高阶导数与高阶微分

最新微分中值定理与导数的应用

微分中值定理与导数 的应用

第三章微分中值定理与导数的应用 本章内容是上一章的延续,主要是利用导数与微分这一方法来分析和研究函数的性质及其图形和各种形态,这一切的理论基础即为在微分学中占有重要地位的几个微分中值定理。在分析、论证过程中,中值定理有着广泛的应用。 一、教学目标与基本要求 (一)知识 1.记住罗尔定理、拉格朗日中值定理、柯西中值定理的条件和结论; 2.记住泰勒公式及其拉格朗日余项的表达式; 3.记住e x,sin(x),cos(x),ln(1+x),1/1+x的N阶麦克劳林公式; 4.知道极限的末定式及其常见的几种类型的求法; 5.知道函数的极值点、驻点的定义以及它们之间的关系; 6.知道曲线的凹凸性与拐点的定义; 7.知道弧微分的定义与弧微分公式; 8.知道光滑曲线、曲率和曲率半径的定义; 9.知道求方程的近似解的基本方法。 (二)领会 1.领会罗尔定理、拉格朗日中值定理、柯西中值定理,领会罗尔定理、拉格朗日中值定理的几何意义; 2.领会罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理之间的联系; 3.领会洛必达法则; 4.领会函数的单调性与一阶导数之间的联系; 5.领会函数的极值与一、二阶导数之间的联系; 6.领会函数的极值和最值的定义以及它们之间的区别和联系; 7.领会曲线的凹凸性与二阶导数之间的联系。 (三)运用 1.会用中值定理证明等式和不等式; 2.会用洛必达法则求末定式的极限; 3.会求一些函数的泰勒公式和利用泰勒公式求函数的极限及一些函数的近似值; 4.会用导数求函数的单调区间和极值; 5.会用函数的单调性证明不等式; 6.会用导数判断函数图形的凹凸性和拐点; 7.会求曲线的水平渐近线和铅直渐近线,会描绘函数的图形; 8.会求一些最值应用问题; 9.会求曲率和曲率半径; 10.会用二分法和切线法求一些方程实根的近似值。 (四)分析综合 1.综合运用中值定理、介值定理和函数的单调性等证明方程实根的存在性和惟一性;

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1. 导数定义 00000)()(lim lim )()(lim 0x x x f x f x y x x f x x f x x x x --=??=?-?+→→?→? 0|)()(00x x dx dy x y x f =='='= 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?左右极限都存在且相等,左极限为左导,右极限为右导, )(lim 00x f x y x --→?'=??, )(lim 00x f x y x ++→?'=?? 导数定义是非常重要的概念,一定要灵活掌握。 2. 导函数)(x f ',dx dy . f (x )在(a , b )可导, f (x )在[a , b ]可导 3. 可导与连续的关系 可导一定连续,但连续不一定可导(如函数||x y =在x =0点处连续,但是不可导) 4. 导数的几何意义 切线方程:))((000x x x f y y -'=-; 法线方程:)() (1000x x x f y y -'- =- 0)(0≠'x f , 5. 微分的定义

微分的几何意义 6. 微分与导数的关系 )(x f 在x 处可微?)(x f 在x 处可导,且dx x f dy )('= 同时 dx x f dy x x )(|00'==。 §2 导数与微分的计算 基本概念 1. 基本初等函数的导数、微分公式(书159页,166页) 2. 导数(微分)四则运算公式 )()())()((x g x f x g x f '±'='±, )()()()())()((x g x f x g x f x g x f '+'=', 特别地 )())((x f k x kf '=', ) ()()()()())()((2x g x g x f x g x f x g x f '-'=' 特别地 ) ()())(1(2x f x f x f '-='。 后面两个公式不要记错。 3. 复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。

微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得 '()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

最新导数和微分的概念

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1.导数定义 ?Skip Record If...? ?Skip Record If...? 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?Skip Record If...?左右极限都存在且相等,左极限为左导,右极限为右导, ?Skip Record If...?, ?Skip Record If...? 导数定义是非常重要的概念,一定要灵活掌握。 2.导函数?Skip Record If...?,?Skip Record If...?. f(x)在(a, b)可导, f(x)在[a, b]可导 3.可导与连续的关系 可导一定连续,但连续不一定可导(如函数?Skip Record If...?在x=0点处连续,但是不可导) 4.导数的几何意义 切线方程:?Skip Record If...?; 法线方程:?Skip Record If...? ?Skip Record If...?, 5.微分的定义 微分的几何意义 6.微分与导数的关系

?Skip Record If...?在x处可微?Skip Record If...??Skip Record If...?在x处可导,且?Skip Record If...? 同时 ?Skip Record If...?。 §2 导数与微分的计算 基本概念 1.基本初等函数的导数、微分公式(书159页,166页) 2.导数(微分)四则运算公式 ?Skip Record If...?, ?Skip Record If...?, 特别地 ?Skip Record If...?, ?Skip Record If...? 特别地 ?Skip Record If...?。 后面两个公式不要记错。 3.复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。 §3 中值定理 基本概念

高等数学第三章微分中值定理与导数的应用题库(附带答案)

第三章 微分中值定理与导数的应用 一、选择题 1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( ) 是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A ( 2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( ) 0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''= 3、的凸区间是 x e y x -=( ) ) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞ 4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( ) (A)x x sin )x (f = (B)2)1x ()x (f += (C) 3 2 x )x (f = (D)1x )x (f 2+= 5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值 6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( ) (A) [-1,1] (B) [0,1] (C) [-2,2] (D) ] 5 4, 5 3[- 7、x 2 e x y -=的凹区间是( ) (A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-, 8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3 x 3sin3x asinx f(x )π=+ =( ) (A) 1 (B) 2 (C) 3 π (D) 0 10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( ) ] 5 4 , 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( ) 的极值 必定不是的极值点为必定为曲线的驻点 , 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000 二、填空题 1、__________________e y 82 x 的凸区间是曲线-=. 2、______________ 2 x y x 的极小值点是函数=.

第三章 微分中值定理与导数应用教案教学设计

第三章 微分中值定理与导数应用 第一节 微分中值定理 教学目的:理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒 中值定理。 教学重点:罗尔定理、拉格朗日中值定理。 教学难点:罗尔定理、拉格朗日中值定理的应用。 教学内容: 一、罗尔定理 1. 罗尔定理 几何意义:对于在],[b a 上每一点都有不垂直于x 轴的切线,且两端点的连线与x 轴平行的不间断的曲线 )(x f 来说,至少存在一点C ,使得其切线平行于x 轴。 从图中可以看出:符合条件的点出现在最大值和最小值点,由此得到启发证明罗尔定理。为应用方便,先介绍费马(Fermat )引理 费马引理 设函数 )(x f 在点0x 的某邻域)(0x U 内有定义, 并且在0x 处可导, 如果对任 意)(0x U x ∈, 有)()(0x f x f ≤ (或)()(0x f x f ≥), 那么0)(0'=x f . 证明:不妨设)(0x U x ∈时,)()(0x f x f ≤(若)()(0x f x f ≥,可以类似地证明). 于是对于)(00x U x x ∈?+,有)()(00x f x x f ≤?+, 从而当0>?x 时, 0 ) ()(00≤?-?+x x f x x f ; 而当0

根据函数 )(x f 在0x 处可导及极限的保号性的得 ==+)()(0'0'x f x f 0)()(lim 000≤?-?++ →?x x f x x f x ==-)()(0'0'x f x f 0)()(lim 000≥?-?+- →?x x f x x f x 所以0)(0'=x f , 证毕. 定义 导数等于零的点称为函数的驻点(或稳定点,临界点). 罗尔定理 如果函数)(x f 满足:(1)在闭区间],[b a 上连续, (2)在开区间),(b a 内可导, (3)在区间端点处的函数值相等,即)()(b f a f =, 那么在),(b a 内至少在一点)(b a <<ξξ , 使得函数)(x f 在该点的导数等于零,即 0)('=ξf . 证明:由于)(x f 在],[b a 上连续,因此必有最大值M 和最小值m ,于是有两种可能的情形: (1)m M =,此时)(x f 在],[b a 上必然取相同的数值M ,即.)(M x f = 由此得.0)(='x f 因此,任取),(b a ∈ξ,有.0)(='ξf (2)m M >,由于)()(b f a f =,所以M 和m 至少与一个不等于)(x f 在区间],[b a 端点处 的函数值.不妨设)(a f M ≠(若)(a f m ≠,可类似证明),则必定在),(b a 有一点ξ使M f =)(ξ. 因此任取],[b a x ∈有)()(ξf x f ≤, 从而由费马引理有0)(='ξf . 证毕 例1 验证罗尔定理对32)(2--=x x x f 在区间]3,1[-上的正确性 解 显然 32)(2--=x x x f )1)(3(+-=x x 在]3,1[-上连续,在)3,1(-上可导,且 0)3()1(==-f f , 又)1(2)(-='x x f , 取))3,1(1(,1-∈=ξ,有0)(='ξf . 说明:1 若罗尔定理的三个条件中有一个不满足, 其结论可能不成立; 2 使得定理成立的ξ可能多于一个,也可能只有一个. 例如 ]2,2[,-∈=x x y 在]2,2[-上除)0(f '不存在外,满足罗尔定理的一切条件, 但在区间]2,2[-内找不到一点能使0)(='x f . 例如 ?? ?=∈-=0 ,0]1,0(,1x x x y 除了0=x 点不连续外,在]1,0[上满足罗尔定理的一切条

中值定理与导数的应用(包括题)

第三章 中值定理与导数的应用 一、 基本内容 (一) 中值定理 1.罗尔定理 如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,且)()(b f a f =,那么在),(b a 内存在一点ξ,使得0)(='ξf . For personal use only in study and research; not for commercial use 2.拉格朗日中值定理 如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,那么在),(b a 内至少有一点ξ,使得 a b a f b f f --= ') ()()(ξ 其微分形式为 x f x f x x f ??'=-?+)()()(ξ 这里10,<

(2)在点a 的某去心邻域内,)(x f '及)(x g '都存在且0)(≠'x g ; (3)) () (l i m x g x f a x ''→存在(或为无穷大),那么 ) () (lim )()(lim x g x f x g x f a x a x ''=→→ 2.法则2 如果函数)(x f 及)(x g 满足条件: (1)0)(lim =∞ →x f x , 0)(lim =∞ →x g x ; (2)当N x >时,)(x f '及)(x g '都存在且0)(≠'x g ; (3) ) () (lim x g x f x ''∞ →存在(或为无穷大); 那么 ) ()(lim )()(lim x g x f x g x f x x ''=∞→∞ → 以上两个法则是针对00型未定式. 对∞ ∞ 型未定式,也有相应的两个法则. 对∞?0、∞-∞、00、∞1、0∞型未定式,可以通过变形将其转化成00或∞ ∞ 型来求. (三) 泰勒公式 1.带拉格朗日余项的泰勒公式 设函数)(x f y =在0x 的某邻域),(0δx U 内有1+n 阶导数,那么在此邻域内有 +-''+ -'+=200000)(2) ())(()()(x x x f x x x f x f x f ! )()(!) (00)(x R x x n x f n n n +-+ 10)1()()! 1() ()(++-+=n n n x x n f x R ξ 其中ξ在0x 和x 之间,)(x R n 是拉格朗日余项. (四) 函数的单调性 函数单调性的判别法 设函数)(x f y =在],[b a 上连续,在),(b a 内可导. (1)如果在),(b a 内0)(>'x f ,那么函数)(x f y =在],[b a 上单调增加;

微分中值定理与导数应用

第三单元微分中值定理与导数应用 一、填空题 1、 lim xln x x 0 。 2、 函数f x 2x cos x 在区间 单调增 3 、 函数f x 4 8x 3 3x 4的极大值是 。 4 、 曲线y x 4 6x 2 3x 在区间 是凸的。 5 、 函数f x cosx 在x 0处的2m 1阶泰勒多项式是 6 、 曲线y xe 3x 的拐点坐标是 。 7、若fx 在含X 。的a,b (其中a b )内恒有二阶负的导数,且 则f X 。是f x 在a,b 上的最大值。 & y X 3 2x 1 在 内有 个零点。 1 1 9、 lim cot x( ) 。 sin x x 1 i 10、 lim (~2 ------------ ) __________ 。 x 0 x xta n x 11、 曲线y e"的上凸区间是 _____________ 。 12、 函数y e x x 1的单调增区间是 _______________ 。 二、单项选择 1、 函数f(x)有连续二阶导数且f(0) 0, f (0) 1,f (0) 2,则lim x 0 () (A) 不存在;(E) 0 ; (C) -1 ; (D) -2 2、 设 f(x) (x 1)(2x 1),x (,),则在(丄,1)内曲线 f(x)( f(x) x 2 x

2 (A)单调增凹的;(E)单调减凹的; (A)不可导; (B)可导,且f'(0) 0 ;

(C)单调增凸的; (D)单调减凸的 3、f(x)在(a,b)内连续,X 。 (a,b), f (X 。) f (x °) 0,则 f (x)在 x x 。处 ( ) (A)取得极大值; (E)取得极小值; (C) 一定有拐点(x o ,f(x 。)); (D)可能取得极值,也可能有 拐点。 4、设f(x)在a,b 上连续,在(a,b)内可导,则I:在(a,b)内f (x) 0与 在(a,b)上f (x) f (a)之间关系是( ) (A)无实根; (B)有唯一实根; (C) 有两个实根; (D)有三个 实根。 7、已知f(x)在x 0的某个邻域内连续,且f(0) 0 , lim f(x) 2 , x 01 cosx 则在点x 0处f(x)( ) (A) I 是H 的充分但非必要条件 分条件; (C) I 是H 的充分必要条件; 也不是必要条件。 5、 设f(x)、g(x)在a,b 连续可导, 则当a x b 时,则有( (A) f(x)g(x) f(a)g(a); (C)他他; g(x) g(a) 6、 方程x 3 3x 1 0在区间(, (B) I 是H 的必要但非充 (D) I 不是H 的充分条件, f (x)g(x) 0,且 f (x)g(x) f(x)g (x), ) (B) f(x)g(x) f (b)g(b); (D)喪起。 f(x) f(a) )内( )

高阶导数和高阶微分 泰勒公式

§2-9 高阶导数和高阶微分·泰勒公式 1.高阶导数和高阶微分 在§2-3中,我们讲了函数的二阶导数和二阶微分。一般地,函数 )(x y y =的n 阶导数就是 h x y h x y x y x y n n h n n ) ()(lim ])([)()1()1(0) 1() (--→--+='= (0)()()y x y x =???? 而n 阶微分就是 n n n n n n n n x x y x x x y x x y y y d )(d ]d )([]d )(d[]d[d d )(1)(1)1(1-====--- (x 是自变量;x d 被看成与x 无关的有限量) 因此,按照莱布尼茨的记法,函数)(x y y =的n 阶导数)()(x y n 也可记成 n n x x y d )(d 或简记成 n n x y d d (注意..n 的位置...) 这样,导数与微分之间的那种“乘或除”的转换关系被保留到n 阶导数与n 阶微分的关系中. 例33 因为指数函数e x 的导数(e )e x x '=,所以(e )(e )e x x x '''==. 依次类推,则有 ()()(e )e ,d (e )(e )d e d (1,2,)x n x n x x n n x n x x n ==== 例34 对于函数x y sin =,则 cos sin , sin sin 2,22 2y x x y x x '??πππ?? ???? '''==+=+=?+ ? ? ????? ?????? 一般地, ()sin 2n n y x π??=+ ???; ()d d sin d 2n n n n n y y x x x π??==+ ??? ),2,1( =n . 同理,对于函数cos y x =,有 ()cos 2n n y x π??=+ ???; ()d d cos d 2n n n n n y y x x x π?? ==+ ??? ),2,1( =n . 例35 对于函数ln(1)y x =+,则 2 23 112,,(1),1(1)(1)y y y x x x ''''''= =-=-+++ 一般地, (n 阶导数)() 1 (1)! (1)(1,2,)(1)n n n n y n x --=-=+ (n 阶微分)()1(1)!d d (1)d (1,2,)(1) n n n n n n n y y x x n x --==-=+ 例36 设函数1()e (0),(0)0x f x x f - =≠=.证明:),2,1(0)0()( ==n f n . 证 一方面,函数)(x f 在点0是连续的,因为

第四章----中值定理与导数的应用--习题及答案(1)

第四章 中值定理与导数的应用 一、填空 1、若()x x x f -=3在[0,3]上满足罗尔定理的ξ值为 。 2、若2 1 cos 1sin lim 20=-→kx x x ,则k = 。 3、=a ,=b 时,点(1,3)为2 3bx ax y +=的拐点。 4、3+=x e x 在),(+∞-∞内的实根的个数为 。 5、函数)1ln(2 x x y +-=的单调递增区间 ,在[-1,1]中最大值为 ,最小值为 。 6、函数23 )5()(-=x x x f 的驻点为 ,其极大值为 ,极小值为 。 7、若5)(cos sin lim 0=--→b x a e x x x ,则=a ,=b 。 8、x x x y )1 1(-+=的水平渐近线为 。 二、选择 1、设R x x x x f ∈+-='),12)(1()(,则在)4 1 ,21(- 内)(x f 是( ) A 、单调增加,图形上凹 B 、单调减少,图形上凹 C 、单调增加,图形下凹 D 、单调减少,图形下凹 2、设函数)(x f 在[0,1]上可导,0)(>'x f 并且0)1(,0)0(>

微分中值定理与导数的应用练习题

题型 1.利用极限、函数、导数、积分综合性的使用微分中值定理写出证明题 2.根据极限,利用洛比达法则,进行计算 3.根据函数,计算导数,求函数的单调性以及极值、最值 4.根据函数,进行二阶求导,求函数的凹凸区间以及拐点 5.根据函数,利用极限的性质,求渐近线的方程 内容 一.中值定理 1.罗尔定理 2.拉格朗日中值定理 二.洛比达法则 一些类型(00、∞ ∞、∞?0、∞-∞、0 ∞、0 0、∞ 1等) 三.函数的单调性与极值 1.单调性 2.极值 四.函数的凹凸性与拐点 1.凹凸性 2.拐点 五.函数的渐近线

水平渐近线、垂直渐近线 典型例题 题型I 方程根的证明 题型II 不等式(或等式)的证明 题型III 利用导数确定函数的单调区间与极值 题型IV 求函数的凹凸区间及拐点 自测题三 一.填空题 二.选择题 三.解答题 4月13日微分中值定理与导数应用练习题 基础题: 一.填空题 1.函数12 -=x y 在[]1,1-上满足罗尔定理条件的=ξ 。 3.1)(2 -+=x x x f 在区间[]1,1-上满足拉格朗日中值定理的中值ξ= 。 4.函数()1ln +=x y 在区间[]1,0上满足拉格朗日中值定理的=ξ 。 5.函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 . 6.设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 个实根,分别位于区间 中. 7. =→ x x x 3cos 5cos lim 2 π35- 8.=++∞→x x x arctan ) 1 1ln(lim

第三章中值定理与导数的应用答案

(A) 一选择 1—5 BCBDB 二计算与证明 1 .若 x 0,证明 e x 1 x 。 证明:令 F x =e x _1_x ,则 F x =e x -1 当x 0时,F'x ?0,从而Fx 在0单增 因为F0=0,故Fx ?0,即 e x 1 x 2 2 .设 x 0,证明 x - x In 1 x :: x 。 2 证明: -In 1 X ,贝u f x =1 —X-丄二二 2 因x ? 0,贝U f x ::: 0,从而f x 在0, ?::单减。 2 x 故 f x :: f 0 =0,即卩 x In 1 x 2 20:令 g x ;=ln 1 x -x ,则 g x 1 ——1 1 + x 当x 0时,g x ::: 0,从而g x 在0「::单减 故 g x : g 0 = 0,即 In 1 x < x 2 由 1°、20 知,x —亠:::l n 1 ? x :: x 2 (B ) 一选择 1— 4 CBDD 习题3.1 1°:令 f x R x -

计算与证明 arcta n arcta n — n n +1 1 1 解:令F x "「如x ,则Fx 在GJ 上连续,在占*可导,故 1 1 arctan arcta n — ,使 f n LJ v f 1 1 当n 时,贝厂> 0 1 故原式二 lim f = lim 2 = 1 2.设f x 在0,1 1上可导,且0 ::: f x ::: 1,对于任何x ?0,1 ,都有f x - 1, 试证:在0,1内,有且仅有一个数X ,使f x = x 。 证:令Fx 二fx-x ,因为Fx 在0,1上连续,且F0二f0 0, F 1二f 1 -1 :::0,则由零点存在定理在 0,1内至少存在一点 x ,使 F x 二 f x = 0,即 f x 二 x 。 下证唯一性。设在0,1内存在两个点X 1与X 2,且X 1 ::: X 2,使f X 1 = x 1, f X 2 1=X 2,在〔X 1,X 2 1上运用拉格朗日中值定理,则有 :5 1X1, X 2 ,使 得 f = f X 2 - f X 1 二 X 2 -X 1 二 1 x 2 _捲 x 2 _捲 这与题设f X =1矛盾,故只有一个X 使f X 二X 。 3 .设fx 在1,2 1上具有二阶导数f x ,且f2二f1=0,如果 F x -1 f x ,证明至少存在一点 1,2,使F 」=0。 求lim n _L :i 由拉格朗日定理知,存在一点

导数与微分习题及答案

第二章 导数与微分 (A) 1.设函数()x f y =,当自变量x 由0x 改变到x x ?+0时,相应函数的改变量 =?y ( ) A .()x x f ?+0 B .()x x f ?+0 C .()()00x f x x f -?+ D .()x x f ?0 2.设()x f 在0x 处可,则()() =?-?-→?x x f x x f x 000 lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f ' 3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 4.设函数()u f y =是可导的,且2x u =,则 =dx dy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.若函数()x f 在点a 连续,则()x f 在点a ( ) A .左导数存在; B .右导数存在; C .左右导数都存在 D .有定义 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在 7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .6 8.设()x f e y =且()x f 二阶可导,则=''y ( ) A . ()x f e B .()()x f e x f '' C .()()()[]x f x f e x f ''' D .()()[](){} x f x f e x f ''+'2 9.若()???≥+<=0,2sin 0 ,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=b C .2-=a ,1=b D .2=a ,1-=b

微分中值定理与导数的应用习题

第四章微分中值定理与导数得应用习题 §4、1 微分中值定理 1. 填空题 (1)函数在上使拉格朗日中值定理结论成立得ξ就是. (2)设,则有3个实根,分别位于区间中. 2.选择题 (1)罗尔定理中得三个条件:在上连续,在内可导,且,就是在内至少存在一点,使成立得(B ). A.必要条件 B.充分条件 C. 充要条件D.既非充分也非必要条件 (2)下列函数在上满足罗尔定理条件得就是( C ). A、B、C、D、 (3)若在内可导,且就是内任意两点,则至少存在一点,使下式成立(B). A. B. 在之间 C. D. 3.证明恒等式:. 证明: 令,则,所以为一常数. 设,又因为, 故. 4.若函数在内具有二阶导数,且,其中,证明:在内至少有一点,使得. 证明:由于在上连续,在可导,且,根据罗尔定理知,存在, 使. 同理存在,使. 又在上 符合罗尔定理得条件,故有,使得. 5. 证明方程有且仅有一个实根. 证明:设, 则,根据零点存在定理至少存在一个,使得.另一方面,假设有,且,使,根据罗尔定理,存在使,即,这与矛盾.故方程只有一个实根. 6. 设函数得导函数在上连续,且,其中就是介于之间得一个实数. 证明: 存在,使成立、 证明: 由于在内可导,从而在闭区间内连续,在开区间内可导.又因为,根据零点存在定理,必存在点,使得. 同理,存在点,使得.因此在上满足罗尔定理得条件,故存在,使成立. 7、设函数在上连续,在内可导、试证:至少存在一点, 使 证明:只需令,利用柯西中值定理即可证明、 8.证明下列不等式 (1)当时,. 证明:设,函数在区间上满足拉格朗日中值定理得条件,且, 故, 即 () 因此, 当时,. (2)当时,. 证明:设,则函数在区间上满足拉格朗日中值定理得条件,有 因为,所以,又因为,所以,从而 . §4、2 洛毕达法则 1. 填空题 (1) (2)0 (3)= (4)1 2.选择题

作业13高阶导数与高阶微分

1、填空题 1)设5x y =,则()()= 0n y () ln 5n 2)设cos 2y x =,() ()=x y n 2cos 22n n x π??+ ? ?? 3)设x y 211 += ,则()()=x y 6()()7 66212!61-+??-x 4)设()x f y =三阶可导,且其一阶导数、二阶导数均不为零,其反函数为()y x ?=,则 ()= ''y ?()()()()()()()()()3 21111x f x f x f x f x f dx dy dx x f d dy x f d '''-=''''-=???? ??'=???? ??' ()y ?'''= ()()()()()3 f x d f x d y dx dy dx dy ??? '' ?- ?'''??= ()()()()()()() ()() () ()()()() ()() 3 2 2 2 6 5 331 f x f x f x f x f x f x f x f x f x f x '''''''''''''--=- =-''' 5)已知函数()x y 由方程0162=-++x xy e y 确定,则()=''0y 2 - 2、求下列函数的二阶导数 1)x e y x sin -= 解:x e x e y x x cos sin --+-=',x e x e x e x e y x x x x cos 2sin cos 2sin -----=--='' 2)()() 22 1ln 1y x x =++ 解:( ) 2 2ln 12y x x x '=++, ()() ()2 2 2 2 42ln 122ln 121x y x x x x x ' ''=++=++++ 3、求下列函数的n 阶导数的一般表达式 1)x y 2 sin = 解:x x x y 2sin cos sin 2==',?? ? ? ?+ ==''22sin 22cos 2πx x y

第四章.中值定理与导数的应用

第四章.中值定理与导数的应用 要求掌握的内容: 1、理解罗尔定理和拉格朗日中值定理 2、会用洛必达法则求函数极限 3、掌握函数单调性的判别方法 4、了解函数极值的概念,掌握函数极值、最值的求法及应用 5、会用导数判断函数图形的凹凸性,会求函数的拐点和渐近线。 6、会描绘简单函数的图形 一、罗尔定理 如果函数f(x)满足:在闭区间[a,b]上连续;在开区间(a,b)内可导;其中a不等于b;在区间端点处的函数值相等,即f(a)=f(b),那么在区间(a,b)内至少存在一点ξ(a<ξ

导数与微分

导数和微分 问题 1.为什么用导数能研究函数的性态? 答:应用导数之所以研究函数的性态是因为函数 () f x 在点 0 x 导数 00 0 0 0 0 ()() '()lim lim x x x f x f x y f x x x x ?? - D == D - 本身蕴含了函数 () f x 在点 0 x 最本质的属性.为了说明这个事实,我们首先从比数 0 0 ()() f x f x y x x x - D = D - 说起,比数 y x D D 对研究函数 () f x 在点 0 x 的性态有什么意义呢? 我们知道,两个量a 与b 之比数 a k b = (或a kb = )是一个抽象的数,称为率。 在数学中有很多的率。例如,圆周率,离心率,斜率,曲率等。在社会科学中, “率”就更多了,例如,增长率,出生率,利率等。率这个抽象的数k 给出了两 个量a 与b 之间的倍数关系,即a 与b 的k 倍,它能刻划事物内在的规律和属性。 例如,椭圆 22 22 1 x y a b += 的离心率 22 (01) a b e e a - = £< 描绘了椭圆的扁圆的程度:e 愈大,椭圆愈扁;e 愈小,椭 圆愈近似于圆。 由此可见, 椭圆的离心率e 对认识椭圆的几何性态是十分必要的。 这就是几何性质定量化,是“以数表性”的实例。同样,导数这个“率”也能够 以数表性(函数的性态),而应用的范围更为广泛。 设函数 () y f x = 在点 0 x 可导,任取一点 x ,有自变量的改变量 0 , x x x D =- 相应函数 () y f x = 的改变量 0 ()(). y f x f x D =- 两者的比数为 0 0 ()() '. f x f x y k x x x - D == D - 用分析的语言说, ' k 是函数 () y f x = 在 0 x 附近的平均变化率。用几何的语言说, ' k 是曲线 () y f x = 过点 00 (,()) x f x 与 (,()) x f x 的割线斜率。 当 x 很靠近 0 x 时 (或 x D 很小时),平均变化率 ' k 能够近似地描绘函数 () y f x = 在点 0 x 附近的性态。例如,

《高等数学.同济五版》讲稿WORD版-第03章-中值定理与导数的应用

第三章 中值定理与导数的应用 教学目的: 1、 理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。 2、 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数 最大值和最小值的求法及其简单应用。 3、 会用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐 近线,会描绘函数的图形。 4、 掌握用洛必达法则求未定式极限的方法。 5、 知道曲率和曲率半径的概念,会计算曲率和曲率半径。 6、 知道方程近似解的二分法及切线性。 教学重点: 1、罗尔定理、拉格朗日中值定理; 2、函数的极值 ,判断函数的单调性和求函数极值的方法; 3、函数图形的凹凸性; 4、洛必达法则。 教学难点: 1、罗尔定理、拉格朗日中值定理的应用; 2、极值的判断方法; 3、图形的凹凸性及函数的图形描绘; 4、洛必达法则的灵活运用。 §3. 1 中值定理 一、罗尔定理 费马引理 设函数f (x )在点x0的某邻域U (x 0)内有定义, 并且在x 0处可导, 如果对任意x ∈U (x 0), 有 f (x )≤f (x0) (或f (x )≥f (x0)), 那么f '(x 0)=0. 罗尔定理 如果函数y=f (x )在闭区间[a , b ]上连续, 在开区间(a , b)内可导, 且有f(a )=f (b ), 那么在(a , b )内至少在一点ξ , 使得f '(ξ)=0. 简要证明: (1)如果f (x )是常函数, 则f '(x)≡0, 定理的结论显然成立. (2)如果f (x )不是常函数, 则f (x )在(a, b)内至少有一个最大值点或最小值点, 不妨设有一最大值点ξ∈(a, b ). 于是 0) ()(lim )()(≥--='='- →- ξξξξξx f x f f f x , 0) ()(lim )()(≤--='='+ →+ ξ ξξξξx f x f f f x ,

偏导数与全导数-偏微分与全微分的关系

1。偏导数 代数意义 偏导数是对一个变量求导,另一个变量当做数 对x求偏导的话y就看作一个数,描述的是x方向上的变化率 对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义 对x求偏导是曲面z=f(x,y)在x方向上的切线 对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分 偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在detax趋进于0时偏增量的线性主要部分 detaz=fx(x,y)detax+o(detax) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分 这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分 全增量:x,y都增加时f(x,y)的增量 全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分 同样也有求全微分公式,也建立了全微分和偏导数的关系 dz=Adx+Bdy 其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也

指明了求微分的方法。 3.全导数 全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。 u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。 对于你的题能求对x的偏导数,对y的偏导数,z的全微分,不能求全导数 如果z=f(x^2,2^x) 只有这种情况下dz/dx才是全导数! 偏导数就是 在一个范围里导数,如在(x0,y0)处导数。 全导数就是定义域为R的导数,如在实数内都是可导的 在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。 函数f关于变量x的偏导数写为或。偏导数符号是圆体字母,区别于全导数符号的正体d。这个符号是阿德里安-马里·勒让德介入的并在雅可比的重新介入后

相关文档
最新文档