计算智能主要算法研究

计算智能主要算法研究
计算智能主要算法研究

-3-

研究与探索

200912

计算智能主要算法研究

田晓艳

中国人民武装警察部队学院,河北廊坊,065000

【摘要】【关键词】本文介绍了计算智能及其四种主要算法:人工神经网络、模糊算法、进化算法、蚁群算法。详细描述了每个算法的生物学基础、计算原理及其特点,以及基于每个算法的优化设计,并对它们已有的成果及在工程应用中所存在问题作简要的讨论。最后总结了四种算法的优势并预测了计算智能的发展趋势。

计算智能

人工神经网络

模糊算法

进化算法

蚁群算法

一、概述

二、计算智能的主要算法

计算智能,广义的讲就是借鉴仿生学思想,基于生物体系的生物进化、细胞免疫、神经细胞网络等某些机制,用数学语言抽象描述的计算方法。是基于数值计算和结构演化的智能,是智能理论发展的高级阶段。计算智能有着传统的人工智能无法比拟的优越性,它的最大特点就是不需要建立问题本身的精确模型,非常适合于解决那些因为难以建立有效的形式化模型而用传统的人工智能技术难以有效解决、甚至无法解决的问题。从方法论的角度和现在的研究现状,计算智能的主要算法有:人工神经网络、模糊算法、进化算法、模拟退火、忌搜索算法、DNA软计算、人工免疫系统、蚁群算法、粒子群算法、多代理(Agent)系统等。

本文对计算智能的四种算法:人工神经网络、模糊计算、进化计算、蚁群算法的生物学基础、计算原理及其特点作一个简单的综述,并对它们已有的成果及工程应用与存在问题作简要的讨论。

计算智能是在神经网络、进化计算及模糊系统这

[1]

三个领域发展相对成熟的基础上形成的一个统一概念。其中,神经网络是一种对人类智能的结构模拟方法,它是用于人工神经网络系统去模拟生物神经系统的智能机理的;进化运算是一种对人类智能的演化模拟方法,它是用进化算法去模拟人类智能的进化规律的;模糊计算是一种对人类智能的逻辑模拟方法,它是用模糊逻辑去模拟人类的智能行为的。

(1)神经网络的生物学基础

神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。树突的功能是接受来自其它神经元的兴奋。神经元细胞体将接受到的所有信号进行简单处理(如加权求和,即对所有的输入信号都加以考虑且对每个信号的重视程度——体现在权值上——有所不同)后由轴突输出。

[2]

1、人工神经网络

研究与探索200912

(2)人工神经网络描述

人工神经网络系统(ANN)是通过对大量人工神经元的广泛并行互联所形成的一种人工网络系统,用于模拟生物神经系统的结构和功能。在人工神经网络中,计算是通过数据在网络中的流动来完成的。在数据的流动过程中,每个神经元从与其连接的神经元处接收输入数据流,对其进行处理以后,再将结果以输出数据流的形式传送到与其连接的其它神经元中去。网络的拓扑结构和各神经元之间的连接权值是由相应的学习算法来确定的。算法不断地调整网络的结构和神经元之间的连接权值,一直到神经网络产生所需要的输出为止。通过这个学习过程,人工神经网络可以不断地从环境中自动地获取知识,并将这些知识以网络结构和连接权值的形式存储于网络之中。几种典型的ANN为:多层感知网络、竞争型神经网络、Hopfield神经网络。

人工神经网络的特点是具有良好的自学习、自适应和自组织能力,以及人规模并行、分布式信息存储和处理等,这使得它非常适合于处理那些需要同时考虑多个因素的、不完整的、不准确的信息处理问题。但应该看到,在神经网络的设计过程中,对各种参数的设置及网络结构的确定等都带有很强的经验性,无完整的理论可循,其规模也远未达到人脑所具有的上百亿个神经元的规模。而且,人工神经网络是基于脑模型的,它的研究受到脑科学研究成果的限制,在没有对人脑的思维规律和认知过程有一个清楚的了解之前,很难真正实现对人脑的模拟。

(3)基于人工神经网络的优化设计

随着人工神经网络理论的日趋成熟,基于人工神经网络优化应用研究也取得了突破性进展,范围正在不断扩大,主要在以下几个方面优化应用:

①信号处理方面

人工神经网络技术被广泛地应用于信号处理,如能分别对通讯、语音、心电和脑电信号进行处理分类、目标检测、杂波去噪或畸变波形的恢复、雷达回波的多目标分类、运动目标的速度估计、多目标跟踪等。

②模式识别方面

包括文字识别、语音识别、图像识别、语音合成、声纳或雷达目标识别、地震波形识别、时变信号识别及多维模式识别等。目前已成功应用于手写字符、汽车牌照、指纹和声音识别。

③自动控制方面

目前,神经网络方法已经覆盖了控制理论中的绝大多数问题,主要有系统建模与辨识、PID参数整定、极点配置、内模控制、优化设计、预测控制、最优控制、自适应控制、滤波与预测容错控制、模糊控制和学习控制等。

(1)模糊计算描述

模糊计算通过对人类处理模糊现象的认知能力的认识,用模糊集合和模糊逻辑去模拟人类的智能行为。它是一种精确处理不精确不完全信息的方法,可以比较自然地处理人的概念,即利用模糊规则,通过模糊化和反模糊化方便实现模糊推理。模糊逻辑本身并不模糊,而是用来对“模糊”进行处理以达到消除模糊的逻辑。

模糊计算最大特点是用它可以自然地处理人类的概念。主要应用有:模糊控制、模糊决策、模糊模式识别、模糊综合评判、模糊聚类分析、模糊建模等。由于输入、输出均为实型变量,所以特别适用于工程应用系统。模糊计算的知识表达易于理解,但难于利用数值信息,自学习能力较差。目前,关于模糊控制自适应、自学习、自组织策略研究颇多,但现场真正成功应用的很少,亟待技术实用化研究。

(2)基于模糊计算的优化设计

工程设计存在大量的模糊信息,如:设计标准的模糊性、设计准则(规范)的模糊性、外部环境作用的模糊性等。由于模糊信息不能用准确的数量来表达,必须用模糊计算的方法来处理,包括:模糊变量、模糊约束、模糊目标函数、模糊推理计算等。模糊优化设计包括三个方面的内容:①模糊优化设计方法;②自适应模糊优化系统模型;③模糊专家系统。

最典型的基于模糊计算的优化设计应用是模糊逻辑在火灾监控系统中的应用。传统监控系统的一个主要缺点是利用单一传感器来监控单一监控点,由于传感器内部品质和系统外部噪声的影响使得系统的可靠性不理想。而多传感器数据融合技术可以改善单一传感器信息的局部性和片面性,克服传感器自身品质、2、模糊算法

-4-

-5-

研究与探索

200912

性能和噪声带来的影响。可见监控系统是一类典型的不确定性问题。模糊逻辑是处理不确定性问题的基本数学工具。我们可以用数据融合技术把互相独立的传感器变为互相联系的整体,增加信息的冗余度,然后利用模糊逻辑把数据很好地融合在一起,最终大大提高系统的可靠性,降低系统的虚警率。

(1)进化计算的生物学基础

进化是自然界最为壮丽的过程。进化的自然法则是过度繁殖、生存斗争、遗传和变异、优胜劣汰、适者生存。这一法则的选择结果就是物种的优化。进化过程也是自然界的优化过程。进化计算是模仿自然界进化过程的计算方法。该方法无须明确描述问题的全部特征,只需根据自然法则来产生新的更好的解。

(2)进化计算描述

进化计算采用简单的编码技术表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择策略来指导学习和确定搜索方向。通过对群体进行复制、杂交和变异等遗传操作来进行学术研究。进化算法可以在解空间的不同区域中对多个点进行搜索,它能以很大的概率找到全局最优解而不易陷入局部最优情况。

进化计算的最大特点是对待求解问题本身一无所知,但只要给出了表示方案、适应函数、遗传算子、控制参数、终止准则等内容,算法就可以按不依赖于问题本身的方式对未知空间进行有效的搜索,最后找出问题的解。进化算法还具有简单、通用、稳健性强、适合于并行处理等特点,及自组织、自适应、自学习等智能特性,已被成功地应用到那些难以用传统的方法进行求解的复杂问题之中。特别是在系统识别、故障诊断、机器学习及神经网络设计等领域,进化计算已经显示出它的魅力。然而,作为一个新的、跨学科的研究课题,进化计算的理论研究还有待进一步完善,其中包括基础理论、编码机制、控制参数的选择策略、收敛性分析等等。

(3)基于遗传算法的优化设计

进化计算包括遗传算法、进化策略、进化规划和遗传规划。遗传算法为求解复杂系统优化问题提供一个通用的框架,它不依赖于问题的具体领域,因此基

3、进化算法

于遗传算法的优化设计广泛存在于很多领域之中。其主要应用领域有:

①函数优化。函数优化是遗传算法的经典应用领域。对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法却可以方便的得到较好的结果。

②组合优化。对较大规模的组合问题,目前在计算机上用枚举法很难或甚至不可能求出其精确最优解,而遗传算法则较为方便的求得其满意解。实践证明,遗传算法对于组合优化中的NP完全问题非常有效。

③生产调度问题。遗传算法已成为解决复杂调度问题的有效工具,在单件生产车间调度、流水线生产车间调度、生产规划、任务分配等方面都有有效的应用。

④图像处理。图像处理是计算机视觉中的一个重要研究领域。遗传算法在图像处理的优化计算如模式识别、图像恢复、图像边缘特征提取等方面都有很好的应用。

(1)蚁群算法的生物学基础

其原理可大致描述如下:蚂蚁属于群居昆虫,个体行为极其简单,而群体行为却相当复杂。相互协作的一群蚂蚁很容易找到从蚁巢到食物源的最短路径,而单个蚂蚁则不能。此外,蚂蚁还能够适应环境的变化,例如在蚁群的运动路线上突然出现障碍物时,它们能够很快地重新找到最优路径。人们通过大量的研究发现,蚂蚁个体之间是通过在其所经过的路上留下一种可称之为“信息素”(pheromone)的物质来进行信息传递的。随后的蚂蚁遇到信息素时,不仅能检测出该物质的存在以及量的多少,而且可根据信息素的浓度来指导自己对前进方向的选择。同时,该物质随着时间的推移会逐渐挥发掉,于是路径的长短及该路径上通过的蚂蚁的多少就对残余信息素的强度产生影响,反过来信息素的强弱又指导着其它蚂蚁的行动方向。因此,某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。这就构成了蚂蚁群体行为表现出的一种信息正反馈现象。蚂蚁个体之间就是通过这种信息交流达到最快捷搜索到食物源的目的。

(2)蚁群算法描述

蚁群算法就是模拟蚂蚁搜索食物的过程,该算法

[3]

4、蚁群算法

-6-

研究与探索

200912

的思想是:用蚂蚁的行走路线表示待求解问题的可行解,每只蚂蚁在解空间中独立地搜索可行解,解的质量越高,在“行走路线”上留下的信息素也就越多,随着算法的推进,代表较好解的路线上的信息素逐渐增多,选择它的蚂蚁也逐渐增多,最终整个蚁群在正反馈的作用下集中到代表最优解的路线上,也就找到了最优解。

蚁群算法的核心有三条。第一,选择机制:信息素越多的路径,被选中的概率越大;第二,信息素更新机制:路径越短,迹增加越快;第三,协作机制:个体之间通过信息素进行交流。

蚁群算法的特点是不仅能够智能搜索、全局优化,而且具有稳健性(鲁棒性)、正反馈、分布式计算、易与其它算法结合等特点。利用正反馈原理,可以加快进化过程;分布式计算使该算法易于并行实现,个体之间不断进行信息交流和传递,有利于找到较好的解,不容易陷入局部最优;该算法易与多种启发式算法结合,可改善算法的性能;由于鲁棒性强,故在基本蚁群算法模型的基础上进行修改,便可用于其它问题。但是,蚁群算法还不像其它的启发式算法那样已形成系统的分析方法和具有坚实的数学基础。参数的选择更多的是依靠实验和经验,没有定理来确定,而且它的计算时间偏长。

(3)基于蚁群算法的优化设计

蚁群算法主要用于求解不同的组合优化问题,一类应用于静态组合优化问题,另一类用于动态组合优化问题。静态问题指一次性给出问题的特征,在解决问题过程中,问题的特征不再改变。动态问题被定义为一些量的函数,这些量的值由隐含系统动态设置。

基于蚁群算法优化设计在静态组合中的优化应用包括:旅行商问题(TSP)、二次分配问题(QAP)、车间任务调度问题(JSP)、车辆路线问题(VRP)、图着色问题(GCP)、有序排列问题(SOP)。在动态组合中的优化应用包括:大规模集成电路中的综合布线以及电信网络中的路由等方面。同时,蚁群算法在其他领域上的组合问题上都取得比较理想的效果,如管线敷设问题、机构同构判定问题、开关盒布线问题、学习模糊规则问题等[4]

[5]

三、结束语

【参考文献】

从以上分析可以知道,计算智能理论的共同特点:它们都是受生物体系的某些机制启发而产生,都已经或正在理论和实践应用中不断完善,取得了许多实际成果。另外,它们各有特点,模糊系统善于描述和利用经验知识;神经网络善于直接从数据中进行学习;而进化计算善于求解复杂的全局最优问题,具有极强的稳健性和整体优化性。蚁群算法能够不局限于局部最优解,为复杂困难的系统优化问题提供了新的具有竞争力的求解算法。模糊系统的推理能力强于神经网络和进化计算,而神经网络、进化计算的学习、搜索能力强于模糊系统。进化计算优化搜索的广度和适应性优于神经网络,而神经网络的优化、学习精度优于进化计算。

虽然每个算法各有特点,但它们共同的仿生基础决定了它们存在必然的联系。将进化算法、模糊逻辑、神经网络、蚁群算法、免疫算法以及其他算法结合起来是目前计算智能一项新的研究课题。总之,计算智能是一个发展潜力巨大的方向,未来的发展一定会越来越智能化,个性化的倾向越来越浓,目的性变得日益明确,故其应用的领域也会越来越广。

[1]项宝卫,凌塑勇.计算智能算法的研究现状[J].台州学院学报,2006.6,(3):22-25.

[2]王万森.人工智能原理及其应用.北京:电子工业出版社,2006,11.

[3]王凌.智能优化算法及其应用.北京:清华大学出版社,施普林格出版社,2001,10.

[4]MarcoDorigo,LucaMariaGambardella.AntColonySystem:CooperativeLearningApproachtotheTravelingSalesmanProblem[J].IEEETransactiononEvolutionaryComputation,1997;1(4).

[5]邓玉芬,项凤红.蚂蚁算法在组合优化中的应用[J].电子测量与技术,2007.1(2):32-36.

土方量计算方法及误差分析讲解

学校代码: 学号:毕业(设计)论文土方量计算方法及误差分析 姓名: 专业:工程测量技术 班级: 指导教师: 二○一四年六月二十日

土方量计算方法及误差分析 姓名: 指导老师: 摘要 土方量计算是工程施工和设计中一个经常而重要的工作,目前在各种工程建设中,土方量算精度是大家在土方量算中最关心的问题,本文是基于对工程土方量计算中常用的几种方法:方格网法、断面法、等高线法及基于数字地面模型(DEM)法的基本原理比较分析,探讨它们的适用范围及精度分析。 关键词:方格网法;断面法;等高线法; DEM

目录 第一章绪论 (1) 第二章土方量计算的基本方法 (3) 2.1 方格网法 (3) 2.2 等高线法 (5) 2.3 断面法 (7) 2.4 DTM法 (7) 第三章误差分析 (9) 3.1 方格法分析 (9) 3.2 断面法分析 (13) 3.3 等高线法分析 (18) 3.4 DTM 分析 (19) 第四章案例分析及总结 (23) 4.1 案例分析 (23) 4.2 案例总结 (25) 结束语 (26) 致谢 (27) 参考文献 (28)

第一章绪论 随着我国经济的飞速发展,国家根据需要加大对工程建设的投入,无论是公路还是铁路,城市规划中,土方工程是主要项目,土方量计算是工程设计与施工中经常遇到的问题,需要精确计算土方量,土方计算是这些工程的一个重要组成部分,也是最关键的一部分,土方量直接关系到工程造价,同时土方量的计算方法的选取对施工机械,人力的配置起直接影响作用,因此对于土方计算符合实际。在国家经济建设快速发展的今天,不断完善国家基础建设和改善人民水平一样的至关重要,基础建设离不开工程施工,土方量的计算是水土建筑工程施工的一个组成部分,工程施工前得设计阶段必须对土方量进行预算,直接关系到工程的费用概算和方案选优,现实中的一些工程项目中,因土方量计算的精确性而产生的纠纷也是常遇到的,如何利用现场测出的地形数据或原有的数字地形数据快速而准确计算出土方成了人们日益关心的问题。在 当今社会发展前提下,越来越多未开垦的地区被国家投入大量的建筑施工计划。对于中国西部一直贫穷落后的状况,国家投入大量的金钱进行改善。西部地区“十大工程”,青藏铁路的开工建设;从西气东输,到西电东送工程的稳步实施;从西部地区大规模的机场建设,到铁路、公路建设的全面启动;从大规模的城市基础设施建设,到大面积的退耕还林还草试点。西部开发—这一跨世纪的伟大工程,正在广大西部地区扎扎实实地推进,土方工程是这些项目中的主体部分,每个工程的实施都牵涉到工程费用的概算,对于国家来说,合理安排好各项工程的施工费用是关键,国家每年投入西部开发的费用不计其数,但对于一个发展中的国家来说,经济是发展中的重中之重,对于一个经济赤字的国家来说,发展无从谈起,为了大型施工项目的正常实工,其工程预算是必不可少,这无论对于国家还是个人都同样重要。 研究现状: 自九十年代以来,随着基础建设需求的加大,土方计算越来越受人们的重视,传统的土方计算方法越来越不能满足人们的要求,而伴随着计算机编程技术的飞速发展,通过计算机中的图像处理技术与土方理论的结合已成为现今提高土方量计算精度和效率的新的一个有效途径,与此同时国内的研究学者在提高精度,改进公式方面进行大量探讨。对于传

智能推荐引擎

智能推荐引擎 本系统的意义在于:建立不同使用场景的推荐机制,实现推荐引擎从传统的大众化推荐向差异化推荐转变,并最终实现基于用户偏好的个性化推荐。本系统主要采用两种算法:关联和协同过滤。关联推荐算法是基于用户对产品的喜好关联,而协同过滤是基于用户和产品的聚类进行产品和用户的协同推荐。 智能推荐引擎可以在以下几个方面促进电子商务等业务的发 展: - 建立用户、产品、消费行为之间的对应关系,把握用户偏好,加深对用户需求的理解和认知,作为智能推荐、用户关怀、客户运营等工作的基础信息; - 基于客户偏好打造特色智能推荐模块,通过个性化推荐满足用户

多样化需求和偏好,提高客户粘性,提升用户下载转化率, 避免同质化竞争; - 创新的营销手段,探索客户运营新模式,提升客户运营能力。 本系统的特点主要体现在:结合个性化的推荐算法和分布式计算技术,建立高性能的海量数据分析和处理平台,为各个行业的电子商务系统建立高附加值的个性化推荐系统。 - 理论创新:我们在研究当前各种推荐算法的基础上,构建了一种全新的推荐算法,能实现海量数据的推荐分析,并且适合分布式计算的技术要求,从而大大提高了推荐系统的精确性和时效性。 - 技术创新:支持分布式多层构架。分布式计算资源规模庞大,服务器数量众多,如何有效的管理这些服务器,保证整个系统提供高性能的服务是巨大的挑战。分布式计算系统的平台管理技术能够使大量的服务器协同工作,方便的进行业务部署和开通,快速发现和恢复系统故障,通过自动化、智能化的手段实现大规模系统的可靠运营。 - 模式创新:我们的平台产品具有行业普适性。对大多数针对终端客户的电子商务企业,我们的平台可帮助其增强客户体验、帮助交叉销售,从而提高电子商务企业的核心竞争力和销售收入。 - 应用创新:有别于传统的我们的平台结合个性化的推荐算法和分布式计算技术,实现可扩展的分布式推荐系统,可处理 海量的交易数据和客户信息。

蚁群算法(C++版)

// AO.cpp : 定义控制台应用程序的入口点。 #pragma once #include #include #include const double ALPHA=1.0; //启发因子,信息素的重要程度 const double BETA=2.0; //期望因子,城市间距离的重要程度 const double ROU=0.5; //信息素残留参数 const int N_ANT_COUNT=34; //蚂蚁数量 const int N_IT_COUNT=1000; //迭代次数 const int N_CITY_COUNT=51; //城市数量 const double DBQ=100.0; //总的信息素 const double DB_MAX=10e9; //一个标志数,10的9次方 double g_Trial[N_CITY_COUNT][N_CITY_COUNT]; //两两城市间信息素,就是环境信息素 double g_Distance[N_CITY_COUNT][N_CITY_COUNT]; //两两城市间距离 //eil51.tsp城市坐标数据 double x_Ary[N_CITY_COUNT]= { 37,49,52,20,40,21,17,31,52,51, 42,31,5,12,36,52,27,17,13,57,

62,42,16,8,7,27,30,43,58,58, 37,38,46,61,62,63,32,45,59,5, 10,21,5,30,39,32,25,25,48,56, 30 }; double y_Ary[N_CITY_COUNT]= { 52,49,64,26,30,47,63,62,33,21, 41,32,25,42,16,41,23,33,13,58, 42,57,57,52,38,68,48,67,48,27, 69,46,10,33,63,69,22,35,15,6, 17,10,64,15,10,39,32,55,28,37, 40 }; //返回指定范围内的随机整数 int rnd(int nLow,int nUpper) { return nLow+(nUpper-nLow)*rand()/(RAND_MAX+1); } //返回指定范围内的随机浮点数 double rnd(double dbLow,double dbUpper) { double dbTemp=rand()/((double)RAND_MAX+1.0); return dbLow+dbTemp*(dbUpper-dbLow); }

土方量计算方法及算例

土方量的计算方法 及算例 姓名:冯鹏波 班级:装备0802 学号:200806080923

摘要: 土方量的计算在工程测量中经常遇见,如道路设计,土地平整,矿场开采等,都需要精确地计算出其土方量。土方量计算是这些工程设计的一个重要组成部分,直接关系到工程造价,但它的精度如何,误差有大却很难直接检核出来。本文列述一些常见的计算方法和一些算例。 土方量的计算是建筑工程施工的一个重要步骤。工程施工前的设计阶段必须对土石方量进行预算,它直接关系到工程的费用概算及方案选优。在现实中的一些工程项目中,因土方量计算的精确性而产生的纠纷也是经常遇到的。如何利用测量单位现场测出的地形数据或原有的数字地形数据快速准确的计算出土方量就成了人们日益关心的问题。比较经常的几种计算土方量的方法有:方格网法、等高线法、断面法、DTM法、区域土方量平衡法和平均高程法等。 关键字:土方量的计算方格网法断面法 DTM法

目录 第一章土方外业测量方法及精度比较 (4) 1.1 水准仪法 (4) 1.2 经纬仪法 (4) 1.3 全站仪法 (5) 第二章土方量计算方法 (6) 2.1 断面法 (6) 2.2 方格网法 (6) 2.3 DTM法(不规则三角网法) (10) 第三章土方量计算算例及方法比较 (14) 3.1 实例计算 (14) 3.2 比较分析 (17) 第四章全文总结 (20) 参考文献 (21)

第一章 土方外业测量方法及精度比较 在土地平整中通常需要确定地面高程、施工范围和计算土方量等,以便控制施工进度。土地平整测量外业常采用水准仪、经纬仪和全站仪的测量仪器,内业计算有方格网法、断面法、等高线法、DTM 法等方法。采用不同的测量计算方法会有不同的结果,可见选择合适的测量计算方法有利于提高平整结果,提高精度和速度,甚至可以减少纠纷。 土方量的误差主要是在外业中产生,即主要是由高程测量中误差m h 和面积测量中误差m s 造成。在相同观测条件下,4个方格顶点高程测量精度是相同的,则平均高程测量中误差m h 按如下计算: 2 m n m m h h h == (1-1) 此外方格面积测量的中误差(m S )主要是由距离误差(m D )造成,因此按如下公式计算: D D m 2m g ?= (1-2) 根据误差传播定律,土方量的中误差(m v )按如下公式计算: 2h 22222h 22S 2m m h 162 1m S m h m S D D V +± =+±=)()( (1-3) 1.1水准仪法 用5m 塔尺将现场划分成若干个边长是五米的正方形方格,用水准仪测量每个方格定点的高程,按照40m 的设计高程用方格法计算土方量。 S3级微顷水准仪毎站水准测量高差(或高程)的精度为±2.4mm 。另外,水准仪测量的距离通常用皮尺丈量,其精度为±100mm ,因此计算出土方量中误差为±10.0m 3,相对中误差为1/25。 1.2经纬仪法 用经纬仪按照地形测量(比例尺为1:500)的要求,将现场测绘成地形图,在地形图上用方格法(边长为5m )手工计算土方量。 J6经纬仪测量的视距精度约为1/500,距离中误差为±200mm ,测量单点高程的精度为±60mm 3。经纬仪采集点位数据展绘在图纸上画上方格网,根据碎步点高程通过目估内插法确定方格顶点的高程。方格顶点的高程精度取决于碎步点的高程,也与测量员的站尺位置、数量、环境条件有关,其主要误差包括地形点高程测量误差、地面概括误差和平面位移误差。经纬仪测绘1:500 比例尺地形图后,对于坡度为15o的坡地,地面概括误差为±0.23m,平面位移误差为±0.17m 。由误差传播定律得出地形图上方格顶点高程中误差为±0.29m 。因此用土方量的中误差计算公式,可得出经纬仪测量计算土方量的中误差为±20.0m 3,相对中误差约为1/12。

土方量计算方法

土方量计算方法 现在说到土方量结算,绝大多数土木行业的人都说某某软件很方便,但是我要问到手算会吗,大多数人都会支支吾吾,虽然手算确实不现实,但是我们做为专业人员,总不能沦为软件使用者吧?其中的原理大家还是需要明白的。 一、土方量计算 方格方法计算场地平整土方量步骤如图1-1所示。

图1-1 方格网法计算场地平整土方量步骤(一)读识方格网图 图1-2 方格方法计算土方工程量图(二)确定场地设计标高 1.确定场地设计标高需要考虑的因素(1)满足生产工艺和运输的要求。(2)尽量利用地形,减少挖填方数量。

(3)争取在场区内挖填平衡,降低运输费。 (4)有一定泄水坡度,满足排水要求。 2.初步计算场地设计标高(按挖填平衡) 计算的场地设计标高: 式中,H1、H2、H3、H4分别为一个方格、两个方格、三个方格、四个方格共用角点的标高(m),如图1-3b所示。 (三)场地各方格角点的施工高度的计算

施工高度为场地各方格角点设计地面标高与自然地面标高之差,是以角点设计标高为基准的挖方或填方的施工高度。各方格角点的施工高度按下式计算: 式中,hn为各角点的施工高度,即填挖高度(以“+”为填,“-”为挖)(m); n为方格的角点编号(自然数列1,2,3,…,n); Hn为角点的设计标高(m),若无泄水坡时,即为场地的设计标高(m); H为角点原地面标高(m)。 (四)计算“零点”位置,确定“零线” 方格边线一端施工标高为“+”,若另一端为“-”,则沿其边线必然有一处不挖不填的点,即“零点”,如图1-5所示。零点位置按下式计算:

式中,x1、x2为角点至零点的距离(m); h1、h2为相邻两角点的施工高度(均用绝对值)(m);a为方格网的边长(m)。 (五)计算方格土方工程量的计算 1.方格的4个角点全为填方或挖方 方格的4个角点全为填方或挖方,如图1-7所示。

计算智能大作业--蚁群算法解决TSP问题

(计算智能大作业) 应用蚁群算法求解TSP问题

目录 蚁群算法求解TSP问题 (3) 摘要: (3) 关键词: (3) 一、引言 (3) 二、蚁群算法原理 (4) 三、蚁群算法解决TSP问题 (7) 四、解决n个城市的TSP问题的算法步骤 (9) 五、程序实现 (11) 六、蚁群算法优缺点分析及展望 (18) 七、总结 (18)

采用蚁群算法解决TSP问题 摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。 关键词:蚁群算法;TSP问题;matlab。 一、引言 TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

经典推荐算法研究综述

Computer Science and Application 计算机科学与应用, 2019, 9(9), 1803-1813 Published Online September 2019 in Hans. https://www.360docs.net/doc/4f12886737.html,/journal/csa https://https://www.360docs.net/doc/4f12886737.html,/10.12677/csa.2019.99202 Review of Classical Recommendation Algorithms Chunhua Zhou, Jianjing Shen, Yan Li, Xiaofeng Guo Information Engineering University, Zhengzhou Henan Received: Sep. 3rd, 2019; accepted: Sep. 18th, 2019; published: Sep. 25th, 2019 Abstract Recommender systems are effective tools of information ?ltering that are prevalent due to cont i-nuous popularization of the Internet, personalization trends, and changing habits of computer us-ers. Although existing recommender systems are successful in producing decent recommend a-tions, they still suffer from challenges such as cold-start, data sparsity, and user interest drift. This paper summarizes the research status of recommendat ion system, presents an overview of the field of recommender systems, describes the classical recommendation methods that are usually classified into the following three main categories: content-based, collaborative and hybrid recommendation algorithms, a nd prospects future research directions. Keywords Recommender Systems, Cold-Start, Data Sparsity, Collaborative Filtering 经典推荐算法研究综述 周春华,沈建京,李艳,郭晓峰 信息工程大学,河南郑州 收稿日期:2019年9月3日;录用日期:2019年9月18日;发布日期:2019年9月25日 摘要 推荐系统作为一种有效的信息过滤工具,由于互联网的不断普及、个性化趋势和计算机用户习惯的改变,将变得更加流行。尽管现有的推荐系统也能成功地进行推荐,但它们仍然面临着冷启动、数据稀疏性和用户兴趣漂移等问题的挑战。本文概述了推荐系统的研究现状,对推荐算法进行了分类,介绍了几种经

蚁群算法

蚁群算法报告及代码 一、狼群算法 狼群算法是基于狼群群体智能,模拟狼群捕食行为及其猎物分配方式,抽象出游走、召唤、围攻3种智能行为以及“胜者为王”的头狼产生规则和“强者生存”的狼群更新机制,提出一种新的群体智能算法。 算法采用基于人工狼主体的自下而上的设计方法和基 于职责分工的协作式搜索路径结构。如图1所示,通过狼群个体对猎物气味、环境信息的探知、人工狼相互间信息的共享和交互以及人工狼基于自身职责的个体行为决策最终实现了狼群捕猎的全过程。 二、布谷鸟算法 布谷鸟算法 布谷鸟搜索算法,也叫杜鹃搜索,是一种新兴启发算法CS 算法,通过模拟某些种属布谷鸟的寄生育雏来有效地求解最优化问题的算法.同时,CS 也采用相关的Levy 飞行搜索机制 蚁群算法介绍及其源代码。 具有的优点:全局搜索能力强、选用参数少、搜索路径优、多目标问题求解能力强,以及很好的通用性、鲁棒性。 应用领域:项目调度、工程优化问题、求解置换流水车间调度和计算智能 三、差分算法 差分算法主要用于求解连续变量的全局优化问题,其主要工作步骤与其他进化算法基本一致,主要包括变异、交叉、选择三种操作。 算法的基本思想是从某一随机产生的初始群体开始,利用从种群中随机选取的两个个体

的差向量作为第三个个体的随机变化源,将差向量加权后按照一定的规则与第三个个体求和而产生变异个体,该操作称为变异。然后,变异个体与某个预先决定的目标个体进行参数混合,生成试验个体,这一过程称之为交叉。如果试验个体的适应度值优于目标个体的适应度值,则在下一代中试验个体取代目标个体,否则目标个体仍保存下来,该操作称为选择。在每一代的进化过程中,每一个体矢量作为目标个体一次,算法通过不断地迭代计算,保留优良个体,淘汰劣质个体,引导搜索过程向全局最优解逼近。 四、免疫算法 免疫算法是一种具有生成+检测的迭代过程的搜索算法。从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。 五、人工蜂群算法 人工蜂群算法是模仿蜜蜂行为提出的一种优化方法,是集群智能思想的一个具体应用,它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。为了解决多变量函数优化问题,科学家提出了人工蜂群算法ABC模型。 六、万有引力算法 万有引力算法是一种基于万有引力定律和牛顿第二定律的种群优化算法。该算法通过种群的粒子位置移动来寻找最优解,即随着算法的循环,粒子靠它们之间的万有引力在搜索空间内不断运动,当粒子移动到最优位置时,最优解便找到了。 GSA即引力搜索算法,是一种优化算法的基础上的重力和质量相互作用的算法。GSA 的机制是基于宇宙万有引力定律中两个质量的相互作用。 七、萤火虫算法 萤火虫算法源于模拟自然界萤火虫在晚上的群聚活动的自然现象而提出的,在萤火虫的群聚活动中,每只萤火虫通过散发荧光素与同伴进行寻觅食物以及求偶等信息交流。一般来说,荧光素越亮的萤火虫其号召力也就越强,最终会出现很多萤火虫聚集在一些荧光素较亮的萤火虫周围。人工萤火虫算法就是根据这种现象而提出的一种新型的仿生群智能优化算法。在人工萤火虫群优化算法中,每只萤火虫被视为解空间的一个解,萤火虫种群作为初始解随机的分布在搜索空间中,然后根据自然界萤火虫的移动方式进行解空间中每只萤火虫的移动。通过每一代的移动,最终使的萤火虫聚集到较好的萤火虫周围,也即是找到多个极值

计算智能主要算法研究

-3- 研究与探索 200912 计算智能主要算法研究 田晓艳 中国人民武装警察部队学院,河北廊坊,065000 【摘要】【关键词】本文介绍了计算智能及其四种主要算法:人工神经网络、模糊算法、进化算法、蚁群算法。详细描述了每个算法的生物学基础、计算原理及其特点,以及基于每个算法的优化设计,并对它们已有的成果及在工程应用中所存在问题作简要的讨论。最后总结了四种算法的优势并预测了计算智能的发展趋势。 计算智能 人工神经网络 模糊算法 进化算法 蚁群算法 一、概述 二、计算智能的主要算法 计算智能,广义的讲就是借鉴仿生学思想,基于生物体系的生物进化、细胞免疫、神经细胞网络等某些机制,用数学语言抽象描述的计算方法。是基于数值计算和结构演化的智能,是智能理论发展的高级阶段。计算智能有着传统的人工智能无法比拟的优越性,它的最大特点就是不需要建立问题本身的精确模型,非常适合于解决那些因为难以建立有效的形式化模型而用传统的人工智能技术难以有效解决、甚至无法解决的问题。从方法论的角度和现在的研究现状,计算智能的主要算法有:人工神经网络、模糊算法、进化算法、模拟退火、忌搜索算法、DNA软计算、人工免疫系统、蚁群算法、粒子群算法、多代理(Agent)系统等。 本文对计算智能的四种算法:人工神经网络、模糊计算、进化计算、蚁群算法的生物学基础、计算原理及其特点作一个简单的综述,并对它们已有的成果及工程应用与存在问题作简要的讨论。 计算智能是在神经网络、进化计算及模糊系统这 [1] 三个领域发展相对成熟的基础上形成的一个统一概念。其中,神经网络是一种对人类智能的结构模拟方法,它是用于人工神经网络系统去模拟生物神经系统的智能机理的;进化运算是一种对人类智能的演化模拟方法,它是用进化算法去模拟人类智能的进化规律的;模糊计算是一种对人类智能的逻辑模拟方法,它是用模糊逻辑去模拟人类的智能行为的。 (1)神经网络的生物学基础 神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。树突的功能是接受来自其它神经元的兴奋。神经元细胞体将接受到的所有信号进行简单处理(如加权求和,即对所有的输入信号都加以考虑且对每个信号的重视程度——体现在权值上——有所不同)后由轴突输出。 [2] 1、人工神经网络

计算智能主要算法的比较与融合

第1期2007年2月 中国电子科学研究院学报 Journal of C AE I T Vol .2No .1Feb .2007   收稿日期:2006211218 修订日期:2007201205 基础理论 计算智能主要算法的比较与融合 苏建元 (河海大学电气工程学院,南京 210024) 摘 要:计算智能算法的融合可以有效解决实际问题,但算法选择带有一定盲目性。文章对计算智能的主要算法———人工神经网络、人工免疫系统、模糊系统和遗传算法等的特性进行比较,提出了四种融合形态———串联型、并联型、部分融合型和完全融合型,以及融合步骤、融合的数学描述,讨论了六种融合算法的特点和方法。融合提高了算法性能、扩大了应用范围。通过比较明确了计算智能算法的选择方法和进一步研究的方向;通过仿真分析说明了算法融合思路的正确性。关键词:神经网络;模糊系统;遗传算法;免疫系统;计算智能中图分类号:TP301 文献标识码:A 文章编号:167325692(2007)012052205 Co mpar ison and Fusi on of Co m put a ti ona l I n telli gence ’s Ma i n Algor ith m s S U J ian 2yuan (College of Electrical Engineering,Hehai University,Nanjing 210024,China ) Abstract:The fusi on of computati onal intelligence ′s algorith m s may be able t o s olve actual p r oble m s,but the method of selecting the algorith m s may not be s o scientific .The characteristics of f our maj or algo 2rithm s 2artificial neural net w ork,artificial i m mune syste m ,fuzzy l ogic syste m ,and genetic algorithm 2are compared in this paper .Fusi on step s,fusi on algorith m definiti on,and f our kinds of fusi on shapes (se 2 ries,parallel,partial,and comp lete )are p r oposed .The characteristics and methods of six fusi on algo 2rithm s are als o discussed .The fusi on enhances alg orithm ′s perf or mance and expands app licati on ′s scope .Both the method of selecting algorithm s and the further research directi on in computati onal intelligence are given thr ough comparis on .The si m ulati on study indicates that this algorith m fusi on mentality is correct .Key words:neural net w ork;fuzzy syste m;genetic algorith m;i m mune syste m;computati onal intelli 2 gence 0 引 言 生物信息系统主要包括神经网络、遗传系统、免疫系统和内分泌系统。对免疫系统、神经网络、模糊和遗传进化等生物现象和信息处理体系的借鉴和利用已经形成一个新型的学科———生物计算智能系统,简称计算智能。计算智能是在1994年I EEE 举办的首届计算智能世界大会上提出的,它以连接主义和进化主义思想为基础,计算智能中的主要算法 具有自适应的结构、随机产生的或指定的初始状态、 适应度的评测函数、修改结构的操作、系统状态存储器、终止计算的条件、指示结果的方法、控制过程的参数等共同要素,具有自学习、自组织、自适应的特征和简单、通用、鲁棒性强、易并行处理等特点,这些特征已被应用于信息安全、模式识别、数据分类与挖掘、优化设计、故障诊断、机器学习、联想记忆和控制等领域。计算智能的各领域服从“开放式计算系 统”的统一模型[1] ,但它们也有一定的差别,国内外介绍有关计算智能算法融合的资料比较少,文献

土建工程土方工程量计算

平整场地: 建筑物场地厚度在±30cm以内的挖、填、运、找平. 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计 算。 (2)定额规则:按设计图示尺寸以建筑物首层面积计算。 2、平整场地计算方法 (1)清单规则的平整场地面积:清单规则的平整场地面积=首层建筑面积 (2)定额规则的平整场地面积:定额规则的平整场地面积=首层建筑面积 3、注意事项 (1)、有的地区定额规则的平整场地面积:按外墙外皮线外放2米计算。计算时按外墙外边线外放2米的图形分块计算,然后与底层建筑面积合并计算;或者按“外放2米的中心线×2=外放2米面积”与底层建筑面积合并计算。这样的话计算时会出现如下难 点: ①、划分块比较麻烦,弧线部分不好处理,容易出现误差。

②、2米的中心线计算起来较麻烦,不好计算。 ③、外放2米后可能出现重叠部分,到底应该扣除多少不好计算。 (2)、清单环境下投标人报价时候可能需要根据现场的实际情况计算平整场地的工程量,每边外放的长度不一样。 大开挖土方 1、开挖土方计算规则 (1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。 (2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指混凝土垫层外边线加工作面,如有排水沟者应算至排水沟外边线。排水沟的体积应纳入总土方量内。当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算方法 (1)、清单规则: ①、计算挖土方底面积:

方法一、利用底层的建筑面积+外墙外皮到垫层外皮的面积。外墙外边线到垫层外边线的面积计算(按外墙外边线外放图形分块计算或者按“外放图形的中心线×外放长度”计算。) 方法二、分块计算垫层外边线的面积(同分块计算建筑面积)。 ②、计算挖土方的体积:土方体积=挖土方的底面积*挖土深度。 (2)、定额规则: ①、利用棱台体积公式计算挖土方的上下底面积。 V=1/6×H×(S上+ 4×S中+ S下)计算土方体积(其中,S上为上底面积,S中为中截面面积,S下为下底面面积)。如下图 S下=底层的建筑面积+外墙外皮到挖土底边线的面积(包括工作面、排水沟、放坡等)。 用同样的方法计算S中和S下 3、挖土方计算的难点 ⑴、计算挖土方上中下底面积时候需要计算“各自边线到外墙外边线图”部分的中心线,中心线计算起来比较麻烦(同平整场地)

matlab蚁群算法精讲及仿真图

蚁群算法matlab精讲及仿真 4.1基本蚁群算法 4.1.1基本蚁群算法的原理 蚁群算法是上世纪90年代意大利学者M.Dorigo,v.Maneizz。等人提出来的,在越来越多的领域里得到广泛应用。蚁群算法,是一种模拟生物活动的智能算法,蚁群算法的运作机理来源于现实世界中蚂蚁的真实行为,该算法是由Marco Dorigo 首先提出并进行相关研究的,蚂蚁这种小生物,个体能力非常有限,但实际的活动中却可以搬动自己大几十倍的物体,其有序的合作能力可以与人类的集体完成浩大的工程非常相似,它们之前可以进行信息的交流,各自负责自己的任务,整个运作过程统一有序,在一只蚂蚁找食物的过程中,在自己走过的足迹上洒下某种物质,以传达信息给伙伴,吸引同伴向自己走过的路径上靠拢,当有一只蚂蚁找到食物后,它还可以沿着自己走过的路径返回,这样一来找到食物的蚂蚁走过的路径上信息传递物质的量就比较大,更多的蚂蚁就可能以更大的机率来选择这条路径,越来越多的蚂蚁都集中在这条路径上,蚂蚁就会成群结队在蚁窝与食物间的路径上工作。当然,信息传递物质会随着时间的推移而消失掉一部分,留下一部分,其含量是处于动态变化之中,起初,在没有蚂蚁找到食物的时候,其实所有从蚁窝出发的蚂蚁是保持一种随机的运动状态而进行食物搜索的,因此,这时,各蚂蚁间信息传递物质的参考其实是没有价值的,当有一只蚂蚁找到食物后,该蚂蚁一般就会向着出发地返回,这样,该蚂蚁来回一趟在自己的路径上留下的信息传递物质就相对较多,蚂蚁向着信息传递物质比较高的路径上运动,更多的蚂蚁就会选择找到食物的路径,而蚂蚁有时不一定向着信

息传递物质量高的路径走,可能搜索其它的路径。这样如果搜索到更短的路径后,蚂蚁又会往更短的路径上靠拢,最终多数蚂蚁在最短路径上工作。【基于蚁群算法和遗传算法的机器人路径规划研究】 该算法的特点: (1)自我组织能力,蚂蚁不需要知道整体环境信息,只需要得到自己周围的信息,并且通过信息传递物质来作用于周围的环境,根据其他蚂蚁的信息素来判断自己的路径。 (2)正反馈机制,蚂蚁在运动的过程中,收到其他蚂蚁的信息素影响,对于某路径上信息素越强的路径,其转向该路径的概率就越大,从而更容易使得蚁群寻找到最短的避障路径。 (3)易于与其他算法结合,现实中蚂蚁的工作过程简单,单位蚂蚁的任务也比较单一,因而蚁群算法的规则也比较简单,稳定性好,易于和其他算法结合使得避障路径规划效果更好。 (4)具有并行搜索能力探索过程彼此独立又相互影响,具备并行搜索能力,这样既可以保持解的多样性,又能够加速最优解的发现。 4.1.2 基本蚁群算法的生物仿真模型 a为蚂蚁所在洞穴,food为食物所在区,假设abde为一条路径,eadf为另外一条路径,蚂蚁走过后会留下信息素,5分钟后蚂蚁在两条路径上留下的信息素的量都为3,概率可以认为相同,而30分钟后baed路径上的信息素的量为60,明显大于eadf路径上的信息素的量。最终蚂蚁会完全选择abed这条最短路径,由此可见,

(完整版)《计算智能》授课大纲

《计算智能》授课大纲课程性质:必修课,3学分,共48~54课时(共16周)。 一、课程介绍 《计算智能》课程对计算智能领域的主要算法进行介绍,重点讨论各种算法的思想来源、流程结构、发展改进、参数设置和相关应用。内容包括绪论以及进化计算、群体智能、人工免疫算法、分布估计算法、神经网络、模糊逻辑和多目标进化算法等。并从工程应用及与其他人工智能研究方向相结合的角度讨论人工智能的实际问题及其解决方法。 二、教学内容 1.导论(1课时) (1)计算智能简介 (2)计算智能典型方法 2.优化理论(2课时) (1)优化问题 (2)优化方法分类 a)非约束优化 b)约束优化 c)多解问题 d)多目标优化 e)动态优化问题

3.进化计算(9课时) (1)进化计算导论 (2)遗传算法 a)经典遗传算法 b)交叉、变异 c)控制参数 d)模式定理与积木块假设 e)遗传算法的变体 f)前沿专题(小生境遗传算法、约束处理、多目标优化、动态环 境) g)应用 (3)遗传编程、进化规划、进化策略 (4)差分进化 (5)文化计算 (6)协同进化 4.人工免疫系统(6课时) (1)自然免疫系统 (2)人工免疫模型 a)克隆选择模型 b)网络理论模型 c)危险理论 (3)免疫优化计算

5.群体智能(3课时) (1)粒子群优化 (2)蚁群算法 6.多目标进化算法及应用(6课时) 5.1 绪论 5.2 主要的多目标进化算法 5.3 多目标进化算法性能评价和问题测试集 5.4 多目标优化的新进展 5.5 应用实例 7.神经网络(6课时) (1)人工神经元 (2)监督学习神经网络 (3)非监督学习神经网络 (4)径向基函数网络 (5)增强学习 (6)监督学习的性能问题 8.深度学习算法(Deep Learning)(3课时) 9.分布估计算法(3课时) 10.计算智能算法在各研究方向的应用(6~9课时) (讨论计算智能算法在每个研究生的研究方向中的结合应用) 三、教材与参考书 2、张军,詹志辉.计算智能[M].清华大学出版社[北京].2009.11.

基于视频的智能推荐算法

基于视频的智能推荐算法 摘要随着网络视频和数字电视的普及,人们可供选择的视频越来越多,当然如何选择节目也日渐成为人们的一个问题。在这样背景下,智能推荐算法也就应运而生。本文就此问题进行了研究,基于网络爬虫程序获得的网络上10大最主流视频网站的信息,以及网上的测评和用户自己的历史记录,利用了智能推荐算法对用户的喜好进行分析,结合最新的网络视频的综合评价,对所有视频给出最终评分,从而可以给用户推荐出最合适的节目。 关键词Web挖掘;智能推荐算法;网络爬虫 0 引言 互联网的普及带动了信息化数字化的全面发展,从日常生活到科研机构无不与网络息息相关,网络视频,电子商务,在线支付等行为已经渗入了我们的点滴生活之中,给人们生活带来的巨大的便利,但同时一些小烦恼也会随着而来。巨大的经济利益促进了电视广告的发展,但也因此给了网络视频,电视剧的充分的发展空间,可是网络视频没有电视的高清晰度,电视也没有网络视频的不间断和可操控性,从而催生了数字电视的迅速崛起。短短数年的发展,已经使得数字电视非常的普及,带给了人们全新的感受。如今人们头疼的不是某某电视剧怎么还不播放,而是,我今天该看什么呢。笔者也多次被这个问题深深地困扰过,因此针对网络视频播放,提出一套智能推荐算法,通过用户的浏览历史的数据,对用户的性格喜好进行分析,结合十大主流视频网站对如今所有视频电视的打分,对视频进行一个推荐运算,给用户推荐出最合适的视频电视。 1 数据来源 此次的程序是在将放在数字电视的机顶盒之内,通过获取用户的数据和网络上主流视频的网站的信息,利用智能推荐算法获得最适合用户的节目清单。 首先,在每个用户使用这个机顶盒的之前,会有一个十分简单的用户调查,这个是为了初步获得用户的喜好信息。因为在用户在前100次看的电视节目有很大的随机性和偶然性,所以前100次的时候,推荐的电视节目主要是依靠主流视频的排行榜和点击量以及评分总和考量的。同样因为少量数据的不准备性,我们会删除掉一些点击率很低的视频进行排行。 其次,当用户使用时间,次数达到一定的标准的时候(100次)以后,我们将在智能推荐的算法里加入用户自己的数据,而起所占的权重随着次数增多而越来越大,其中,我们考虑的参数包括标题,关键字,导演,主要演员,类型,标签以及获得的奖项等等,当然还会记录每个视频观看的时间和距离现在的时间。结合这些用户自己的信息,以及开始第一登录前用户登录的信息,可以分析出最准确的用户喜好类型。

蚁群算法综述

智能控制之蚁群算法 1引言 进入21世纪以来,随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛。 智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。 蚁群算法是近些年来迅速发展起来的,并得到广泛应用的一种新型模拟进化优化算法。研究表明该算法具有并行性,鲁棒性等优良性质。它广泛应用于求解组合优化问题,所以本文着重介绍了这种智能计算方法,即蚁群算法,阐述了其工作原理和特点,同时对蚁群算法的前景进行了展望。 2 蚁群算法概述 1、起源 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。 Deneubourg及其同事(Deneubourg et al.,1990; Goss et al.,1989)在可监控实验条件下研究了蚂蚁的觅食行为,实验结果显示这些蚂蚁可以通过使用一种称为信息素的化学物质来标记走过的路径,从而找出从蚁穴到食物源之间的最短路径。 在蚂蚁寻找食物的实验中发现,信息素的蒸发速度相对于蚁群收敛到最短路径所需的时间来说过于缓慢,因此在模型构建时,可以忽略信息素的蒸发。然而当考虑的对象是人工蚂蚁时,情况就不同了。实验结果显示,对于双桥模型和扩展双桥模型这些简单的连接图来说,同样不需要考虑信息素的蒸发。相反,在更复杂的连接图上,对于最小成本路径问题来说,信息素的蒸发可以提高算法找到好解的性能。 2、基于蚁群算法的机制原理 模拟蚂蚁群体觅食行为的蚁群算法是作为一种新的计算智能模式引入的,该算法基于如下假设: (1)蚂蚁之间通过信息素和环境进行通信。每只蚂蚁仅根据其周围的环境作出反应,也只对其周围的局部环境产生影响。 (2)蚂蚁对环境的反应由其内部模式决定。因为蚂蚁是基因生物,蚂蚁的行为实际上是其基因的自适应表现,即蚂蚁是反应型适应性主体。 (3)在个体水平上,每只蚂蚁仅根据环境作出独立选择;在群体水平上,单

基于皮尔逊相似度的食材推荐算法研究

2017年第4期 信息与电脑 China Computer&Communication 软件开发与应用 基于皮尔逊相似度的食材推荐算法研究 王玉山 林泽聪 (广东外语外贸大学 信息学院,广东 广州 510420) 摘 要:由于个人的体质不同,遗传基因不同,生活地域不同,对于饮食的需求是存在差异的。笔者通过不断学习个人饮食科学和个人健康问题的关系,结合协同过滤推荐算法,设计出了基于皮尔逊相似度的食材推荐算法,实现了一款饮食记录软件,可以根据用户的历史饮食记录,分析出用户可能需要补充的营养,并进行相关的饮食推荐。通过一定数量人群的试用,实验证明了本算法的有效性。 关键词:健康问题;协同过滤算法;皮尔逊相似度;饮食推荐 中图分类号:TP391.1 文献标识码:A 文章编号:1003-9767(2017)04-100-03 The Research of Recommendation Algorithm of Food based on Pearson 's Similarity Wang Yushan, Lin Zecong (School of Information, Guangdong University of Foreign Studies, Guangzhou Guangdong 510420, China) Abstract: Because of the differences of personal constitution , genetics and living areas, the demand for food is different. The author continues to study the relationship between personal dietary science and personal health problems, combined with collaborative filtering recommendation algorithm. Finily, we developed an food recommendation algorithm based on Pearson 's Similarity and developed a software which can carry out diet recommended and analysis the user s demand of nutrition, based on the history of diet records. We experimented the software with certain number of people, and proved the effectiveness of the algorithm. Key words: health problems; collaborative filtering algorithm; Pearson 's similarity; diet recommended 1 引言 1.1 项目背景 互联网是人们获取信息的一种必不可少的途径,但是互联网的信息量在不断增长,使得人们不得不花时间去阅读这些碎片化的信息。在信息技术不断发展的今天,成功开发出了推荐系统。推荐系统不但可以对用户的行为数据进行分析,还可以通过建立相关的数学模型去预测用户未来的行为,这样不但可以让用户感受到服务的人性化,还可以让自己的产品竞争力得到提升。 在今天,人们对食物的要求越来越高,能够随时随地找到自己想要食用的食材是用户的巨大需求之一。因此,设计的推荐算法具有重大的意义。 1.2 推荐系统的国内外现状 随着电子商务的兴起,推荐系统迎来了第一个发展期。已有文献表明Amazon 的35%销售量都来自它的推荐系统。当初的几位科学家在2000年发表的《基于条目的协同过滤算法》的论文也成为了协同过滤算法的基础文献之一。之后越来越多的人投入到了推荐系统的开发当中。在国外已有许多成熟的推荐系统被应用到方方面面,如亚马逊的电商推荐平台、Ringo 的音乐推荐系统、AppBrain 的软件推荐系统等。在国内也有类似的如京东、当当网等电商推荐系统,而饮食推荐系统较少。从总体上看,推荐系统已发展得比较成熟,但是对于饮食推荐类系统研究较少,因此本文将结合协同过滤技术,设计出一种基于皮尔逊相似度的针对不同人群的营养平衡方面的食材推荐系统。 基金项目:攀登计划立项“个人生活健康档案与算法研究”(项目编号:pdjh2016b0168)。 作者简介:王玉山(1963-),男,河南南阳人,硕士研究生,副教授。研究方向:人工智能、专家系统。林泽聪(1997-),男,广东揭阳人,本科。研究方向:人工智能。 — 100 —

相关文档
最新文档