五)动力装置 动力装置主要用来产生拉力或推力,使飞机前进。其次还可以为飞机上的用电设备提供电源,为空调设备等用气设备提供气源。 现代飞机的动力装置,应用较广泛的有四种:一是航空活塞式发动机加螺旋桨推进器;二是涡轮喷气发动机;三是涡轮螺旋桨发动机;四是涡轮风扇发动机。随着航空技术的发展,火箭发动机、

飞机基础知识

飞机基础知识 1、基础: 三轴六余度的通用标准: 首先大家要记住这个图,这将是贯穿始终最重要的一个图,后边简单讲到气动导数的时候会再用到。这图代表了三轴6个余度(或DOF,自由度),前后,左右,上下 (x,y,z)三条轴向以及绕轴旋转的余度。记住图中箭头的方向代表了正值的方向(可能跟你学过的直角坐标系正好相反!) 三轴六余度通用标准表

静稳定性的概念: 理解这个,有一颗吃货的心就好懂了:首先你有一个碗,碗里有一颗鸡蛋,你左摇右晃这个碗,放下碗后鸡蛋还是要回到碗底,或者说,鸡蛋在受到扰动后会有自然想回到碗底的趋势,这就是静态稳定性,简称静稳。 反之,鸡蛋立在西瓜上,静态是不稳定的,这就是静不稳,虽然也能配平!飞机也是这样,但是稍微一扰动,他就离稳定状态越来越远了。 鸡蛋放在菜板上,这叫中立稳定:我推它一下,它就停在新的地方,没有想回或者想离开的趋势,换句话说任何地方都能配平! 动态稳定性: 鸡蛋每次都会想往碗询问滚动这叫做静稳,因为摩擦力,每次左摇右晃的幅度越来越小,越来越趋近于在碗底部静止这叫做动态稳定性,简称动稳。 假设理想状态下碗和鸡蛋没有摩擦力,没有空气阻力,你会看到鸡蛋会一直保持左摇右晃下去不衰减,这叫静态稳定+动态中立。 假设碗底有个吹风的喷口,每次越过碗底都会增加向另一边的运动幅度,摆动越来越大,但是每次都还想回到碗底,这叫做静态稳定+动态不稳定。

阻尼系统: 跟弹簧不一样,阻尼系统的阻力是与速度相关的。弹簧的压力是跟位移有关,压缩距离越大,弹力越大,但本身(理想弹簧)不消耗能量。但阻尼系统是运动速度越大,阻力越大,系统会消耗能量。 俯仰/偏航阻尼: 回想鸡蛋的问题,不管是在碗里、板上还是西瓜上,我们用一层厚厚的粘稠的糖浆包裹起来,虽然鸡蛋还是要回到原来中立位置、停在新的位置、离中立越来越远。 最明显的是速度会变慢,这有啥用呢? 比如碗里的状态,原来的鸡蛋就算想回到碗底,也很可能会越过,并来回滚好几次,但有糖浆后很可能只越过一次,甚至不越过,就可以回到原位了。 (静态稳定+动态十分稳定) 当然糖浆太浓(阻尼太大)会严重减慢鸡蛋回去的速度。从系统控制理论来说,鸡蛋稍稍越过原位(峰值位移的2-5%左右),得到的是一个比较迅速和稳定的状态。 另外,即使是西瓜上立鸡蛋的状态,因为糖浆(阻尼)会大大减缓鸡蛋离开平衡点的速度,我们的反应时间就足够滚动或者移动西瓜来重新控制鸡蛋了。 也就是说,适当的俯仰阻尼设置可以让我们手动控制静不稳的飞机。当然这只是静不稳的一半问题,静不稳还有更严重的问题没解决。 平飞的概念: 简单来说,平飞就是飞机六个余度的所有力和力矩相等,飞机对称的话我们省略掉对称轴的东西,比如滚转和侧滑,那么基本上来说就是: 升力=重力 L=W; 推力=阻力 T=D; 最重要的: 抬头力矩=低头力矩 M=0。 听起来太简单了,但这三个等式将是我们设计飞机时最重要的参照。

飞机构造之结构

第一章 飞机结构 1.1 概 述 1.2 飞机载荷 1.3 载荷、变形和应力的概念 1.4 机翼结构 1.5 机身结构 1.6 尾翼和副翼 1.7 机体开口部位的构造和受力分析 1.8 定位编码系统

1.1.概述 固定机翼飞机的机体由机身、机翼、安定面、飞行操纵面和起落架五个主要部件组成。 直升机的机体由机身、旋翼及其相关的减速器、尾桨(单旋翼直升机才有)和起落架组成。 机体各部件由多种材料组成,并通过铆钉、螺栓、螺钉、焊接或胶接而联接起来。飞机各部件由不同构件构成。飞机各构件用来传递载荷或承受应力。单个构件可承受组合应力。 对某些结构,强度是主要的要求;而另一些结构,其要求则完全不同。例如,整流罩只承受飞机飞行过程中的局部空气动力,而不作为主要结构受力件。 1.2.飞机载荷 飞行中,作用于飞机上的载荷主要有飞机重力,升力,阻力和发动机推力(或拉力)。飞行状态改变或受到不稳定气流的影响时,飞机的升力会发生很大变化。飞机着陆接地时,飞机除了承受上述载荷外,还要承受地面撞击力,其中以地面撞击力最大。飞机承受的各种载荷中,以升力和地面撞击力对飞机结构的影响最大。 1.2.1.平飞中的受载情况 飞机在等速直线平飞时,它所受的力有:飞机重力G、升力Y、阻力X和发动机推力P。为了简便起见,假定这四个力都通过飞机的重心,而且推力与阻力的方向相反。则作用在飞机上的力的平衡条件为:升力等于飞机的重力,推力等于飞机的阻力。 即: Y = G P = X 图 1 - 1 平飞时飞机的受载

减速。由于在飞机加速或减速的同时,飞行员减小或增大了飞机的迎角,使升力系数减小或增大,因而升力仍然与飞机重力相等。平飞中,飞机的升力虽然总是与飞机重力相等,但是,飞行速度不同时,飞机上的局部气动载荷(局部空气动力)是不相同的。飞机以小速度平飞时,迎角较大,机翼上表面受到吸力,下表面受到压力,这时的局部气动载荷并不很大;而当飞机以大速度平飞时,迎角较小,对双凸型翼型机翼来说,除了前缘要受到很大压力外,上下表面都要受到很大的吸力。翼型越接近对称形,机翼上下表面的局部气动载荷就越大。所以,如果机翼蒙皮刚度不足,在高速飞行时,就会被显著地吸起或压下,产生明显的鼓胀或下陷现象,影响飞机的空气动力性能。 1.2.2. 飞机在垂直平面内作曲线飞行时的受载情况 飞机在垂直平面内作曲线飞行的受载情况如图1-2所示。这时,作用于飞机的外力仍是飞机的重力、升力、阻力和发动机的推力。但是,这些外力是不平衡的。 曲线飞行虽是一种受力不平衡的运动状态,但研究飞机在曲线飞行中的受载情况时,为了方便起见,可以假设飞机上还作用着与向心力大小相等、方向相反的惯性离心力。这样,就可以把受力不平衡的曲线飞行作为受力平衡的运动状态来研究。 飞机在垂直平面内作曲线飞行时,升力可能大大超过飞机重量。飞机在曲线飞行中所受的载荷可能比平飞时大得多。可以推导出如下公式:其中r 为飞机机动飞行的曲率半径,v 为飞行速度。 Y -Gcos = m r v 2 由于飞机在每一位置的θ角不同,而且飞行速度和曲率半径也不可能一样,所以,飞机在垂直平面内做曲线飞行时,飞机的升力也是随时变化的。 图 1 - 2 飞机在垂直平面内的曲线飞行 N (惯性离心力)

飞机结构修理

飞机结构修理 飞机的机体结构通常是由蒙皮和骨架等组成。蒙皮用来构成机翼,尾翼和机身的外形,承受局部气动载荷,以及参与抵抗机翼,尾翼,机身的弯曲变形和扭转变形。骨架包括纵向构件主要包括梁和桁条组成其作用主要是承受机翼、尾翼、机身弯曲时所产生的拉力和压力;横向构件包括翼肋、隔框等,主要用来保持机翼、尾翼和机身的截面形状,并承受局部的空气动力,各类飞机大部分以铝合金作为主要结构材料。飞机上的蒙皮、梁、肋、桁条、隔框和起落架都可以用铝合金制造。因为其密度小、强度高的优点,在航空材料中得以广泛的应用。铝合金结构在使用过程不可避免地受到不同程度的损伤,如蒙皮破孔、梁缘条裂纹、框变形等,因而需要采取相应的方法加以修理,保证各个结构能够在使用中安全负载和工作。主要介绍飞机铝合金蒙皮、梁、桁、框及肋等结构的维修方法 1.飞机铝合金蒙皮 蒙皮是包围在机翼骨架外的维形构件,用粘接剂或铆钉固定于骨架上,形成机翼的气动力外形。蒙皮用来构成机翼、尾翼和机身的外形,承受局部空气动力载荷,以及参与抵抗机翼、尾翼、机身的弯曲变形和扭转变形。早期低速飞机的蒙皮是布质的,而如今飞机的蒙皮多是用硬铝板材制成的金属蒙皮。

机身蒙皮与机翼蒙皮的作用和构造相同。如衍梁、衍条、蒙皮、隔框的不同组合、可以形成机身的不同构造形式。如果蒙皮较厚,则衍梁、衍条、隔柜可以较弱;如果蒙皮较薄,则上述骨架也应该较强、较多。 2.梁的结构及特点 翼梁

翼梁是最主要的纵向构件,它承受全部或大部分弯矩和剪力。翼梁一般由凸缘、腹板和支柱构成(如图所示),剖面多为工字型。翼梁固支在机身上。凸缘通常由锻造铝合金或高强度合金钢制成,腹板用硬铝合金板材制成,与上下凸缘用螺钉或铆钉相连接。凸缘和腹板组成工字型梁,承受由外载荷转化而成的弯矩和剪力。 桁条与桁梁 衍条的形状、作用与机冀的衍条相似。桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承载能力,并共同将气动力分布载荷传给翼肋。衍梁的形状与衍条相似,但剖面尺才要大些,其作用与翼梁相似。

飞机结构重要资料全

单选 1. 直升机尾浆的作用是 B A:提供向前的推力 B:平衡旋翼扭矩并进行航向操纵 C:提供直升机主升力 D:调整主旋翼桨盘的倾斜角 2. 正常飞行中,飞机高度上升后,在不考虑燃油消耗的前提下,要保持水平匀速飞行,则需要采取的措施为 D A:降低飞行速度 B:开启座舱增压设备 C:打开襟翼 D:提高飞行速度 3. 2.飞机高速小迎角飞行时,机翼蒙皮的受力状态是 A A:上下蒙皮表面均受吸(易鼓胀) B:上下蒙皮表面均受压(易凹陷) C:上表面蒙皮受吸,下表面受压 D:上表面蒙皮受压,下表面受吸 4. 3.飞机低速大迎角飞行时,蒙皮的受力状态为 C A:蒙皮上表面受压,下表面受吸 B:蒙皮上下表面都受吸 C:蒙皮上表面受吸,下表面受压 D:蒙皮上下表面都受压 5. 4.垂直突风对飞机升力具有较大的影响主要是因为它改变了 C A:飞机和空气的相对速度 B:飞机的姿态 C:飞机的迎角 D:飞机的地速 6. 水平尾翼的控制飞机的 A A:俯仰操纵和俯仰稳定性 B:增升 C:偏航操纵和稳定性 D:减速装置 7. 2.飞机低速飞行时要作低角加速度横滚操纵一般可使用 C A:飞行扰流板 B:侧高速副翼 C:机翼外侧低速副翼 D:飞行扰流板和外侧低速副翼 多选 1. 飞机转弯时,可能被操纵的舵面有BCD A:襟翼 B:副翼 C:飞行扰流板 D:方向舵 2. 地面扰流板的作用有AD A:飞机着陆时减速 B:横滚操纵 C:俯仰操纵 D:飞机着陆时卸除升力 3. 对飞机盘旋坡度具有影响的因素有A,B,C,D A:发动机推力 B:飞机的临界迎角 C:飞机的强度 D:飞机的刚度 4. 飞机的部件过载和飞机重心的过载不相等是因为A,C,D A:飞机的角加速度不等于零 B:飞机的速度不等于零 C:部件安装位置不在飞机重心上 D:飞机的角速度不等于零 5. 梁式机翼主要分为A,C,D A:单梁式机翼 B:整体式机翼 C:双梁式机翼 D:多梁式机翼 6. 从结构组成来看,翼梁的主要类型有B,C,D A:复合材料翼梁 B:腹板式 C:整体式 D:桁架式 7. 机身的机构形式主要有A,C,D A:构架式 B:布质蒙皮式 C:硬壳式 D:半硬壳式 8. 飞机表面清洁的注意事项有A,B,C,D A:按规定稀释厂家推荐的清洁剂与溶剂 B:断开与电瓶相连的电路 C:遮盖规定部位,保证排放畅通 D:防止金属构件与酸、碱性溶液接触 9. 飞机最易直接受到雷电击中的部位包括A,C,D A:雷达整流罩 B:机翼上表面 C:机翼、尾翼的尖端和后缘 D:发动机吊舱前缘 10. 胶接的优点有: BC A:降低连接件承压能力 B:减轻重量、提高抗疲劳能力 C:表面平整、光滑,气动性与气密性好 D:抗剥离强度低、工作温度低

相关文档
最新文档