六年级下册数学讲义-小学奥数精讲精练: 第十三讲 两个计数原理

六年级下册数学讲义-小学奥数精讲精练: 第十三讲 两个计数原理
六年级下册数学讲义-小学奥数精讲精练: 第十三讲 两个计数原理

第十三讲两个计数原理

在日常生活和生产实践中要经常遇到排队、分组的有关计数问题。例如,有

4 名学生与 1 位老师排成一排照相,如果老师必须站在中间,问有多少种排法?某条航线上共有 6 个航空站,这条航线上共有多少种不同的飞机票?如果不同的两站间票价都不同,那么有多少种不同的票价?这种计数问题都涉及到两个基本原理:乘法原理和加法原理。下面我们就来讨论这两个基本原理。

1.乘法原理

先看一个例子。

例1 从甲地到乙地有 2 条路可走,乙地到丙地又有 3 条路可走。问从甲地经乙地到丙地,可以有多少种不同的走法?

分析与解:如果用 a1,a2 表示从甲地到乙地的两条路,用 b1,b2,b3 表示从乙地到丙地的三条路(图13-1)。从图中可以看出,从甲地经乙地到丙地共有以下6 种走法:

解这个问题可以分成两个步骤来考虑:第一步,先从由甲地到乙地的两条路中任意选一条(有2 种选法;第二步,再从乙地到丙地的三条路中任意选一条(有

3 种选法),相互搭配后,共有六种不同走法,正好是每一步骤的选法种数(2 与 3)的乘积。

这个具体问题的解法,给了我们一个重要的启示:如果撇开这里所说的“从甲地到乙地”,“从乙地到丙地”这些具体内容,而把它们一般地看成要完成一件事的两个步骤,并且把这里所说的“有 2 条路”,“有3 条路”一般地说成“有

m1 种方法”,有 m2 种方法”。这样,就可以得到如下结论:

如果做一件事需要分两个步骤进行,做第一步有 m1 种不同方法,第二步有

m2 种不同方法,那么完成这件事共有

N=m1×m2 种不同的方法。

更一般地,还可得出这样的结论:

如果做一件事需要分 n 个步骤进行,做第一步有m1 种不同方法,做第二步有

m2 种不同方法,……,做第 n 步有 mn 种不同方法,那么完成这件事共有N=m1×m2×…×mn 种不同方法。我

们把上面这个结论叫做乘法原理。

例2 一天中午,某学生食堂供应 4 种主食、6 种副食。小李到食堂吃饭,主、副食各选一种,问他有多少种不同的选法?

分析与解:我们把一种主食与一种副食的搭配看成一种选法。完成这件事可分两步进行:第一步选主食,有 4 种方法:第二步选副食,有 6 种方法,根据乘法原理,小李共有4×6=24 种不同的选法。

例 3 用 1,2,3,4 这四个数字

(l)可以组成多少个两位数?

(2)可以组成多少个没有重复数字的两位数?

分析与解:(1)我们把组成 1 个两位数看成是在排好顺序的两个位置

上分别填上两个数字。第一步可以从 1,2,3,4 这四个数中任选一个填在十位上,有4 种不同的方法;第二步同样可以从 1,2,3,4 中任选一个填在个位上

(数字允许重复,例如,22 也是符合条件的两位数),也有 4 种不同的方法。根据乘法原理,用 1,2,3,4 这四个数字可以组成

4×4=16

个两位数。它们是

11,12,13,14

21,22,23,24,

31,32,33,34,

41,42,43,44。

(2)采用与例 3(1)相同的分析方法,第一步可以从 1,2,3,4 这四个数字中任选一个填在十位上,有4 种不同方法;第二步。由于数字不能重复,所以

只能从剩下的三个数字中任选一个填在个位上,有 3 种不同方法。根据乘法原理,

用 1,2,3,4 这四个数字可以组成

4×3=12

个没有重复数字的两位数。

2.加法原理

例 4 从甲地到乙地,可以乘火车,也可以乘轮船,还可以乘飞机。在一天中,从甲地到乙地有4 班火车,2 班轮船,1 班飞机。那么在一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?

分析与解:我们把乘坐不同班次的火车、轮船或飞机称为不同的走法。因此,从甲地到乙地乘火车有 4 种走法,乘轮船有 2 种走法,乘飞机有 1 种走法。由于每一种走法都能从甲地到达乙地,所以一天中从甲地到乙地共有

4+2+l=7

种不同的走法。

同样,我们可以从这个问题的解答中得到启示,作出如下的一般结论:

如果完成一件事有 n 类办法,只在选择任何一类办法中的一种方法,这件事就可以完成。又已知在第一类办法中有 m1 种不同方法,在第二类办法中有 m2 种不同方法,……,在第n 类办法中有mn 种不同方法,那么完成这件事共有

N=m1+m2+…+mn

种不同的方法。

我们称这一结论为加法原理。

例 5 书架上有 6 本故事书,5 本画报,7 本科普读物,

(l)小芳从书架上任取一本,有多少种不同取法?

(2)小芳从这三种书籍中各取一本,有多少种不同取法?

分析与解:(l)小芳从书架上任取一本书有三类办法,第一类办法是从故事书中任取一本,可以有 6 种不同取法;第二类办法是从画报中任取一本,可以有 5 种

不同方法;第三类办法是从科普读物中任取一本,可以有 7 种不同方法。根据加法原理,小芳任取一本共有

6+5+7=18

种不同取法。

(2)小芳要取三本不同种类的书,完成这件事可以分三步进行。第一步,取一本故事书,有 6 种方法;第二步,取一本画报,有 5 种方法;第三步,取一本

科普读物,有 7 种方法。根据乘法原理,完成这件事共有

340

6×5×7=210

种不同的方法。

例5 说明,在这类计数问题中,要注意区分运用乘法原理与加法原理的不同条件。在有些问题中,这两个基本原理还要结合起来使用。

例 6 如图 13-2,从甲地到乙地有 4 条不同的道路,从乙地到丙地有两条不同的道路,从甲地到丙地有 3 条不同的道路,问从甲地到丙地共有多少种不同走法?分析与解:完成从甲地到丙地这件事,有两类办法。第一类办法是从甲地经乙地到达丙地,这类办法可以分两步进行:第一步从甲地到乙地,有 4 种走法;第二步从乙地到丙地,有两种走法。根据乘法原理,这类办法共有4×2=8 种不同方法。第二类办法是从甲地直接到达丙地,有3 种不同走法。再根据加法原理,从甲地到达丙地共有

4×2+3=11

种不同走法。

3.例题分析

例 7 (1)有 5 个人排成一排照相,有多少种排法?

341

(2)5 个人排成一排照相,如果某人必须站在中间,有多少种排法?

分析与解:(1)5 个人排成一排,从左到右共 5 个位置。第一个位置可从 5 个人

中任选 1 人,有5 种选法;第二个位置只能从剩下的 4 人中任选1 人,有4 种选法。同理,第三、第四、第五个位置分别有 3 种、2 种、1 种选法。每个位置上站了一人就是一种排法。根据乘法原理,共有

5×4×3×2×1=120

种排法。

(2)这里,限定某人必须站在中间,他的位置固定了,而其余 4 人可以任意站位。仿照(1)中的分析可知共有

4×3×2×1=24

种排法。

说明:自然数 1 到n 的连乘积叫做n 的阶乘,用n!表示。例如5!=1×2×3×4

×5,4!=1×2×3×4。于是,例 7 中的两个式子可简写作 5!=120,4!=24。

例8 某条航线上共有 8 个航空站,这条航线上共有多少种不同的飞机票?如果不同的两站间票价都不同,那么有多少种不同的票价?

分析与解:每一种飞机票可看作起点在前、终点在后两城市间的顺序排列。第一步,确定起点城市,有 8 种选法;第二步确定终点城市,当起点选定后,终点只

有 7 种选法。根据乘法原理,共有

342

种不同的排列方法。因此,这条航线上需要准备 56 种不同的飞机票。

由于两个城市按照起点在前、终点在后的顺序排列有 2 种,所以有两种飞机票。而它们的票价是一样的。因此,这条航线上应有56÷2=28 种不同的票价。

说明:从 n 个不同的元素中,任取 m(m≤n)个不同元素,按照一定的顺序排成一排,叫做从 n 个不同的元素中取 m 个不同的元素的一个排列。所有排列的种数叫做排列数。例 8 中求飞机票种数问题,就是求从 8 个不同元素中,任取两个不同的元素的排列种数问题,一般可以运用乘法原理来求排列数。

例 9 用 0,l,2,3 这四个数,可以组成多少个没有重复数字的四位数?

解法一:一个四位数可以看作是四个数字的一个排列。由于“0”不能作千位数, 所以千位数只能从 1,2,3,这三个数中任取一个,有 3 种选法。再考虑到没有重复数字这一条件,百位、十位、个位三个位置分别有 3 种、2 种、1 种选法。根据乘法原理,可以组成

3×3×2×1=18

个没有重复数字的四位数。

解法二:如果把数字 0,1,2,3 全部取出来排列,根据乘法原理,共有

4×3×2×1=24

种不同的排列。其中“0”在千位上的排列(这种排列不能看成四位数)有

343

种。所以符合条件的四位数就是

24-6=18(个)

例 10 现有红、黄、蓝三种颜色的小旗各一面,用它们挂在旗杆上作信号(顺序不同时表示的信号也不同),总共可以作出多少种不同信号?

分析与解:作出的信号可以按照挂出的小旗面数分成三类:

(l)只有一面小旗作信号,这样作出的信号有 3 种;

(2)用二面小旗作信号,由乘法原理,作出的信号有3×2=6 种;

(3)用三面小旗作信号,由乘法原理,作出的信号有3×2×1=6 种。根据

加法原理,总共可以作出

3+6+6=15 种不同的信号。

习题十三

1.有 6 名同学参加象棋决赛,得冠军和亚军的名单有几种可能的情况?

2.一个口袋装有 6 个小球,另一个口袋装有 5 个小球,所有小球的颜色都不相同。

(1)从两个口袋中任取一个小球,有多少种不同的取法?

344

(2)从两个口袋中各取一个小球,有多少种不同的取法?

3.某市电话号码是五位数,每一数位上的数码可以是 0,l,2,…8,9 中的任意一个(数字可以重复出现,如 00000 也算一个电话号码)那么这个城市最多有多少个电话号码?

4.在“希望杯”足球赛中,共有 27 支小足球队参赛。

(l)如果这27 个队进行单循环赛(两队间只比赛一次,称作一场),需要比赛多少场?

(2)如果这 27 个队进行淘汰赛,最后决出冠军,共需比赛多少场?

5.如上图,从 A 地到B 地有两条路;从B 地到D 地有两条路;从 A 地到C 地只有一条路;从 C 地到D 地有3 条路。那么从A 地到D 地有多少种不同走法?

6.5 件不同的商品陈列在橱窗内,排成一排。

(1)如果某件商品不放在中间,有几种不同排法?

(2)如果某件商品不能放在两端,有几种不同排法?

7.有四封不同的信,随意投入三个信筒里,有多少种不同投法?

345

8.下图中共有4×4=16 个小方格,要把A,B,C,D 四个不同的棋子放在方格里,每行和每列只能出现一个棋子,共有多少种放法?

六年级奥数-牛吃草问题-教师讲义

第八讲牛吃草问题 牛吃草问题概念及公式 牛吃草问题又称为消长问题或牛顿牧场,牛吃草问题的历史起源是17世纪英国伟大的科学家牛顿1642—1727)提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。解决牛吃草问题常用到四个基本公式,分别是︰ 五大基本公式: 1) 设定一头牛一天吃草量为“1” 2)草的生长速度=草量差÷时间差; 3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;` 4)吃的天数=原有草量÷(牛头数-草的生长速度); 5)牛头数=原有草量÷吃的天数+草的生长速度。 这五个公式是解决牛吃草问题的基础。首先一般假设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。 牛吃草问题是经典的奥数题型之一,这里我先介绍一些比较浅显的牛吃草问题,后面给大家开拓一下思维,首先,先介绍一下这类问题的背景,大家看知识要点 求天数 例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。问:这片牧草可供25头牛吃多少天? 解:假设1头牛1天吃的草的数量是1份 草每天的生长量:(200-150)÷(20-10)=5份 10×20=200份=原草量+20天的生长量原草量:200-20×5=100份或 15×10=150份=原草量+10天的生长量原草量:150-10×5=100份 100÷(25-5)=5天 答:这片牧草可供25头牛吃5天?

小学六年级奥数工程问题及答案

小学六年级奥数工程问题及答案 工程问题 1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 解: 1/20+1/16=9/80表示甲乙的工作效率 9/80×5=45/80表示5小时后进水量 1-45/80=35/80表示还要的进水量 35/80÷(9/80-1/10)=35表示还要35小时注满 答:5小时后还要35小时就能将水池注满。 2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天? 解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。 又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。 设合作时间为x天,则甲独做时间为(16-x)天 1/20*(16-x)+7/100*x=1 x=10 答:甲乙最短合作10天 3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时? 解: 由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量 (1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。 根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。 所以1-9/10=1/10表示乙做6-4=2小时的工作量。 1/10÷2=1/20表示乙的工作效率。 1÷1/20=20小时表示乙单独完成需要20小时。 答:乙单独完成需要20小时。 4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成? 解:由题意可知 1/甲+1/乙+1/甲+1/乙+……+1/甲=1 1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1

小学奥数 几何计数 专题

1.掌握计数常用方法; 2.熟记一些计数公式及其推导方法; 3.根据不同题目灵活运用计数方法进行计数. 本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想. 一、几何计数 在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成 2 1223(2)2 n n n ++++= ++……个部分;n 个圆最多分平面的部分数为n(n-1)+2;n 个三角形将平面最多分成3n(n-1)+2部分;n 个四边形将平面最多分成4n(n-1)+2部分…… 在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解. 排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关. 教学目标 知识要点 几何计数

二、几何计数分类 数线段:如果一条线段上有n+1个点(包括两个端点)(或含有n个“基本线段”),那么这n+1个点把这条线段一共分成的线段总数为n+(n-1)+…+2+1条 数角:数角与数线段相似,线段图形中的点类似于角图形中的边. 数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE上有15条线段,每条线段的两端点与点A相连,可构成一个三角形,共有15个三角形,同样一边在BC上的三角形也有15个,所以图中共有30个三角形. 数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n条线段,纵边上共有m条线段,则图中共有长方形(平行四边形)mn个. 例题精讲 【例 1】下图的两个图形(实线)是分别用10根和16根单位长的小棍围成的.如果按此规律(每一层比上面一层多摆出两个小正方形)围成的图形共用了60多根小棍,那么围成的图形有几层,共用了多少根小 棍?(4级) 【例 2】用3根等长的火柴可以摆成一个等边三角形.如图用这样的等边三角形拼合成一个更大的等边三 角形.如果这个大等边三角形的每边由20根火柴组成,那么一共要用多少根火柴?(4级) 【巩固】用三根火柴可拼成一个小“△”,若用108根火柴拼成如图所示形状的大三角形,请你数一数共有多

六年级奥数专题讲义:不定方程与整数分拆

六年级奥数专题讲义:不定方程与整数分拆 求二元一次方程与多元一次方程组的自然数解的方法,与此相关或涉及整数分拆的数论问题. 补充说明:对于不定方程的解法,本讲主要利用同余的性质来求解,对于同余性质读者可参考 《思维导引详解》五年级[第15讲 余数问题]. 解不定方程的4个步骤:①判断是否有解;②化简方程;③求特解;④求通解. 本讲讲解顺序:③?包括1、2、3题?④?②?①包括4、5题?③?包括6、7题,其中③④步骤中加入百鸡问题. 复杂不定方程:⑧、⑨、⑩依次为三元不定方程、较复杂不定方程、复杂不定方程. 整数分拆问题:11、12、13、14、15. 1.在两位数中,能被其各位数字之和整除,而且除得的商恰好是4的数有多少个? 【分析与解】 设这个两位数为ab ,则数字和为a b +,这个数可以表达为 10a b +,有()()104a b a b +÷+= 即1044a b a b +=+,亦即2b a =. 注意到a 和b 都是0到9的整数,且a 不能为0,因此a 只能为1、2、3或4,相应地b 的取值为2、4、6、8. 综上分析,满足题目条件的两位数共有4个,它们是12、24、36和48. 2.设A 和B 都是自然数,并且满足 1711333 A B +=,那么A+B 等于多少? 【分析与解】 将等式两边通分,有3A+llB=17,显然有B=l,A=2时满足,此时A+B=2+1=3.

3.甲级铅笔7分钱一支,乙级铅笔3分钱一支.张明用5角钱恰好可以买这两种不同的铅笔共多少支? 【分析与解】设购买甲级铅笔x支,乙级铅笔y支. 有7x+3y=50,这个不定方程的解法有多种,在这里我们推荐下面这种利用余数的性质来求解的方法: 将系数与常数对3取模(系数7,3中,3最小): 得x=2(mod 3),所以x可以取2,此时y取12;x还可以取2+3=5,此时y取5; 即 2 12 x y = ? ? = ? 、 5 5 x y = ? ? = ? ,对应x y +为14、10 所以张明用5角钱恰好可以买这两种不同的铅笔共14支或10支. 4.有纸币60张,其中1分、l角、1元和10元各有若干张.问这些纸币的总面值是否能够恰好是100元? 【分析与解】设1分、1角、1元和10元纸币分别有a张、b张、c张和d张, 列方程如下: 由 () () 601 101001000100002 a b c d a b c d +++= ?? ? +++= ?? (2)(1)得9999999940 b c d ++=③ 注意到③式左边是9的倍数,而右边不是9的倍数,因此无整数解,即这些纸币的总面值不能恰好为100元. 5.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种型号的短管,加工损耗忽

小学奥数中的涂色问题

小学奥数中的涂色问 题 Revised on November 25, 2020

涂色问题的常见方法 与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法。 一、区域涂色问题 1、根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本 方法。 例1、用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种 4种方法,接着给③号涂色方法有34种涂法,根据分步计数原理,不同的涂色方法有5434240 ???= 2、根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再 用加法原理求出不同的涂色方法种数。 例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有4 4 A; ① ②③④ ⑤⑥

(2)③与⑤同色、④与⑥同色,则有4 4A ; (3)②与⑤同色、③与⑥同色,则有44A ; (4)③与⑤同色、② 与④同色,则有4 4A ;(5)②与④同色、③与⑥同 色,则有44A ; 所以根据加法原理得涂色方法总数为54 4A =120 例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4 2) 区域3与5必须同色,故有3 4A 种; 3) 当用四种颜色时,若区域2与4同色, 4) 则区域3与5不同色,有4 4A 种;若区域3与5同色,则区域2与 4不同色,有44A 种,故用四种颜色时共有24 4A 种。由加法原理可知满足题意的着色方法共有34A +244A =24+2 24=72 3、根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用加法原理求出不同涂色方法总数。

六年级奥数专题讲义:倒推法解题

六年级奥数专题讲义:倒推法解题 一、知识要点 有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。 二、精讲精练 【例题1】一本文艺书,小明第一天看了全书的1/3,第二天看了余下的3/5,还剩下48页,这本书共有多少页? 【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-3/5=2/5。第一天看后还剩下48÷2/5=120页,这120页占全书的1-1/3=2/3,这本书共有120÷2/3=180页。即48÷(1-3/5)÷(1-1/3)=180(页) 答:这本书共有180页。 练习1: 1.某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员? 2.一辆汽车从甲地出发,第一天走了全程的3/8,第二天走了余下的2/3,第三天走了250千米到达乙地。甲、乙两地间的路程是多少千米? 3.把一堆苹果分给四个人,甲拿走了其中的1/6,乙拿走了余下的2/5,丙拿走这时所剩的3/4,丁拿走最后剩下的15个,这堆苹果共有多少个? 【例题2】筑路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7 ,还剩500米,这段公路全长多少米? 【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-2/7=5/7,第一天修后还剩500÷5/7=700米,如果第一天正好修全长的1/5,还余下700+100=800米,这800米占全长的1-1/5=4/5,这段路全长800÷4/5=1000米。列式为: 【500÷(1-2/7)+100】÷(1-1/5)=1000米 答:这段公路全长1000米。 练习2: 1.一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨? 2.用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3

奥数 六年级 千份讲义 14 01应用题综合

1. 细蜡烛的长度是粗蜡烛长度的2倍,粗蜡烛可以点12个小时,细蜡烛可以点7个小时,两根蜡烛同时点燃,那么多少小时后细蜡烛的长度是粗蜡烛的13? 2. 甲乙丙丁四车同时在一条路上行驶:甲车12点追上丙车,14点与丁相遇,16点与乙相遇;乙车17 点与丙相遇,18点追上丁。那么丙和丁几点几分相遇? 3. 甲、乙两船速度相同,同时出发向上游行驶,乙落后甲30千米。出发时甲船上一物品落入水中,10 分钟后此物距甲船3千米,甲船在共行驶10千米后折向下游追赶此物,追上时恰遇乙船,那么水流的速度为多少? 4. 一批工人到甲、乙两个仓库进行搬运工作,甲仓库工作量是乙仓库工作量的1.2倍,第一天去甲仓库 的人数是去乙工地仓库的1.5倍,第二天甲仓库3/8的工人转移到乙仓库工作,第三天又将乙仓库现有工人的3/5转回甲仓库工作。三天过后,甲仓库还需9人再搬1天,乙仓库还需27名工人再搬1天,那么这批工人共有多少人? 5. 工厂接到两个订单,第1个订单需要30个零件A ,x 个零件B ;第2个订单需要x 个零件A ,30个零件B 。甲车间生产零件B 的效率是生产零件A 效率的2倍;乙车间无论生产哪种零件效率都比甲高13。已知甲生产第1个订单会比乙生产第1个订单多用100分钟,甲生产第2个订单会比乙生产第2个订 单多用110分钟。求x 等于多少? 6. 男、女两名田径运动员在长110米的斜坡上练习跑步(坡底为A ,坡顶为B ).两人同时从A 点出发, 在A ,B 之间不停地往返奔跑.已知男运动员上坡速度是每秒3米,下坡速度是每秒6米,女运动员上坡速度是每秒2米,下坡速度是每秒3米.那么两人第2007次相遇的地点离A 点多少米?

六年级奥数专题讲义:多位数的运算

六年级奥数专题讲义:多位数的运算 多位数的运算,涉及利用9 999 9k 个=10k -1,提出公因数,递推等方法求解问题. 一、9 999 9k 个=10k -1的运用 在多位数运算中,我们往往运用9 999 9k 个=10k -1来转化问题; 如:20043 3333个×59049 我们把20043333 3个转化为20049999个9 ÷3, 于是原式为200433333个×59049=(20049999个9÷3)×59049=2004999 9个9 ×59049=(20041000 0个0 -1)× 19683=19683×20041000 0个0 -19683 而对于多位数的减法,我们可以列个竖式来求解; 20049 1968299999999个+1 如: 20049 1999 9 19999 19682999999991 19683 196829998031611968299 980317 +-+个个个,于是为19999 1968299980317个. 简便计算多位数的减法,我们改写这个多位数.

原式=20043 333 3个×2×3×3×20083333个3 =200433333个×2×3×20089999个9 =2003199998个9 ×(20081000 0个0 -1) =20031999 98个9×20081000 0个0-2003199998个9 = 20039 20089 2003920039 20030 20039 20030 1999979999999991 199998 19999799980000111999979998000 02 +-+个个个个个个个,于是为20039 20030 1999 979998000 02个个. 2.计算11112004个1 -222 21002个2 =A ×A,求A . 【分析与解】 此题的显著特征是式子都含有1111n 个1 ,从而找出突破口. 11112004个1 -222 21002个2 =11111002个1 000 01002个0 -11111002个1 =11111002个1 ×(1000 01002个0 -1) =11111002个1 ×(999 91002个9 ) =11111002个1 ×(11111002个1 ×3×3)=A 2 所以,A =333 31002个3 . 3.计算666 62004个6 ×666 62003个6 ×25的乘积数字和是多少? 【分析与解】我们还是利用999 9k 个9 =1000 01-k 个0 来简便计算,但是不同于上式的是不易得出

小学六年级奥数教师讲义版工程问题.docx

百度文库- 让每个人平等地提升自我 六年级奥数第三讲工程问题 顾名思义,工程问题指的是与工程建造有关的数学问题。其实,这类题目的内容已不仅仅是工程方 面的问题,也括行路、水管注水等许多内容。 在分析解答工程问题时,一般常用的数量关系式是: 工作量 =工作效率×工作时间, 工作时间 =工作量÷工作效率, 工作效率 =工作量÷工作时间。 工作量指的是工作的多少,它可以是全部工作量,一般用数 1 表示,也可 工作效率指的是干工作的 快慢,其意义是单位时间里所干的工作量。单位时间的选取,根据题目需要,可以是天,也可以是时、 分、秒等。 工作效率的单位是一个复合单位,表示成“工作量 / 天”,或“工作量 / 时”等。但在不引起误会的情况下,一般不写工作效率的单位。 例 1 单独干某项工程,甲队需 100 天完成,乙队需 150 天完成。甲、乙两队合干 50 天后,剩下的工程乙队干还需多少天?分析与解:以全部工程量为单位 1。甲队单独干需 100 天,甲的工作效 例 2 某项工程,甲单独做需 36 天完成,乙单独做需 45 天完成。如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了 18 天才完成任务。问:甲队干了多少天? 分析:将题目的条件倒过来想,变为“乙队先干 18 天,后面的工作甲、乙两队合干需多少天?”

例 3 单独完成某工程,甲队需 10 天,乙队需 15 天,丙队需 20 天。开始三个队一起干,因工作需要 甲队中途撤走了,结果一共用了 6 天完成这一工程。问:甲队实际工作了几天? 分析与解:乙、丙两队自始至终工作了 6 天,去掉乙、丙两队 6 天的工作量,剩下的是甲队干的,所 以甲队实际工作了 例 4 一批零件,张师傅独做 20 时完成,王师傅独做 30 时完成。如果两人同时做,那么完成任务时张 师傅比王师傅多做 60 个零件。这批零件共有多少个? 分析与解:这道题可以分三步。首先求出两人合作完成需要的时间, 例 5 一水池装有一个放水管和一个排水管,单开放水管 5 时可将空池灌满,单开排水管 7 时可将满池水排完。如果一开始是空池,打开放水管 1 时后又打开排水管,那么再过多长时间池内将积有半池水? 例 6 甲、乙二人同时从两地出发,相向而行。走完全程甲需 60 分钟,乙需 40 分钟。出发后 5 分钟,甲因忘带东西而返回出发点,取东西又耽误了 5 分钟。甲再出发后多长时间两人相遇? 分析:这道题看起来像行程问题,但是既没有路程又没有速度,所以不能用时间、路程、速度三者 的关系来解答。甲出发 5 分钟后返回,路上耽误10 分钟,再加上取东西的 5 分钟,等于比乙晚出发15

小学奥数奥数计数问题

乘法原理:如果完成一件事需要n个步骤,其中,完成第一步有m1 种不同的方法,完成第二步有m2 种不同的方法,…… 完成第n步有m n种不同的方法,那么完成这件事情共有m1 ×m2 ×……×m n种不同的方法。 例1 上海到天津每天有 2 班飞机,4 趟火车,6 班汽车,从天津到北京有 2 班汽车。假期小茗有一次长途旅游,他 从上海出发先到天津,然后到北京,共有多少种走法? 例2 “IMO”是国际奥林匹克的缩写,把这 3 个字母用红、黄、蓝三种颜色的笔来写,共有多少种写法? 【巩固】在日常生活中,人们用来装饭、菜的有餐碗和餐盘,用来吃饭的有餐勺、餐叉和餐筷。如果一种装饭菜的和一种吃饭的餐具配作一套,那么以上这些可以组成不重复的餐具多少套? 例3 小红、小明准备在5×5的方格中放黑、白棋子各一枚,要求两枚不同的棋子不在同一行也不在同一列,共有多少种方法? 【巩固】右图中共有 16 个方格,要把 A、B、C、D 四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?

例4 用数字0,1,2,3,4,组成三位数,符合下列条件的三位数各多少个? ①各个位上的数字允许重复;②各个位上的数字不允许重复; 【巩固】由数字 0、1、2、3 组成三位数,问:①可组成多少个不同的三位数?②可组成多少个没有重复数字的三位数? 【拓展】由数字 1、2、3、4、5、6 共可组成多少个没有重复数字的四位奇数? 例5 把1~100 这100 个自然数分别写在100 张卡片上,从中任意选出两张,使他们的差为奇数的方法有多少种? 小结:应用乘法原理解决问题时要注意: ①做一件事要分成几个彼此互不影响的独立的步骤来完成; ②要一步接一步的完成所有步骤; ③每个步骤各有若干种不同的方法。 加法原理:一般地,如果完成一件事有 k 类方法,第一类方法中有 m1 种不同做法,第二类方法中有 m2 种不同做法,…,第 k 类方法中有 mk 种不同的做法,则完成这件事共有:N=m1+m2+…+mk种不同的方法.例6 学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150 本,不同的科技书200 本,不同的小说100 本.那么,小明借一本书可以有多少种不同的选法?

小学 六年级数学六年级奥数 浓度问题讲义

六年级奥数 浓度问题讲义 一、专题引导: 什么是浓度呢?(以糖水为例,将糖溶于水中得到糖水,这里糖叫溶质,水叫溶剂,糖水叫溶液。) 三者之间关系:浓度= ×100%= ×100% 二、典型例题 例1、有浓度为30%的酒精溶液若干,添加了一定数量的水后稀释成浓度为24%的酒精溶液,如果再加入同样的水,那么酒精溶液的浓度变为多少? 思路导航:稀释问题是溶质的重量是不变量。 例2、有浓度为7%的盐水600克,要使盐水的浓度加大到10%,需要加盐多少克? 思路导航:溶剂重理不变。 [练习]海水中盐的含量为5%,在40千克海水中,需加多少千克淡水才使海水中盐的含量为2%? 例3、在浓度为50%的硫酸溶液100千克中,再加入多少千克浓度为5%的硫酸溶液,就可以配制成浓度为25%的硫酸溶液? 思路导航:混合前两种溶液中所含溶质的重量、溶剂的重量、溶液的重量分别等于混合后溶液中所含溶质的重量、溶剂的重量、溶液的重量。 [练习]配制硫酸含量为20%的硫酸溶液1000克,需要用硫酸含量为18%和23%的硫酸溶液各多少克? 溶质溶液溶质溶质+溶剂

例4、从装满100克浓度为80%的盐水杯中倒出40克盐水,再用清水将杯加满;再倒出40克盐水,然后再用清水将杯加满,如此反复三次后,杯中盐水的浓度是多少? 思路导航:反复三次后,杯中又已装满,即最后杯中盐水的重量仍为100克,由此;问题的关键是求出如此反复三次后还剩盐多少克? [练习]①有盐水若干升,加入一定量水后,盐水浓度降到3%,又加入同样多的水后,盐水浓度又降到2%,再加入同样多的水,此时浓度是多少呢?又问未加入水时盐水浓度是多少? ②有含糖6%的糖水900克,要使其含糖量加大到10%,需加糖多少克? 比和比例应用题 例4、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是5 0:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人? 思路导航:单价比:成年人:儿童:残疾人=3:2:1 人数比:50:20:1 [练习]甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米? 例5、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元。已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比

小学奥数教师版-7-1-1 加法原理之分类枚举(一)

7-1-1.加法原理之分类枚举(一) 教学目标 1.使学生掌握加法原理的基本内容; 2.掌握加法原理的运用以及与乘法原理的区别; 3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则. 加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致. 知识要点 一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决. 例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法? 分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法. 在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数. 二、加法原理的定义 一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理. 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则: 1完成这件事的任何一种方法必须属于某一类; 2分别属于不同两类的两种方法是不同的方法. 只有满足这两条基本原则,才可以保证分类计数原理计算正确. 运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”. 三、加法原理解题三部曲 1、完成一件事分N 类; 2、每类找种数(每类的一种情况必须是能完成该件事); 3、类类相加 枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.

六年级奥数专题复习资料

1、华联商厦出售彩色电视机,上午售出总数的一半多10台,下午售出剩下的一半多20台, 还剩95台。店里原有彩色电视机多少台? 2、解放军某部参加抗洪救灾,从第一队抽调一半人支援第二队,抽调35人支援第三队, 又抽调剩下的一半支援第四队,后来又调进8人,这时第一队还有30人。第一队原有多少人? 3、甲、乙、丙三个组共有图书90本,如果乙组向甲组借3本后,又送给丙组5本,三个组所有图书的本书刚好相等。甲、乙、丙三个组原来各有图书多少本? 4、甲、乙、丙、丁四个小朋友共有彩色玻璃弹子100颗。甲给乙13颗,乙给丙18颗,丙给丁16颗,丁给甲2颗后,四人的弹子数相等,他们原来各有弹子多少颗? 5、学校运来36棵树苗,冬冬和丽丽两人争着去栽。冬冬先拿了树苗若干棵,丽丽看到冬冬拿得太多,就抢了10棵;冬冬又从丽丽那里抢走了6棵,这时冬冬拿的棵树时丽丽的2倍。最初冬冬拿了多少棵? 6、书架分上、中、下三层,一共放192本书。先从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后从下层取出与上层剩下的本数同样多的书放到上层,这时三层书架所放的本数相同。这个书架上、中、下层原来各放有多少本书? 7、小松、小明、小航各有玻璃球若干个,如果小松按小明现有的玻璃球个数给小明,再按小航现有的玻璃球个数给小航,小明也按小松、小航现有的个数再分别给小松、小航;最后,小航也按同样的办法分给小松和小明。这时,他们三人都各有32个玻璃球。小明原来有多少个玻璃球?

1、张大爷提篮去卖蛋,第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个。这时,鸡蛋都卖完了。张大爷篮中原有鸡蛋多少个? 2、3只猴子吃篮里的桃子,第一只猴子吃了1 3 ,第二只猴子吃了剩下的 1 3 ,第三只猴子吃 了第二只剩下的1 4 ,最后篮里还剩下6只桃子。篮里原有桃子多少只? 3、一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米。这捆电线原有多少米? 4、修一段路,第一天修全路的1 2 还多2千米,第二天修余下的 1 3 少1千米,第三天修余下 的1 4 还多1千米,这样还剩下20千米没有修完,求公路的全长多少千米? 5、仓库里的水泥要全部运走。第一次运走了全部的1 2 又 1 2 吨,第二次运走了剩余的 1 3 又 1 3 吨,第三次运走了第二次余下的1 4 又 1 4 吨,第四次运走了第三次余下的 1 5 又 1 5 吨,第五次 运走了最后剩下的19吨。这个仓库原来共有水泥多少吨? 6、有铅笔若干枝,分配给甲、乙、丙三个学生,最初甲分得的最多,乙分得的较少,丙分得的最少,因此重新分配。第一次分配,甲分别给乙、丙各所有枝数多4枝;第二次分配,乙分别给甲、丙各所有枝数多4枝;第三次分配,丙分别给甲、乙各所有枝数多4枝。经过三次重新分配后,甲、乙、丙三人各得铅笔44枝,最初甲得几枝?

六年级奥数举一反三第25讲 最大最小问题含答案

第25讲 最大最小问题 一、知识要点 人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。 二、精讲精练 【例题1】a 和b 是小于100的两个不同的自然数,求 a -b a+b 的最大值。 根据题意,应使分子尽可能大,使分母尽可能小。所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99 a - b a+b 的最大值是99-199+1 =49 50 答:a -b a+b 的最大值是4950 。 练习1: 1、 设x 和y 是选自前100个自然数的两个不同的数,求x -y x+y 的最大值。 2、 a 和b 是小于50的两个不同的自然数,且a >b ,求a -b a+b 的最小值。 3、 设x 和y 是选自前200个自然数的两个不同的数,且x >y ,①求x+y x -y 的最大值;②求x+y x -y 的最小值。

【例题2】有甲、乙两个两位数,甲数2 7 等于乙数的 2 3 。这两个两位数的差最多是多少? 甲数:乙数=2 3 : 2 7 =7:3,甲数的7份,乙数的3份。由甲是两位数可知,每份的数量 最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56 答:这两个两位数的差最多是56。 练习2: 1.有甲、乙两个两位数,甲数的 3 10 等于乙数的 4 5 。这两个两位数的差最多是多少? 2、甲、乙两数都是三位数,如果甲数的5 6 恰好等于乙数的 1 4 。这两个两位数的和最小是多少? 3.加工某种机器零件要三道工序,专做第一、二、三道工序的工人每小时分别能做48个、32个、28个,要使每天三道工序完成的个数相同,至少要安排多少工人? 【例题3】如果两个四位数的差等于8921,就是说这两个四位数组成一个数对。问:这样的数对共有多少个? 在这些数对中,被减数最大是9999,此时减数是9999-8921=1078,被减数和剑术同时减去1后,又得到一个满足题意条件的四位数对。为了保证减数是四位数,最多可以减去78,因此,这样的数对共有78+1=79个。 答:这样的数对共有79个。 练习3 1、两个四位数的差是8921。这两个四位数的和的最大值是多少?

小学奥数计数原理

计数原理 知识纵横: 如果完成一件事情,有几类不同的方法,而且每类方法中又有几种可能的方法,那么求完成这件事的方法总数,即各类方法的总和,就是我们要掌握的加法原理。 加法原理:完成某件事情,如果有几类方法,而在第一类方法中有m1种方法,第二类方法中有m2种方法……第n类有m n种,那么完成这件事的方法总数可以表示为m1+ m2+ m3+…+m n。 完成一件事,需要分几个步骤来完成,而完成每步又有几种不同的方法,要求完成这件事的方法的总数,应当将各步骤方法总数相乘,这就是我们应掌握的乘法原理。 乘法原理:完成一件事需要分成几个步骤,第一步有m1种方法,第二步有m2种方法,第三步有m3种方法……第n步有m n种方法,那么完成这件事共有m1×m2×m3×…×m n种不同的方法。 例题求解: 【例1】 10个人进行乒乓球比赛,每两个人之间比赛一场,问:一共要比赛多少场? 【例2】一天有6节不同的课,这一天的课表有多少种排法? 【例3】 1000至1999这些自然数中,个位数大于百位数的有多少个? 【例4】 4只鸟飞入4个不同的笼子里,每只小鸟都有自己的一个笼子(不同的鸟,笼子也不同),每个笼子只能进一只鸟。若都不飞进自己的笼子里去,有种不同的飞法。 【例5】如果组成三位数abc的三个数字a,b,c中,有一个数字是另外两个数字的乘积,则称它为“特殊数”。在所有的三位数中,共有个“特殊数”。

【例6】如下图所示,用红、绿、蓝、黄四种颜色,涂编号为1、2、3、4的长方形,使任何相邻的两个长方形的颜色都不相同,一共有多少种不同的涂法? 【例7】恰有两位数字相同的三位数共有多少个? 基础夯实 1、一件工作可以用3种方法完成,有5人会用第1种方法完成,有4人会用第2种方法完成,有6人会用第3种方法完成。选出一个人来完成这项工作共有多少种选法? 2、一件工序可以分3步方法完成,有5人会做第1步,有4人会做第2步,有6人会做第3步,每个人只会做一步。选出三个人来完成这组工序共有多少种选法? 3、用1、2、3、 4、5这五个数字组成的不含重复数字的四位数有多少个?其中有多少个偶数? 4、有20个队参加篮球比赛,比赛先分三组,第一组7个队,第二组6个队,第三组7

小学六年级奥数辅导讲义(无答案)

第一章 数与代数 例1、计算12×3 + 13×4 + 14×5 + 1 5×6 例2、计算?8.0+? ?31.0 例3、计算121 + 3032121 + 50505 212121 + 例4、2016的所有因数是多少个 例5、一个大于100的自然数,它减去12或者加上11都是完全平方数,求这个数是多少。 * 例6、将数字1到9做成9张卡牌,从中任意取出3张卡牌,用它们组成六个没有重复数字的三位数,求这六个三位数之和是所取出的三个数之和的多少倍。 例7、幼儿园小朋友分糖果,若给每个小朋友5块糖果,则剩下7块,若给每个小朋友6块糖果,则还缺4块,请计算有多少块糖果。 例8、2016个83相乘,其末尾数是多少 例9、若a 、b 、c 均为非0的自然数,a 16 + b 4 + c 2 的近似值是,那么它的准确值是多少 例10、有一种算法叫阶乘,用“!”表示,规定如下: % 0!=1, 1!=1, 2!=2×1=2, 3!=3×2×1=6, 5!=5×4×3×2×1=120 求4!等于多少。请写一个算式,算式中的数字只有4个0,运算符号可以包括加减乘除、括号和阶乘,使该算式的结果等于24。 第二章 ]

第三章推理 例1、右图表格中每个方格填入一个图形,使得表格中每行、每列及对角线上的四个方格中的图形都是且不重复。 △□☆○ ☆| ? 例2、黑盒中放有180个白色棋子和181个黑色棋子,白盒中放有181个白色棋子,每次任意从黑盒中摸出两个棋子,如果两个棋子同色,就从白盒中拿出一个白子放入黑盒;如果两个棋子不同色,就把黑子放回黑盒.那么最多可以拿多少次,黑盒中最后剩下的棋子是什么颜色的 例3、一个正方体木块,每个面上分别标着数字1~6。2对着的数字是(),3对着的数字是()。 例4、从1到100的自然数中,至少取多少个不同的数,其中必有两个数的 和为102说明理由。(抽屉原理1:把多于n个的物体放到n个抽屉里,则 至少有一个抽屉里有2个或2个以上的物体) 例5、一个岛上有两种人,一种只说真话,一种只说假话。第一天,2015 个人随机围成一圈,他们每人都说:“我左右的两个人都是骗子。”第二 天,活动继续,但有一人因病未到,剩余2014个人再次随机坐成一圈,每 个人都说:“我左右的两个人都是与我不同类型的人。”问题:那个生病 的人说真话还是假话说假话的一共有多少人 例6、A,B,C,D,E五个数,A比B大,C比D大却比E小,D比B 大,E比A小,这五个数从大到小排列是: 例7、有一路公共汽车,包括起点站和终点站共有11个车站。如果有一辆车从起点站出发,除终点站外,每一站上车的乘客中,恰好各有1位乘客从这一站坐到以后的每一站,为了使每位乘客都有座位,问这辆公共汽车最少需要有多少个座位

六年级奥数-重叠问题

六年级奥数-重叠问题 容斥原理就是:在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先 计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复, 这种计数的方法称为容斥原理。 公式法: 运用容斥原理一:C=A+B-AB,这一公式可计算出两个集合圈的有关问题【C表示两个 集合的并集,A.B表示两个集合,AB表示两个集合的交集】。 运用容斥原理二:D=A+B+C-AB-AC-BC+ABC,这一公式可计算出三个集合的有关 问题。【D表示三个集合的并集,A.B.C表示三个不同的集合,AB.AC.BC表示两个不同集合 的交集,ABC表示三个集合的交集】 图象法: 根据题意画图,并借助图形帮助分析,逐个地计算出各个部分,从而解答问题。 例1:某班40位同学在一次数学测验中,答对第一题的有23人,答对第二题的有27人,两 题都答对的有17人,问有几个同学两题都不对? 例2:某班有学生48人,其中21人参加数学竞赛,13人参加作文竞赛,有7人既参加数学 竞赛又参加作文竞赛。那么 【1】只参加数学竞赛的有多少人? 【2】参加竞赛的一共有多少人? 【3】没有参加竞赛的一共有多少人? 例3:某校有三个兴趣小组,体育.书法和美术。已知参加这三个兴趣小组的学生人数分别是25人.24人和30人。同时参加体育.书法兴趣小组的有5人,同时参加体育.美术兴趣小组 的有2人,同时参加书法.美术兴趣小组的有4人,有1人同时参加了这三个兴趣小组,问:共有多少人参加兴趣小组? 例4:某校对五年级100名同学进行学习兴趣调查,结果有58人喜欢语文,有38人喜欢数

六年级奥数讲义第29讲抽屉原理

抽屉原理 专题简析: 如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。 基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。(2)如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。 利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。b、把元素放入(或取出)抽屉。C、说明理由,得出结论。 例题1: 某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么? 练习1: 1、某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,

为什么? 2、某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天? 3、15个小朋友中,至少有几个小朋友在同一个月出生? 例题2: 某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 练习2:

1、某班学生去买语文书、数学书、外语书、美术书、自然书。买书的情况是:有买一本的、二本的、三本或四本的。,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 2、学校图书室有历史、文艺、科普三种图书。每个学生从中任意借两本,那么至少要几个同学才能保证一定有两人所借的图书属于同一种? 3、一只袋中装有许多规格相同但颜色不同的玻璃珠子,颜色有绿、红、黄三种,问最少要取出多少个珠子才能保证有两个同色的? 例题3: 一只袋中装有许多规格相同但颜色不同的手套,颜色有黑、红、蓝、黄四种。问最少要摸出多少只手套才能保证有3副同色的?

相关文档
最新文档