电压放大电路设计

电压放大电路设计
电压放大电路设计

低频功率放大器电路设计

参加全国大学生电子设计大赛的同学们加 油了! 低频功率放大器设计与总结报告 作者:王汉光 一、任务 设计并制作一个低频功率放大器,要求末级功放管采用分立的大功率MOS 晶体管。 二、要求 1.基本要求 (1)当输入正弦信号电压有效值为5mV时,在8Ω电阻负载(一端接地)上,输出功率≥5W,输出波形无明显失真。 (2)通频带为20Hz~20kHz。 (3)输入电阻为600Ω。 (4)输出噪声电压有效值V0N≤5mV。 (5)尽可能提高功率放大器的整机效率。 (6)具有测量并显示低频功率放大器输出功率(正弦信号输入时)、直流电源的供给功率和整机效率的功能,测量精度优于5%。

2. 发挥部分 (1)低频功率放大器通频带扩展为10Hz~50kHz。 (2)在通频带内低频功率放大器失真度小于1%。 (3)在满足输出功率≥5W、通频带为20Hz~20kHz的前提下,尽可能降低输入信号幅度。 (4)设计一个带阻滤波器,阻带频率范围为40~60Hz。在50Hz频率点输出功率衰减≥6dB。 (5)其他。 摘要: 本系统采用了NE5534p作为前级的电压放大电路来给低通功率放大电路提供输入电压,通过低通功率放大电路将功率放大,由双踪示波器对整个系统的输入输出端进行监测,调节可变电阻,使输出波形无明显失真,从而使输出功率达到指定的输出功率要求。输入的频率范围为20Hz~20kHz。 一.概述: 本系统通过信号发生器输入电压为5mV,频率在20Hz~20kHz范围内的信号,对信号进行功率放大,低通功率放大器模块由+/-15V的直流电源提供,通过前级放大电路将输入电压放大,再由低通功率放大电路进行功率放大。在此期间,用示波器监测低通功率放大模块的输入输出端,观察波形是否失真,以及测量最大最小不失真频率。 二.系统工作原理及分析: 此系统由三部分组成,分别为电源模块、前级放大模块、低频功率放大模块。 如图所示:

音频小信号功率放大

摘要 本次电路设计课题是音频小信号放大电路,它属于模拟电路课程设计,所以实验中就需要用到大量的模拟电路知识。对于音频小信号放大电路它是由两级放大电路组成,第一部分是运用到了两级负反馈放大电路,旨在放大电压,第二部分OCL功率放大电路采用复合三极管,目的放大电路电流。两部分放大电路的设计根本目的就是为了将小信号放大为一个大信号而不失真。失真这是设计音频放大电路中的一个难点,电路的巧妙设计可以有效的避免失真,电容的运用是解决失真的关键。

目录 1 选题背景 (2) 1.1 指导思想 (2) 1.2 方案论证 (2) 1.3 基本设计任务 (2) 1.4 发挥设计任务 (2) 1.5电路特点 (3) 2 电路设计 (3) 2.1 总体方框图..................................... 错误!未定义书签。 2.2 工作原理 (3) 3 各主要电路及部件工作原理 (3) 3.1 第一级—输入信号放大电路 (4) 3.2 NE5532简要说明................................. 错误!未定义书签。 3.3 第二级—功率放大电路........................... 错误!未定义书签。 3.4 直流信号过滤电路 (6) 4 原理总图 (7) 5 元器件清单 (7) 6 调试过程及测试数据(或者仿真结果) (7) 6.1 仿真检查 (8) 6.1.1第一级仿真检查 (8) 6.1.2第二级仿真检查 (9) 6.2 通前电检查 (10) 6.3 通电检查 (10) 6.3.1第一级电路检查 (10) 6.3.2第二级电路检查 (10) 6.3.3完整电路检查 (10) 6.4 结果分析 (10) 7 小结 (10) 8 设计体会及今后的改进意见 (11) 8.1 体会 (11) 8.2 本方案特点及存在的问题 (11) 8.3 改进意见 (11) 参考文献 (12)

设计一个射频小信号放大器[1]要点

射 频 课 程 设 技 论 文 院系:电气信息工程学院 班级:电信2班 姓名:贾珂 学号:541101030211

1射频小信号放大器概述 射频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,所谓小信号,一是信号幅度足够小,使得所有有源器件(晶体三极管,场效应管或IC)都可采用二端口Y参数或线性等效电路来模型化;二是放大器的输出信号与输入信号成线性比例关系.从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 小信号放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器;. 小信号谐振放大器除具有放大功能外,还具有选频功能,即具有从众多信号中选择出有用信号,滤除无用的干扰信号的能力.从这个意义上讲,高频小信号谐振放大电路又可视为集放大,选频一体,由有源放大元件和无源选频网络所组成的高频电子电路.主要用途是做接收机的高频放大器和中频放大器. 其中射频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。2电路的基本原理 图2-1所示电路为共发射极接法的晶体管高频小信号单级单调谐回路谐振放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此,晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻R b1、R b2及Re决定,其计算方法与低频单管放大器相同。

基本放大电路

第二章基本放大电路 [教学目的] 1、了解放大电路的性能指标,掌握单管共射放大电路的工作原理,掌握放大电路的静态、 动态分析与计算方法(图解法、等效电路法) 2、掌握放大电路的三种基本接法及其特点 3、掌握场效应管的等效模型及共源放大电路的原理及特点 [教学重点和难点] 1、基本共射放大电路的静态工作点、电压放大倍数、输入电阻和输出电阻的分析及计算 2、BJT放大电路的三种组态特点、FET放大电路的三种组态特点 [教学时数]8学时 [教学内容] 第一节放大的概念和放大电路的主要性能指标 一、放大的概念 二、放大电路的性能指标 第二节基本共射放大电路的工作原理 一、基本共射放大电路的组成及各元件的作用 二、设置静态工作点必要性 三、基本共射放大电路的工作原理 四、放大电路的组成原理 第三节放大电路的分析方法 一、直流通路与交流通路 二、图解法 三、等效电路法 第四节放大电路静态工作点的稳定 一、静态工作点稳定的必要性 二、典型的静态工作点稳定电路 三、稳定静态工作点的措施 第五节晶体管单管放大电路的三种基本接法 第六节晶体管放大电路的派生电路 第七节场效应管放大电路

一、场效应管放大电路的三种接法 二、场效应管放大电路静态工作点的设置方法及分析估算 三、场效应管放大电路的动态分析 四、场效应管放大电路的特点 [电子教案] 本章讨论的问题:1.什么是放大?放大电路放大信号与放大镜放大物体意义相 同吗?放大的特征是什么?2.为什么晶体管的输入、输出特性说明它有放大作用?如何将晶体管接入电路才能起到放大作用?组成放大电路的原则是什么?有几种接法?3.如何评价放大电路的性能?有哪些主要指标?4.晶体管三种基本放大电路各有什么特点?如何根据它们的特点组成派生电路? 5.如何根据放大电路的组成原则利用场效应管构成放大电路?它有三种接法吗? 6.场效应管放大电路与晶体管放大电路有哪些不同处?在不同的场合下,应如何选用放大电路? 2.1 放大电路的基本概念和放大电路的主要性能指标2.1.1 放大的概念 基本放大电路一般是指由一个三极管组成的三种基本组态放大电路。 1. 放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。 2. 输出信号的能量实际上是由直流电源提供的,只是经过三极管的控制,使之转换成信号能量,提供给负载。放大电路的结构示意图见图。 放大概念示意图 2.1.2 放大电路的性能指标 (1) 放大倍数 输出信号的电压和电流幅度得到了放大,所以输出功率也会有所放大。对放大电路而言有电压放大倍数、电流放大倍数和功率放大倍数,它们通常都是按正弦量定义的。放大倍数定义式中各有关量如图所示。

大功率功率放大器电路的设计

大功率功率放大器电路设计 大功率功率放大器电路设计 一. 设计理念及实现方式 (1)能推4Ω、2Ω等双低音的“大食”音箱以及专业类大粗音圈的各类专业箱。 (2)要省电、噪声小,发热量小。 (3)音质要好,能适合家居使用和专业使用。 第一点的实现就是要有大的推动功率。由于目前居室客厅面积有不断扩大的趋势,100W ×2以下功放已显得有些“力不从心”,所以本功放设计为4ΩQ 时360W ×2,2Ω时720W ×2。 第二点的实现就是电路工作在静态时的乙类小电流,靠大水塘级电容和电阻进行滤波降噪,使功放级噪声极小。而电路的工作状态又决定了电路元件的发热量很小,与一般乙类电路相当。配备的大型散热系统是为了应付连续大功率、低阻抗输出时的安全、可靠。 第三点的实现是本功放板的主要目标。目前公认的是:甲类、MOS、电子管音质好,所以本功放要达到甲类、MOS、电子管的音质。 二.大功率输出的实现 要实现大功率,首先是电源容量要大。本功放配置的电源是在截面积为35mm ×60mm的环形铁心上绕制的环牛。一次侧为1.0mm线绕484圈,二次侧为1.5mm双线并绕100圈。 整流为两只40A全桥做双桥整流,滤波为4只47000 uF电容 2只2.7kΩ电阻并接在正负电源上,使电压稳定在±62V。如电压过高可减小电阻到2.2kΩ,过低可加大电阻到3kΩ,功率用3W以上的。 除电源外,要实现大功率输出,特别是驱动“大食”音箱,要求功放输出电流能力要强,本功放每声道选用6对2SD1037管做准互补输出,可驱动直流电阻低达0.5Ω的“大食”音箱。所以4Ω时360W×2、2Ω时720W×2是有保障的。 三. 甲类、MOS、电子管音质的实现 目前人们公认的甲类、MOS、电子管的音质最好,所以本功放电路设计动态时工作于甲类的最佳状态,偏流随信号大小而同步增减,所以音质是有技术保障的。而在此工作状态下,即使更换几只一般的MOS管,对音质的提高也不明显。下面给出其原理图,如图1所示。从图1上可见到本原理图相当简洁,比一般乙类或甲乙类准互补电路还节省元件。而通过在电路板上改变一只电阻的接法就可方便地在本电路与准互补乙类或甲乙类之间变换。 四.绿色环保概念的实现 对本功放来说,实现低耗电、低噪声污染、低热辐射污染是通过以下措施实现的: (1)本功放空载时只有小电流级工作,而功率管基极电压只有0.45V,基本上是截止的,所以比一般乙类耗电少,属节电型功放。

换能器前置放大电路设计

项目支持:北京市科技攻关项目,农业节水灌溉监测与控制设备研制与开发(D0706007040191)国家“十一五”科技支撑计划农产品流通过程信息化关键技术与系统研发(2006BAD10A04) 国家“十一五”科技支撑计划灌区地下水开发利用关键技术(2006BAD11B05) 微弱信号检测的前置放大电路设计 张石锐1,2,郑文刚2*,黄丹枫1,赵春江2 (1.上海交通大学农业与生物学院上海市 200240 2.国家农业信息化工程技术研究中心北京市 100097) 摘要:针对精准农业中对微弱信号检测的技术需求,论文设计了以电流电压转换器,仪表放大器和低通滤波器为主要结构的微弱信号检测前置放大电路。结合微弱信号的特点讨论了电路中噪声的抑制和隔离,提出了电路元件的选择方法与电路设计中降低噪声干扰的注意事项。本文利用集成程控增益仪表放大器PGA202设计了微弱信号检测前置放大电路,并利用微弱低频信号进行了测试,得到了理想的效果。 关键字:精准农业、微弱信号检测、仪表放大器、前置放大电路 中图分类号:TN721.5 文献标识码:A The design of preamplifier circuit based on weak signal detection ZHANG Shi-rui1,2,ZHENG Wen-gang2,HUANG Dan-feng1,ZHAO Chun-jiang2 (1. School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China 2. National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China) Abstract:Combined with the demand of the detection of weak signal in precision agriculture, the article introduced the circuit principle of deigning preamplifier circuit whit I/V Conversion level, instrumentation amplifier level and low-pass filter level. At the same time the article discussed the circuit's noise suppression and isolation according to the characteristics of the weak signal, and gave the method of choosing elements and noise reduction. Finally, gave the design of the weak signal detection pre-amplifier using the program-controlled integrated instrumentation amplifier PGA202. Key words: precision agriculture ,weak signal detection, instrumentation amplifier, preamplifier 1、引言 精准农业主要是依据实时获取的农田环境和农作物信息,对农作物进行精确的灌溉、施肥、喷药,最大限度地提高水、肥和药的利用效率,减少环境污染,获得最佳的经济效益和生态效益[1]。农田环境和农作物信息的准确获取取决于可靠的生物传感技术。如常规精准灌溉主要关注空气的温度、湿度和土壤的含水量,利用这些参数的变化控制对农作物的灌溉,而作物自身产生的一些信号能够更准确的反映其自身的生理状况,通过检测这些信号控制灌溉可以使灌溉更精确。目前精准灌溉技术正朝着以环境信息和农作物生理信息相结合为控制依据的方向发展,为此各种生物传感器如植物电信号传感器、植物茎流传感器等应运而生。但一般作物自身生理状况产生的信号极其微弱,往往电流信号只能达到纳安级,电压信号也只能达到微伏级。为有效的利用这些信号,应首先对其进行调理,本文根据植物生理信号的特点设计了适合此类微弱信号检测的前置放大电路。 2、电路基本结构 生物传感器所产生的信号一般为频率较低的微弱信号,检测不同的植物生理参数,可能得到电压或电流信号。对于电流信号,应首先把电流信号转换成为电压信号,通过放大电路的放大,最后利用低通滤波器,滤除混杂在信号中的高频噪声。微弱信号检测前置放大电路的整体结构如图1。

《基本放大电路例题》word版

第2章基本放大电路例题解析 例2.1三极管组成电路如图2.2(a)~(f)所示,试判断这些电路能不能对输入的交流信号进行正常放大,并说明理由。 解:解此类题要注意以下问题: (1)判别三极管是否满足发射结正偏,集电结反偏的条件,具备合适的静态工作点。对NPN型晶体管构成的电路,集电极电源V CC的正极接集电极C,负极接“地”;对PNP型晶体管构成的电路,集电极电源V CC的负极接集电极C,正极接“地”。 (2)判断有无完善的直流通路。 (3)判断有无完善的交流通路。 (4)在前三步判断得到肯定的结果时,再根据电路给出的参数值计算、判断三极管是否工作在放大区。电路的分析如下: 图(a)电路由NPN管组成,静态情况下发射结无正向偏置,电路没有合适的静态工作点, 图2.2 不具备放大作用。 图(b)电路由NPN管组成,发射结满足正偏条件,但集电结不是反偏,也不具备合适的静态工作点,不能放大。 图(c)电路由NPN管组成,三极管的发射结、集电结满足正偏和反偏的条件,但发射结的偏置电源V BB将输入的交流信号旁路而不能进入三极管b,e间的输入回路,所以尽管电路具备合适的静态工作点,仍不能对交流信号进行正常的放大。 图(d)电路由PNP管组成,三极管发射结正偏,集电结反偏,交流信号能进入b,e间的输入回路,经放大后在输出端出现,放电路能进行正常的放大。 图(e)电路由PNP型管组成,三极管的发射结、集电结均满足放大的偏置条件,输入信

号也能进入输入回路,但输出端无电阻R

c ,故输出交流信号将经电源V CC 被地短路,因此电路也不能进行正常的放大。 图(f)电路由PNP 管组成,三极管的偏置满足放大的条件,二极管VD 为反向偏置,在电路中起温度补偿的作用,放电路能正常的放大。 例2.2 图2.3(a)固定偏流放大电路中,三极管的输出特性及交、直流负载线如图2.3 (b),试求: (1)电源电压V CC ,静态电流I B 、I C 和管压降V CE 的值; (2)电阻R b 、R C 的值; (3)输出电压的最大不失真幅度V OM ; 解 (1)由图解法可知,直流负载线与输出特性横坐标轴的交点的电压值即是V CC 值的大小,由图2.3 (b),读得I b ≈20μA ,V CC ≈6V 。由Q 点分别向横、纵轴作垂线,得I C =1mA ,V CE =3V 。 (2)由直流通路基极回路得 Ω?=?=≈-361030010206A V I V R B CC B 由集射极回路得 Ω=-= k I V V R C CE CC C 3 (3)由交流负载线②与静态工作点Q 的情况可看出,在输入信号的正半周,输出电压V CE 在3V 到0.8V 范围内,变化范围为2.2V ;在信号的负半周输出电压V CE 在3V 到4.6V 范围内,变化范围为1.6V 。输出电压的最大不失真幅度应取变化范围小者,故V OM 为1.6V 。 例2.3 用示波器观察NPN 管共射单级放大电路输出电压,得到图2.4所示三种失真的波形,试分别写出失真的类型。 图2.3

三极管10倍放大电路实验报告

三极管放大电路实验报告 一、实验目的: 掌握三极管的工作模式,三极管输入输出特性曲线,静态工作点,以及常用的放大电路分析,估算(计算/图解) 二、准备工具材料: 工具材料:面包板,面包线,电阻若干,三极管NPN C1815 PNP A1015 ,电容若干 仪器仪表:万用表,双踪显示示波器,函数信号发生器,开关稳压电源 三、电路功能要求: ①.电源为12V单电源 ②.输入信号正弦波1KHz 峰值:50mV ③.电压放大倍数Au=10; ④.波形不失真,误差+-10%,不考虑频率响应范围 四、电路设计(NPN共发射极分压偏置放大电路): 根据资料:三极管C1815 参数: 硅管,b值为200----400 UCE=0.7 设计:计算静态工作点:IB,IC,UCE Q点应工作在输出特性曲线的中央 根据三极管输出特性曲线图,要使Q点在中央,数值IB在50—150uA范围 数值UCE在6—8V范围;设Ub点电位为电源电压一半,即:UB=1/2VCC,IC=IE在b(50—150uA)mA范围,这里取IB为50uA,b为300,电压放大倍数为10,电路不带负载 计算过程:理论值 UE=UB--UBE=5.3V; IE=IC=IB*b; IE=IC=50uA*b=15mA RE=UE/IE=5.3V/0.015A=353R; UB=(Rb1/Rb1+Rb2)*VCC=5; Rb1= Rb2=50K Au=10=-b(RL’/rBE) rBE=300+(1+b)*(26/IE)=821R RL’=RC//RL RC=(rBE/b)*Au=27.4R; UCE=VCC-IC(RC+RE)=6.294V 五、实验过程: 按照设计好的电路,在面包板上实验,输入正弦1KHz信号,峰值50mA 用示波器观察输入波形;给放大电路接上电源,用示波器观察输出波形,两路信号相比较,发现放大倍数没有10倍,理论值跟实际值有差别,调节电阻RC使得放大倍数为10倍,且不失真的情况下RC=50R 时,电压放大倍数刚好10倍, 温度变化时,对放大电路的影响比较小,说明分压偏置放大是可靠的 测试频率响应范围,在不失真,放大倍数不改变的情况下为500Hz-------500KHz

低噪声前置放大器电路的设计方法

低噪声前置放大器电路的设计方法 收藏此信息打印该信息添加:不详来源:未知 前置放大器在音频系统中的作用至关重要。本文首先讲解了在为家庭音响系统或PD A设计前置放大器时,工程师应如何恰当选取元件。随后,详尽分析了噪声的来源,为设计低噪声前置放大器提供了指导方针。最后,以PDA麦克风的前置放大器为例,列举了设计步骤及相关注意事项。 前置放大器是指置于信源与放大器级之间的电路或电子设备,例如置于光盘播放机与高级音响系统功率放大器之间的音频前置放大器。前置放大器是专为接收来自信源的微弱电压信号而设计的,已接收的信号先以较小的增益放大,有时甚至在传送到功率放大器级之前便先行加以调节或修正,如音频前置放大器可先将信号加以均衡及进行音调控制。无论为家庭音响系统还是PDA设计前置放大器,都要面对一个十分头疼的问题,即究竟应该采用哪些元件才恰当? 元件选择原则 由于运算放大器集成电路体积小巧、性能卓越,因此目前许多前置放大器都采用这类运算放大器芯片。我们为音响系统设计前置放大器电路时,必须清楚知道如何为运算放大器选定适当的技术规格。在设计过程中,系统设计工程师经常会面临以下问题。 是否有必要采用高精度的运算放大器? 输入信号电平振幅可能会超过运算放大器的错误容限,这并非运算放大器所能接受。若输入信号或共模电压太微弱,设计师应该采用补偿电压(Vos)极低而共模抑制比(CMRR)极高的高精度运算放大器。是否采用高精度运算放大器取决于系统设计需要达到多少倍的放大增益,增益越大,便越需要采用较高准确度的运算放大器。 运算放大器需要什么样的供电电压?

这个问题要看输入信号的动态电压范围、系统整体供电电压大小以及输出要求才可决定,但不同电源的不同电源抑制比(PSRR)会影响运算放大器的准确性,其中以采用电池供电的系统所受影响最大。此外,功耗大小也与内部电路的静态电流及供电电压有直接的关系。 输出电压是否需要满摆幅? 低供电电压设计通常都需要满摆幅的输出,以便充分利用整个动态电压范围,以扩大输出信号摆幅。至于满摆幅输入的问题,运算放大器电路的配置会有自己的解决办法。由于前置放大器一般都采用反相或非反相放大器配置,因此输入无需满摆幅,原因是共模电压(Vcm)永远小于输出范围或等于零(只有极少例外,例如设有浮动接地的单供电电压运算放大器)。增益带宽的问题是否更令人忧虑? 是的,尤其是对于音频前置放大器来说,这是一个非常令人忧虑的问题。由于人类听觉只能察觉大约由20Hz至20kHz频率范围的声音,因此部分工程师设计音频系统时会忽略或轻视这个“范围较窄”的带宽。事实上,体现音频器件性能的重要技术参数如低总谐波失真(TH D)、快速转换率(slew rate)以及低噪声等都是高增益带宽放大器所必须具备的条件。 图1,建议选用的放大器 深入了解噪声 在设计低噪声前置放大器之前,工程师必须仔细审视源自放大器的噪声,一般来说,运算放大器的噪声主要来自四个方面: 热噪声(Johnson):由于电导体内电流的电子能量不规则波动产生的具有宽带特性的热噪声,其电压均方根值的正方与带宽、电导体电阻及绝对温度有直接的关系。对于电阻及晶体

高频小信号放大电路课程设计

通信基本电路课程设计报告设计题目:高频小信号放大电路 专业班级 学号 学生姓名 指导教师 教师评分

目录 一、设计任务与要求 (2) 二、总体方案 (2) 三、设计内容 (2) 3.1电路工作原理 (3) 3.1.1 电路原理图 (3) 3.1.2 高频小信号放大电路分析 (3) 3.2 主要技术指标 (6) 3.3仿真结果与分析 (10) 四、总结及体会 (12) 五、主要参考文献 (13)

一、设计任务与要求 1、主要内容 根据高频电子线路课程所学内容,设计一个高频小信号谐振放大器。通过在电路设计中发现问题、解决问题,掌握小信号谐振放大器的基本设计方法,加深对该门课程的理论知识的理解,提高电子实践能力。 2、基本要求 设计一个小信号谐振放大器,主要技术指标为: (1) 谐振频率04MHz f =; (2) 谐振电压放大倍数04060dB v dB A ≤≤; (3) 通频带300Hz BW K =。 二、总体方案 小信号调谐放大器是各种电子设备、发射和接收机中广泛应用的一种电压放大器。其主要特点是晶体管的输入输出回路(即负载)不是纯电阻,而是由L 、C 元件组成的并联谐振回路。 小信号调谐放大器的类型很多,按调谐回路区分:有单调谐回路,双调谐回路和参差调谐回路放大器。按晶体管连接方法区分:有共基极、共发射极和共集电极放大器。 高频小信号谐振放大器的作用、电路组成、及工作原理,与低频小信号放大电路是基本一致的。不同的是:一是在高频小信号谐振放大器中,所放大信号的频率远比低频放大电路信号频率高;二是高频小信号谐振放大器的频宽是窄带(要求只放大某一中心频率的载波信号)。因此,首先在电路组成上应将低频放大电路中的低频三极管换成具有更高功率晶体管和LC 并联谐振回路。 三、设计内容 1.电路工作原理

信号放大滤波电路设计

中北大学 课程设计说明书 学生姓名:罗再兵学号: 0906044151 学院: 电子与计算机科学技术学院 专业: 电子科学与技术 题目: 信号放大滤波电路设计 指导教师:孟令军职称: 副教授 2011 年 12 月 30日

目录 1、设计任务 (2) 2、设计目的 (2) 3、设计方案 (2) 4、参考电路设计与分析 (3) 4.1、同相比例放大器 (3) 4.2、二阶压控电压源低通滤波器 (3) 4.3、二阶压控电压源高通滤波器 (4) 5、信号放大滤波电路 (5) 5.1信号放大滤波电路设计 (5) 5.2信号放大滤波电路仿真 (6) 5.3信号放大滤波电路性能评估 (8) 5.4信号放大滤波电路PCB板图 (8) 6、设计仪器设备 (9) 7、设计心得 (9)

一. 设计任务 1、查阅熟悉相关芯片资料; 2、选择合适的运算放大器,实现信号的3级放大;总放大倍数为12; 3、并通过高通、低通滤波电路滤波; 4、利用PROTEL 绘制电路原理图和印刷板图,并利用multisim 软件仿真。 二. 设计目的 1、掌握电子电路的一般设计方法和设计流程。 2、学习使用PROTEL 软件绘制电路原理图和印刷版图。 3、掌握应用multisim 对设计的电路进行仿真,通过仿真结果验证设计的 正确性。 三.设计方案 由设计题目和设计要求可知,设计此电路需要用到集成运算放大器和高 低通滤波电路,首先信号放大12倍,我们选用同相比例放大器放大,该电路结构简单,性能良好;滤波电路部分我们选用典型的二阶压控电压源低通滤波器和二 阶压控电压源高通滤波器,该电路具有电路元件少,增益稳定,频率范围宽等优点。设计框架图如下: 信号输入 信号输出 图1 信号放大滤波电路设计方案 图1为信号放大滤波电路设计方案。在这一方案中,系统主要由同相比例放大器、二阶压控电压源低通滤波器、二阶压控电压源高通滤波器组成。 由于要求实现信号的3级放大,总放大倍数为12,信号经过同相比例放大器 后放大12倍,再经过二阶压控电压源低通滤波器(在通频带内增益等于1)过滤掉高频信号而留下所需频率信号,然后再经二阶高通滤波器(在通频带内增益等于1)后就可以得到我们所需频段的信号。 同相比例放大器 二阶压控电压源低通滤波器 二阶压控电压源高通滤波器

电子技术(康润生)第二章基本放大电路答案

第二章 基本放大电路 习题解析 2-1试判断图2-48中各电路有无交流电压放大作用?如果没有,电路应如何改动使之具备放大作用。 解:(a)可以; (b)交流通路集电极对地短接; (c)直流通路基极开路,将电容移到B R 的外边即可; (d) B C V V >三极管没有工作在放大状态。 2-2半导体晶体管放大电路如图2-49(a )所示,已知CC U =12V ,C R =3k Ω,B R =240 k Ω,晶体管的β=40。(1)试根据直流通路估算各静态值(B I 、C I 、CE U );(2)如果晶体管的输出特性如图2-64(b )所示,试用图解法求放大电路的静态工作点;(3)在静态时(i u =0),1C 和2C 上的电压各为多少?并标出极性。

解:(1)由电路的直流通路可知:

12 0.05240 400.05212326CC BE CC B b b C B CE CC c C U U U I mA R R I I mA U U R I V β-= ≈====?==-=-?= (2)在图中画出方程为CE CC c C U U R I =-的直线,和50B I A μ=的曲线交点即为静态工作点。 (3)120.7,C C CE U V U U ==,极性如图中所示。 2-3在题2-2中,若使CE U =3V ,B R 应变为多少?若改变B R ,使C I =1.5mA, B R 应等于多少?在图上分别标出静态工作点。 解:CE CC C C U U R I =- 40123 160123 4012 3201.5 CC CE CC C B C B CC C B C C CE CC B C U U U I I R R U R R k U U U R k I ββββ-∴= ==??∴= = =Ω--?= = =Ω 2-4在图2-49(a )中,若CC U =12V ,要求静态值CE U =5V ,C I =2mA 。试求C R 和B R 的阻值。设晶体管的放大倍数β=40。 解: 4012 2402 125 3.52 CC B C CC CE C C U R k I U U R k I β?= = =Ω--===Ω 2-5放大电路如图2-50(a )所示,晶体管的输出特性及放大电路的交、直流负载线如图2-50(b )所示。试问:(1)C R 、B R 、L R 各为多少?(2)不产生失真的最大输入电压im U 和输出om U 电压各为多少?(3)若不断加大输入电压的幅值,该电路先出现何种性质的失真?调节电路中哪个电阻能消除失真?将阻值调大还是调小?(4)将L R 阻值变大,对交、直流负载线会产生什么影响?(5)若电路中其他参数不变,只将晶体管换一个β值小一半的管子,B I 、C I 、CE U 和

增益自动切换的放大电路设计

东南大学电工电子实验中心 实验报告 课程名称:电子线路实践 第二次实验 实验名称:增益自动切换电压放大电路的设计院(系):专业: 姓名:学号: 实验室: 实验组别: 同组人员:实验时间: 评定成绩:审阅教师:

实验二增益自动切换电压放大电路的设计 一、实验内容及要求 设计一个电压放大电路,能够根据输入信号幅值自动切换调整增益。设输入信号频率为0~20KHz,其幅值范围为0.1~10V(峰峰值Upp)。电路应实现的功能与技术指标如下:1.基本要求 当输入为直流信号时,要求设计的电路达到以下要求: U<0.5V时,电路的增益约为10倍。 (1)当i U<3V时,电路的增益约为1倍。 (2)当0.5

仪用放大器的应用电路设计

课程名称:电路与电子技术实验Ⅱ指导老师:成绩:__________________ 实验名称:仪用放大器的应用电路设计类型:___________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.学习并了解仪用放大器与运算放大器的性能区别。 2.掌握仪用放大器的电路结构及设计方法。 3.掌握仪用放大器的测试方法。 4.学习仪用放大器在电子设计中的应用。 二、实验内容和原理 1. 仪用放大器 仪用放大器是一种精密差动电压放大电路。 在实际的生产生活中,实际的信号获取单元经常需要面对强噪声背景下的微弱信号,这些强噪声将以共模的形式进入测量单元。虽然运放具有共模抑制比,但信号电压和共模电压一起被传送到输出端,将降低放大器的有效输出范围。 2.基本差动放大器与带输入缓冲的差动放大器 基本差动放大器:带输入缓冲的差动放大器: 3.标准的三运放构成的仪用放大器 造成差动放大器误差的两个主要因素为:运算放大器的参数和电阻器匹配的精确度。 若在输入运算放大器周围增加匹配电阻,把增益设臵放在前端实现,就构成了仪用放大器。 仪用放大器的传输函数为:

运放A1、A2 为同相差分输入方式。同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,来提高共模抑制比。 4.单片仪用放大器 5.双孔梁应变式传感器 力传感器单元是这个实验的传感器,为信号输入部分。它内部含有由4个全桥电路。

高频小信号放大器的设计

高 频 小 信 号 放 大 器 设 计 学号:320708030112 姓名:杨新梅 年级:07电信本1班 专业:电子信息工程 指导老师:张炜 2008年12月3日

目录 一、选题意义 (3) 二、总体方案 (4) 三、各部分设计及原理分析 (7) 四、参数选择 (11) 五、实验结果 (17) 六、结论 (18) 七、参考文献 (19)

一、选题的意义 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 高频小信号放大器的分类: 按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器; 其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

二、总体方案 高频小信号调谐放大器简述: 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻抗变换和选频滤波功能。对高频小信号放大器的基本要求是: (1)增益要高,即放大倍数要大。 (2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图-1所示,带宽BW=f2-f1= 2Δf0.7,品质因数Q=fo/2Δf0.7. 图-1频率特性曲线

基本运算放大器电路设计

基本运算放大器电路设计

————————————————————————————————作者:————————————————————————————————日期:

武汉理工大学 开放性实验报告 (A类) 项目名称:基本运算放大器电路设计实验室名称:创新实验室 学生姓名:**

创新实验项目报告书 实验名称基本运算放大器电路设计日期2018.1.14 姓名** 专业电子信息工程 一、实验目的(详细指明输入输出) 1、采用LM324集成运放完成反相放大器与加法器设计 2、电源为单5V供电,输入输出阻抗均为50Ω,测试负载为50Ω输出误差 不大于5% 3、输入正弦信号峰峰值V1≤50mV,V2=1V,输出为-10V1+V2. 二、实验原理(详细写出理论计算、理论电路分析过程)(不超过1页) 通过使用LM324来设计反相放大器和加法器,因为每一个芯片内都有4个运放,所以我们就是使用其内部的运放来连接成运算放大器电路。 我们采用两个芯片串联的方式进行芯片的级联。对于反相放大器,输出电压Vo=-Rf/R1*Vi;对于同相加法器,Vo=(Rf/R1*Vi1+Rf/R2*Vi2)。 由于对该运放使用单电源5V供电,故需要对整个电路的共地端进行 2.5V 的直流偏置。为实现2.5V的共地端,在这里采用了电压跟随器的运放模型。2.5V 的分压点用两个相同100k的电阻进行分压,并根据经验选取了一个10uF的极性电容并联在2.5V分压点处,起滤除电源噪声的作用。最终由电压跟随器输出端作为后面电路的共地端。同样为使反相放大器能够放大10倍,有-Rf/R1=-10,即Rf=10R1,可取R1=10kΩ,Rf=100kΩ,则R2=R1//Rf。对于加法器,有R1=R2=Rf,均取为100kΩ,则R=100kΩ。

小信号多级放大电路设计-模电课程设计报告

机械与电气工程学院 《模拟电子技术》课程设计报告 姓名: 学号: 班级: 指导教师:

课题名称:小信号多级放大电路设计 一、设计目的 1.通过本课程设计,掌握晶体管放大电路工作原理。 2.熟悉简单模拟电路的设计方法和主要流程。 3.学习模拟电路的制作与调试方法。 二、设计要求 1.输入电压:Vi p-p =30mV。 2.输入电阻:10k~40k。 3.频率特性:100HZ~100kHZ。 4.总谐波失真度(THD)≦3%。 5.供电电压:15V。 6.电压增益:100倍。 7.全部用分立元器件组成,不得使用集成运算放大器等集成电路。核心部分必须包含两级共射放大电路,耦合方式自选,在确保指标的前提下可自行添加其他电路。 8. 所有元器件必须为标准件,且平均每级电路中包含的电位器个数不得超过1个(其中指标为增益可调的电路,每个电路的电位器总个数可增加1个),最多不超过3个。 三、方案设计 1.负反馈的类型 在输出端,取样方式分为电压取样(电压反馈)和电流取样(电流反馈),在输入端,比较方式分为串联比较(串联反馈)和并联比较(并联反馈)。因此负反馈放大电路有四种类型:电压串联、电压并联、电流串联、电流并联。 2.负反馈对放大电路性能的影响 (1)引入负反馈使增益下降 闭环增益表达式为 =A/(1+AF) A f 其中D=1+AF为反馈深度。深度负反馈D>>1条件下

A f ≈1/F (2)负反馈提高增益的稳定性易得: d A f / A f =d A/(1+AF)*A=d A/D*A 上式表明,反馈越深,闭环增益的稳定性越好。(3)负反馈对输入电阻和输出电阻的影响 串联负反馈使R i 增加,并联负反馈使R i 下降。程度取决于反馈深度: R if =(1+AF)R i (串联负反馈) R if = R i /(1+AF)(并联负反馈) 电压负反馈使R o 下降,电流负反馈使R o 增加。程度上取决于反馈深度: R of =(1+AF)R o (电流负反馈) R of =R o /(1+AF) (电压负反馈) (4)负反馈展宽频带 基本放大电路高、低频响应均只有一个极点时,闭环上、下限截止频率为: f Hf =(1+AF)f H f Lf =f L /(1+AF) 3.方案确定 输入电阻:10k~40k,分析可知电路具有输入电阻较大的特点,则电路第一级要引入共集电路提高输入电阻。输出电阻:<1k,不是太小,则输出级不需要引入共集电路。电压增益:100倍,且题目要求必须要有两级共射电路,则电路分为两级共射放大。频率特性:100HZ~100kHZ,每一级的电容耦合,本来用10uF,但是通频带在仿真的时候下限只能达到290HZ,上限能达到4.5MHZ。所以用47uF电容耦合,能展宽通频带。 四、电路设计 设计电路图如图1所示

高频小信号谐振放大电路(打印版)

长春工程学院 高频电子线路课程设计(论文)题目:高频小信号放大电路设计 学院:电子与信息工程学院 专业班级:电子0942班 学号:20号、31号、9号、26号 学生姓名: 指导教师: 起止时间:2011.9.22~2011.10.20 电气与信息学院 和谐勤奋求是创新

内容摘要 高频小信号谐振放大电路 摘要:掌握高频小信号谐振放大器的工程设计方法,谐振回路的调谐方法,放大器的各项技术指标的测试方法及高频情况下的各种分布参数对电路性能的影响,表征高频小信号谐振放大器的主要性能指标由谐振频率fo,谐振电压放大倍数Avo,放大器的通频带BW及选择性(通常用矩形系数Kr0.1)。 关键词: 1.谐振频率放大器的谐振回路谐振时所对应的频率f0称为谐振频率。 2.电压增益放大器的谐振回路谐振时所对应的电压放大倍数Avo称为谐振放大器的电压增益(放大倍数) 3.通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数Av下降到谐振电压放大倍数Avo的0.707倍时所对应的频率范围称为放大器的通频带BW。 4.矩形系数谐振放大器的选择性可由谐振曲线的矩形系数Kr0.1来表示矩形系数Kr0.1为电压放大倍数下降到0.1Avo时对应的频率范围与电压放大倍数下降到0.707Avo时对应的频率偏离之比。 工作计划: 1.确定电路形式。 2.设置静态工作点。 3.计算谐振回路的参数。 4.确定输入耦合回路及高频滤波电容。

content of marketing plan Resonant frequency small-signal amplifier Abstract: High-frequency small-signal resonance amplifier master of engineering design methods, resonant circuit tuning method, the technical specifications of the amplifier test methods and high-frequency parameters of various distributions in case of impact on circuit performance and characterization of high-frequency small-signal the main performance indicators of the resonant amplifier from the resonant frequency fo, the resonant voltage gain Avo, the amplifier passband BW and selective (usually rectangular coefficient Kr0.1). Keywords: 1 resonant circuit resonant frequency amplifier corresponding to the resonance frequency f0 is called the resonant frequency. 2 the resonant circuit voltage gain of the amplifier corresponding to the resonance voltage gain Avo called resonant amplifier voltage gain (magnification) 3 pass-band frequency selection as the role of the resonant circuit when the frequency deviation from the resonant frequency, the amplifier voltage gain drop, used to call down to the voltage gain Av resonant voltage gain Avo of 0.707 times the frequency range corresponding to known as the amplifier passband BW. 4 rectangular resonant amplifier selectivity coefficient by coefficient Kr0.1 resonance curve of the rectangle to represent a rectangle for the voltage gain coefficient Kr0.1 down to 0.1Avo corresponding to the frequency range and voltage gain drops to 0.707Avo the frequency corresponding to deviation of the ratio. Work plan: 1 to determine the circuit form. 2 set the quiescent operating point. 3 calculate the resonant circuit parameters. 4 Make sure the input coupling loop and high frequency filter capacitor. 设计任务说明