阀门的泄漏率

阀门的泄漏率
阀门的泄漏率

<≥

4.73Kv

相对密度(规定温度范围内的水=

美国

氢气介质的阀门如何选型

压力最高有150公斤,温度常温,介质:氢气,该如何选型?

由于氢气介质的特殊性(分子小,易渗透发生氢脆,爆炸性等)对于阀体及阀盖质量要求很高。

1、阀体&阀盖材质优先选用锻件,如大口径阀门可选择铸件,但是一定需做RT 二级片标准;

2、阀门设计及制造不能有尖锐的倒角,所有倒角需光滑过度,零件加工精度和表面度均要求很高;

3、阀门需严格的清洗;

4、压力试验时,强度试验需做气体强度试验,不能仅做介质为水的强度试验;

5、如是临氢阀门,要求会更高,阀门材质需控制C、S、P含量,需做晶相试验等;

6、氢气介质的阀门,还可以按照SHELL 77/308规范做氢气试验。

氢气是一种能渗透到金属材料内部并在常温或高温下引起材料变性(恶化)的介质。常温下能引起金属材料的脆化和变形等,高温下能导致金属材料的腐蚀,常温下它能引起许多金属材料的反应力腐蚀开裂,高温下它能引起金属材料的快速均匀腐蚀氢气专用阀门采用铍青铜,铝青铜合金材料,经过大型摩檫压力机模锻而成,防爆性能达到最高IIC级,适用于各种浓度的氢气环境中作业,不产电火花。

阀门的基本参数是:公称通径、公称压力、压力一温度等级以及阀门适用介质。

1、阀门的公称通径

公称通径是指阀门与管道连接处通道的名义直径,用DN表示,在字母“DN”后紧跟一个数字标志。如公称通称200mm应该标志为DN200,它表示阀门规格,是阀门最主要的参数。

2、阀门的公称压力

公称压力是指与阀门的机械强度有关的设计给定压力,它是阀门在基准温度下允许的最大工作压力。公称压力用PN表示,它表示阀门的承载能力,是阀门最主要的性能参数。公称压力用MPa来度量。

3、阀门的压力与温度等级

当阀门工作温度超过公称压力的基准温度时,其最大工作压力必须相应降低,阀门的工作温度和相应的最大工作压力变化表简称温压表。是阀门设计和选用的基准。

4、适用介质

工业阀门广泛地应用于石油、化工、冶金、电力、核能等部门,通过管道阀门的介质气体(如空气、蒸气、氨气、氮气、氢气、煤气、石油气、天然气等)和液体(如水、液氨、油类、酸碱类等),其中一些具有极强的腐蚀性,还有的具有强辐射(如核电站),因此在选择阀门材料时,必须考虑上述因素。

阀门泄漏的主要原因和应对方法

阀门泄漏的主要原因和应对方法 一、关闭件脱落产生泄漏: 原因: 1、操作不良,使关闭件卡死或超过上死点,连接处损坏断裂; 2、关闭件连接不牢固,松劲而脱落; 3、选用连接件材质不对,经不起介质的腐蚀和机械的磨损。 维护方法: 1、正确操作,关闭阀门不能用力过大,开启阀门不能超过上死点,阀门全开后,手轮应倒转少许; 2、关闭件与阀杆连接应牢固,螺纹连接处应有止退件; 3、关闭件与阀杆连接用的紧固件应经受住介质的腐蚀,并有一定的机械强度和耐磨性能。 二、填料处的泄露(阀门的外漏,填料处占的比例为最大) 原因: 1.填料选用不对,不耐介质的腐蚀,不耐阀门高压或真空、高温或低温的使用; 2.填料安装不对,存在着以小代大、螺旋盘绕接头不良、上紧下松等缺陷; 3.填料超过使用期,已老化,丧失弹性 4.阀杆精度不高,有弯曲、腐蚀、磨损等缺陷 5.填料圈数不足,压盖未压紧; 6.压盖、螺栓、和其他部件损坏,使压盖无法压紧; 7.操作不当,用力过猛等; 8.压盖歪斜,压盖与阀杆间空隙过小或过大,致使阀杆磨损,填料损坏。 维护方法: 1.应按工况条件选用填料的材料和型式; 2.按有关规定正确的安装填料,盘根应逐圈安放压紧,接头应成30℃或45℃; 3.使用期过长、老化、损坏的填料应及时更换; 4.阀杆弯曲、磨损后应进矫直、修复,对损坏严重的应及时更换; 5.填料应按规定的圈数安装,压盖应对称均匀地把紧,压套应有5mm以上的

预紧间隙; 6.损坏的压盖、螺栓及其他部件,应及时修复或更换; 7.应遵守操作规程,除撞击式手轮外,以匀速正常力量操作; 8.应均匀对称拧紧压盖螺栓,压盖与阀杆间隙过小,应适当增大其间隙;压盖与阀杆间隙过大,应予更换。 三、密封面的泄漏 原因: 1、密封面研磨不平,不能形成密合线; 2、阀杆与关闭件的连接处顶心悬空、不正或磨损; 3、阀杆弯曲或装配不正,使关闭件歪斜或不逢中; 4、密封面材质量选用不当或没有按工况条件选用阀 维护方法: 1、按工况条件正确选用颠垫片的材料和型式; 2、精心调节,平稳操作; 3、应均匀对称地拧螺栓,必要时应使用扭力扳手,预紧力应符合要求,不可过大或小。法兰和螺纹连接处应有一定的预紧间隙; 4、垫片装配应逢中对正,受力均匀,垫片不允许搭接和使用双垫片; 5、静密封面腐蚀、损坏加工、加工质量不高,应进行修理、研磨,进行着色检查,使静密封面符合有关要求; 6、安装垫片时应注意清洁,密封面应用煤油清,垫片不应落地。 四、密封圈连结处的泄漏 原因: 1、密封圈辗压不严 2、密封圈与本体焊接,堆焊质量差; 3、密封圈连接螺纹、螺钉、压圈松动; 4、密封圈连接而被腐蚀。 维护方法: 1、密封辗压处泄漏应注胶粘剂再辗压固定; 2、密封圈应按施焊规范重新不解之补焊。堆焊处无法补焊时应清除原堆焊和加工; 3、卸下螺钉、压圈清洗,更换损坏的部件,研磨密封与连接座密合面,重新

阀门泄露原因及解决办法

阀体和阀盖的泄漏 原因: 1、铸铁件铸造质量不高,阀体和阀盖体上有砂眼、松散组织、夹渣等缺陷; 2、天冷冻裂; 3、焊接不良,存在着夹渣、未焊接,应力裂纹等缺陷; 4、铸铁阀门被重物撞击后损坏。 维护方法: 1、提高铸造质量,安装前严格按规定进行强度试验; 2、对气温在0℃和0℃以下的阀门,应进行保温或拌热,停止使用的阀门应排除积水; 3、由焊接组成的阀体和阀盖的焊缝,应按有关焊接操作规程进行,焊后还应进行探伤和强度试验; 4、阀门上禁止推放重物,不允许用手锤撞击铸铁和非金属阀门,大口径阀门的安装应有支架。 填料处的泄露 阀门的外漏,填料处占的比例为最大。 原因: 1、填料选用不对,不耐介质的腐蚀,不耐阀门高压或真空、高温或低温的使用; 2、填料安装不对,存在着以小代大、螺旋盘绕接头不良、上紧下松等缺陷; 3、填料超过使用期,已老化,丧失弹性; 4、阀杆精度不高,有弯曲、腐蚀、磨损等缺陷; 5、填料圈数不足,压盖未压紧; 6、压盖、螺栓、和其他部件损坏,使压盖无法压紧; 7、操作不当,用力过猛等; 8、压盖歪斜,压盖与阀杆间空隙过小或过大,致使阀杆磨损,填料损坏。 维护方法: 1、应按工况条件选用填料的材料和型式; 2、按有关规定正确的安装填料,盘根应逐圈安放压紧,接头应成30℃或45℃;

3、使用期过长、老化、损坏的填料应及时更换; 4、阀杆弯曲、磨损后应进矫直、修复,对损坏严重的应及时更换; 5、填料应按规定的圈数安装,压盖应对称均匀地把紧,压套应有5mm以上的预紧间隙; 6、损坏的压盖、螺栓及其他部件,应及时修复或更换; 7、应遵守操作规程,除撞击式手轮外,以匀速正常力量操作; 8、应均匀对称拧紧压盖螺栓,压盖与阀杆间隙过小,应适当增大其间隙;压盖与阀杆间隙过大,应予更换。 密封面的泄露 原因: 1、密封面研磨不平,不能形成密合线; 2、阀杆与关闭件的连接处顶心悬空、不正或磨损; 3、阀杆弯曲或装配不正,使关闭件歪斜或不逢中; 4、密封面材质量选用不当或没有按工况条件选用阀。 维护方法: 1、按工况条件正确选用颠垫片的材料和型式; 2、精心调节,平稳操作; 3、应均匀对称地拧螺栓,必要时应使用扭力扳手,预紧力应符合要求,不可过大或小。法兰和螺纹连接处应有一定的预紧间隙; 4、垫片装配应逢中对正,受力均匀,垫片不允许搭接和使用双垫片; 5、静密封面腐蚀、损坏加工、加工质量不高,应进行修理、研磨,进行着色检查,使静密封面符合有关要求; 6、安装垫片时应注意清洁,密封面应用煤油清,垫片不应落地。 密封圈连结处的泄漏 原因: 1、密封圈辗压不严; 2、密封圈与本体焊接,堆焊质量差; 3、密封圈连接螺纹、螺钉、压圈松动; 4、密封圈连接而被腐蚀。 维护方法:

阀门泄漏原因分析报告

阀体泄漏成因分析 泄漏产品的缺陷部位金相分析表明:泄漏裂纹均与金属锻造流线方向一致,裂纹尾部较钝,或呈枝叉形(F103类似结构产品),阀体在加工应力作用下裂缝渐开,属明显的锻造折叠特征。泄漏部位金相组织有的较多保留原始组织,有的晶粒较细小,呈典型的挤制棒金相组织特征。据此排除毛坯有过热、过烧锻造现象及锻坯材料存在裂纹引起毛坯开裂因素。确认缺陷是由于冷锻导致产生折叠,因折叠纹较深并穿透阀体加工孔引起泄漏。 原因: 折叠是锻造过程中较常见缺陷之一,低温及模具表面粗糙锻造,易在锻件拐角处、金属流线方向发生折叠现象,折叠缝较深并穿透工作孔(阀壁)则致阀体泄漏。操作工未能控制好加热环节,冷锻造是造成不良产品产生的主要原因。(泄漏产品往往集中在一个或几个模具号产出,这是值得我们深入分析的理由) 措施: 1. .员工针对如何控制和把握加热温度,要有深刻认识,并在实践中要得到体现。要改正在个别员工中存在的一些不明确的观念(偏面求产)和操作方法(认知不足,盲目性),提高操作技能,避免人为因素造成的不良品流入下道工序; 2.生产过程中因模具或设备调整需要停顿后锻造时,应对模具进行预热后生产,并对生产出的前三至五只毛坯作废品处理,废品放置不合格品箱中; 3.锻造模具各拐角处的过渡圆弧要修整至符合图纸要求,不能过小。(过小的R角只会阻滞金属热流动性,锻造过程中造成多股金属流动不畅致折叠。) 4.加工热工或锻压工因故暂时离开岗位,一人在岗生产时对锻坯温度把握和喷灯火焰调节要遵循加热规范,及时调整加热速度和锻造节拍,避免出现锻坯欠烧(冷锻)和过热、过烧及锻坯中间红两端黑或一端红一端黑锻造;中频加热仍须遵循加热规范,掌握好节拍,即时加热即时锻造。(通过一段时间实践后,将制定出中频加热装置参数表,以工艺形式定下来。) 5.火焰加热要避免和防止出现炉膛内锻坯双层加热现象,油阀和气阀要调节恰当,以兰色火焰散开对准锻坯并保持火焰与锻坯有一定距离进行加热,加热合格的锻坯方可锻造; 6.发现锻坯表面有铣刀片锯切痕迹,不准锻造,并及时反馈工段长和下料工,避免类

浅谈燃气阀门的安全智能管理

浅谈燃气阀门的安全智 能管理 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

浅谈燃气阀门的安全智能管理【摘要】:阀门作为城市燃气管网的脉门,在管网运行中起到调节压力、流向、流速,控制停气的等重要作用。做好阀门的管理工作,对于提高抢修速度至关重要。杭州自接纳使用天然气以来,天然气管网的发展非常迅猛,管网设施规模日趋扩大,但是随着城市基础建设的不断推进,如此快速发展的管网规模,给我们的燃气管网安全构成了严重的威胁,同时,管线巡检工作中对地表设施的管理也带来了新的挑战,尤其对阀门的管理更是提出了更高的要求,因为这关系到事故应急处理的时效性,关系到如何第一时间将泄漏事故得到有效控制。因此,针对燃气管网阀门井及阀门的智能化管理显得尤为重要。 一、前言 截止2011年9月,杭州市城市燃气管网已累计中压A级管线652.3公里、中压B级管线323.6公里、低压管线2212.2公里,而整个燃气管网中阀门数量已达到7352只。这些管线不仅遍布杭州主城区的各个角落,甚至还涉及杭州郊区的一些田地、山林,为全杭城50多万居民用户和1300多家工业公建用户输送天然气,是企业名副其实的“生命线”。 公司在管线的巡检、巡护工作中投入大量的人力物力,以“三加强”为工作指导,力保燃气管网的安全运行。然而随着管网的辐射面不断扩

大,管线不断延伸,对于管线地表设施的维护及日常安全管理带来了很大的考验;而阀门作为燃气管道管理、维护、抢修及切断气源的重要部件,它的安全管理显得尤为重要。为了保证管网的安全与操作方便,地下阀门一般都设置在阀门井中。对于阀门井的统筹管理能便于阀门的使用、定期检查及维修,对整个管网的安全管理起到不可忽视的作用,然而目前,我们对阀门的有效管理还不够完善,对于阀门的相关信息了解的不全面,需要凭借地理信息系统,有些需要现场查才能确定具体的信息数据。 二、阀门管理现状 燃气管网阀门具备分布范围广,老龄阀门数量多的特点,确保每个阀门都有良好的运行状态,需要投入巨大的人力、物力、财力,有很大的难度。 目前,阀门的管理主要围绕管网巡检人员开展,巡检人员按相关操作规程及“四定”巡检样板进行管线的巡检查漏工作,巡检工根据图纸及地表环境来定位阀门井,并且对该阀门进行泄漏检查,而对于阀门的状态、型号等信息相当片面;按照现有的巡检制度,每个阀门井一个月平均只有巡查2次的频率,因此当发现阀门井等地表设施存在被埋的情况时,立即上报科室进行后续的处理。

控制阀泄漏量等级的规定和最大阀座泄露漏量计算

控制阀泄漏量等级的规定和最大阀座泄漏量计算 控制阀泄漏量指在规定的试验条件下,流过控制阀的流体流量。试验条件包括执行机构推力、阀芯和阀座的压紧力、流体特性等。泄漏量等级有六级。表1-1是泄漏量等级和试验条件。 表1-1 泄漏量等级及试验条件 泄漏等级 测试介质 测试程序最大阀座泄漏量 I 由制造方和购买方商定 II 液体或气体 1 5×10-3×C R (注1和注3) III 液体或气体 1 10-3×C R (注1和注3) 液体 1或2 IV 气体 1 10-4×C R (注1和注3) IV-S1 气体 1 5×10-6×C R (注1和注3) V 液体 2 1.8×10-7×Δp (kPa)×D(阀座直径,mm) l/h , VI 气体 1 3×10-3×Δp (kPa)×泄漏速率(见表4-46) 注1:可压缩流体的体积流量,使用标准条件为:101.325kPa 绝压和温度0℃或15℃; 注2:等级VI 表示仅用于有弹性材质阀座的控制阀; 注3:阀的额定容量是测试流体(液体或气体)在额定行程和描述的测试条件下通过控制阀的流量;它与额定流量系数的应用条件判别式和计算公式是不同,见GB/T4213-2008。 注4:表中,C R 是控制阀的额定容量;Δp 是控制阀两端最大压差;D 是阀座直径。 泄漏等级VI 的泄漏速率见表1-2。 表1-2 泄漏等级VI 的泄漏速率系数 允许泄漏速率 允许泄漏速率 阀座直径DN (mm ) 毫升/分 气泡数/分 阀座直径DN (mm ) 毫升/分 气泡数/分 25 0.15 1 150 4.00 27 40 0.30 2 200 6.75 45 50 0.45 3 250 11.1 - 65 0.60 4 300 16.0 - 80 0.90 6 350 21.6 - 100 1.70 11 400 28.4 - 表中,气泡数的计数是采用IEC 标准推荐的方法。它用φ6×1mm 的管端光滑、无倒角或毛刺的管子垂直插入水下5~10mm 深度测得的。对管道直径与表中数据的差值大于2mm 时,应采用插值法获得。这是假设泄漏速率与阀座直径的平方成正比推导获得的。 测试流体为液体(L )时通常采用水。测试流体为气体(G )时通常采用空气或氮气。测试流体温度通常为5~40℃。 测试程序1的测试条件:测试介质压力在300~400kPa (3~4bar )表压,或如果压力低于350kPa 时,在用户规定的最大操作压差的±5%内。 测试程序2的测试条件:测试压差在用户规定的阀两端最大操作压差的±5%内。 泄漏量用代码表示为:泄漏等级、测试流体、测试程序。例如,IVG1表示泄漏等级IV ,测试流体为气体(Gas ),采用测试程序1进行测试时的泄漏量。 泄漏量是阀全关时由于泄漏而流过控制阀的流量。根据不同的泄漏等级,泄漏量不同,一般约为最大流量的0.5~0.001%。控制阀的最小流量是控制阀可调节流量的下限,根据不

阀门泄漏量试验数据

阀门泄漏量试验 一.测试程序 (一).测试程序A 1.测试介质为10-52度干净的的空气或水。 2.测试压力为0.35MPa或最大操作压差,两者取其小者。 3.泄漏量读数和压力读数的误差范围应为±10 %。 4.测试介质作用在阀的进口。阀出口与大气相通或与一些低压的设备相连。 5. 执行器应当调整到规定的操作条件。通过气压,弹簧或其他方法提供使阀 正常全关的推力,当测试压差小于阀的最大操作压差时,不允许通过调整来补偿阀座负载。 6.作为库存阀体组件,没有执行器情况下进行测试,使用测试架为阀座加载,但不应超出正常的最大负载。 7.在进行水压测试时,应当注意排除阀体内和管道内的气泡。 8.测试得到的泄漏量,和表中相应等级数据相比较,看是否达到相应的泄漏等级要求。 (二).测试程序B 1.使用干净的10-52度的水进行测试。 2.测试压差应当是阀工作时在阀芯处的最大压降,压力测量误差范围在±10 %。 3.测试流体连接阀体的进口。先把阀打开,向内注水,使得阀出口部分和下游管路充满水,然后把阀关闭。 4.执行器的推力应当是规定的最大值。超过最大值的执行器推力不能使用。 5.当泄漏流量稳定时,通过足够长的时间的观察,得出误差范围在±10 %的泄漏

量值。 6.所得到的泄漏量不应大于表中给出的相应等级所规定的数值。 (三).测试程序C 1.测试介质为10-52度的空气或氮气。 2.介质压力为阀芯处额定的最大压差或0.35MPa,取其小者。 3.介质与阀的进口相连,出口与合适的测量设备相连。 4.控制阀调整到规定的操作条件,并且足够的测试时间,流量稳定,此时的泄漏量应不超过规定的数值。 二.阀门泄漏量标准 表1 泄漏等级试验介质试验程序最大阀座泄漏量L/h Ⅰ按仪表规格,由用户与制造厂商定

阀门的密封性及泄漏标准

阀门的密封性及泄漏标准 阀门的密封性能是考核阀门质量优劣的主要指标之一。阀门的密封性能主要包括两个方面,即内漏和外漏。内漏是指阀座与关闭件之间对介质达到的密封程度,考核内漏的标准我国有两个。一个是国家技术监督局于1992年12月发布的,1993年6月1日开始实施的国家标准GB/T 13927-1992《通用阀门压力试验》。这个标准是参照采用国际标准IS05208-1 982《工业阀门的压力试验》制订的;另一个是原机械工业部发布的JB/T9092-1999《阀门的试验与检验》,这个标准是参照APl598—1986《阀门的检查和试验》制订的。GB/T13927-1992适用于一般工业用阀门的检验;JB/T9092—1999适用于石油工业用阀门的检验。外漏是指阀杆填料部位的泄漏、中法垫片部位的泄漏及阀体因铸造缺陷造成的渗漏,外漏是根本不允许的。如果介质不允许排人大气,则外漏的密封比内漏的密封更为重要。因此,阀门的密封结构对阀门的选用影响很大。 如果没有发现阀门泄漏,或者发现阀门的泄漏量是在允许值范围内,则该阀门被认为对介质是达到密封。对于某一用途的阀门的最大允许泄漏量即作为阀门的泄漏标准。 1.GB/T l3927--1992的密封试验要求 密封试验的最大允许泄漏量见表2-1的规定。表2-1中的泄漏量只适用于向大气排放的情况。A级适用于非金属弹性密封阀门,8、C、D级适用于金属密封阀门。其中,8级适用于比较关键的阀门,D级适用于一般的阀门。各类阀门的最大允许泄漏量(等级)应按有关产品标准的规定。如果有关标准未作具体规定,则非金属弹性密封阀门按A级要求,金属密封阀门按D级要求。 2.JB/T9092--1999的密封试验要求 对于壳体试验和上密封试验,不允许有可见的渗漏。 如果试验介质为液体,则不允许有明显可见的液滴或表面潮湿。如果试验介质是空气或其他气体,则按所制订的试验检漏,应无气泡漏出。试验时应无结构损伤。 对于低压密封试验和高压密封试验,不允许明显可见的泄漏通过阀瓣、阀座与阀体接触面等处,并无结构上的损坏。

阀门泄漏标准

阀门泄漏标准 一、API Std 598 –1996 第7版阀门的检查和试验 1.1.1 本标准适用于对闸阀、截止阀、旋塞阀、球阀、止回阀、碟阀的检查、检验,补充检验和压力试验的要求,上述各类阀门为弹性密封,非金属(如陶瓷)密封和金属-金属密封,弹性密封是指: a.软密封、固体和半固体润滑脂类(如油封旋塞阀); b.软密封与金属密封的组合; c.设计的满足表5规定的弹性密封泄漏率的任何其它阀 门。 a.对于液体试验,1毫升相当于16滴。 b.在规定的最短试验持续时间内(表4略)无泄漏, 对于液体试验,“0”滴表示在每个规定的最短试验 时间内无可见泄漏,对于气体试验“0”气泡表示在 每个规定的最短试验持续时间内泄漏量小于1个气 泡。 c.最大允许泄漏率应是公称通经,每英寸每分钟 0.18in3(3cm3). d.最大允许泄漏率应是公称通经,每英寸每小时1.5标 准in3(0.042m3). e.对于规格大于NPS24的止回阀,允许的泄漏率应由 采购方与制造厂商定。

软座阀门和润滑型旋止阀的泄漏不得超过ISO5208A率(不得有可见泄漏),金属座阀门的泄漏率不得超过 ISO5208D率。 二、API Std 600-2001 第11版 ISO10434:1998 ANSI/API Std 600-2001 石油和天然气工业用阀盖螺栓连接的钢制闸阀 1适用范围 本标准包括的公称直径DN为:25、32、40、50、65、80、100、150、250、300、350、400、450、500、600 适用的压力等级PN为:20、50、110、150、260、420 适用的压力磅级为:150、300、600、900、1500、2500 7.1.2 密封面密封试验 7.1.2.4 超过密封试验持续时间后,通过阀座的最大允许泄漏率应符合相应的表17或表18,对于气体试验,零泄漏指超过规定的试验持续时间,泄漏小于3 mm3(1个泡),对于液体试验,零泄漏指超过规定的试验时间,无可见泄漏。 是不精确的,供识别用。

阀门常见故障处理

阀门常见故障及处理1、填料函泄漏 这是跑、冒、滴、漏的主要方面,在工厂里经常见到。 产生填料函泄漏的原因有下列几点: ①填料与工作介质的腐蚀性、温度、压力不相适应;②装填方法不对,尤其是整根填料盘旋放入,最易产生泄漏;③阀杆加工精度或表面光洁度不够,或有椭圆度,或有刻痕;④阀杆已发生点蚀,或因露天缺乏保护而生锈;⑤阀杆弯曲;⑥填料使用太久,已经老化;⑦操作太猛。 消除填料泄漏的方法是:①正确选用填料;②按正确的进行装填;③阀杆加工不合格的,要修理或更换,表面光洁度最低要达到▽5,较重要的,要达到▽8以上,且无其他缺陷;④采取保护措施,防止锈蚀,已经锈蚀的要更换;⑤阀杆弯曲要校直或更新;⑥填料使用一定时间后,要更换;⑦操作要注意平稳,缓开缓关,防止温度剧变或介质冲击。 2、关闭件泄漏 通常将填料函泄漏叫做外泄,把关闭件叫做内泄。关闭件泄漏,在阀门里面,不易发现。 关闭件泄漏,可分两类:一类是密封面泄漏,另一类是密封圈根部泄漏。 引起泄漏的原因有:①密封面研磨得不好;②密封圈与阀座、阀瓣配合不严紧;③阀瓣与阀杆连接不牢*;④阀杆弯扭,使上下关闭件不对中;⑤关闭太快,密封面接触不好或早已损坏;⑥材料选择不当,经受不住介质的腐蚀;⑦将截止阀、闸阀作调节阀使用。密封面经受不住高速流动介质的冲蚀;⑧某些介质,在阀门关闭后逐渐冷却,使密封面出现细缝,也会产生冲蚀现象;⑨某些密封面与阀座、阀瓣之间采用螺纹连接,容易产生氧浓差电池,腐蚀松脱;⑩因焊渣、铁锈、尘土等杂质嵌入,或生产系统中有机械零件脱落堵住阀芯,使阀门不能关严。 预防办法有: ①使用前必须认真试压试漏,发现密封面泄漏或密封圈根部泄漏,要处理好后再使用;②要事先检查阀门各部件是否完好,不能使用阀杆弯扭或阀瓣与阀杆连接不可*的阀门;③阀门关紧要使稳劲,不要使猛劲,如发现密封面之间接触不好或有挡碍,应立即开启稍许,让杂物流出,然后再细心关紧;④选用阀门时,不但要考虑阀体的耐腐蚀性,而且要考虑关闭件的耐腐蚀性;⑤要按照阀门的结构特性,正确使用,需要调节流量的部件应该采用调节阀;⑥对于关阀后介质冷却且温差较大的情况,要在冷却后再将阀门关紧一下;⑦阀座、阀瓣与密封圈采用螺纹连接时,可以用聚四氟乙烯带作螺纹间的填料,使其没有空隙;⑧有可能掉入杂质的阀门,应在阀前加过滤器。 3、阀杆升降失灵 阀杆升降失灵的原因有: ①操作过猛使螺纹损伤;②缺乏润滑或润滑剂失效;③阀杆弯扭;④表面光洁度不够;⑤配合公差不准,咬得过紧; ⑥阀杆螺母倾斜;⑦材料选择不当,例如阀杆和阀杆螺母为同一材质,容易咬住;⑧螺纹被介质腐蚀(指暗杆阀门或阀杆螺母在下部的阀门);⑨露天阀门缺乏保护,阀杆螺纹沾满尘砂,或者被雨露霜雪所锈蚀。 预防的方法:

阀门泄露原因及解决办法

阀门泄露原因及解决办法标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

阀体和阀盖的泄漏 原因: 1、铸铁件铸造质量不高,阀体和阀盖体上有砂眼、松散组织、夹渣等缺陷; 2、天冷冻裂; 3、焊接不良,存在着夹渣、未焊接,应力裂纹等缺陷; 4、铸铁阀门被重物撞击后损坏。 维护方法: 1、提高铸造质量,安装前严格按规定进行强度试验; 2、对气温在0℃和0℃以下的阀门,应进行保温或拌热,停止使用的阀门应排除积水; 3、由焊接组成的阀体和阀盖的焊缝,应按有关焊接操作规程进行,焊后还应进行探伤和强度试验; 4、阀门上禁止推放重物,不允许用手锤撞击铸铁和非金属阀门,大口径阀门的安装应有支架。 填料处的泄露 阀门的外漏,填料处占的比例为最大。 原因: 1、填料选用不对,不耐介质的腐蚀,不耐阀门高压或真空、高温或低温的使用; 2、填料安装不对,存在着以小代大、螺旋盘绕接头不良、上紧下松等缺陷; 3、填料超过使用期,已老化,丧失弹性; 4、阀杆精度不高,有弯曲、腐蚀、磨损等缺陷; 5、填料圈数不足,压盖未压紧; 6、压盖、螺栓、和其他部件损坏,使压盖无法压紧; 7、操作不当,用力过猛等; 8、压盖歪斜,压盖与阀杆间空隙过小或过大,致使阀杆磨损,填料损坏。 维护方法: 1、应按工况条件选用填料的材料和型式; 2、按有关规定正确的安装填料,盘根应逐圈安放压紧,接头应成30℃或45℃;

3、使用期过长、老化、损坏的填料应及时更换; 4、阀杆弯曲、磨损后应进矫直、修复,对损坏严重的应及时更换; 5、填料应按规定的圈数安装,压盖应对称均匀地把紧,压套应有5mm以上的预紧间隙; 6、损坏的压盖、螺栓及其他部件,应及时修复或更换; 7、应遵守操作规程,除撞击式手轮外,以匀速正常力量操作; 8、应均匀对称拧紧压盖螺栓,压盖与阀杆间隙过小,应适当增大其间隙;压盖与阀杆间隙过大,应予更换。 密封面的泄露 原因: 1、密封面研磨不平,不能形成密合线; 2、阀杆与关闭件的连接处顶心悬空、不正或磨损; 3、阀杆弯曲或装配不正,使关闭件歪斜或不逢中; 4、密封面材质量选用不当或没有按工况条件选用阀。 维护方法: 1、按工况条件正确选用颠垫片的材料和型式; 2、精心调节,平稳操作; 3、应均匀对称地拧螺栓,必要时应使用扭力扳手,预紧力应符合要求,不可过大或小。法兰和螺纹连接处应有一定的预紧间隙; 4、垫片装配应逢中对正,受力均匀,垫片不允许搭接和使用双垫片; 5、静密封面腐蚀、损坏加工、加工质量不高,应进行修理、研磨,进行着色检查,使静密封面符合有关要求; 6、安装垫片时应注意清洁,密封面应用煤油清,垫片不应落地。 密封圈连结处的泄漏 原因: 1、密封圈辗压不严; 2、密封圈与本体焊接,堆焊质量差; 3、密封圈连接螺纹、螺钉、压圈松动; 4、密封圈连接而被腐蚀。 维护方法:

控制阀泄漏等级(Control Valves)

SVF Leakage Classifications of Control Valves Classification of seat leakage through control valves Control valves are designed to throttle and not necessary to close 100%. A control valve's ability to shut off has to do with many factors as the type of valves for instance. A double seated control valve have very poor shut off capability. The guiding, seat material, actuator thrust, pressure drop, and the type of fluid can all play a part in how well a particular control valve shuts off. Seat Leakage Classifications There are actually six different seat leakage classifications as defined by ANSI/FCI 70-2 1976(R1982) . The most common used are ?CLASS IV ?CLASS VI CLASS IV is also known as metal to metal. It is the kind of leakage rate you can expect from a valve with a metal plug and metal seat. CLASS VI is known as a soft seat classification. Soft Seat Valves are those where either the plug or seat or both are made from some kind of composition material such as Teflon or similar. Valve Leakage Classifications Class I - Valve Leakage Classifications Identical to Class II, III, and IV in construction and design intent, but no actual shop test is made. Class I is also known as dust tight and can refer to metal or resilient seated valves. Class II - Valve Leakage Classifications Intended for double port or balanced singe port valves with a metal piston ring seal and metal to metal seats. ?0.5% leakage of full open valve capacity. ?Service dP or 50 psid (3.4 bar differential), whichever is lower at 50 to 125o F. ?Test medium air at 45 to 60 psig is the test fluid. SVF Flow Controls, Inc.

浅谈发电厂阀门外泄漏及带压堵漏方法(2021年)

浅谈发电厂阀门外泄漏及带压堵漏方法(2021年) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0978

浅谈发电厂阀门外泄漏及带压堵漏方法 (2021年) [摘要]简述了发电厂阀门外漏的形式及因素,介绍了带压堵漏的原理、优点和种类以及几种常见的带压堵漏方法在发电厂中的应用。 [关键词]发电厂,阀门外漏,形式;带压堵漏技术 1概述 发电厂阀门主要用于控制各种设备及其管路上流体介质的运行,阀门的泄漏常发生在填料、法兰密封及阀体上,阀门长时间泄漏可造成阀杆和法兰密封面的冲蚀,最终可使阀门报废,加上介质流体的损失,使电厂的消耗增加,成本上升,经济效益下降。如果介质流体有毒、易燃、易爆、腐蚀性等发生外泄漏,则容易发生中毒、火灾、爆炸等伤亡事故和加快厂房设备的腐蚀速度,缩短其使

用寿命,严重时污染周边环境,破坏电力生产,损害人们的身体健康。泄漏的存在严重威胁着安全生产,使电厂的非计划停机事故增多。以下介绍一些阀门泄漏原因及堵漏方法以及对阀门的维修和维护方法,供参考。 2阀门外漏的形式及因素 2.1阀门填料的泄漏及原因 阀门在操作使用过程中,阀杆同填料之间存在着相对运动,它包括转动和轴向移动。随着开关次数的增加,相对运动的次数也随之增多,还有温度,压力和流体介质的特性等影响,阀门填料是最容易发生泄漏的部位。它是由于填料接触压力的逐渐减弱,填料自身的老化,失去了弹性等原因引起的。这时压力介质就会沿着填料与阀杆的接触间隙向外泄漏,长时间会把部分填料吹走和将阀杆冲刷出沟槽,从而使泄漏扩大化。 2.2法兰的泄漏 阀门的法兰密封主要是依靠连接螺栓的预紧力,通过垫片达到足够的密封比压,来阻止被密封压力流体介质的外泄。它泄漏的原

阀门泄露原因分析及处理方法大全

阀门常见问题及处理方法大全 阀门泄露的处理方法 在日常生活中,受到环境和各种因素的影响,阀门在使用过程中会出现泄漏的现象。 一、阀体和阀盖的泄漏: 原因: 1.铸铁件铸造质量不高,阀体和阀盖体上有砂眼、松散组织、夹渣等缺陷 2.天冷冻裂; 3.焊接不良,存在着夹渣、未焊接,应力裂纹等缺陷; 4.铸铁阀门被重物撞击后损坏。 维护方法: 1.提高铸造质量,安装前严格按规定进行强度试验; 2.对气温在0°和0°以下的阀门,应进行保温或拌热,停止使用的阀门应排除积水 3.由焊接组成的阀体和阀盖的焊缝,应按有关焊接操作规程进行,焊后还应进行探伤和强度试验; 4.阀门上禁止推放重物,不允许用手锤撞击铸铁和非金属阀门,大口径阀门的安装应有支架。 二、填料处的泄露(阀门的外漏,填料处占的比例为最大) 原因: 1.填料选用不对,不耐介质的腐蚀,不耐阀门高压或真空、高温或低温的使用; 2.填料安装不对,存在着以小代大、螺旋盘绕接头不良、上紧下松等缺陷; 3.填料超过使用期,已老化,丧失弹性 4.阀杆精度不高,有弯曲、腐蚀、磨损等缺陷 5.填料圈数不足,压盖未压紧; 6.压盖、螺栓、和其他部件损坏,使压盖无法压紧; 7.操作不当,用力过猛等; 8.压盖歪斜,压盖与阀杆间空隙过小或过大,致使阀杆磨损,填料损坏。 维护方法: 1.应按工况条件选用填料的材料和型式;

2.按有关规定正确的安装填料,盘根应逐圈安放压紧,接头应成30℃或45℃; 3.使用期过长、老化、损坏的填料应及时更换; 4.阀杆弯曲、磨损后应进矫直、修复,对损坏严重的应及时更换; 5.填料应按规定的圈数安装,压盖应对称均匀地把紧,压套应有5mm以上的预紧间隙;6.损坏的压盖、螺栓及其他部件,应及时修复或更换; 7.应遵守操作规程,除撞击式手轮外,以匀速正常力量操作; 8.应均匀对称拧紧压盖螺栓,压盖与阀杆间隙过小,应适当增大其间隙;压盖与阀杆间隙 过大,应予更换。 三、密封面的泄漏 原因: 1、密封面研磨不平,不能形成密合线; 2、阀杆与关闭件的连接处顶心悬空、不正或磨损; 3、阀杆弯曲或装配不正,使关闭件歪斜或不逢中; 4、密封面材质量选用不当或没有按工况条件选用阀 维护方法: 1、按工况条件正确选用颠垫片的材料和型式; 2、精心调节,平稳操作; 3、应均匀对称地拧螺栓,必要时应使用扭力扳手,预紧力应符合要求,不可过大或小。法兰和螺纹连接处应有一定的预紧间隙; 4、垫片装配应逢中对正,受力均匀,垫片不允许搭接和使用双垫片; 5、静密封面腐蚀、损坏加工、加工质量不高,应进行修理、研磨,进行着色检查,使静密封面符合有关要求; 6、安装垫片时应注意清洁,密封面应用煤油清,垫片不应落地。 四、密封圈连结处的泄漏 原因: 1、密封圈辗压不严

阀门泄漏的解决方案

阀门泄漏的解决方案 阀门泄漏是工厂常见的现象,阀门的泄漏造成能耗增加,生产安全问题、工厂环境问题等多方面的影响。杭州瓦特节能在日常工作中发现,阀门初始的泄漏往往难以察觉,尤其是内漏,但是泄漏量较大时,往往维修的成本和必要性就增大许多,有计划的管理工厂的阀门是消除阀门泄漏的首要方案。 常见的是填料函泄漏,这是跑、冒、漏的主要表现,在工地、工厂里经常见到。产生填料函泄漏的原因有下列几点: 1、填料与工作介质的腐蚀性、温度、压力不相适应; 2、装填方法不对,尤其是整根填料备用旋放入,最易产生泄漏; 3、阀杆加工精度或表面光洁度不够,或有椭圆度,或有刻痕; 4、阀杆已发生点蚀,或因露天缺乏保护而生锈; 5、阀杆弯曲; 6、填料使用太久已经老化。 7、操作过于用力。 内漏表现为关闭件泄漏,通常将填料函泄漏叫外漏,把关闭件泄漏叫做内漏,关闭件泄漏,在阀门里面,不易发现。关闭件泄漏,可分两类:一类是密封面泄漏;另一类是密封件根部泄漏。引起泄漏的原因有: 1、密封面研磨得不好; 2、密封圈与阀座、阀瓣配合不严紧; 3、阀瓣与阀杆连接不牢靠; 4、阀杆弯扭,使上下关闭件不对中; 5、关闭太快,密封面接触不好或早已损坏; 6、材料选择不当,经受不住介质的腐蚀; 7、将截止阀、闸阀作调节使用,密封面经受不住高速流动介质的冲击; 8、某些介质,在阀门关闭后逐渐冷却,使密封面出现细缝,也会产生冲蚀现象; 9、某些密封圈与阀座、阀办之间采用螺纹连接,容易产生氧浓差电池,腐蚀松脱; 10、因焊渣、铁锈、尘土等杂质嵌入,或生产系统中有机械零件脱落堵住阀芯,使阀门不能关严。 阀门的内漏有时来源于阀杆升降机构失效,阀杆升降失灵,其原因有: 1、操作过猛使螺纹损伤; 2、缺乏润滑剂或润滑剂失效; 3、阀杆弯扭; 4、表面光洁度不够; 5、配合公差不准,咬得过紧; 6、阀杆螺母倾斜; 7、材料选择不当;例如阀杆与阀杆螺母为同一材质,容易咬住; 8、螺纹被介质腐蚀(指暗杆阀门或阀杆在下部的阀门); 9、露天阀门缺少保护,阀杆螺纹粘满尘砂,或者被雨露霜雪等锈蚀。 杭州瓦特节能发现其他的阀门泄漏还包括阀体开裂泄漏:一般是冰冻造成的。天冷时,阀门要有保温伴热措施,否则停产后应将阀门及连接管路中的水排净(如有阀底丝堵,可打开丝堵排水)。 手轮损坏:撞击或长杠杆猛力操作所致。只要操作人员或其他有关人员注意,便可避免。

阀门的泄漏标准

调节阀的泄露标准 GB/T4213-92 泄漏量等级( 符合 ANSI/FCI 70-2-1991) 注: ①△P 以KPa 为单位。 ②D 为阀座直径,以mm 为单位。 ③对于可压缩流体体积流量,绝对压力为101.325KPa 和绝对温度为273K 的标准状态下的测定值。 ④试验程序“1”表示△P =0.35MPa 、介 质为水;试验程序“2”表示△P 等于工作压差、介质为水或气体。 GB/T4213-92 Ⅵ级泄漏量等级( 符合 ANSI/FCI 70-2-1991) 注: 分钟气泡数是用外径6mm 、壁厚1mm 的管子垂直浸入水下5~10mm 深度的条件下测得的,管端 表面应光滑,无倒角和毛刺。 ②如果阀座直径与表列值之一相差2mm 以上,则泄漏系数可假设泄漏量与阀座直径的平方成正 比的情况下通过类推法取得。

GB/T4213-92的国标标准对泄漏规定了六个等级,其具体规定见下表.其中最低级别为Ⅰ级,不作具体要求;最高级别是Ⅵ级,即为气泡级.当泄漏量大于0.5%KV值时,可免于测试。 泄漏等级试验介 质 试验程序最大阀座泄漏量 Ⅰ由用户与制造厂商定 ⅡL或G 1 5×10-3×阀额定容量,1/h ⅢL或G 1 10-3×阀额定容量,1/h ⅣL 1或2 10-4×阀额定容量,1/h G 1 Ⅳ-S1 L 1或2 5×10-4×阀额定容量,1/h G 1 Ⅳ-S2 G 1 2×10-4×△P×D,1/h ⅤL 2 1.8×10-7×△P×D,1/h ⅥG 1 3×10-3×△P×(下表规定的泄漏量) 注:①△P以KPa为单位。 ②D为阀座直径,以mm为单位。 ③对于可压缩流体体积流量,绝对压力为101.325KPa和绝对温度为273K的标准状态下的测定值. ④试验程序“1”表示△P=0.35MPa、介质为水;试验程序“2”表示△P等于工作压差、介质 为水或气体。 阀座直径mm 泄漏量 mL/min 每分钟气泡数 25 40 50 65 80 100 150 200 250 300 35 0 400 0.15 0.30 0.45 0.60 0.90 1.70 4.00 6.75 11.1 16.0 21.6 28.4 1 2 3 4 6 11 27 45 ---- 注:①每分钟气泡数是用外径6mm、壁厚1mm的管子垂直浸入水下5~10mm深度的条件下测得的,管 端表面应光滑,无倒角和毛刺。 ②如果阀座直径与表列值之一相差2mm以上,则泄漏系数可假设泄漏量与阀座直径的平方成正 比的情况下通过类推法取得。 额定容量按计算公式 条件△P<·P1 △P≥·P1

控制阀阀座泄漏等级

控制阀阀座泄漏等级 (符合ANSI/FCI 70-2和IEC 60534-4) 阀座泄漏等级代号:I、II、III、IV、V、VI以及零泄漏(或气泡级泄漏) I级不要求测试,如果用户与供应商同意这样做 II级最大允许泄漏量0.5%的额定流通能力 III级最大允许泄漏量0.1%的额定流通能力 IV级最大允许泄漏量0.01%的额定流通能力 确定II、III、IV级泄漏等级的方法: 测试介质:10-25℃时的空气或水测试压力:3-4bar或最大工作压差两者中的较低者 测试步骤:把压力作用在阀门入口,让出口向大气开发或连接到低压头损失的测量装置上,全部正常推力由执行机构提供。 V级最大允许泄漏量每psi压差下每英寸阀口直径上每分钟通过0.0005毫升水(每bar压差下在每毫米阀口直径上每秒钟通过5X10-12立方米水)。 确定V泄漏等级的方法: 测试介质:10-52℃时的水 测试压力:阀芯两端的最大工作压降,不超过ANSI阀体等级,或小于要求的压力 测试步骤:把整个阀腔和连接管道充满水后,将压力作用在阀门入口,然后把阀芯推至关闭位置。使用规定的执行机构最大净推力,但不要超过该值,即使测试期间可以获得超过该值的推力。留出一定的时间让泄漏量稳定下来。 VI级最大允许阀座泄漏量不超过在下面的基于阀口直径的所列出的量 公称阀口直径每分钟气泡数 英寸毫米毫升/分气泡数/分 1 25 0.15 1 1-1/2 40 0.30 2 2 50 0.45 3 2-1/2 65 0.60 4 3 75 0.90 6 4 100 1.70 11 6 150 4.00 27 8 200 6.75 45 确定VI泄漏等级的方法: 测试介质:10-52℃时的空气或氮气测试压力:3.5bar或阀芯两端的最大额定压差,两者中较低的 测试步骤:把压力作用在阀门入口,执行机构应调整到规定的操作条件下,让全部正常关闭力作用在阀芯上。留出一定的时间让泄漏量稳定下来,并使用合适的测量装置。 Leslie“零泄漏”最大允许阀座泄漏量:用水做测试在额定压力下每分钟少于1个水滴。

影响阀门泄漏的因素.

影响阀门泄漏的因素 阀门的定义:是在流体系统中, 用来控制流体的方向、压力、流量的装置。阀门是使配管和设备内的介质 (液体、气体、粉末流动或停止并能控制其流量的装置。阀门是管路流体输送系统中控制部件,它是用来改变通路断面和介质流动方向,具有导流、截止、节流、止回、分流或溢流卸压等功能。用于流体控制的阀门,从最简单的截止阀到极为复杂的自控系统中所用的各种阀门,其品种和规格繁多, 阀门的公称通径从极微小的仪表阀大至通径达 10m 的工业管路用阀。泵阀英才网专家说 , 阀门可用于控制水、蒸汽、油品、气体、泥浆、各种腐蚀性介质、液态金属和放射性流体等各种类型流体地流动 ,阀门的工作压力可从 0.0013MPa 到 1000MPa 的超高压, 工作温度从 -269℃的超低温到 1430℃的高温。阀门的控制可采用多种传动方式, 如手动、电动、液动、气动、涡轮、电磁动、电磁液动、电液动、气液动、正齿轮、伞齿轮驱动等;可以在压力、温度或其它形式传感信号的作用下, 按预定的要求动作,或者不依赖传感信号而进行简单的开启或关闭, 阀门依靠驱动或自动机构使启闭件作升降、滑移、旋摆或回转运动, 从而改变其流道面积的大小以实现其控制功能。 阀门的密封性能是考核阀门质量优劣的主要指标之一。阀门的密封性能主要包括两个方面,即内漏和外漏。 内漏是指阀座与关闭件之间对介质达到的密封程度, 考核内 漏的标准我国有两个。一个是国家技术监督局 2008年 12月发布, 2009年 7月1日开始实施的国家标准 GB/T13927-2008“ 工业阀门压力试验” 。这个标准是参照采用国际标准 ISO5208-2007“ 工业阀门阀门的压力试验” 制订的, 另一个是原机械工业部发布的 JB/T9092-1999“ 阀门的试验与检验” ,这个标准是参照符合 API598-1986“ 阀门的检查和试验” 制订的。 GB/T13927-2008适用于一般工业用阀门的检验 ;JB/T9092-1999适用于石油工业用阀门的检验。

相关文档
最新文档