朴素贝叶斯分类器应用

朴素贝叶斯分类器应用
朴素贝叶斯分类器应用

朴素贝叶斯分类器的应用

作者:阮一峰

日期:2013年12月16日

生活中很多场合需要用到分类,比如新闻分类、病人分类等等。

本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法。

一、病人分类的例子

让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。

某个医院早上收了六个门诊病人,如下表。

症状职业疾病

打喷嚏护士感冒

打喷嚏农夫过敏

头痛建筑工人脑震荡

头痛建筑工人感冒

打喷嚏教师感冒

头痛教师脑震荡

现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?

根据贝叶斯定理:

P(A|B) = P(B|A) P(A) / P(B)

可得

P(感冒|打喷嚏x建筑工人)

= P(打喷嚏x建筑工人|感冒) x P(感冒)

/ P(打喷嚏x建筑工人)

假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了

P(感冒|打喷嚏x建筑工人)

= P(打喷嚏|感冒) x P(建筑工人|感冒) x P(感冒)

/ P(打喷嚏) x P(建筑工人)

这是可以计算的。

P(感冒|打喷嚏x建筑工人)

= 0.66 x 0.33 x 0.5 / 0.5 x 0.33

= 0.66

因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。

这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。

二、朴素贝叶斯分类器的公式

假设某个体有n项特征(Feature),分别为F1、F2、...、F n。现有m个类别(Category),分别为C1、C2、...、C m。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值:

P(C|F1F2...Fn)

= P(F1F2...Fn|C)P(C) / P(F1F2...Fn)

由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求

P(F1F2...Fn|C)P(C)

的最大值。

朴素贝叶斯分类器则是更进一步,假设所有特征都彼此独立,因此

P(F1F2...Fn|C)P(C)

= P(F1|C)P(F2|C) ... P(Fn|C)P(C)

上式等号右边的每一项,都可以从统计资料中得到,由此就可以计算出每个类别对应的概率,从而找出最大概率的那个类。

虽然"所有特征彼此独立"这个假设,在现实中不太可能成立,但是它可以大大简化计算,而且有研究表明对分类结果的准确性影响不大。

下面再通过两个例子,来看如何使用朴素贝叶斯分类器。

三、账号分类的例子

本例摘自张洋的《算法杂货铺----分类算法之朴素贝叶斯分类》。

根据某社区网站的抽样统计,该站10000个账号中有89%为真实账号(设为C0),11%为虚假账号(设为C1)。

C0 = 0.89

C1 = 0.11

接下来,就要用统计资料判断一个账号的真实性。假定某一个账号有以下三个特征:

F1: 日志数量/注册天数

F2: 好友数量/注册天数

F3: 是否使用真实头像(真实头像为1,非真实头像为0)

F1 = 0.1

F2 = 0.2

F3 = 0

请问该账号是真实账号还是虚假账号?

方法是使用朴素贝叶斯分类器,计算下面这个计算式的值。

P(F1|C)P(F2|C)P(F3|C)P(C)

虽然上面这些值可以从统计资料得到,但是这里有一个问题:F1和F2是连续变量,不适宜按照某个特定值计算概率。

一个技巧是将连续值变为离散值,计算区间的概率。比如将F1分解成[0, 0.05]、(0.05, 0.2)、[0.2, +∞]三个区间,然后计算每个区间的概率。在我们这个例子中,F1等于0.1,落在第二个区间,所以计算的时候,就使用第二个区间的发生概率。

根据统计资料,可得:

P(F1|C0) = 0.5, P(F1|C1) = 0.1

P(F2|C0) = 0.7, P(F2|C1) = 0.2

P(F3|C0) = 0.2, P(F3|C1) = 0.9

因此,

P(F1|C0) P(F2|C0) P(F3|C0) P(C0)

= 0.5 x 0.7 x 0.2 x 0.89

= 0.0623

P(F1|C1) P(F2|C1) P(F3|C1) P(C1)

= 0.1 x 0.2 x 0.9 x 0.11

= 0.00198

可以看到,虽然这个用户没有使用真实头像,但是他是真实账号的概率,比虚假账号高出30多倍,因此判断这个账号为真。

四、性别分类的例子

本例摘自维基百科,关于处理连续变量的另一种方法。

下面是一组人类身体特征的统计资料。

性别身高(英尺)体重(磅)脚掌(英寸)

男 6 180 12

男 5.92 190 11

男 5.58 170 12

男 5.92 165 10

女 5 100 6

女 5.5 150 8

女 5.42 130 7

女 5.75 150 9

已知某人身高6英尺、体重130磅,脚掌8英寸,请问该人是男是女?

根据朴素贝叶斯分类器,计算下面这个式子的值。

P(身高|性别) x P(体重|性别) x P(脚掌|性别) x P(性别)

这里的困难在于,由于身高、体重、脚掌都是连续变量,不能采用离散变量的方法计算概率。而且由于样本太少,所以也无法分成区间计算。怎么办?

这时,可以假设男性和女性的身高、体重、脚掌都是正态分布,通过样本计算出均值和方差,也就是得到正态分布的密度函数。有了密度函数,就可以把值代入,算出某一点的密度函数的值。

比如,男性的身高是均值5.855、方差0.035的正态分布。所以,男性的身高为6英尺的概率的相对值等于1.5789(大于1并没有关系,因为这里是密度函数的值,只用来反映各个值的相对可能性)。“所以,男性的身高为6英尺的概率等于1.5789(大于1并没有关系,因为这里是密度函数的值)”——我理解是不是因为最终只是比较相对大小,做一个判定,所以直接采用密度函数的值作为概率值?因为理论上连续变量取某一个具体值的概率都是无穷小。

有了这些数据以后,就可以计算性别的分类了。

P(身高=6|男) x P(体重=130|男) x P(脚掌=8|男) x P(男)

= 6.1984 x e-9

P(身高=6|女) x P(体重=130|女) x P(脚掌=8|女) x P(女)

= 5.3778 x e-4

可以看到,女性的概率比男性要高出将近10000倍,所以判断该人为女性。

(完)

朴素贝叶斯编辑

本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!

最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。

中文名

朴素贝叶斯

外文名

Naive Bayesian Model

简称

NBM

属于

广泛的分类模型之一

目录

1定义

2详细内容

3应用

4模型

1定义编辑

学过概率的同学一定都知道贝叶斯定理:

这个在250多年前发明的算法,在信息领域内有着无与伦比的地位。贝叶斯分类是一系列分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。朴素贝叶斯算法(Naive Bayesian) 是其中应用最为广泛的分类算法之一。

朴素贝叶斯分类器基于一个简单的假定:给定目标值时属性之间相互条件独立。

通过以上定理和“朴素”的假定,我们知道:

P( Category | Document) = P ( Document | Category ) * P( Category) / P(Document)[1]

2详细内容编辑

分类是将一个未知样本分到几个预先已知类的过程。数据分类问题的解决是一个两步过程:第一步,建立一个模型,描述预先的数据集或概念集。通过分析由属性描述的样本(或实例,对象等)来构造模型。假定每一个样本都有一个预先定义的类,由一个被称为类标签的属性确定。为建立模型而被分析的数据元组形成训练数据集,该步也称作有指导的学习。

在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。决策树模型通过构造树来解决分类问题。首先利用训练数据集来构造一棵决策树,一旦树建立起来,它就可为未知样本产生一个分类。在分类问题中使用决策树模型有很多的优点,决策树便于使用,而且高效;根据决策树可以很容易地构造出规则,而规则通常易于解释和理解;决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小;决策树模型的另外一大优点就是可以对有许多属性的数据集构造决策树。决策树模型也有一些缺点,比如处理缺失数据时的困难,过度拟合问题的出现,以及忽略数据集中属性之间的相关性等。

3应用编辑

和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。

解决这个问题的方法一般是建立一个属性模型,对于不相互独立的属性,把他们单独处理。例如中文文本分类识别的时候,我们可以建立一个字典来处理一些词组。如果发现特定的问题中存在特殊的模式属性,那么就单独处理。

这样做也符合贝叶斯概率原理,因为我们把一个词组看作一个单独的模式,例如英文文本处理一些长度不等的单词,也都作为单独独立的模式进行处理,这是自然语言与其他分类识别问题的不同点。

实际计算先验概率时候,因为这些模式都是作为概率被程序计算,而不是自然语言被人来理解,所以结果是一样的。

在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。但这点有待验证,因为具体的问题不同,算法得出的结果不同,同一个算法对于同一个问题,只要模式发生变化,也存在不同的识别性能。这点在很多国外论文中已经得到公认,

在机器学习一书中也提到过算法对于属性的识别情况决定于很多因素,例如训练样本和测试样本的比例影响算法的性能。

决策树对于文本分类识别,要看具体情况。在属性相关性较小时,NBC模型的性能稍微良好。属性相关性较小的时候,其他的算法性能也很好,这是由于信息熵理论决定的。

4模型编辑

朴素贝叶斯模型:

----

Vmap=arg max P( Vj | a1,a2...an)

Vj属于V集合

其中Vmap是给定一个example,得到的最可能的目标值.

其中a1...an是这个example里面的属性.

这里面,Vmap目标值,就是后面计算得出的概率最大的一个.所以用max 来表示

----

贝叶斯公式应用到 P( Vj | a1,a2...an)中.

可得到 Vmap= arg max P(a1,a2...an | Vj ) P( Vj ) / P (a1,a2...an)

又因为朴素贝叶斯分类器默认a1...an他们互相独立的.

所以P(a1,a2...an)对于结果没有用处. [因为所有的概率都要除同一个东西之后再比较大小,最后结果也似乎影响不大]

可得到Vmap= arg max P(a1,a2...an | Vj ) P( Vj )

然后

"朴素贝叶斯分类器基于一个简单的假定:给定目标值时属性之间相互条件独立。换言之。该假定说明给定实例的目标值情况下。观察到联合的a1,a2...an的概率正好是对每个单独属性的概率乘积: P(a1,a2...an | Vj ) =Πi P( ai| Vj )

....

朴素贝叶斯分类器:Vnb =arg max P( Vj ) Π i P ( ai | Vj )

"

Vnb = arg max P ( Vj )

此处Vj ( yes | no ),对应天气的例子。

算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification) 2010-09-17 13:09 by T2噬菌体,77407阅读,41评论,收藏,编辑

0、写在前面的话

我个人一直很喜欢算法一类的东西,在我看来算法是人类智慧的精华,其中蕴含着无与伦比的美感。而每次将学过的算法应用到实际中,并解决了实际问题后,那种快感更是我在其它地方体会不到的。

一直想写关于算法的博文,也曾写过零散的两篇,但也许是相比于工程性文章来说太小众,并没有引起大家的兴趣。最近面临毕业找工作,为了能给自己增加筹码,决定再次复习算法方面的知识,我决定趁这个机会,写一系列关于算法的文章。这样做,主要是为了加强自己复习的效果,我想,如果能将复习的东西用自己的理解写成文章,势必比单纯的读书做题掌握的更牢固,也更能触发自己的思考。如果能有感兴趣的朋友从中有所收获,那自然更好。

这个系列我将其命名为“算法杂货铺”,其原因就是这些文章一大特征就是“杂”,我不会专门讨论堆栈、链表、二叉树、查找、排序等任何一本数据结构教科书都会讲的基础内容,我会从一个“专题”出发,如概率算法、分类算法、NP问题、遗传算法等,然后做一个引申,可能会涉及到算法与数据结构、离散数学、概率论、统计学、运筹学、数据挖掘、形式语言与自动机等诸多方面,因此其内容结构就像一个杂货铺。当然,我会竭尽所能,尽量使内容“杂而不乱”。

1.1、摘要

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。

1.2、分类问题综述

对于分类问题,其实谁都不会陌生,说我们每个人每天都在执行分类操作一点都不夸张,只是我们没有意识到罢了。例如,当你看到一个陌生人,你的脑子下意识判断TA是男是女;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、那边有个非主流”之类的话,其实这就是一种分类操作。

从数学角度来说,分类问题可做如下定义:

已知集合:和,确定映射规则

,使得任意有且仅有一个使得成立。(不考虑模糊数学里的模糊集情况)

其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合,其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。

这里要着重强调,分类问题往往采用经验性方法构造映射规则,即一般情况下的分类问题缺少足够的信息来构造100%正确的映射规则,而是通过对经验数据的学习从而实现一定概率意义上正确的分类,因此所训练出的分类器并不是一定能将每个待分类项准确映射到其分类,分类器的质量与分类器构造方法、待分类数据的特性以及训练样本数量等诸多因素有关。

例如,医生对病人进行诊断就是一个典型的分类过程,任何一个医生都无法直接看到病人的病情,只能观察病人表现出的症状和各种化验检测数据来推断病情,这时医生就好比一个分类器,而这个医生诊断的准确率,与他当初受到的教育方式(构造方法)、病人的症状是否突出(待分类数据的特性)以及医生的经验多少(训练样本数量)都有密切关系。

1.3、贝叶斯分类的基础——贝叶斯定理

每次提到贝叶斯定理,我心中的崇敬之情都油然而生,倒不是因为这个定理多高深,而是因为它特别有用。这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:

表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A

的条件概率。其基本求解公式为:。

贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。

下面不加证明地直接给出贝叶斯定理:

1.4、朴素贝叶斯分类

1.4.1、朴素贝叶斯分类的原理与流程

朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。

朴素贝叶斯分类的正式定义如下:

1、设为一个待分类项,而每个a为x的一个特征属性。

2、有类别集合。

3、计算。

4、如果,则。

那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做:

1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。

2、统计得到在各类别下各个特征属性的条件概率估计。即

3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导:

因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有:

根据上述分析,朴素贝叶斯分类的流程可以由下图表示(暂时不考虑验证):

可以看到,整个朴素贝叶斯分类分为三个阶段:

第一阶段——准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。

第二阶段——分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率估计,并将结果记

录。其输入是特征属性和训练样本,输出是分类器。这一阶段是机械性阶段,根据前面讨论的公式可以由程序自动计算完成。

第三阶段——应用阶段。这个阶段的任务是使用分类器对待分类项进行分类,其输入是分类器和待分类项,输出是待分类项与类别的映射关系。这一阶段也是机械性阶段,由程序完成。

1.4.2、估计类别下特征属性划分的条件概率及Laplace校准

这一节讨论P(a|y)的估计。

由上文看出,计算各个划分的条件概率P(a|y)是朴素贝叶斯分类的关键性步骤,当特征属性为离散值时,只要很方便的统计训练样本中各个划分在每个类别中出现的频率即可用来估计P(a|y),下面重点讨论特征属性是连续值的情况。

当特征属性为连续值时,通常假定其值服从高斯分布(也称正态分布)。即:

因此只要计算出训练样本中各个类别中此特征项划分的各均值和标准差,代入上述公式即可得到需要的估计值。均值与标准差的计算在此不再赘述。

另一个需要讨论的问题就是当P(a|y)=0怎么办,当某个类别下某个特征项划分没有出现时,就是产生这种现象,这会令分类器质量大大降低。为了解决这个问题,我们引入Lap lace校准,它的思想非常简单,就是对没类别下所有划分的计数加1,这样如果训练样本集数量充分大时,并不会对结果产生影响,并且解决了上述频率为0的尴尬局面。

1.4.3、朴素贝叶斯分类实例:检测SNS社区中不真实账号

下面讨论一个使用朴素贝叶斯分类解决实际问题的例子,为了简单起见,对例子中的数据做了适当的简化。

这个问题是这样的,对于SNS社区来说,不真实账号(使用虚假身份或用户的小号)是一个普遍存在的问题,作为SNS社区的运营商,希望可以检测出这些不真实账号,从而在一些运营分析报告中避免这些账号的干扰,亦可以加强对SNS社区的了解与监管。

如果通过纯人工检测,需要耗费大量的人力,效率也十分低下,如能引入自动检测机制,必将大大提升工作效率。这个问题说白了,就是要将社区中所有账号在真实账号和不真实账号两个类别上进行分类,下面我们一步一步实现这个过程。

首先设C=0表示真实账号,C=1表示不真实账号。

1、确定特征属性及划分

这一步要找出可以帮助我们区分真实账号与不真实账号的特征属性,在实际应用中,特征属性的数量是很多的,划分也会比较细致,但这里为了简单起见,我们用少量的特征属性以及较粗的划分,并对数据做了修改。

我们选择三个特征属性:a1:日志数量/注册天数,a2:好友数量/注册天数,a3:是否使用真实头像。在SNS社区中这三项都是可以直接从数据库里得到或计算出来的。

下面给出划分:a1:{a<=0.05, 0.05=0.2},a1:{a<=0.1, 0.1= 0.8},a3:{a=0(不是),a=1(是)}。

2、获取训练样本

这里使用运维人员曾经人工检测过的1万个账号作为训练样本。

3、计算训练样本中每个类别的频率

用训练样本中真实账号和不真实账号数量分别除以一万,得到:

4、计算每个类别条件下各个特征属性划分的频率

5、使用分类器进行鉴别

下面我们使用上面训练得到的分类器鉴别一个账号,这个账号使用非真实头像,日志数量与注册天数的比率为0.1,好友数与注册天数的比率为0.2。

可以看到,虽然这个用户没有使用真实头像,但是通过分类器的鉴别,更倾向于将此账号归入真实账号类别。这个例子也展示了当特征属性充分多时,朴素贝叶斯分类对个别属性的抗干扰性。

1.5、分类器的评价

虽然后续还会提到其它分类算法,不过这里我想先提一下如何评价分类器的质量。

首先要定义,分类器的正确率指分类器正确分类的项目占所有被分类项目的比率。

通常使用回归测试来评估分类器的准确率,最简单的方法是用构造完成的分类器对训练数据进行分类,然后根据结果给出正确率评估。但这不是一个好方法,因为使用训练数据作为检测数据有可能因为过分拟合而导致结果过于乐观,所以一种更好的方法是在构造初期将训练数据一分为二,用一部分构造分类器,然后用另一部分检测分类器的准确率。

贝叶斯分类器的matlab实现

贝叶斯分类器的matlab实现 贝叶斯分类原理: 1)在已知P(Wi),P(X|Wi)(i=1,2)及给出待识别的X的情况下,根据贝叶斯公式计算出后验概率P(Wi|X) ; 2)根据1)中计算的后验概率值,找到最大的后验概率,则样本X属于该类 举例: 解决方案: 但对于两类来说,因为分母相同,所以可采取如下分类标准:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% %By Shelley from NCUT,April 14th 2011 %Email:just_for_h264@https://www.360docs.net/doc/4e4592044.html, %此程序利用贝叶斯分类算法,首先对两类样本进行训练, %进而可在屏幕上任意取点,程序可输出属于第一类,还是第二类%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% clear; close all %读入两类训练样本数据 load data %求两类训练样本的均值和方差 u1=mean(Sample1); u2=mean(Sample2); sigm1=cov(Sample1); sigm2=cov(Sample2); %计算两个样本的密度函数并显示 x=-20:0.5:40; y= -20:0.5:20; [X,Y] = meshgrid(x,y); F1 = mvnpdf([X(:),Y(:)],u1,sigm1); F2 = mvnpdf([X(:),Y(:)],u2,sigm2); P1=reshape(F1,size(X)); P2=reshape(F2,size(X)); figure(2) surf(X,Y,P1) hold on surf(X,Y,P2) shading interp colorbar title('条件概率密度函数曲线'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %以下为测试部分 %利用ginput随机选取屏幕上的点(可连续取10个点)

基于机器学习的文本分类方法

基于机器学习算法的文本分类方法综述 摘要:文本分类是机器学习领域新的研究热点。基于机器学习算法的文本分类方法比传统的文本分类方法优势明显。本文综述了现有的基于机器学习的文本分类方法,讨论了各种方法的优缺点,并指出了文本分类方法未来可能的发展趋势。 1.引言 随着计算机技术、数据库技术,网络技术的飞速发展,Internet的广泛应用,信息交换越来越方便,各个领域都不断产生海量数据,使得互联网数据及资源呈现海量特征,尤其是海量的文本数据。如何利用海量数据挖掘出有用的信息和知识,方便人们的查阅和应用,已经成为一个日趋重要的问题。因此,基于文本内容的信息检索和数据挖掘逐渐成为备受关注的领域。文本分类(text categorization,TC)技术是信息检索和文本挖掘的重要基础技术,其作用是根据文本的某些特征,在预先给定的类别标记(label)集合下,根据文本内容判定它的类别。传统的文本分类模式是基于知识工程和专家系统的,在灵活性和分类效果上都有很大的缺陷。例如卡内基集团为路透社开发的Construe专家系统就是采用知识工程方法构造的一个著名的文本分类系统,但该系统的开发工作量达到了10个人年,当需要进行信息更新时,维护非常困难。因此,知识工程方法已不适用于日益复杂的海量数据文本分类系统需求[1]。20世纪90年代以来,机器学习的分类算法有了日新月异的发展,很多分类器模型逐步被应用到文本分类之中,比如支持向量机(SVM,Support Vector Machine)[2-4]、最近邻法(Nearest Neighbor)[5]、决策树(Decision tree)[6]、朴素贝叶斯(Naive Bayes)[7]等。逐渐成熟的基于机器学习的文本分类方法,更注重分类器的模型自动挖掘和生成及动态优化能力,在分类效果和灵活性上都比之前基于知识工程和专家系统的文本分类模式有所突破,取得了很好的分类效果。 本文主要综述基于机器学习算法的文本分类方法。首先对文本分类问题进行概述,阐述文本分类的一般流程以及文本表述、特征选择方面的方法,然后具体研究基于及其学习的文本分类的典型方法,最后指出该领域的研究发展趋势。 2.文本自动分类概述 文本自动分类可简单定义为:给定分类体系后,根据文本内容自动确定文本关联的类别。从数学角度来看,文本分类是一个映射过程,该映射可以是一一映射,也可以是一对多映射过程。文本分类的映射规则是,系统根据已知类别中若干样本的数据信息总结出分类的规律性,建立类别判别公式或判别规则。当遇到新文本时,根据总结出的类别判别规则确定文本所属的类别。也就是说自动文本分类通过监督学习自动构建出分类器,从而实现对新的给定文本的自动归类。文本自动分类一般包括文本表达、特征选取、分类器的选择与训练、分类等几个步骤,其中文本表达和特征选取是文本分类的基础技术,而分类器的选择与训练则是文本自动分类技术的重点,基于机器学习的文本分来就是通过将机器学习领域的分类算法用于文本分类中来[8]。图1是文本自动分类的一般流程。

五种贝叶斯网分类器的分析与比较

五种贝叶斯网分类器的分析与比较 摘要:对五种典型的贝叶斯网分类器进行了分析与比较。在总结各种分类器的基础上,对它们进行了实验比较,讨论了各自的特点,提出了一种针对不同应用对象挑选贝叶斯网分类器的方法。 关键词:贝叶斯网;分类器;数据挖掘;机器学习 故障诊断、模式识别、预测、文本分类、文本过滤等许多工作均可看作是分类问题,即对一给定的对象(这一对象往往可由一组特征描述),识别其所属的类别。完成这种分类工作的系统,称之为分类器。如何从已分类的样本数据中学习构造出一个合适的分类器是机器学习、数据挖掘研究中的一个重要课题,研究得较多的分类器有基于决策树和基于人工神经元网络等方法。贝叶斯网(Bayesiannetworks,BNs)在AI应用中一直作为一种不确定知识表达和推理的工具,从九十年代开始也作为一种分类器得到研究。 本文先简单介绍了贝叶斯网的基本概念,然后对五种典型的贝叶斯网分类器进行了总结分析,并进行了实验比较,讨论了它们的特点,并提出了一种针对不同应用对象挑选贝叶斯分类器的方法。 1贝叶斯网和贝叶斯网分类器 贝叶斯网是一种表达了概率分布的有向无环图,在该图中的每一节点表示一随机变量,图中两节点间若存在着一条弧,则表示这两节点相对应的随机变量是概率相依的,两节点间若没有弧,则说明这两个随机变量是相对独立的。按照贝叶斯网的这种结构,显然网中的任一节点x均和非x的父节点的后裔节点的各节点相对独立。网中任一节点X均有一相应的条件概率表(ConditionalProbabilityTable,CPT),用以表示节点x在其父节点取各可能值时的条件概率。若节点x无父节点,则x的CPT为其先验概率分布。贝叶斯网的结构及各节点的CPT定义了网中各变量的概率分布。 贝叶斯网分类器即是用于分类工作的贝叶斯网。该网中应包含一表示分类的节点C,变量C的取值来自于类别集合{C,C,....,C}。另外还有一组节点x=(x,x,....,x)反映用于分类的特征,一个贝叶斯网分类器的结构可如图1所示。 对于这样的一贝叶斯网分类器,若某一待分类的样本D,其分类特征值为x=(x,x,....,x),则样本D属于类别C的概率为P(C=C|X=x),因而样本D属于类别C的条件是满足(1)式: P(C=C|X=x)=Max{P(C=C|X=x),P(C=C|X=x),...,P(C=C|X=x)}(1) 而由贝叶斯公式 P(C=C|X=x)=(2) 其中P(C=Ck)可由领域专家的经验得到,而P(X=x|C=Ck)和P(X=x)的计算则较困难。应用贝叶斯网分类器分成两阶段。一是贝叶斯网分类器的学习(训练),即从样本数据中构造分类器,包括结构(特征间的依赖关系)学习和CPT表的学习。二是贝叶斯网分类器的推理,即计算类结点的条件概率,对待分类数据进行分类。这两者的时间复杂性均取决于特征间的依赖程度,甚至可以是NP完全问题。因而在实际应用中,往往需

朴素贝叶斯算法详细总结

朴素贝叶斯算法详细总结 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法,是经典的机器学习算法之一,处理很多问题时直接又高效,因此在很多领域有着广泛的应用,如垃圾邮件过滤、文本分类等。也是学习研究自然语言处理问题的一个很好的切入口。朴素贝叶斯原理简单,却有着坚实的数学理论基础,对于刚开始学习算法或者数学基础差的同学们来说,还是会遇到一些困难,花费一定的时间。比如小编刚准备学习的时候,看到贝叶斯公式还是有点小害怕的,也不知道自己能不能搞定。至此,人工智能头条特别为大家寻找并推荐一些文章,希望大家在看过学习后,不仅能消除心里的小恐惧,还能高效、容易理解的get到这个方法,从中获得启发没准还能追到一个女朋友,脱单我们是有技术的。贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。这篇文章我尽可能用直白的话语总结一下我们学习会上讲到的朴素贝叶斯分类算法,希望有利于他人理解。 ▌分类问题综述 对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程。例如,当你看到一个人,你的脑子下意识判断他是学生还是社会上的人;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、”之类的话,其实这就是一种分类操作。 既然是贝叶斯分类算法,那么分类的数学描述又是什么呢? 从数学角度来说,分类问题可做如下定义: 已知集合C=y1,y2,……,yn 和I=x1,x2,……,xn确定映射规则y=f(),使得任意xi∈I有且仅有一个yi∈C,使得yi∈f(xi)成立。 其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合(特征集合),其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。 分类算法的内容是要求给定特征,让我们得出类别,这也是所有分类问题的关键。那么如何由指定特征,得到我们最终的类别,也是我们下面要讲的,每一个不同的分类算法,对

朴素贝叶斯在文本分类上的应用

2019年1月 取此事件作为第一事件,其时空坐标为P1(0,0,0,0),P1′(0,0,0,0),在Σ′系经过时间t′=n/ν′后,Σ′系中会看到第n个波峰通过Σ′系的原点,由于波峰和波谷是绝对的,因此Σ系中也会看到第n个波峰通过Σ′系的原点,我们把此事件记为第二事件,P2(x,0,0,t),P2′(0,0,0,t′).则根据洛伦兹变换,我们有x=γut′,t=γt′。在Σ系中看到t时刻第n个波峰通过(x, 0,0)点,则此时该电磁波通过Σ系原点的周期数为n+νxcosθ/c,也就是: n+νxcosθc=νt→ν=ν′ γ(1-u c cosθ)(5)这就是光的多普勒效应[2],如果ν′是该电磁波的固有频率的话,从式(5)可以看出,两参考系相向运动时,Σ系中看到的光的频率会变大,也就是发生了蓝移;反之,Σ系中看到的光的频率会变小,也就是发生了红移;θ=90°时,只要两惯性系有相对运动,也可看到光的红移现象,这就是光的横向多普勒效应,这是声学多普勒效应中没有的现象,其本质为狭义相对论中的时间变缓。3结语 在本文中,通过对狭义相对论的研究,最终得到了光的多普勒效应的表达式,并通过与声学多普勒效应的对比研究,理解了声学多普勒效应和光学多普勒效应的异同。当限定条件为低速运动时,我们可以在经典物理学的框架下研究问题,比如声学多普勒效应,但如果要研究高速运动的光波,我们就需要在狭义相对论的框架下研究问题,比如光的多普勒效应。相对论乃是当代物理学研究的基石,通过本次研究,使我深刻的意识到了科学家为此做出的巨大贡献,为他们献上最诚挚的敬意。 参考文献 [1]肖志俊.对麦克斯韦方程组的探讨[J].通信技术,2008,41(9):81~83. [2]金永君.光多普勒效应及应用[J].现代物理知识,2003(4):14~15.收稿日期:2018-12-17 朴素贝叶斯在文本分类上的应用 孟天乐(天津市海河中学,天津市300202) 【摘要】文本分类任务是自然语言处理领域中的一个重要分支任务,在现实中有着重要的应用,例如网络舆情分析、商品评论情感分析、新闻领域类别分析等等。朴素贝叶斯方法是一种常见的分类模型,它是一种基于贝叶斯定理和特征条件独立性假设的分类方法。本文主要探究文本分类的流程方法和朴素贝叶斯这一方法的原理并将这种方法应用到文本分类的一个任务—— —垃圾邮件过滤。 【关键词】文本分类;监督学习;朴素贝叶斯;数学模型;垃圾邮件过滤 【中图分类号】TP391.1【文献标识码】A【文章编号】1006-4222(2019)01-0244-02 1前言 随着互联网时代的发展,文本数据的产生变得越来越容易和普遍,处理这些文本数据也变得越来越必要。文本分类任务是自然语言处理领域中的一个重要分支任务,也是机器学习技术中一个重要的应用,应用场景涉及生活的方方面面,如网络舆情分析,商品评论情感分析,新闻领域类别分析等等。 朴素贝叶斯方法是机器学习中一个重要的方法,这是一种基于贝叶斯定理和特征条件独立性假设的分类方法。相关研究和实验显示,这种方法在文本分类任务上的效果较好。2文本分类的流程 文本分类任务不同于其他的分类任务,文本是一种非结构化的数据,需要在使用机器学习模型之前进行一些适当的预处理和文本表示的工作,然后再将处理后的数据输入到模型中得出分类的结论。 2.1分词 中文语言词与词之间没有天然的间隔,这一点不同于很多西方语言(如英语等)。所以中文自然语言处理首要步骤就是要对文本进行分词预处理,即判断出词与词之间的间隔。常用的中文分词工具有jieba,复旦大学的fudannlp,斯坦福大学的stanford分词器等等。 2.2停用词的过滤 中文语言中存在一些没有意义的词,准确的说是对分类没有意义的词,例如语气词、助词、量词等等,去除这些词有利于去掉一些分类时的噪音信息,同时对降低文本向量的维度,提高文本分类的速度也有一定的帮助。 2.3文本向量的表示 文本向量的表示是将非结构化数据转换成结构化数据的一个重要步骤,在这一步骤中,我们使用一个个向量来表示文本的内容,常见的文本表示方法主要有以下几种方法: 2.3.1TF模型 文本特征向量的每一个维度对应词典中的一个词,其取值为该词在文档中的出现频次。 给定词典W={w1,w2,…,w V},文档d可以表示为特征向量d={d1,d2,…,d V},其中V为词典大小,w i表示词典中的第i个 词,t i表示词w i在文档d中出现的次数。即tf(t,d)表示词t在文档d中出现的频次,其代表了词t在文档d中的重要程度。TF模型的特点是模型假设文档中出现频次越高的词对刻画文档信息所起的作用越大,但是TF有一个缺点,就是不考虑不同词对区分不同文档的不同贡献。有一些词尽管在文档中出现的次数较少,但是有可能是分类过程中十分重要的特征,有一些词尽管会经常出现在众多的文档中,但是可能对分类任务没有太大的帮助。于是基于TF模型,存在一个改进的TF-IDF模型。 2.3.2TF-IDF模型 在计算每一个词的权重时,不仅考虑词频,还考虑包含词 论述244

朴素贝叶斯python代码实现

朴素贝叶斯 优点:在数据较少的情况下仍然有效,可以处理多类别问题 缺点:对于输入数据的准备方式较为敏感 适用数据类型:标称型数据 贝叶斯准则: 使用朴素贝叶斯进行文档分类 朴素贝叶斯的一般过程 (1)收集数据:可以使用任何方法。本文使用RSS源 (2)准备数据:需要数值型或者布尔型数据 (3)分析数据:有大量特征时,绘制特征作用不大,此时使用直方图效果更好 (4)训练算法:计算不同的独立特征的条件概率 (5)测试算法:计算错误率 (6)使用算法:一个常见的朴素贝叶斯应用是文档分类。可以在任意的分类场景中使用朴素贝叶斯分类器,不一定非要是文本。 准备数据:从文本中构建词向量 摘自机器学习实战。 [['my','dog','has','flea','problems','help','please'], 0 ['maybe','not','take','him','to','dog','park','stupid'], 1 ['my','dalmation','is','so','cute','I','love','him'], 0

['stop','posting','stupid','worthless','garbage'], 1 ['mr','licks','ate','my','steak','how','to','stop','him'], 0 ['quit','buying','worthless','dog','food','stupid']] 1 以上是六句话,标记是0句子的表示正常句,标记是1句子的表示为粗口。我们通过分析每个句子中的每个词,在粗口句或是正常句出现的概率,可以找出那些词是粗口。 在bayes.py文件中添加如下代码: [python]view plaincopy 1.# coding=utf-8 2. 3.def loadDataSet(): 4. postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please' ], 5. ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], 6. ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], 7. ['stop', 'posting', 'stupid', 'worthless', 'garbage'], 8. ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], 9. ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] 10. classVec = [0, 1, 0, 1, 0, 1] # 1代表侮辱性文字,0代表正常言论 11.return postingList, classVec 12. 13.def createVocabList(dataSet): 14. vocabSet = set([]) 15.for document in dataSet: 16. vocabSet = vocabSet | set(document) 17.return list(vocabSet) 18. 19.def setOfWords2Vec(vocabList, inputSet): 20. returnVec = [0] * len(vocabList) 21.for word in inputSet: 22.if word in vocabList: 23. returnVec[vocabList.index(word)] = 1 24.else: 25.print"the word: %s is not in my Vocabulary!" % word 26.return returnVec

基于TAN结构的贝叶斯文本分类器

2012.1 53 基于TAN 结构的贝叶斯 文本分类器研究 王景中 易路杰 北方工业大学信息工程学院 北京 100144 摘要:朴素贝叶斯分类器是一种简单且有效实现的文本自动类方法,但其独立性假设在实际中是不存在的。在TAN 结构贝叶斯分类算法中,考虑了两两属性间的关联性,对属性间的独立性假设有了一定程度的降低。 关键词:文本分类;贝叶斯;TAN 0 引言 朴素贝叶斯分类器是贝叶斯分类中一种最常见且原理简单,实际应用很成功的方法。朴素贝叶斯分类器中的“朴素”主要是指假设各属性间相互独立。在文本分类中,假设不同的特征项在确定的类别下的条件概率分布相互独立,这样在计算特征项之间的联合分布概率时可以大大提高分类器的速度。目前,很多文本分类系统都采用贝叶斯分类算法,在邮件分类、电子会议、信息过滤等方面都有了广泛的应用。 1 朴素贝叶斯分类器 1.1 贝叶斯公式介绍 贝叶斯定理为:设S 为试验E 的样本空间,A 为E 的事件,1B ,2B ,…n B 为S 的一个划分,且有P(A)>0,P(i B )>0 (i=1,2,…n),则有: 1 (/)() (/)(/)() i i i n j j j P A B P B P B A P A B P B ==∑ ,i=1,2,…n 。 1.2 贝叶斯文本分类 贝叶斯文本分类模型是一种基于统计方法的分类模型,是现有文本分类算法中最有效的方法之一。其基本原理是:通过样本数据的先验概率信息计算确定事件的后验概率。在文本分类中的应用为:通过计算给定文本的特征值在样本库中某一确定类i C 中的先验概率, 得出给定文本的特征值属于 i C 类的后验概率,再通过比较,得出后验概率最大的即为给 定文本最可能属于的类别。因此,贝叶斯类别判别式为: 12arg max (/,,)NB i n C P C w w w = (1) 本文采用布尔表示法描述文本,每个文本表示为特征矢 量(1w ,2w , …V w ),V 为特征词表,V 为特征词表总词数,V=(1B ,2B ,…V B )。特征矢量中的i w ={0,1},1表示特 征词表中的第i 个词出现,0表示没有出现。 根据贝叶斯公式: 121212(,,/)() (/,,)(,,) n i i i n n P w w w C P C P C w w w P w w w = (2) 式中()i P C 为样本集中属于i C 类的概率,12(,,/)n i P w w w C …为i C 类中给定文本特征词的概率。 要求12max (/,,)i n P C w w w …,(2)式中分母12(,,)n P w w w …在给定的所有类别中为固定值,即为常量。因此,只需求: 12arg max (,,/)()NB n i i C P w w w C P C = (3) 式中()i P C 的值为每个类别在样本集中的频率,即为样本集中属于i C 类的文本数与样本集中的总的文本数的比率。12(,,/)n i P w w w C …的值计算比较困难,理论上只有建立一个 足够大的样本集才能准确得到。如何得出12(,,/)n i P w w w C …的值也是贝叶斯算法的关键,直接影响分类的性能。目前只能通过估算得出。 由于贝叶斯分类模型的假设,文本特征属性之间独立同分布,因此各属性联合概率等于各属性概率的乘积,即:

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

基于朴素贝叶斯的文本分类算法

基于朴素贝叶斯的文本分类算法 摘要:常用的文本分类方法有支持向量机、K-近邻算法和朴素贝叶斯。其中朴素贝叶斯具有容易实现,运行速度快的特点,被广泛使用。本文详细介绍了朴素贝叶斯的基本原理,讨论了两种常见模型:多项式模型(MM)和伯努利模型(BM),实现了可运行的代码,并进行了一些数据测试。 关键字:朴素贝叶斯;文本分类 Text Classification Algorithm Based on Naive Bayes Author: soulmachine Email:soulmachine@https://www.360docs.net/doc/4e4592044.html, Blog:https://www.360docs.net/doc/4e4592044.html, Abstract:Usually there are three methods for text classification: SVM、KNN and Na?ve Bayes. Na?ve Bayes is easy to implement and fast, so it is widely used. This article introduced the theory of Na?ve Bayes and discussed two popular models: multinomial model(MM) and Bernoulli model(BM) in details, implemented runnable code and performed some data tests. Keywords: na?ve bayes; text classification 第1章贝叶斯原理 1.1 贝叶斯公式 设A、B是两个事件,且P(A)>0,称 为在事件A发生的条件下事件B发生的条件概率。 乘法公式P(XYZ)=P(Z|XY)P(Y|X)P(X) 全概率公式P(X)=P(X|Y 1)+ P(X|Y 2 )+…+ P(X|Y n ) 贝叶斯公式 在此处,贝叶斯公式,我们要用到的是

朴素贝叶斯分类器应用

朴素贝叶斯分类器的应用 作者:阮一峰 日期:2013年12月16日 生活中很多场合需要用到分类,比如新闻分类、病人分类等等。 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法。 一、病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。 某个医院早上收了六个门诊病人,如下表。 症状职业疾病 打喷嚏护士感冒 打喷嚏农夫过敏 头痛建筑工人脑震荡 头痛建筑工人感冒 打喷嚏教师感冒 头痛教师脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大? 根据贝叶斯定理: P(A|B) = P(B|A) P(A) / P(B)

可得 P(感冒|打喷嚏x建筑工人) = P(打喷嚏x建筑工人|感冒) x P(感冒) / P(打喷嚏x建筑工人) 假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了 P(感冒|打喷嚏x建筑工人) = P(打喷嚏|感冒) x P(建筑工人|感冒) x P(感冒) / P(打喷嚏) x P(建筑工人) 这是可以计算的。 P(感冒|打喷嚏x建筑工人) = 0.66 x 0.33 x 0.5 / 0.5 x 0.33 = 0.66 因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。 这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。 二、朴素贝叶斯分类器的公式 假设某个体有n项特征(Feature),分别为F1、F2、...、F n。现有m个类别(Category),分别为C1、C2、...、C m。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值: P(C|F1F2...Fn) = P(F1F2...Fn|C)P(C) / P(F1F2...Fn) 由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求 P(F1F2...Fn|C)P(C) 的最大值。

机器学习实验报告-朴素贝叶斯学习和分类文本

机器学习实验报告 朴素贝叶斯学习和分类文本 (2015年度秋季学期) 一、实验内容 问题:通过朴素贝叶斯学习和分类文本 目标:可以通过训练好的贝叶斯分类器对文本正确分类二、实验设计

实验原理与设计: 在分类(classification)问题中,常常需要把一个事物分到某个类别。一个事物具有很多属性,把它的众多属性看做一个向量,即x=(x1,x2,x3,…,xn),用x这个向量来代表这个事物。类别也是有很多种,用集合Y=y1,y2,…ym表示。如果x属于y1类别,就可以给x打上y1标签,意思是说x属于y1类别。 这就是所谓的分类(Classification)。x的集合记为X,称为属性集。一般X和Y 的关系是不确定的,你只能在某种程度上说x有多大可能性属于类y1,比如说x有80%的可能性属于类y1,这时可以把X和Y看做是随机变量,P(Y|X)称为Y的后验概率(posterior probability),与之相对的,P(Y)称为Y的先验概率(prior probability)1。在训练阶段,我们要根据从训练数据中收集的信息,对X和Y的每一种组合学习后验概率P(Y|X)。分类时,来了一个实例x,在刚才训练得到的一堆后验概率中找出所有的P(Y|x),其中最大的那个y,即为x所属分类。根据贝叶斯公式,后验概率为 在比较不同Y值的后验概率时,分母P(X)总是常数,因此可以忽略。先验概率P(Y)可以通过计算训练集中属于每一个类的训练样本所占的比例容易地估计。 在文本分类中,假设我们有一个文档d∈X,X是文档向量空间(document space),和一个固定的类集合C={c1,c2,…,cj},类别又称为标签。显然,文档向量空间是一个高维度空间。我们把一堆打了标签的文档集合作为训练样本,∈X×C。例如:={Beijing joins the World Trade Organization, China}对于这个只有一句话的文档,我们把它归类到China,即打上china标 签。 我们期望用某种训练算法,训练出一个函数γ,能够将文档映射到某一个类别:γ:X→C这种类型的学习方法叫做有监督学习,因为事先有一个监督者(我们事先给出了一堆打好标签的文档)像个老师一样监督着整个学习过程。朴素贝叶斯分类器是一种有监督学习。 实验主要代码: 1、 由于中文本身是没有自然分割符(如空格之类符号),所以要获得中文文本的特征变量向量首先需要对文本进行中文分词。这里采用极易中文分词组件

Python实现贝叶斯分类器

关于朴素贝叶斯 朴素贝叶斯算法是一个直观的方法,使用每个属性归属于某个类的概率来做预测。你可以使用这种监督性学习方法,对一个预测性建模问题进行概率建模。 给定一个类,朴素贝叶斯假设每个属性归属于此类的概率独立于其余所有属性,从而简化了概率的计算。这种强假定产生了一个快速、有效的方法。 给定一个属性值,其属于某个类的概率叫做条件概率。对于一个给定的类值,将每个属性的条件概率相乘,便得到一个数据样本属于某个类的概率。 我们可以通过计算样本归属于每个类的概率,然后选择具有最高概率的类来做预测。 通常,我们使用分类数据来描述朴素贝叶斯,因为这样容易通过比率来描述、计算。一个符合我们目的、比较有用的算法需要支持数值属性,同时假设每一个数值属性服从正态分布(分布在一个钟形曲线上),这又是一个强假设,但是依然能够给出一个健壮的结果。 预测糖尿病的发生 本文使用的测试问题是“皮马印第安人糖尿病问题”。 这个问题包括768个对于皮马印第安患者的医疗观测细节,记录所描述的瞬时测量取自诸如患者的年纪,怀孕和血液检查的次数。所有患者都是21岁以上(含21岁)的女性,所有属性都是数值型,而且属性的单位各不相同。 每一个记录归属于一个类,这个类指明以测量时间为止,患者是否是在5年之内感染的糖尿病。如果是,则为1,否则为0。 机器学习文献中已经多次研究了这个标准数据集,好的预测精度为70%-76%。 下面是pima-indians.data.csv文件中的一个样本,了解一下我们将要使用的数据。 注意:下载文件,然后以.csv扩展名保存(如:pima-indians-diabetes.data.csv)。查看文件中所有属性的描述。 Python 1 2 3 4 5 6,148,72,35,0,33.6,0.627,50,1 1,85,66,29,0,26.6,0.351,31,0 8,183,64,0,0,23.3,0.672,32,1 1,89,66,23,94,28.1,0.167,21,0 0,137,40,35,168,43.1,2.288,33,1 朴素贝叶斯算法教程 教程分为如下几步: 1.处理数据:从CSV文件中载入数据,然后划分为训练集和测试集。 2.提取数据特征:提取训练数据集的属性特征,以便我们计算概率并做出预测。 3.单一预测:使用数据集的特征生成单个预测。 4.多重预测:基于给定测试数据集和一个已提取特征的训练数据集生成预测。 5.评估精度:评估对于测试数据集的预测精度作为预测正确率。 6.合并代码:使用所有代码呈现一个完整的、独立的朴素贝叶斯算法的实现。 1.处理数据

朴素贝叶斯分类器

朴素贝叶斯分类器 Naive Bayesian Classifier C语言实现 信息电气工程学院 计算本1102班 20112212465 马振磊

1.贝叶斯公式 通过贝叶斯公式,我们可以的知在属性F1-Fn成立的情况下,该样本属于分类C的概率。 而概率越大,说明样本属于分类C的可能性越大。 若某样本可以分为2种分类A,B。 要比较P(A | F1,F2......) 与P(B | F1,F2......)的大小只需比较,P(A)P(F1,F2......| A) ,与P(B)P(F1,F2......| B) 。因为两式分母一致。 而P(A)P(F1,F2......| A)可以采用缩放为P(A)P(F1|A)P(F2|A).......(Fn|A) 因此,在分类时,只需比较每个属性在分类下的概率累乘,再乘该分类的概率即可。 分类属性outlook 属性temperature 属性humidity 属性wind no sunny hot high weak no sunny hot high strong yes overcast hot high weak yes rain mild high weak yes rain cool normal weak no rain cool normal strong yes overcast cool normal strong no sunny mild high weak yes sunny cool normal weak yes rain mild normal weak yes sunny mild normal strong yes overcast mild high strong yes overcast hot normal weak no rain mild high strong 以上是根据天气的4种属性,某人外出活动的记录。 若要根据以上信息判断 (Outlook = sunny,Temprature = cool,Humidity = high,Wind = strong) 所属分类。 P(yes| sunny ,cool ,high ,strong )=P(yes)P(sunny|yes)P(cool |yes)P(high|yes)P(strong|yes)/K P(no| sunny ,cool ,high ,strong )=P(no)P(sunny|no)P(cool |no)P(high|no)P(strong|no)/K K为缩放因子,我们只需要知道两个概率哪个大,所以可以忽略K。 P(yes)=9/14 P(no)=5/14 P(sunny|yes)=2/9 P(cool|yes)=1/3 P(high|yes)=1/3 P(strong|yes)=1/3 P(sunny|no)=3/5 P(cool|no)=1/5 P(high|no)=4/5 P(strong|no)=3/5 P(yes| sunny ,cool ,high ,strong)=9/14*2/9*1/3*1/3*1/3=0.00529 P(no| sunny ,cool ,high ,strong )=5/14*3/5*1/5*4/5*3/5=0.20571 No的概率大,所以该样本实例属于no分类。

数据挖掘(8):朴素贝叶斯分类算法原理与实践

数据挖掘(8):朴素贝叶斯分类算法原理与实践 隔了很久没有写数据挖掘系列的文章了,今天介绍一下朴素贝叶斯分类算法,讲一下基本原理,再以文本分类实践。 一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X的情况下求Yk类别的概率,而对P(Yk|X)的计算又全部转化到类别Yk的特征分布上来。举个例子,大学的时候,某男生经常去图书室晚自习,发现他喜欢的那个女生也常去那个自习室,心中窃喜,于是每天买点好吃点在那个自习室蹲点等她来,可是人家女生不一定每天都来,眼看天气渐渐炎热,图书馆又不开空调,如果那个女生没有去自修室,该男生也就不去,每次男生鼓足勇气说:“嘿,你明天还来不?”,“啊,不知道,看情况”。然后该男生每天就把她去自习室与否以及一些其他情况做一下记录,用Y表示该女生是否去自习室,即Y={去,不去},X是跟去自修室有关联的一系列条件,比如当天上了哪门主课,蹲点统计了一段时间后,该男生打算今天不再蹲点,而是先预测一下她会不会去,现在已经知道了今天上了常微分方法这么主课,于是计算P(Y=去|常微分方

程)与P(Y=不去|常微分方程),看哪个概率大,如果P(Y=去|常微分方程) >P(Y=不去|常微分方程),那这个男生不管多热都屁颠屁颠去自习室了,否则不就去自习室受罪了。P(Y=去|常微分方程)的计算可以转为计算以前她去的情况下,那天主课是常微分的概率P(常微分方程|Y=去),注意公式右边的分母对每个类别(去/不去)都是一样的,所以计算的时候忽略掉分母,这样虽然得到的概率值已经不再是0~1之间,但是其大小还是能选择类别。 后来他发现还有一些其他条件可以挖,比如当天星期几、当天的天气,以及上一次与她在自修室的气氛,统计了一段时间后,该男子一计算,发现不好算了,因为总结历史的公式: 这里n=3,x(1)表示主课,x(2)表示天气,x(3)表示星期几,x(4)表示气氛,Y仍然是{去,不去},现在主课有8门,天气有晴、雨、阴三种、气氛有A+,A,B+,B,C五种,那么总共需要估计的参数有8*3*7*5*2=1680个,每天只能收集到一条数据,那么等凑齐1 680条数据大学都毕业了,男生打呼不妙,于是做了一个独立性假设,假设这些影响她去自习室的原因是独立互不相关的,于是 有了这个独立假设后,需要估计的参数就变为,(8+3+7+5)*2 = 46个了,而且每天收集的一条数据,可以提供4个参数,这样该男生就预测越来越准了。

统计学习_朴素贝叶斯分类器实验报告

作业6 编程题实验报告 (一)实验内容: 编程实现朴素贝叶斯分类器,假设输入输出都是离散变量。用讲义提供的训练数据进行试验,观察分类器在 121.x x m ==时,输出如何。如果在分类器中加入Laplace 平滑(取?=1) ,结果是否改变。 (二)实验原理: 1)朴素贝叶斯分类器: 对于实验要求的朴素贝叶斯分类器问题,假设数据条件独立,于是可以通过下式计算出联合似然函数: 12(,,)()D i i p x x x y p x y =∏ 其中,()i p x y 可以有给出的样本数据计算出的经验分布估计。 在实验中,朴素贝叶斯分类器问题可以表示为下面的式子: ~1*arg max ()()D i y i y p y p x y ==∏ 其中,~ ()p y 是从给出的样本数据计算出的经验分布估计出的先验分布。 2)Laplace 平滑: 在分类器中加入Laplace 平滑目的在于,对于给定的训练数据中,有可能会出现不能完全覆盖到所有变量取值的数据,这对分类器的分类结果造成一定误差。 解决办法,就是在分类器工作前,再引入一部分先验知识,让每一种变量去只对应分类情况与统计的次数均加上Laplace 平滑参数?。依然采用最大后验概率准则。 (三)实验数据及程序: 1)实验数据处理: 在实验中,所用数据中变量2x 的取值,对应1,2,3s m I === 讲义中所用的两套数据,分别为cover all possible instances 和not cover all possible instances 两种情况,在实验中,分别作为训练样本,在给出测试样本时,输出不同的分类结果。 2)实验程序: 比较朴素贝叶斯分类器,在分类器中加入Laplace 平滑(取?=1)两种情况,在编写matlab 函数时,只需编写分类器中加入Laplace 平滑的函数,朴素贝叶斯分类器是?=0时,特定的Laplace 平滑情况。 实现函数:[kind] =N_Bayes_Lap(X1,X2,y,x1,x2,a) 输入参数:X1,X2,y 为已知的训练数据; x1,x2为测试样本值; a 为调整项,当a=0时,就是朴素贝叶斯分类器,a=1时,为分类器中加入Laplace 平滑。 输出结果:kind ,输出的分类结果。

iris数据集的贝叶斯分类

IRIS 数据集的Bayes 分类实验 一、 实验原理 1) 概述 模式识别中的分类问题是根据对象特征的观察值将对象分到某个类别中去。统计决策理论是处理模式分类问题的基本理论之一,它对模式分析和分类器的设计有着实际的指导意义。 贝叶斯(Bayes )决策理论方法是统计模式识别的一个基本方法,用这个方法进行分类时需要具备以下条件: 各类别总体的分布情况是已知的。 要决策分类的类别数是一定的。 其基本思想是:以Bayes 公式为基础,利用测量到的对象特征配合必要的先验信息,求出各种可能决策情况(分类情况)的后验概率,选取后验概率最大的,或者决策风险最小的决策方式(分类方式)作为决策(分类)的结果。也就是说选取最有可能使得对象具有现在所测得特性的那种假设,作为判别的结果。 常用的Bayes 判别决策准则有最大后验概率准则(MAP ),极大似然比准则(ML ),最小风险Bayes 准则,Neyman-Pearson 准则(N-P )等。 2) 分类器的设计 对于一个一般的c 类分类问题,其分类空间: {}c w w w ,,,21 =Ω 表特性的向量为: ()T d x x x x ,,,21 = 其判别函数有以下几种等价形式: a) ()()i j i w w i j c j w w x w P x w P ∈→≠=∈→>,且,,,2,11 , b) ()()() ()i j j i w w i j c j w P w x p w P w x p ∈→≠=>,且,,,2,1i c) ()() () ()()i i j j i w w i j c j w P w P w x p w x p x l ∈→≠=>=,且,,,2,1 d) ()()() ()i j j i i w w i j c j w P w x np w P w x p ∈→≠=+>+,且,,,2,1ln ln ln 3) IRIS 数据分类实验的设计

相关文档
最新文档