生物信号采集系统的使用讲义回顾.doc

生物信号采集系统的使用讲义回顾.doc
生物信号采集系统的使用讲义回顾.doc

计算机生物信号采集处理系统的认识及使用

计算机是一种现代化、高科技的自动信息分析、处理设备。随着电子计算机技术在生物、医学领域的广泛应用,使原先不易进行的某些生物信息的检测,变得简易可行。利用计算机采集、处理生物信息,让计算机进入机能学实验室已成为必然趋势。

计算机生物信号采集处理系统就是以计算机为核心,结合可扩展的软件技术,集成生物放大器与电刺激器,并且具备图形显示、数据存储、数据处理与分析等功能的电生理学实验设备。对生物信号采集系统的了解和熟练使用,是今后对完成生理学实验的数据和图形采集、储存和处理所必须具备的基本技能之一。

一、目的要求

1、熟悉计算机生物信号采集处理系统的基本原理及组成;

2、熟悉并掌握计算机生物信号采集处理系统的基本操作与使用方法。

二、内容

1、学习计算机生物信号采集处理系统的组成及原理;

2、计算机生物信号采集处理系统的基本操作与使用。

三、计算机生物信号采集处理系统的工作原理

现代生物机能实验系统的基本原理是:首先将原始的生物机能信号,包括生物电信号和通过传感器引入的生物非电信号进行放大(有些生物电信号非常微弱,比如减压神经放电,其信号为微伏级信号,如果不进行信号的前置放大,根本无法观察)、滤波(由于在生物信号中夹杂有众多声、光、电等干扰信号,这些干扰信号的幅度往往比生物电信号本身的强度还要大,如果不将这些干扰信号滤除掉,那么可能会因为过大的干扰信号致使有用的生物机能信号本身无法观察)等处理,然后对处理的信号通过模数转换进行数字化并将数字化后的生物机能信号传输到计算机内部,计算机则通过专用的生物机能实验系统软件接收从生物信号放大、采集硬件传入的数字信号,然后对这些收到的信号进行实时处理,一方面进行生物机能波形的显示,另一方面进行生物机能信号的实时存贮,另外,它还可根据操作者的命令对数据进行指定的处理和分析,比如平滑滤波,微积分、频谱分析等。对于存贮在计算机内部的实验数据,生物机能实验系统软件可以随时将其调出进行观察和分析,还可以将重要的实验波形和分析数据进行打印。

图1-2 Pclab系统工作原理模式图

计算机生物信号采集处理系统由硬件和软件两大部分组成。硬件主要完成对各种生物电信号(如心电、肌电、脑电)与非生物电信号(如血压、张力、呼吸)的采集。并对采集到的信号进行调整、放大,进而对信号进行模/数(A/D)转换,使之进入计算机。软件主要用来对已经数字化了的生物信号进行显示、记录、存储、处理及打印输出,同时对系统各部分进行控制,与操作者进行对话。

计算机生物信号采集处理系统在功能上基本可替代原来的刺激器、放大器、记录仪、示波器等。此外,引进模拟实验系统软件还可以演示简单重复的印证性实验,在动手前预习实验,甚至代替部分实验。微机生理系统已成为生理实验教学与研究的一个发展方向。

1、传感器和放大器

生物所产生的信息,其形式多种多样,除生物电信号可直接检取外,其他形式的生物信号必须先转换成电信号,对微弱的电信号还需经过放大,才能作进一步的处理。生物信号采集处理系统中的刺激和放大器都是由计算机程控的,其工作原理和一般的刺激器、放大器完全一样。主要的区别在于一般仪器是机械触点式切换,而生物信号采集处理系统是电子模拟开关,由电压高低的变化控制,是程序化管理,提高了仪器的可靠性,延长了仪器的寿命。

2、生物信号的采集

计算机在采集生物信号时,通常按照一定的时间间隔对生物信号取样,并将其转换成数字信号后放入内存,这个进程称为采样。

(1)A/D转换器生物信号通常是一种连续的时间函数,必需转换为离散函数,再将这个离散的函数按照计算机的“标准尺度”数字化,以二进制表达,才能被计算机所接受。A/D转换设备能提供多路模/数转化和数/模转换。A/D转换需要一定时间,这个时间的长短决定着系统的最高采样速度。A/D转换的结果是以一定精度的数字量表示,精度愈高,(曲线的)幅度的连续性愈好。对一般的生物信号采样精度不应低于12位数字。转换速度和转换精度是衡量A/D转换器性能的重要指标。

(2)采样与采样有关的参数包括通道选择、采样间隔、触发方式和采样长度等方面。

①通道选择一个实验往往要记录多路信号,如心电、心音、血压等。计算机对多路信号进行同步采样,是通过一个“多选一”的模拟开关完成的。在一个很短暂的时间内,计算

机通过模拟开关对各路信号分别选通、采样。这样,尽管对各路信号的采样有先有后,但由于“时间差”极短暂,因此,仍可以认为对各路信号的采样是“同步”的。

②采样间隔原始信号是连续的,而采样是间断进行的。对某一路信号而言,两个相邻采样之间的时间间隔称为采样间隔。间隔愈短,单位时间内的采样次数愈多。采样间隔的选取与生理信号的频率也有关,采样速率过低,就会使信号的高频成分丢失。但采样速率过高会产生大量不必要的数据,给处理、存储带来麻烦。根据采样定律,采样频率应大于信号最高频率的2倍。实际应用时,常取信号最高频率的3~5倍来作为采样速率。

③采样方式采样通常有连续采样和触发采样两种方式。在记录自发生理信号(如心电、血压)时,采用连续采样的方式。而在记录诱发生理信号(如皮层诱发电位)时,常采用触发采样的方式。后者又根据触发信号的来源分为外触发和内触发。

④采样长度在触发采样方式中,启动采样后,采样持续的时间称为采样长度。它一般应略长于一次生理反应所持续的时间。这样既记录到了有用的波形,又不会采集太多无用的数据造成内存的浪费。

3、生物信号的处理

计算机生物信号采集处理系统因其强大的计算机功能,可起到滤波器的功能,而且性能远远超过模拟电路,恢复被噪音所淹没的重复性生理信号。人们可以测量信号的大小、数量、变化程度和变化规律,如波形的宽度、幅度、斜率和零交点数等参数。做进一步的分类统计、分析给出各频率分能量(如脑电、肌电及心率变异信号)在信号总能量中所占的比重,从而对信号源进行定位。对实验结果可以用计数或图形方式输出。对来自摄像机或扫描仪的图像信息经转换后,也可输入计算机进行分析。所以计算机生物信号采集处理系统,不仅具备了刺激器、放大器、示波器、记录仪和照相机等仪器的记录功能外,而且还兼有微分仪、积分仪、触发积分仪、频谱分析仪等信号分析器的信息处理功能。为节省存储空间,计算机可对其获得的数据按一定的算法进行压缩。

4、动态模拟

通过建立一定的数学模型,计算机可以仿真模拟一些生理过程,例如激素或药物在体内的分布过程、心脏的起搏过程、动作电位的产生过程等均可用计算机进行模拟。除过程模拟外,利用计算机动画技术还可在荧光屏上模拟心脏泵血、胃肠蠕动、尿液生成及兴奋的传导等生理过程。

四、计算机生物信号采集处理系统的认识及使用(以我院实验室的Pclab-UE为例介绍)

Pclab-UE是集放大器、采集卡、刺激器为一体的外置式USB接口高性能的生物医学信号采集处理系统。

1.生物医学信号放大器使用介绍

硬件放大器分前后两个面板,前面板用来做常规,后面板主要用来连接线路,其中前面板的各部分功能如下:

电源开关用来打开或关闭硬件设备,注意在采样的过程当中不要关闭此电源。

通道1、通道2、通道3、通道4分别是四个独立的放大器通道,其中通道3是专用的心电通道,不能进行其他的信号采集。

刺激输出有两个插口,上方的是0~5V 档输出和0~10V 档输出,选择不同档刺激输出指示灯会随之变化。

下方是0~100V 档输出,红色标记是提醒实验人员注意高压危险!

后面板的各部分功能如下:

USB 接口用来插接USB 线的小方端口,USB 线的另一端接入计算机的USB 接口。

监听输出口是与音箱的音频线相连,它是用来监听神经放电的声音。

监听输出口旁边的口是与串口线连接,它是用来传输刺激命令的。

地线接口用来接地线以减少外界环境对有效信号的干扰。

电源接口用来接入电源线,要求使用交流市电220V ,50Hz 。

★若是前面板电源灯不亮,通常是保险管烧了。

2. Pclab-UE应用软件窗口界面功能介绍

3.一般生物医学信号采集的软件设置操作

用Pclab-UE生物医学信号采集处理系统做好电生理实验的第一步就是在开始实验之前要做好信号采样的软件设置工作。具体操作如下:

第一步,执行“设置”菜单中的“采样条件”菜单项,打开采样条件设置窗口见下图:

该窗口中有四个下拉列表框,分别用来设置显示方式、触发方式、采样频率、通道个数。

(1)其中采样频率可以根据实验做出选择,通常是变化快的选择采样频率高一些(如:减压神经放电实验可以选择10KHz),变化慢的选采样择频率底一些(如:血压、呼吸、张力等实验可以选择1KHz)。

(2)通道个数用来确定实验中使用通道的个数,选择1个通道,则是第一通道;选择

2个通道,则是第一和第二通道;选择3个通道,则是第一、二和第三通道;选择4个通道,则是全部的通道。

(3)显示方式:有记录仪方式和示波器方式两种,可根据实验的需求来选择显示方式。

I、“记录仪”方式:用来记录变化较慢,频率较低的生物信号。如电生理实验中的血压、呼吸、张力等。其扫描线的方向是从右向左,连续滚动,与传统仪器的二导记录仪相一致。它的采样频率从20Hz到50KHZ,11档可选。一般上述典型实验1KHz左右。此时无触发方式选择。

Ⅱ、“示波器”方式:用来记录变化快,频率高的生物信号。如电生理实验中的神经干动作电位、AP传导速度、心室肌动作电位等。其扫描方向是从左向右,一屏一屏的记录,与传统的示波器相一致。它的采样频率从1KHz到200KHz。★在200KHz采样频率只允许单窗口运行。

(4)触发方式:有自动触发和刺激器触发,当使用记录仪方式显示时,此功能自动关闭(变成灰色);若使用示波器方式,还可以进一步选择是自动触发还是刺激器触发,如果

是刺激器触发则的启停由按钮来控制。

第二步,为每个通道在控制面板的通道功能列表框中选择对应的实验类别,同时确定要计算的内容。如图

第三步,适当调节输入范围,时间常数,低通滤波,陷波,纵向放缩,时间单位等参数。

(1)“输入范围”(也称“放大倍数”或“增益”),它是对输入进去的生物信号进行放大。如下图:(即50倍~50000倍)

(2)“时间常数”它有两重功能:一是用来控制交直流(即控制电信号与非电信号),非电信号(如:血压、呼吸、张力等)时它是处于“直流”状态;二是在做电信号实验时它相当于高通滤波。如下图:

★高通滤波是指高于某种频率的波形可以通过,时间与频率是倒数关系

(3)“低通滤波”是指低于某种频率的波形可以通过,适合于滤除含有某种固定频率的周期性干扰信号。

(4)“50Hz陷波”,是指当采样曲线中有干扰出现时,并且这种干扰有一定频率的周期性。

(5)“纵向放缩”是指对当前通道的波形进行纵向拉伸、压缩。其与“时间常数”

是有区别的,它是对采样后的波形进行人为的放大、压缩,对生物信号本身没有真正的放大。

(6)“时间单位”是指对当前通道的波形进行横向拉伸、压缩,同时也对当前走纸通道速度进行调节。

第四步,如果使用直流状态,即使用传感器进行非电信号实验时,要对通道进行调零,执行“设置”菜单中的“当前通道调零”菜单项进行自动调零如图:(若是偏离太大,则先调传感器的电位器)(这一步由老师先做)

第五步,对非电信号如血压、张力等可以进行定标,执行“设置”菜单中的“当前通道定标”菜单项进行定标((这一步由老师先做,若不需要计算张力大小,可省去这一步)。

第六步,单击工具栏上的按钮开始采样,在采样的过程中可以实时调整输入范围、低通滤波、纵向放缩等各项指标以使波形达到最好的效果,再次单击此按钮则可停止采样。

4.刺激器的设置与调整

为了方便电生理实验,Pclab-UE系统内置设有一个由软件程控的刺激器,该刺激器所提供的功能与性能指标完全能够满足实验的要求,且工作稳定、可靠。恒压源设计,刺激输出电压不会因刺激对象阻抗变化而变化,共分为0-5V;0-10V; 0 -100V三档,其中每一档的输出电压的步长都不相同。共有七种不同的刺激方式,分别为单刺激、串刺激、周期刺激、自动幅度、自动间隔、自动波宽、自动频率。不同的实验选择不同刺激方式和刺激幅度会令实验效果十分理想。为了正确使用刺激器可进行如下设置:

第一步:打开刺激器设置面板,可以通过“设置”菜单下的“刺激器设置”菜单项来

实现,也可以通过工具栏上的按钮在控制面板和刺激面板间进行切换,此时刺激面板就会代替放大器控制面板以方便您进行刺激器的参数设置。刺激面板如图:

第二步:选择适当的刺激模式,调整相应的波宽、幅度、周期、延时、间隔等参数,然后单击工具栏上的“刺激”按钮即可发出所要刺激。(本期实验主要设计调节刺激强度和刺激频率,改变刺激强度可以改变波幅也可改变波宽;改变刺激频率可调节主周期和时间间隔)

第三步:刺激标记想要显示在哪个通道上,就在相对应的通道上打钩,这样在当前通道上就可以显示相应的刺激幅度、波宽与标记。

5.实验结果的存盘及打印输出

(1)为了保证实验数据的完整保存,Pclab-UE系统提供了强大的数据保存机制,并且采用了标准的文件存盘方式。根据用户要保存的目的不同,本系统对数据的保存分三种,一种是整个实验过程中的全部数据的保存;另一种是通过记录保存;还有一种是对做完实验后的选择保存。下面分别予以介绍。

I、全部数据保存是指从开始波形采样就对整个实验过程中所采集的全部波形数据的保

存,其目的是在实验结束后可再现实验过程。这个保存机制和微软的Word、Excel相一致。一是通过停止采样后“文件”菜单中的“所有实验数据保存”菜单项来实现的;二是在“新建实验”或关闭Pclab-UE界面时系统用户只需要输入一个文件名即可,文件将被自动存放在本系统安装后的UserData文件夹中以便用户集中管理。

II、记录保存是针对实验过程中出现的稳定而平滑的波形进行保存的,它可以保存一段时间内的较好的波形,其操作方法是当出现较好的或用户认为需要记录的波形后按下工具栏上的“记录”按钮,从此刻开始的波形将会被记录起来,直到用户再次单击此按钮停止记录为止。在采样的过程当中用户可以多次通过此按钮来记录数据,当停止采样后,用户可通过工具栏上的“存盘”按钮或“文件”菜单中的“实验记录保存”菜单项来保存所记录下来的文件,用户只需要输入文件名即可,文件将被自动存放在本系统安装后的UserData文件夹中以便用户集中管理。

III、选择保存是对做完实验后未及时通过记录保存,采取事后保存的一种方式。它是对采样后的波形进行涂黑,然后按工具栏的“选存”按扭就会弹出一个对话框让您输入文件名。接下去再涂黑按“选存”就不会出现对话框,因为它是将后面涂黑的波形与前面涂黑的波形保存在同一个文件名下。

通过以上三种方式,可以放心地保存实验所采样的数据,若是Pclab-UE软件下载了保存在UserData文件夹的数据也不会丢失。

(2)对于采样波形的打印输出,可以先通过工具栏上的“预览”按钮或“文件”菜单中的“打印预览”菜单项来进行波形的预览,然后通过“文件”菜单中的“打印”菜单项直接打印输出。(也可以通过打印预览中的“打印”直接进行打印输出)

五、作业与思考

(一)简述计算机生物信号采集处理系统的组成及基本原理。

(二)试述计算机生物信号采集处理系统的基本操作流程。

附:动物生理实验刺激系统

电子刺激器

电子刺激器是能产生一定波形的电脉冲仪(器)。输出的波形有三角波;锯齿波、尖波(针形波)、矩形方波(方波)等。根据刺激引起组织兴奋的三要素:强度对时间变化率、刺激强度和刺激持续时间均要求到达最小值的特点,矩形方波上升及下降的速度快,波的前缘刺激电流对生物组织是较为有效的刺激,易控制,通过调节其参数(包括刺激强度、持续时间和刺激频率)可给组织器官以不同的刺激,因此矩形方波是较好的刺激形式。

1、刺激器方式:

单刺激:可为默认选择(计算机)或为手控刺激,即按1次手动开关,就输出一次刺激脉冲。

双刺激、连续刺激:当选择双刺激或连续刺激时,刺激器会按照实验者设定的刺激参数连续输出刺激脉冲,何时开始,何时终止可以人工控制。

串刺激:在每一个刺激周期内(主周期包含2个或2个以上的一串刺激脉冲。

2、刺激器参数:

刺激强度:以矩形方波的波幅(方波的高度)表示。可用电压或电流强度表示,电流强度一般从几μA~几十mA,电压可在200 V以内。实验过程中,过强或过弱的刺激都应避免,因为过弱的刺激不能引起组织功能变化;过强的刺激可引起组织内电解和热效应而损伤和破坏组织。在双刺激中,两个刺激脉冲的强度可以相等,也可以不等。

刺激(持续)时间:以矩形方波的波宽表示。一般刺激持续时间从几十μs~数s ,并采用正负双向刺激方波。采用单向方波刺激时,时间不宜过长,否则也会产生组织内电解和热效应而损伤组织。故实验中应采取最佳的刺激强度和刺激时间的配比,如选用波宽为1 ms的双向波,方波的振幅以10 mV为佳;如波宽减少到0.5 ms则振幅可增加到40~50 mV。

刺激频率:相对于连续刺激而言,表示单位时间内所含主周期的个数,单位为Hz ,如5 Hz 、20 Hz ,也可用主周期的时间来表示,如0.2 s,0.05s等。在使用连续刺激时,刺激频率一般少于1000次/s。刺激频率过高,有一部分刺激会落于组织的不应期内,而成为无效刺激。刺激频率随组织的不同而异。一般组织器官的功能实验的刺激频率在60~100 次/s为宜。

串长:表示以重复的频率不断地输出数个(一连串)刺激脉冲的(持续)时间。在串长内可调节刺激脉冲的个数和间隔(波间隔t)。

同步输出:有时为了保证实验的精确性,要求整个实验系统保持同步工作,如要求在刺激器发出刺激脉冲稍前时间内,能发出一个尖脉冲(同步脉冲)去触发示波器或其它仪器使它们能同步工作。

延迟:表示从同步脉冲到刺激脉冲出现的时间差(T1)。调节延迟,可使刺激脉冲或由刺激脉冲引起的生理反应能在荧光屏上的适当位置展现,以便观察和记录。

串间隔:在连续的串刺激中,一串刺激脉冲连续出现时的时间间隔(T2)。它可以等于延迟

(T1),也可以不等。

在计算机生物信号采集处理系统中,上述参数可出现在(1)模式,包括正电压刺激、负电压刺激、正电流刺激及负电流刺激;(2)方式;(3)延时;(4)波宽;(5)波间隔;(6)频率;(7)强度1及强度2(对双刺激时);(8)主周期;(9)程控增量,表示程控刺激参数的增量或减量。

以下是生物科学2003级学生记录的牛蛙坐骨神经干动作电位:

2017华工检测技术与信号处理作业答案

一. 判断题 【】1. 磁电式速度传感器是利用电磁感应原理。对 【】2. 测量正确度描述了测量结果中粗大误差大小的程度。错 【】3. 确定信号中那些不具有周期重复性的信号称为非周期信号。对 【】4. 当一个空气微粒偏离其平衡位置时,就有一个压力的临时增加,据此可描述声强为功率面积。错 【】5. 应变片式位移传感器是将位移量转换为应变量。对 二. 单向选择 1.通过与国家基准对比或校准来确定量值单位的为 B 。 A.国家基准(B) 副基准 C.计量基准 D.企业基准 2.下列不属于量值的是 D 。 A. 2m B.30kg C.4s D. A 3.同一量多次测量时,误差的正负号和绝对值以不可预知的方式变换称为 B 。 A.系统误差 B.随机误差 C.相对误差 D.绝对误差 4. D 中那些不具有周期重复性的信号称为非周期信号。 A.离散信号 B.阶跃信号 C.不确定信号 D.确定信号 5.周期信号的强度可用峰值、 C 、有效值、和平均功率来描述。 A.真值 B.均值 C.绝对均值 D.均方根值 6.信号的时域描述是就 B 而言。 A.频率 B.时间 C.周期 D.振幅 7.测量装置的静态特性包括线性度、灵敏度、回程误差、 C 等。 A.传递函数 B.频率响应函数 C.分辨力 D.脉冲响应函数 8. D 晶体,当受到外力作用时,不会产生压电效应。

A. 石英 B. 钛酸钡 C. 锆钛酸铅 D.硫酸钙 9.在抗干扰设计时,将各单元电路的地点顺序连接在一条公共的地线上称为 D 。 A.多点接地 B.单点接地 C.并连接地 D.串联接地 10.传递函数H(S)与 A 及系统的初始状态无关。 A.输入x(t) B.装置的传输特性 C.装置的结构 11.电容传感器变换原理不包括 B 。 A. 变面积 B. 变温度 C. 变极距 D.变介质 12.低通滤波器允许其截至频率 A 的频率成分通过。 A. 以下 B. 以上 C. 两个区间范围以内 D. 两个区间范围以外 13.在光照作用下,物体内的电子从物体表面逸出的现象称为 C 。 A. 光生伏打效应 B. 内光电效应 C. 外光电效应 D.光电池效应 14.自相关函数为 B 。 A. 奇函数 B. 偶函数 C. 非奇非偶函数 15.回转轴径向运动误差测量时,有时不必测量总的径向运动误差,而只将一只传感器置于 该方向来检测,这种方式称为 D 测量法。。 A.轴向 B. 径向 C. 双向 D. 单向 三. 概念解释题 1.线性度: 仪表的静态输入——输出校准(标定)曲线与其理论拟合直线之间的偏差。 2.测量精密度 : 对某一稳定的被测量在相同的规定的工作条件下,由同一测量者,用

数字信号处理在生物医学的应用

数字信号处理在生物医学领域的应用 作者:张春强 安徽农业大学工学院 车辆工程 13720482 摘要:在生物医学研究中有各种各样待提取和处理的信号,信号处理立即成为解决这些问题的有效方法之一。主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用,并对数字信号处理技术在生物医学工程中的应用前景进行了展望。 关键词:数字信号处理;小波分析;人工神经网络;维格纳分布 1 引言 自20世纪60年代以来,随着计算机和信息学科的飞速发展,大量的模拟信息被转化为数字信息来处理。于是就逐步产生了一门近代新兴学科———数字信号处理(Digital Signal Processing,简称DSP)技术。经过几十年的发展,数字信号处理技术现已形成了一门以快速傅里叶变换和数字滤波器为核心,以逻辑电路为基础,以大规模集成电路为手段,利用软硬件来实现各种模拟信号的数字处理,其中包括信号检测、信号变换、信号的调制和解调、信号的运算、信号的传输和信号的交换等各种功能作用的独立的学科体系。 而生物医学工程就是应用物理学和工程学的技术去解决生物系统中所存在的问题,特别是人类疾病的诊断、治疗和预防的科学。它包括工程学、医学和生命科学中的许多学科。本文主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用。 2 数字信号处理在生物医学工程中的应用 2.1 信号处理在DNA 序列中的应用 生物序列数据在数学上以字符串表示,每个字符对应于字母表中的一个字母。如 DNA 序列中,用 A,T,C,G 四个字母代表组成 DNA 序列的四种碱基。对数值化后的DNA 序列进行频谱分析发现基因序列蛋白质编码区存在周期 3行为,即其功率谱在1/3频率处有一谱峰。用傅利叶变换来分析基因序列的功率谱可以发现其蛋白质编码区,可以预测基因位置和真核细胞基因中独特的外显子。 1.1 DFT 求 DNA 序列功率谱 在对基因组序列进行计算分析之前,先将其转化为数值序列。设字母表Λ = {A ,C ,G ,T } ,取长度为N 的DNA 序列x[n],对于Λ中每个不同的字母都形成一个指示器序列[]n x α(0≤n ≤N-1,α∈Λ),在序列[]n x α中的某一个位置i 有: []其他)(01i n x ααα=???=(位置i 处的碱基为α) 该指示器的DFT 变换为 [][]n jw N n DFT k e n x k X --=∑=1 0αα,)10(-≤≤N k (1) 于是可以求得DNA 序列的功率谱:

生物医学信号处理历年精彩试题_电子科大_饶妮妮

生物医学信号处理试卷集 试卷一答案和评分标准: 一、假设有两个离散平稳随机过程)(),(n y n x ,m x m R 6 .0)(=, m y m R 8 .0)(=,它们统计独立,求这 两个随机过程的乘积的自相关函数和功率谱密度。(14分) 解: 设z=xy , m y x z m R m R m n y n y E m n x n x E m n y m n x n y n x E m n z n z E m R 48 .0)()()]()([)]()([)]()()()([)]()([)(==++=++=+=(6分) ∑==+∞ -∞ =-m m j m z j z e m R DTFT e P ωω48.0)]([)((4分) =ωcos 96.02304.17696 .0-(4分) 二、设线性系统如图所示,已知 n n n s ,相互独立,且ωω2 sin )(=j s e S , 21 )(= ωj n e S 。要求设计一 个滤波器ωω2 sin )(c e H j =,试确定c 使得滤波后的输出n s ?与真实信号n s 的均方误差最小,即 ])?[(2n n s s E -最小。(14分) 解答: 设误差为n n n s ? s e -=其自相关为: )m (R )m (R )m (R )m (R )]s ?s )(s ?s [(E )e e (E )m (R s ?s s ?s ?s s m n m n n n m n n e +--=--==+++(2分) 做傅立叶变化: )()()()()(???ω ωωωωj s j s s j s s j s j e e S e S e S e S e S +--=(4分) ω ωωωωωωω4262j n j s 2j j x 2j ?sin 21 sin ])(e S )(e S [)e (H )(e S )e (H )(c c e S j s +=+== (2分) ωωωωωω4i s i i sx i ?sin )e (S )e (H )e (S )e (H )(c e S j s s === ωωωωωω4i s i i xs i s ?sin )e (S )e (H )e (S )e (H )(c e S j s ===** (2分) 2 2 14321 c c +-=ξ (3分)

现代雷达信号检测及处理

现代雷达信号检测报告

现代雷达信号匹配滤波器报告 一 报告的目的 1.学习匹配滤波器原理并加深理解 2.初步掌握匹配滤波器的实现方法 3.不同信噪比情况下实现匹配滤波器检测 二 报告的原理 匹配滤波器是白噪声下对已知信号的最优线性处理器,下面从实信号的角度 来说明匹配滤波器的形式。一个观测信号)(t r 是信号与干扰之和,或是单纯的干扰)(t n ,即 ? ??+=)()()()(0t n t n t u a t r (1) 匹配滤波器是白噪声下对已知信号的最优线性处理器,对线性处理采用最大信噪比准则。以)(t h 代表线性系统的脉冲响应,当输入为(1)所示时,根据线性系统理论,滤波器的输出为 ?∞ +=-=0)()()()()(t t x d h t r t y ?τττ (2) 其中 ?∞ -=0 0)()()(τττd h t u a t x , ?∞ -=0 )()()(τττ?d h t n t (3) 在任意时刻,输出噪声成分的平均功率正比于 [ ] ??∞∞=?? ? ???-=0 20202 |)(|2)()(|)(|τττττ?d h N d h t n E t E (4) 另一方面,假定滤波器输出的信号成分在0t t =时刻形成了一个峰值,输出信 号成分的峰值功率正比于 2 02 2 0)()()(? ∞ -=τττd h t u a t x (5) 滤波器的输出信噪比用ρ表示,则

[ ] ?? ∞ ∞ -= = 2 02 02 2 20|)(|2)()(| )(|) (τ ττ ττ?ρd h N d h t u a t E t x (6) 寻求)(τh 使得ρ达到最大,可以用Schwartz 不等式的方法来求解.根据Schwartz 不等式,有 ??? ∞ ∞ ∞ -≤-0 20 2 02 0|)(||)(|)()(τττττ ττd h d t u d h t u (7) 且等号只在 )()()(0*τττ-==t cu h h m (8) 时成立。由式(1)可知匹配滤波器的脉冲响应由待匹配的信号唯一确定,并且是该信号的共轭镜像。在0=t t 时刻,输出信噪比SNR 达到最大。 在频域方面,设信号的频谱为 ,根据傅里叶变换性质可知,匹配滤 波器的频率特性为 (9) 由式(9)可知除去复常数 c 和线性相位因子 之外,匹配滤波器的频率 特性恰好是输入信号频谱的复共轭。式 (2)可以写出如下形式: (10) (11) 匹配滤波器的幅频特性与输入信号的幅频特性一致,相频特性与信号的相位谱互补。匹配滤波器的作用之一是:对输入信号中较强的频率成分给予较大的加权,对较弱的频率成分给予较小的加权,这显然是从具有均匀功率谱的白噪声中过滤出信号的一种最有效的加权方式;式(11)说明不管输入信号有怎样复杂的非线性相位谱,经过匹配滤波器之后,这种非线性相位都被补偿掉了,输出信号仅保留保留线性相位谱。这意味着输出信号的各个频率分量在时刻达到同相位,同相相加形成输出信号的峰值,其他时刻做不到同相相加,输出低于峰值。 匹配滤波器的传输特性 ,当然还可用它的冲激响应 来表示,这时有:

生物医学信号处理

1、生物医学简述 1、1生物医学信号概述 生物医学信号就是人体生命信息得体现,就是了解探索生命现象得一个途径。因此,深入进行生物医学信号检测与处理理论与方法得研究对于认识生命运动得规律、探索疾病预防与治疗得新方法以及发展医疗仪器这一高新技术产业都具有极其重要得意义。国内外对于生物医学信号检测处理理论与方法得研究都给予极大得重视。人体给出得信号非常丰富,每一种信号都携带着对应得一个或几个器官得生理病理信息。由于人体结构得复杂性,因此可以从人体得不同得“层次”得到各类信号,如器官得层次、系统得层次以及细胞得层次,这些信号大致分为电生理信号、非电生理信号、人体生理信号、生化信号、生物信息以及医学图像[1]。 1、2生物医学信号得特点 生物医学信号属于强噪声背景下得低频微弱信号,它就是由复杂得生命体发出得不稳定得自然信号,从信号本身特征、检测方式到处理技术,都不同于一般得信号。 ⑴信号弱,如心电信号在mV级,脑电信号在μV级,而诱发电位信号得幅度更小。 ⑵噪声强,人体就是电得导体,易感应出工频噪声;其次就是信号记录时受试者移动所产生得肌电噪声,由此引起电极移动所产生得信号基线漂移。另外,凡就是记录中所含有得不需要成分都就是噪声,如记录胎儿心电时混入得母亲得心电。 ⑶随机性强且一般就是非平稳信号,由于生物医学信号要受到生理与心理得影响,因此属于随机信号。 ⑷非线性,非线性信号源于非线性系统得输出,人体体表采集到得电生理信号都就是细胞膜电位通过人体系统后在体表叠加得结果,因此这些信号严格地说都就是非线性信号,但目前都就是把她们当作线性信号来处理[2]。 2、生物医学信号得检测 生物医学信号检测就是对生物体中包含地生命现象、状态、性质与成分等信

1生物医学信号概述

第一章生物医学信号概述 第一节学习生物医学信号处理的理由生物医学工程是一个应用性的研究领域,生物医学信号处理自然应该成为该专业的主干课程之一,使学生掌握处理信号和系统的方法。 信号处理的含义比纯粹的数学运算更深更广。生物医学信号处理以严谨的组织行为方式为分析和概念化物理行为提供了一个基础框架,不管这种行为是一个电子控制系统的输出还是一次种植与周围组织的反应。 对信号/系统进行计算能够获得较精确的分析结果,但对分析过程的理解(定性的)也十分重要。例如,一名学生建议用小波来检测心电图信号中的异常,则他/她必须理解小波变换的数学概念。另一名具有神经生理学兴趣的学生希望研究全身振动对视觉功能的影响,则他/她需要理解共振的概念(即使他/她已经忘记了量化这种现象的二阶差分方程)。类似地,一名要研究心率的神经中枢控制的学生,不管他/她用哪种方法来描述心率,都需要理解记忆或相关的概念以及在能量记录中瞬时变化的原因。简言之,作为一名生物医学工程师应该掌握信号处理的定性描述并具备应用定量分析方法解决生物医学问题的技能。通过学习《生物医学信号处理》课程,学生可以达到上述要求。 更具体地说,生物医学信号处理将教给学生两种主要技能:(1)为了提取原始的生物医学信息,获取和处理生物医学信号的技能;(2)解释处理结果性质的技能。为此,《生物医学信号处理》课程应该包含以下四个重要内容: (1)测量生物医学信号,即量化和校正测量仪器对待测信号的影响。 (2)操作(即滤波)生物医学信号,即识别和分离信号中的有用成份和无用成份。 (3)定量描述生物医学信号,即揭示产生生物医学信号的本质,根据第二步得出的结果预测信号未来的行为。 (4)探测生物医学信号源,即描述一个生物医学物理系统的输入与输出信号之间内在联系。 大多数信号处理教材都很强调计算和算法。对于生物医学工程专业的学生来说,如果在生物医学信号处理课程中仍选用大量信号处理的内容,则可能是熟悉知识的枯糙重复。本教材的宗旨是通过许多具体生物医学信号处理实例,将真实世界与理论研究联系起来,并指导学生如何应用一项理论去解决一个具体的生物医学问题。 第二节信号及其类型 信息是一个过程产生的能量的测量,而信号则是信息的一种表达形式。来自于真实世界的信号各不相同,但大致可分为四种类型:(1)确定性信号;(2)随机信号;(3)分形信号;(4)混沌信号,如图1-1(a)、(b)、(c)和(d)分别是四种类型信号的一个例子。 确定性信号在教材中常作为例子给出,是学生最熟悉的一类信号,但这类信号在真实世界中则较少出现。所谓确定性信号是指在已知足够过去值的条件下,能够准确预测该信号未来值的一类信号。例如,正弦波信号A Sinωt。换句话说,只要能够用数学封闭表达式来表达的一类信号就是确定的信号。 既使信号的全部过去值已知,也不能准确预测其未来值的一类信号称为随机信号。随机信号

信号检测与处理计算题

信号检测与处理 1、设在某二元通信系统中,有通信信号和无通信信号的先验概率分别为:P(H 1)=0.8,P(H 0)=0.2。若对某观测值x 有条件概率分布f(x|H 1)=0.25和f(x|H 0)=0.45,试用最大后验概率准则对该观测样本x 进行分类。 2、在存在加性噪声的情况下,测量只能为2v 或0v 的直流电压,设噪声服从均值为0、方差为 2 σ的正态分布,设似然比门限值为0l ,试对测量结果进行分类(10分) 3、设二元假设检验的观测信号模型为: H0:x=-1+n H1:x=1+n 其中n 是均值为零、方差为1/2的高斯观测噪声。若两种检验都是等先验概率的,而代价因子为: C 00=1 ,C 10=4, C 11=2 C 01=8。试求Bayes 判决表示式,并画出bayes 接收机形式。 4、设x1,x2,…xn 是统计独立的方差为2σ的高斯随机变量,在H1假设下均值为a1,H0假设下均值为a0,似然比门限为0l ,试对其进行判决,并求两种错误概率。(20分) 5、在二元数字通信系统中,时间间隔T 秒内,发送一个幅度为d 的脉冲信号,即s 1=d,代表1;或者不发送信号,即s 0=0,代表0。加性噪声服从均值为0,方差为1的高斯分布,当先验概率未知,正确判决不花代价,错误判决的代价相等且等于1时,采用极大极小准则计算其极大极小风险为多大,相应的q 0为多少? 6、在加性噪声背景下,测量0V 和1v 的直流电压在P(D1|H0)=0.1的条件下,采用Neyman-Pearson 准则,对一次测量数据进行判决。假定加性噪声服从均值为0,方差为2的正态分布。(已知erf(0.9)=0.7969) 第四章 1、已知发送端发送的信号分别为???≤≤-=≤≤=T t t A t s T t t A t 0,sin )(0,sin )(s 1 0ωω 试利用最小错误概率准则设计一台接收机,对如下假设做出判决,并画出接收机的结构形式。 ???+=+=) ()()(:H )()()(:H 1100t n t s t x t n t s t x ,n(t)服从均值为0功率谱密度为N 0/2的高斯白噪声。 2、已知发送端发送的信号分别为???≤≤=≤≤=T t t A t s T t t A t 0,2sin )(0,sin )(s 1 0ωω 试利用最小错误概率准则设计一台接收机,对如下假设做出判决,并画出接收机的结构形式。 ???+=+=)()()(:H )()()(:H 11 00t n t s t x t n t s t x ,n(t)服从均值为0功率谱密度为N 0/2的高斯白噪声。 3、已知发送端发送的信号分别为???≤≤=≤≤=T t t A t s T t t 0,sin )(0,0)(s 1 0ω 试利用最小错误概率准则设计一台接收机,对如下假设做出判决,并画出接收机的结构形式。 ???+=+=)()()(:H )()()(:H 11 00t n t s t x t n t s t x ,n(t)服从均值为0功率谱密度为N 0/2的高斯白噪声。

生物医学信号检测作业

Formulate firing rate at input )2cos()(0θπ++=t f A m t m m Solution: Obviously , m m f πω2=,i i t t T -=+1,firing rate T r 1 = With the formula dt t m m V i i t t th ?++=1))((10,we can obtain: ) cos() cos()2)(cos(2)2sin( ) 2sin()2)(cos(2)]sin()[sin()()2cos()(001010110011 1θωθωθωωωωθωωθωθωωθπ++=?++=++?? +=+++=+-++ -=++==→+++++++??i m th i m t t when i i m m m m i i m m i m i m m i i m t t t t th t A m V T t AT T m t t T T AT T m T t t A T m t t A t t m dt t f A m dt t m V i i i i i i So, the firing rate th m V t A m T r ) cos(10θω++==

MATLAB m0=1; A=1; w=2*pi/5; l=pi; t=0:0.002:12; v1=1; v2=2; v3=3; y1=(m0+A*cos(w*t+l))/v1; y2=(m0+A*cos(w*t+l))/v2; y3=(m0+A*cos(w*t+l))/v3; figure(1); plot(t,y1,t,y2,'g',t,y3,'r','linewidth',2) legend('Vth=1','Vth=2','Vth=3',0) grid; axis([0 12 0 2.3]); xlabel('t(s)'),ylabel('Firing Rate(pps)'); title('The Firing Rate Under Different Vth')

第七章 信号检测与处理电路

第七章信号检测与处理电路一、教学要求 知识点 教学要求 学时掌握理解了解 信号检测系统的基本组成√ 检测系统中的放大电路 测量放大器的电路结构和工作 原理 √ 隔离放大器的电路结构和工作 原理 √ 有源滤波 器 滤波器的基础知识√ 低通、高通有源滤波器特性和 分析方法 √ √ 带通、带阻有源滤波器电路结 构与特性 √ 电压比较器的特性和分析方法√ 二、重点和难点 本章的重点和难点 本章的重点是:测量放大器的电路结构和工作原理、滤波器的基础知识、低通和高通有源滤波器特性和 分析方法、电压比较器的特性和分析方法。本章的难点是:二阶有源滤波器、迟滞比较器的电路分析。 三、教学内容 7.1 信号检测系统的基本组成 一般信号检测系统的前向通道主要包含传感器、放大器、滤波器、采样保持器和模数转换器等电路模块。 将被测物理量转换成相应的电信号的部件称为传感器。传感器输出的电信号一般都比较微弱,通常需要利用放大电路将信号放大。然而,与被测信号同时存在的还会有不同程度的噪声和干扰信号,有时被测信号可能会被淹没在噪声及干扰信号之中,很难能分清哪些是有用信号,哪些是干扰和噪声。因此,为了提取出有用的信号,而去掉无用的噪声或干扰信号,就必须对信号进行处理。 在信号处理电路中,应根据实际情况选用合理的电路。例如,当传感器的工作环境恶劣,输出信号中的有用信号微弱、共模干扰信号很大,而传感器的输出阻抗又很高,这时应采用具有高输入阻抗、高共模抑制比、高精度、低漂移、低噪声的测量放大器;当传感器工作在高电压、强电磁场干扰等场所时,还必须将检测、控制系统与主回路实现电气上的隔离,这时应采用隔离放大器;对于那些窜入被测信号中的差模干扰和噪声信号,通常需要根据信号的频率范围选择合理的滤波器来滤除。 另外,在信号检测系统中,有时还需要对某些被测模拟信号的大小先做

生物医学信号处理的方法

生物医学信号处理的方法 生物医学仪器包括了诊断仪器和治疗仪器两大类。在诊断仪器中要寻找对诊断有意义的具有某种特征的信号或信号的某种特征量。在治疗仪器中同样需要确定特征信号的存在或信号特征量的大小去控制治疗部分的工作。一般说来,信号并不能直接提供这些信息,它们需要应用信号处理方法去提取。例如,临床的常规脑电图检查可为脑损伤、脑血栓、内分泌疾病等的诊断、预防和治疗提供信息。另外脑电图也常用来作睡眠、麻醉深度的监护。但是白发脑电图的时域波形很不规则。不但它的节律随精神状态变化而改变,而且在基本节律的背景下还会不时地发生一些瞬态变化。传统的分析方法是用领域分析方法,用它的基本节律作为脑电图的基本特征量。 从信号中提取特征量的常用方法有谱分析、波形分析、建立模型等多种。有了特征量,就要根据它们进行诊断。诊断就是分类。现用的模式分类方法有统计模式识别、句法分析、模糊模式识别等。上述这些内容正是信号处理学科的主要研究对象,实际上这些方法现在也并不成熟。对于生物医学信号中大量存在的非线性、非平稳、多变量等问题的分析还很初步,还需深入地研究和探讨。 由于干扰的影响,生物医学信号往往埋藏在噪声中,因此造成信息丢失或产生虚假信息,所以通常在进行生物医学信号处理以前,要对信号施加某种处理来降低噪声、增强信息。例如,在研究大脑感觉机制,提取诱发响应时,常常采用重复刺激方法和相干平均技术来克服自发脑电活动,增强有用信息。污染信号的噪声可以是加性的(即观测等于信号的噪声之和)、相乘性的(即观测等于信号与噪声的积);也可能有用的信息仅与信号的一部分有关,而与有用信息非相关部分也被看成噪声。总之,噪声的性质是多种多样的。数字滤波器是增强信息、抑制噪声的常用方法,然而它对于频带重叠的信号与噪声无能为力。因此消噪问题是生物医学信号处理研究的又一个重要内容。 目前生物医学信号处理中应用的抑制噪声和信号增强技术,常需要信号与噪声统计特性的先验知识,先验知识越完整,增强信号的效果越显著。然而得到这些先验知识常常又是困难的,这种要求限制了诸如维纳滤波、卡尔曼滤波等技术的应用。自适应方法可以自动调节参数来适应信号统计特性而不依赖先验知识,因而引起了广泛的注意。 在某种情况下,需要将信号从一个地点传送到另一个地点。有不少突发性疾病对患者威胁极大,例如,猝死和呼吸障碍,为了及时抢救,在患者家里安装监护系统,监护系统采集的信息经电话电路传到监护中心,使患者处于医护人员的监护之下。为了保证传输效率,或为了方便地保存、记录患者病历,需要尽量减

信息检测与信号处理习题5含答案

第五章习题 一、选择题 1.两个正弦信号间存在下列关系:同频( )相关,不同频( )相关。 A.一定 B.不一定 C.一定不 2.自相关函数是一个( )函数。 A.奇 B.偶 C.非奇非偶 D.三角 A.同频余弦信号 B.脉冲信号 C.偶函数 D.正弦信号 6.对连续信号进行采样时,采样频率越高,当保持信号的记录的时间不变时,则( )。 A.泄漏误差就越大 B.量化误差就越小 C.采样点数就越多 D. 频域上的分辨率就越低 7.把连续时间信号进行离散化时产生混叠的主要原因是( )。 A.记录时间太长 B. 采样间隔太宽 C. 记录时间太短 D. 采样间隔太窄 8.若有用信号的强度、信噪比越大,则噪声的强度( )。 A.不变 B.越大 C.越小 D.不确定 9.A/D 转换器是将( )信号转换成( )信号的装置。 A.随机信号 B. 模拟信号 C.周期信号 D.数字信号 12.两个不同频率的简谐信号,其互相关函数为( )。 A.周期信号 B.常数 C.零 13.数字信号处理中,采样频率 s f 与限带信号最高频率h f 间的关系应为( )。 A. s h f f = B.2s h f f > C.s h f f < D.0.7s h f f = 14.正弦信号0()sin()x t x t ω?=+的自相关函数为( )。 A. 2 0sin x ωτ B. 2 0cos 2 x ωτ C . 2 02 x sin ωτ D.20cos x ωτ 17.数字信号的特征是( )。 A.时间上离散,幅值上连续 B.时间、幅值上都离散 C. 时间上连续,幅值上量化 D.时间、幅值上都连续

信号与系统在生物医学中的应用

信号与系统论文 题目:信号与系统在生物医学中的应用 学号:121417010133 班级:生医121班 姓名:张小鲜

信号与系统在生物医学中的应用 摘要 随着计算机技术和现代信息技术的飞速发展,信号与系统在实际生活中的应用越来越广泛,本文在信号与系统中占有重要分量的数字信号处理技术为例,讨论其在生物医学中的应用,从而阐述信号与系统在生物医学中的应用。数字信号处理(Digital Signal Processing DSP)是利用计算机或专用处理芯片,以数值计算的方法对信号进行采集、分析、变换和识别等加工处理,从而达到提取信息和便于应用的目的。 数字信号处理技术一诞生就显示了强大的生命力,展现了极为广阔的应用前景。接下来主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用,并对数字信号处理技术在生物医学工程中的应用前景进行了展望。 关键词:生物医学;信号与系统;数字信号处理;小波分析;人工神经网络;维格纳分布 1 引言 自20世纪60年代以来,随着计算机和信息学科学的飞速发展,大量的模拟信息被转化为数字信息来处理。于是就逐步产生了一门近代新兴学科———数字信号处理(DigitalSignalProcessing,简称DSP)技术。经过几十年的发展,数字信号处理技术现已形成了一门以快速傅里叶变换和数字滤波器为核心,以逻辑电路为基础,以大规模集成电路为手段,利用软硬件来实现各种模拟信号的数字处理,其中包括信号检测、信号变换、信号的调制和解调、信号的运算、信号的传输和信号的交换等各种功能作用的独立的学科体系。而生物医学工程就是应用物理学和工程学的技术去解决生物系统中所存在的问题,特别是人类疾病的诊断、治疗和预防的科学。它包括工程学、医学和生命科学中的许多学科。本文主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用。 1.1生物医学信号特性

生物医学信号处理

1.生物医学简述 1.1生物医学信号概述 生物医学信号是人体生命信息的体现,是了解探索生命现象的一个途径。因此,深入进行生物医学信号检测与处理理论与方法的研究对于认识生命运动的规律、探索疾病预防与治疗的新方法以及发展医疗仪器这一高新技术产业都具有极其重要的意义。国内外对于生物医学信号检测处理理论与方法的研究都给予极大的重视。人体给出的信号非常丰富,每一种信号都携带着对应的一个或几个器官的生理病理信息。由于人体结构的复杂性,因此可以从人体的不同的“层次”得到各类信号,如器官的层次、系统的层次以及细胞的层次,这些信号大致分为电生理信号、非电生理信号、人体生理信号、生化信号、生物信息以及医学图像[1]。 1.2生物医学信号的特点 生物医学信号属于强噪声背景下的低频微弱信号,它是由复杂的生命体发出的不稳定的自然信号,从信号本身特征、检测方式到处理技术,都不同于一般的信号。 ⑴信号弱,如心电信号在mV级,脑电信号在μV级,而诱发电位信号的幅度更小。 ⑵噪声强,人体是电的导体,易感应出工频噪声;其次是信号记录时受试者移动所产生的肌电噪声,由此引起电极移动所产生的信号基线漂移。另外,凡是记录中所含有的不需要成分都是噪声,如记录胎儿心电时混入的母亲的心电。 ⑶随机性强且一般是非平稳信号,由于生物医学信号要受到生理和心理的影响,因此属于随机信号。 ⑷非线性,非线性信号源于非线性系统的输出,人体体表采集到的电生理信号都是细胞膜电位通过人体系统后在体表叠加的结果,因此这些信号严格地说都是非线性信号,但目前都是把他们当作线性信号来处理[2]。 2.生物医学信号的检测 生物医学信号检测是对生物体中包含地生命现象、状态、性质和成分等信息进行检测和量化地技术,涉及到人机接口技术、低噪声和抗干扰技术、信号拾取、分析与处理技术等工程领域。绝大部分生物医学信号都是信噪比很低地微弱信号,

信号检测与处理实验报告

Harbin Institute of Technology 信号检测与处理 实验报告 2016年01月

问题:最小二乘估计一次完成算法 1.问题描述 考虑仿真对象)()2(5.0)1()2(7.0)1(5.1)(k v k u k u k z k z k z +-+-=-+-- 其中,)(k v 是服从正态分布的白噪声N )1,0(。输入信号采用4阶M 序列(伪随机序列模拟白噪声),幅度为1。试对模型参数进行估计。 2.问题分析 设输入信号的取值是从k =1到k =16的M 序列,由最小二乘估 计原理可知,待估计参数LS θ?为LS θ?=L τL 1L τL z H )H H -(。其中,被估计参数LS θ?、观测矩阵z L 、H L 的表达式为 ????????????=2121?b b a a LS θ , ????????????=)16()4()3(z z z L z ,????????????------=)14()2()1()15()3()2()14()2()1()15()3()2(u u u u u u z z z z z z L H 通过matlab 对系统进行仿真,仿真算法程序流程图如图1所示。

程序代码如下: %二阶系统的最小二乘一次完成算法估计程序 u=[-1,1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,1,1]; %系统估计的输入信号为一个周期的M序列z=zeros(1,16); %定义输出观测值的长度 for k=3:16 z(k)=1.5*z(k-1)-0.7*z(k-2)+u(k-1)+0.5*u(k-2); %用理想输出值作为观测值 end subplot(3,1,1) %画三行一列图形窗口中的第一个图形 stem(u) %画输入信号u的径线图形 subplot(3,1,2) %画三行一列图形窗口中的第二个图形 i=1:1:16; %横坐标范围是1到16,步长为1 plot(i,z) %图形的横坐标是采样时刻i, 纵坐标是输出观测值z, 图形格式为连续曲线 subplot(3,1,3) %画三行一列图形窗口中的第三个图形 stem(z),grid on %画出输出观测值z的径线图形,并显示坐标网格 u,z %显示输入信号和输出观测信号 %L=14 %数据长度 HL=[-z(2) -z(1) u(2) u(1);-z(3) -z(2) u(3) u(2);-z(4) -z(3) u(4) u(3);-z(5) -z(4) u(5) u(4);-z(6) -z(5) u(6) u(5);-z(7) -z(6) u(7) u(6);-z(8) -z(7) u(8) u(7);-z(9) -z(8) u(9) u(8);-z(10) -z(9) u(10) u(9);-z(11) -z(10) u(11) u(10);-z(12) -z(11) u(12) u(11);-z(13) -z(12) u(13) u(12);-z(14) -z(13) u(14) u(13);-z(15) -z(14) u(15) u(14)] %给样本矩阵HL赋值 ZL=[z(3);z(4);z(5);z(6);z(7);z(8);z(9);z(10);z(11);z(12);z(13);z(14);z(15);z(16)] % 给样本矩阵z L赋值 %Calculating Parameters c1=HL'*HL; c2=inv(c1); c3=HL'*ZL; c=c2*c3 %计算并显示 %Display Parameters a1=c(1), a2=c(2), b1=c(3),b2=c(4) %从中分离出并显示a1 、a2、b1、b2 %End 实验运行结果如下:

生物医学信号处理习题集第一章生物医学信号概论

生物医学信号处理习题集 第一章 生物医学信号概论 1. 生物医学信号处理的对象是什么信号? 解答: 包括生理过程自发产生的信号,如心电、脑电、肌电、眼电、胃电等电生理信号和血压、体温、脉搏、呼吸等非电生理信号;还有外界施加于人体的被动信号,如超声波、同位素、X 射线等。 2. 生物信号的主要特点是什么? 解答: 随机性强,噪声背景强。 第二章 数字信号处理基础 You can use Matlab where you think it’s appropriate. 1.FIR 滤波器和IIR 滤波器的主要区别是什么? 解答: FIR 滤波器的单位脉冲响应是有限长的序列,该滤波器没有极点,具有稳定性。 IIR 滤波器的单位脉冲响应是无限长的序列,该滤波器有极点,有可能不稳定。 2.两个滤波器级联,第一个的传递函数为2-11z 2z 1)z (H -++=,第二个为-1 2z 1)z (H -=,当输入为单 位脉冲时,求输出序列,画出级联滤波器的频率响应。 解答: )z 1)(z 2z 1()z (H 12-1---++==32-1z z z 1----+ h(n)=[1,1,-1,-1],n=0,1,2,3。即输入单位脉冲时的输出序列值。 freqz(h,1)

3.A 3rd-order lowpass filter is described by the difference equation: )3 n( 2781y .0 )2 n( 1829y .1 )1 n( 76y .1 )3 n( 0181x .0 )2 n( 0543x .0 )1 n( 0543x .0 )n( 0181x .0 )n(y - + - - - + -+ - + - + = Plot the magnitude and the phase response of this filter and verify that it is a lowpass filter. 解答: b = [0.0181, 0.0543, 0.0543, 0.0181]; a = [1.0000, -1.7600, 1.1829, -0.2781]; m = 0:length(b)-1; l = 0:length(a)-1; K = 500; k = 1:1:K; w = pi*k/K; % [0, pi] 分成501个点. num = b * exp(-j*m'*w); % 分子计算 den = a * exp(-j*l'*w); % 分母计算 H = num ./ den; magH = abs(H); angH = angle(H); subplot(1,1,1); subplot(2,1,1); plot(w/pi,magH); grid; axis([0,1,0,1]) xlabel(''); ylabel('|H|'); title('幅度响应'); subplot(2,1,2); plot(w/pi,angH/pi); grid on; axis([0,1,-1,1]) xlabel('以pi为单位的频率'); ylabel('以pi弧度为单位的相位'); title('相位响应');

信号检测与估值

1.信号检测与估计理论是现代信息理论的一个分支,研究的对象是信息传输系统中信号的 接收部分。 2.系统信息传输可靠性降低的主要原因:(1)信号经过传输以后,由于通信系统不理想,信 号可能出现畸变或幅值的衰减.通过正确地设计通信系统,可以尽可能地减少信号的畸变,获得满意的接收效果.(2)经过信道传输后,信号不可避免地受到信道噪声的污染,使得接收到的是信号与噪声的混合波形. 3.通信系统的性能要求 系统的有效性:要求系统能高效率地传输信息; 系统的可靠性(抗干扰性):要求系统能可靠地传输信息 4.本课程要学习的主要内容 接收机的任务是要加工处理所接收到的混合波形,尽量减少判决错误.由于信道噪声是个随机过程,同时信号本身也可能带有不确定的参量,因此只能采用数理统计的方法,根据信号和噪声提供的的统计特性,依据某些判决的准则,对信号进行检测,判断,估计它的某些参量,或者复原信号的波形等等.这就是. 5.信号检测与估计的基本任务 研究如何在干扰和噪声的影响下最有效地辨认出有用信号的存在与否,以及估计出未知的信号参量或信号波形本身。它实质上是有意识地利用信号与噪声的统计特性的不同,来尽可能地抑制噪声,从而最有效地提取有用信号的信息。 6.信号的统计处理方法 对随机信号,应用统计学的理论和方法进行处理,称为统计信号处理,这主要体现在如下三个方面: 信号统计特性的统计描述:如信号的概率密度函数(PDF),各阶矩,自相关函数,协方差函数,功率谱密度(PSD)等。 统计意义上的最佳处理:如最佳准则,最佳判决,最佳估计,最佳滤波等,均是在统计意义上的最佳处理。 性能评价用相应的统计平均量:如判决概率,平均代价,平均错误概率,均值,均方误差等。 7.检测:指在接收端检测信号是否存在 估值: 指在接收端估计信号的某些参量: 如幅度的大小,频率的偏移等.(又称为信号的参量估计) 统称为信号的检测和估值 8.信号检测与估值中的三大任务 信号的检测::根据有限观测,最佳区分一个物理系统不同状态; 信号参量的估计:根据有限观测,最佳区分一个物理系统不同参数; 波形估计 9.信号检测与估计研究步骤

关于现阶段生物医学信号处理的技术与进展

关于现阶段生物医学信号处理的技术与进展[摘要] 生物电子学的迅速发展也推动着生物医学信号处理的快速进步。本 文对生物医学信号处理的研究现状作出介绍,同时通过分析典型系统,给出基于DSP的生物医学信号采集和分析系统的模型,并对面对的技术问题做出分析。最后指出今后的发展趋势及展望。 [关键词] 生物医学信号DSP小波虚拟仪器 引言 随着生物学和医学的发展,越来越多的人体和生物信号需要测定以供科研和诊断之用。生物医学信号处理被应用于医学教学、科研、临床、监控等,并显示出越来越重要的地位。生物医学信号包括各种生理参数,如脑电、心电、肌电等生物电信号;心跳、血压、呼吸、血流量、脉搏、心音等的非电量信号。这些信号均是强噪声背景下的低频(小于200Hz)微弱信号(幅度小于100 mV) ,这就对信号采集系统有很高的精度要求[1]。正由于采集的信号具有生物信号特有的特点:高背景噪声,且随机性大,即影响因素很多并且不可能用确定性的数学函数来表达,信号弱等[2],故需采用各种数字信号处理的方法来提取我们需要的信号。所以人体信号采集和分析系统的地位显得越来越重要。 一、生物医学信号处理的研究现状 1.基于DSP的生物医学信号采集和分析系统 现有的生物信号采集和分析系统大部分都是以PC机或工作站为核心的。其缺点是仅适合固定场合,灵活性差。并且计算机上用软件实现信号算法,虽然软件可以是自己编写的,也可以使用现成的软件包,但这种方法的缺点是速度太慢,不能用于实时系统,只能用于教学与仿真。如近些年发展迅速的Matlab,几乎可以实现所有数字信号处理的仿真[3]。便携式系统目前往往多是基于单片机系统,但由于单片机采用的是冯·诺依曼总线结构,所以单片机系统复杂,尤其是乘法运算速度慢,在运算量大的实时系统中很难有所作为,难以实现复杂的算法,特别是各种数字信号处理方面的大规模运算。近年来,随着大规模集成电路的发展,半导体制造厂商推出了高速低功耗特别适合于数字信号处理的嵌入式DSP处理器(如TI 的TMS320C2000/C5000等)和高增益、高共模抑制比的集成化仪用放大器等高性能芯片[4]。为研制新一代的采集和实时分析系统提供了物质基础。 2.基于虚拟仪器技术的生物医学信号采集和分析系统 作为一种新兴的计算机技术,虚拟仪器技术的发展为生物医学仪器的发展带来了广阔的前景。建立在通用计算机和数据采集(DAQ)设备基础上的虚拟仪器技术具有开发周期短、

生物医学信号处理-小论文

基于Matlab的心电信号分析与处理 摘要: 本课题设计了一个简单的心电信号分析系统。直接采用Matlab语言编程对 输入的原始心电信号进行处理,并通过matlab语言编程设计对其进行时域和频 域的波形频谱分析,根据具体设计要求完成系统的程序编写、调试及功能测试, 得出一定的结论。 (This topic has designed a simple ECG analysis system. Direct use of Matlab programming language original ECG signal input is processed, and its waveform spectrum analysis of the time domain and frequency domain matlab language programming through design, prepared in accordance with specific design requirements to complete the system of procedures, debugging and functional testing, too a certain conclusion.) 关键字:matlab、心电信号、滤波 一、课题目的及意义 心电信号是人类最早研究并应用于医学临床的生物信号之一,它比其它生物 电信号更易于检测,并且具有较直观的规律性,因而心电图分析技术促进了医学 的发展。 然而,心电图自动诊断还未广泛应用于临床,从国内外的心电图机检测分析 来看,自动分析精度还达不到可以替代医生的水平,仅可以为临床医生提供辅助 信息。其主要原因是心电波形的识别不准,并且心电图诊断标准不统一。因此,探索新的方法以提高波形识别的准确率,寻找适合计算机实现又具诊断价值的诊 断标准,是改进心电图自动诊断效果,扩大其应用范围的根本途径。如何把心电 信号的特征更加精确的提取出来进行自动分析,判断出其异常的类型成了亟待解 决的焦点问题。本课题通过matlab语言编程,对原始心电信号进行一定的分析 处理。(ECG is the first human study and one biological signal applied to clinical medicine, it is easier to detect than other biological signals, and has a more intuitive regularity, thus ECG analysis technology for the development of medical science. However, ECG automatic diagnosis has not been widely used in clinical, ECG machine detection analysis from home and abroad, the accuracy of the automatic analysis can replace the doctor has not yet reached the level of aid can only provide information to the clinician. The main reason is not allowed to identify the ECG waveform and ECG diagnostic criteria are not uniform. Therefore, to explore new ways to improve the accuracy of waveform recognition, searching for computer-implemented but also with the diagnostic value of the diagnostic criteria,

相关文档
最新文档