搬运机械手设计说明书

搬运机械手设计说明书
搬运机械手设计说明书

机械与装备工程学院

课程设计说明书(2016/2017学年第 1学期)

课程名称:机械设计课程设计

题目:搬运机械手的设计

专业班级:机械设计制造及其自动化学生姓名:

学号: 130200216 指导教师:

设计周数: 2周

设计成绩:

2016年 12月 31日

目录

第一章绪论 (1)

1.1 机械手的应用现状 (1)

1.2 机械手研究的目的、意义 (1)

1.3 设计时要解决的几个问题 (1)

第二章机械手总体方案的设计 (3)

2.1 机械手的系统工作原理及组成 (3)

2.2 机械手的基本结构及工作流程 (3)

第三章机械手的方案设计及其主要参数 (5)

3.1 坐标形式和自由度选择 (5)

3.2 执行机构 (5)

3.3 驱动系统 (6)

3.4 控制系统 (7)

第四章结构设计及优化 (8)

4.1手部夹紧气缸的设计 (8)

4.1.1手部夹紧气缸的设计 (8)

4.1.2 确定气缸直径 (9)

4.1.3 气缸作用力的计算及校核 (9)

4.1.4 缸筒壁厚的设计 (10)

4.1.5 气缸的基本组成部分及工作原理 (10)

4.2手臂结构优化设计 (10)

4.2.1问题描述 (10)

4.2.2设计分析 (10)

4.2.3建立数学模型 (12)

4.2.4优化计算 (13)

4.2.5优化结果分析 (16)

第五章 Adams运动仿真 (17)

总结与展望 (20)

摘要

机械手是近几十年发展起来一种高科技自动化生产设备,它对稳定、提高产品质量、提高生产效率、改善劳动条件和产品的快速更新换代起着十分重要的作用,随着工业机械化和自动化的发展以及气动技术自身的一些优点,气动机械手已经广泛应用在生产自动化的各个行业。

本设计中的搬运机械手的动作由气动缸驱动,气动缸由相应的电磁阀来控制,电磁阀由PLC控制。驱动执行元件完成,能十分方便的嵌入到各类工业生产线中。

本文中对机械手臂运用MATLAB算法进行优化设计,它使得优化过程变得非常简单、容易理解和掌握,从而避免编写各种复杂的运算程序,提高了设计效率。

用 ADAMS 软件建立虚拟样机进行仿真并优化参数,得出了机械手的运动过程的演示动画,发现设计结构能有机地结合在一起,工作平稳,并在指定的速度和负载等参数下得出了所需要的驱动力和结构参数等。虚拟样机代替物理样机对工程机械进行创新设计、测试和评估,可以降低设计成本,缩短开发周期,而且设计质量和效率都可以得到提高。

关键词:机械手,气动,优化设计,仿真

第一章绪论

1.1 机械手的应用现状

工业机械手最早应用在汽车制造工业,常用于焊接、喷漆、上下料和搬运。工业机械手延伸和扩大了人的手足和大脑功能,它可替代人从事危险、有害、有毒、低温和高温等恶劣环境中工作:代替人完成繁重、单调重复劳动,提高劳动生产率,保证产品质量。目前主要应用与制造业中,特别是电器制造、汽车制造、塑料加工、通用机械制造及金属加工等工业。工业机械手与数控加工中心,自动搬运小车与自动检测系统可组成柔性制造系统和计算机集成制造系统,实现生产自动化。随着生产的发展,功能和性能的不断改善和提高,机械手的应用领域日益扩大。

1.2 机械手研究的目的、意义

(1)以提高生产过程中的自动化程度

应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。

(2)以改善劳动条件,避免人身事故

在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。

在一些简单、重复,特别是较笨重的操作中,以机械手代替人进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。

(3)可以减轻人力,并便于有节奏的生产

应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。因此,在自动化机床的综合加工自动线上,目前几乎都没有机械手,以减少人力和更准确的控制生产的节拍,便于有节奏的进行工作

生产。

综上所述,有效的应用机械手,是发展机械工业的必然趋势。

1.3 设计时要解决的几个问题

(1)具有足够的握力(夹紧力)

在确定手指的握力时,除考虑工件重量外,还应考虑在传送或操作过程中所产生的惯性力和振动,以保证工件不致产生松动或脱落。

(2)手指间应具有一定的开闭角

两手指张开与闭合的两个极限位置所夹的角度称为手指的开闭角。手指的开闭角应保证工件能顺利进入或脱开,若夹持不同直径的工件,应按最大直径的工件考虑。对于移动型手指只有开闭幅度的要求。

(3)保证工件准确定位

为使手指和被夹持工件保持准确的相对位置,必须根据被抓取工件的形状,选择相应的手指形状。例如圆柱形工件采用带“V”形面的手指,以便自动定心。

(4)具有足够的强度和刚度

手指除受到被夹持工件的反作用力外,还受到机械手在运动过程中所产生的惯性力和振动的影响,要求有足够的强度和刚度以防折断或弯曲变形,当应尽量使结构简单紧凑,自重轻,并使手部的中心在手腕的回转轴线上,以使手腕的扭转力矩最小为佳。

(5)考虑被抓取对象的要求

根据机械手的工作需要,通过比较,我们采用的机械手的手部结构是一支点两指回转型,由于工件多为圆柱形,故手指形状设计成V型。

第二章 机械手总体方案的设计

2.1 机械手的系统工作原理及组成

图2.1 机械手的系统工作原理框图

机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等所组成。在PLC 程序控制的条件下,采用气压传动方式,来实现执行机构的相应部位发生规定要求的,有顺序,有运动轨迹,有一定速度和时间的动作。同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。位置检测装置随时将执行机构的实际位置反馈给控制系统,并与设定的位置进行比较,然后通过控制系统进行调整,从而使执行机构以一定的精度达到设定位置。

2.2 机械手的基本结构及工作流程

机械手是一个水平、垂直运动的机械设备,用来将工件由左工作台搬到右工作台。有上升、下降运动,左移、右移运动和夹紧、放松动作和位置控制。简易机械手在各类全自动和半自动生产线上应用得十分广泛,主要用于零部件或成品在固定位置之间的移动,替代人工作业,实现生产自动化。本设计中的机械手采用上下升降加平面转动式结构,机械手的动作由气动缸驱动,气动缸由相应的电磁阀来控制,电磁阀由PLC 控制驱动执行元件完成,能十分方便的嵌入到各类工业生产线中。

控制系统(PLC )

位置检测装置

手臂

手部

立柱

被抓取物品

驱动系统 (气压传动)

执行机构

根据要求:机械手初始位置在原点位置,每次循环动作都从原点位置开始,完成上升、下降运动,左移、右移运动和夹紧、放松动作和位置控制,并能实现手动操作和自动操作方式。当机械手在原点位置下启动按钮,系统启动,左传送带运转。当光电开关检测到物品后,左传送带停止运行。根据分析可得出机械手的工作流程图,如图2.2所示

图2.2 机械手工作流程图

原位 下降 夹紧 上升 右移

停止

左移

上升

松开

下降

启动

右限

下限

延时

上限

左限

第三章机械手的方案设计及其主要参数

3.1 坐标形式和自由度选择

直角坐标型圆柱坐标型球坐标型关节型

具有三个移动关节(PPP)具有两个移动关

节和一个转动关

节(PPR),受部

的坐标为(z,r,

θ)

具有两个转动关

节和一个移动关

节(RRP)

具有三个转动关

节(RRR)

由于其运动方程可独立处理,且为线性的,具有定位精度高,

控制简单等特点,但操作灵活性较差,运动速度低的特点这种操作机的优

点是所占的空间

尺寸较小,相对工

作范围较大,结构

简单,手部可获得

较高的速度。而缺

点是手部外伸离

中心轴愈远,其切

向线位移分辨精

度愈低。

通常用于搬运机

人。

优点是结构紧凑,

所占空间尺寸小,

但目前应用较少。

具有结构紧凑,所

占空间体积少,相

对工作空间大等

特点,用于复杂设

备当中。

图3.1

本机械手采用圆柱座标型式,具有三个自由度,即腰关节、肘关节和腕关节,都为转动关节;还有一个用于夹持物料的机械手。

3.2 执行机构

1、手部

在本设计中我们采用夹持式手部结构,夹持式手部由手指(或手爪)和传力机构所构成。手指运动形式采用平移型手指,其夹持圆形零件时,工件直径变化不影响其轴心的位置,因此适宜夹持直径变化范围大的工件。手指结构采用带有一定中心距的“V”形面的手指。

2、手臂

手臂是支承被抓物件、手部的重要部件。手臂的作用是带动手指去抓取物件,并按预定要求将其搬运到指定的位置。

3、立柱

立柱是支承手臂的部件,立柱也可以是手臂的一部分,手臂的回转运动和升降(或俯仰)运动均与立柱有密切的联系。机械手的立柱因工作需要,有时也可作横向移动,即称为可移式立柱。

4、机座

机座是机械手的基础部分,机械手执行机构的各部件和驱动系统均安装于机座上,故起支撑和连接的作用。

3.3 驱动系统

液压驱动系统气动驱动系统电动驱动系统

由于液压技术是一种比较成熟的技术,它具有动力大、力(或力矩)与惯量比大、快速响应高、易于实现直接驱动等特点。适合于在承载能力大,惯量大以及在防火防爆的环境中工作的机器人。但是,液压系统需要进行能量转换(电能转换成液压能),速度控制多数情况下采用节流调速,效率比电动驱动系统低,液压系统的液体泄露会对环境产生污染,工作噪音也较高。具有速度快,系统结构

简单,维修方便、价格

低等特点。适用于中、

小负荷的机器人中采用。

但是因难于实现伺服控

制,多用于程序控制的机

器人中,如在上、下料和

冲压机器人中应用较多。

由于低惯量、大转矩的

交、直流伺服电机及其配

套的伺服驱动器(交流变

频器、直流脉冲宽度调制

器)的广泛采用,这类驱

动系统在机器人中被大

量采用。这类驱动系统不

需要能量转换,使用方

便,噪声较低。大多数电

机后面需安装精密的传

动机构。直流有刷电机不

能直接用于要求防爆的

工作环境中,成本上也较

其他两种驱动系统高。

图3.3 机械手驱动系统

气压驱动的优点:

(1)能量储蓄简单易行,可以获得短时间的高速动作:(2)夹紧时无能量消耗,不发热;

(3)柔软,安全性高;

(4)体积小,重量轻,输出质量比高;

(5)处理简便,成本低川。

由于气压传动系统具有以上所述优点,所以本机械手采用气压传动方式。

3.4 控制系统

控制系统是支配着工业机械手按规定的要求运动的系统。目前工业机械手的控制系统一般由程序控制系统和电气定位(或机械挡块定位)系统组成。该机械手采用的是PLC程序控制系统,它支配着机械手按规定的程序运动,并记忆人们给予机械手的指令信息(如动作顺序、运动轨迹、运动速度及时间),同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。

相对于其他控制系统,PLC具有如下优点:

(1)抗干扰能力强,可靠性高;

(2)控制系统结构简单,通用性强;

(3)编程方便,使用简易;

(4)功能完善;

(5)设计、施工和调试的周期短;

(6)体积小,维护操作方便同。

第四章结构设计及优化

4.1手部夹紧气缸的设计

4.1.1手部夹紧气缸的设计

夹紧气缸的夹紧、驱动力的确定,工件重5kg。(g=9.8N/kg) (1)夹紧力:

F

夹=

G

4f×cosθ

(4.1.1)

(其中θ=45°,G=49N,f =0.1)

F夹=

49

4×0.1×cos450

=174(N)

(2)驱动力

F

驱 =

2b×N×tgα

c

(4.1.2)

(其中 b=50,c=30 ,α=23°)

故F驱=2×50×174tg230

30

=250(N)

F

实际

F

×K

1

×K

2

η

(4.1.3)

其中 K1:安全系数,一般取1.2~2 取K1=1.5;

K2:工作情况系数,主要考虑惯性力的影响,K2可近似按下式估计,

K2=1+a

g

式中a为被抓取工件运动时的最大加速度, a=

v

t

v:升降速度0.2m/s,t:机械手达到最高速度的响应时间为0.1s,

g为重力加速度 g=9.8m/s2。

那么:K2=1+

0.2

0.1×9.8

=1.204;

η:手部机械效率,一般取0.85~0.95 取η=0.85(滚动摩擦);

F实际=250×1.5×1.204

0.85

=531(N)

4.1.2 确定气缸直径

取空气压力为P空气 = 0.5 MPa = 5×105Pa,

D=

4F实际

π×P空气

(4.1.4)

D=

4×531

π×5×105

=0.0368(m)=36.8(mm)

圆整气缸直径D=40mm 4.1.3 气缸作用力的计算及校核

F

气缸=

π×D2×P空气

4

(4.1.5)

F

气缸=

π×(40×10-3)2×5×105

4

=628(N)

因为 F气缸>F实际,所以满足设计要求。

由d/D=O.2~0.3,可得活塞杆直径:d=(0.2~0.3)D=8~12 mm

圆整后,取活塞杆直径d=12 mm

校核,按公式

F

实际

π/4d2

≤[σ] (4.1.6)其中 [σ]=120MPa, F实际=531N

则:d ≥ (4×531/π×120) 1/2

=2.37mm ≤12mm

满足设计要求。

4.1.4 缸筒壁厚的设计

缸筒直接承受压缩空气压力,必须有一定厚度。一般气缸缸筒壁厚与内径之比小于或等于1/10,其壁厚可按薄壁筒公式计算:

δ=DP

/2[σ] (4.1.7)

P

式中: δ——缸筒壁厚 mm

D ——气缸内径,40mm

PP——实验压力,取PP=1.2P=6×105Pa

材料为 : ZL3,[σ] =3MPa

代入己知数据,则壁厚为:

δ=DPP/2[σ]

=40×6×105/2×3×106

=4 mm

取δ=4 mm,则缸筒外径为:D=40+4×2 =48 mm。

于是选择SC-40×50型的夹紧气缸。

4.1.5 气缸的基本组成部分及工作原理

气动手爪的开闭是通过由气缸活塞产生的往复直线运动带动与手爪相连的曲柄连杆机构,驱动各个手爪同步做开、闭运动。

4.2手臂结构优化设计

4.2.1问题描述

机械手臂作为机器人的一个重要组成部分,一直是机器人科学研究的热点之一。机械手臂的结构设计通常是一多解问题。目前,还未形成完备的设计方案。这里针对具体实例,运用目前较为流行的结构优化计算来调整截面尺寸和手臂长度,使其在满足强度、刚度和尺寸要求的前提下,得到最优尺寸和最小质量,实现结构优化设计。

4.2.2设计分析

手臂运动由提升重物的竖直运动与带动重物旋转的水平回转运动组成。手臂自重相对于重物来说,对手臂强度计算的影响较小,可不作考略,故设计时仅考虑重物G的作用。手臂受力如图4.2.1所示。

图4.2.1机械手臂受力图

(1)抗拉强度条件

如图4.2.1所示,手臂N 点处受到最大拉应力?max ,?max 是由弯矩M 产生的拉应力

?1与向心力F 产生的应力?2组成。其中?1=z W M

式中,Wz 为抗弯截面系数,仅与截面形状、

尺寸有关。

对于外径为D ,内径为d 的圆环截面有:

Wz=323

D π[1-(D d

)4]

(4.2.1) M=GL

(4.2.2)

?2=A F

式中,A 为手臂横截面积(m2),

A=π[(2D )2-(2T D -)2]=41

π(2DT-T2)

(4.2.3) F=1m L 2

ω

(4.2.4)

据抗拉强度条件有:

m an

σ=

Z

N W M +A F

≤[s σ

]

(4.2.5)

将式(4.2.1)(4.2.2)(4.2.3)(4.2.4)及已知数据代入式(4.2.5),取g=10m/s2(下同),计算整理得:

120D3-970D2+34D-6.4LD ≥0

(2)抗剪强度条件

手臂N 点处所受剪应力最大。因圆环截面壁厚T 远小于外径D ,故最大剪应力为:

m ax τ=2A Q N

(4.2.6)

据抗剪强度条件有;

m an τ=2A G

≤[τ]

(4.2.7)

将己知数据代入式 计算整理得: D ≥0.2(cm ) (3)刚度条件

如图4.2.1所示,受力分析得,M 点处挠度ω最大。据刚度条件

man ω=EL GL 33≤[ω]=1000L

(4.2.8)

式中,E 为材料的弹性模量(GPa);I 为截面惯性矩(cm4),

I=64π

(D4-d4)

(4.2.9)

将式(4.2.8)及己知数据代入式(4.2.9)计算整理得: 30D3-18D2 -0. 64L2≥0 (4)结构尺寸限制

D>>2T L ≥40(cm) 4.2.3建立数学模型

优化设计追求的目标是机械手臂的质量m2最小。m2的计算表达式为:

m2(x )=M (2

1χχ,)=ρπL T D D ]2-[4122)(-

=0.005LD-0.001L

(4.2.10)

式中,设计变量T

T D L ],[],[21==χχχ

由第二步设计分析计算得D 的值约3.5cm , 故式(4.2.10)可简化为:

m2(x)=0.0046LD

显然,L、D越小,m2值越小。据此,可写出优化设计的数学模型[1]:

min m2( x) =0. 0046 LD x=[L,D]T

s.t. 120D3 -97D2 + 34D- 6.4LD≥0

D≥0.2(cm)

30D3 - 18D2 -0. 64L2≥0

D>>T

L≥40(cm)

此数学模型是一个单目标非线性二维约束优化问题。

4.2.4优化计算

我们将用于求解优化设计数学模型的方法或寻优的方法称为优化计算方法。对于机械优化设计问题,求解常常需要经过多步迭代,最终收敛得到最优解[1]。这里运用数学规划方法的理论,根据数学模型的特点,利用MATLAB6.5软件进行辅助优化计算与设计,以求得机械手臂的最佳设计参数[2][3][4]。

(1)函数的性态分析

应用MATLAB6.5编程:

[x, y] =meshgrid(linspace{0, 6, 30), linspace(0, 50, 30));

%根据函数的定义划分网格区域

M=0.0046*y*x; %目标函数

mesh(x,y,M); %通过三维网格模拟目标函数图形

在MATLAB6.5下运行程序可画出目标函数的三维图形,如图4.2.2所示:

图4.2.2 目标函数的图像

Fig. 2 The function diagram of M=.0. 0046LD

0≦x≦10,0≦y≦50

同样,通过编程,MATLAB6.5可绘出各约束函数的图形。程序如下:

ezplot(‘120 * x^3 -97 * x^2 + 34 * x-6.4 * y * X’,[0,10,0,50])

%抗拉强度条件的图形,

hold on

y =0:0. 1: 50;

X=.0. 2;

plot(x,y,‘k’)%抗剪强度条件的图形,

‘k’指图形颜色为黑色

hold on

ezplot(‘30*x^3 -18*x^2-0.64*y^2’,[0, 10, 0, 50])

%刚度条件的图形

hold on

y =0: 0. 1: 50;

x = 0. 4;

plot(x, y, ‘k’)%截面尺寸边界条件图形

hold on

x = 0:0. 1::10;

y = 40;

plot(x, y, ‘m’)%长度尺寸边界条件图形,

‘m’指图形颜色为紫红色

hold on

title(‘各个约束函数图像’) %标注图形名称

text(4,45, ‘可行域’) %注明’可行域’区域

hold off

运行程序绘出约束函数的图形,如3所示:

图4.2.3 设计变量的可行域

Fig. 3 Feasible region of variable design

由图2可以看出:目标函数的图像规则,即性态好,对于多数优化方法均适用。对图3可行域分析可知,实际起约束作用有:

①刚度条件:30D3-18D2-0.64L2≥0

②结构尺寸限制条件:L-40≥0

所以,计算时只须考虑这两个条件。这样就大大简化了计算过程。

(2)应用MATLAB软件求解

①编与目标函数的m文件:objfun. m,返回x处的函数值f。

function f =Objfun(x)

f=0.0046*x(1) *x(2);

②因设计约束含非线性约束,故需编写一个描述非线性约束的m文件:

NonLinConstr. m

function [c, ceq] =NonLinConstr(x)

c= -30*x(1)^3 + 18*x(1)^2 + 0. 64*x(2)^2;

ceq =[];

③给定变量的初值,并调用优化函数:

x0= [4 40]’;

A=[0 -1];

b= [ -40];

lb = zeros(1, 1); %赋 0 语句

options = optimset(‘Display’,‘iter’,‘LargeScale’,‘off’ );

[x, fval, exitflag, output] = fmincon( ‘Objfun’, x0,A, b, [ ], [ ], lb, [ ], ‘NonLinConstr’,options)

④计算结果:

X=

3.8160 %最后的优化结果

40. 0000 %D .3. 8160cm, L = 40cm

fval = %优化后的最小质量

0. 7021 % m2min = 0. 7021kg

exitflag = %算法退出处条件

1

outplot =

Iterations:2 %函数调用次数

funcCount:11 %函数赋值次数

Stepsize:1 %步长

Algorithm:‘medium - scale: SQP, Quasi - Newton, line - search’ %算法

firstorderopt: 0. 1840 %第一优化命令的长度

cgiterations: [ ]

经11次迭代计算后,求得最优方案为:

D = 3.8160cm[2], L = 40cm[3], m2=0.7021kg[4]。

4.2.5优化结果分析

对机械手臂运动受力进行分析,求得满足强度、刚度和结构尺寸的方程,并建立了优化设计的数学模型,在此基础上编制程序求得手臂的最小质量,实现了手臂的结构优化设计。本设计的主要特点是运用MATLAB算法进行优化设计,它使得优化过程变得非常简单、容易理解和掌握,从而避免编写各种复杂的运算程序,提高了设计效率。设计值与所求近似值很接近,说明其具有相当的可信度,并且优化结果可以明显降低加工成本,具有较高的经济价值。

第五章 Adams运动仿真

1.建模

如图5.1

图5.1 机械手模型

2.添加约束

在立柱上,大臂与小臂之间,小臂与手爪之间分别添加转动副。

3.添加驱动

分别在三个转动副上添加角速度为30度/秒的驱动。

4.设置运动函数(motion)

立柱:STEP( time , 0 , 0d , 24 , 120d )+STEP( time , 48 , 0d , 72 , -120d ) 机械臂:STEP( time , 24 , 0d , 33 , 45d )+STEP( time , 39 , 0d , 48 , -45d ) 手爪1:STEP( time , 33 , 0d , 36 , 15d )+STEP( time , 36 , 15d , 39 , 0d ) 手爪2:STEP( time , 33 , 0d , 36 , -15d )+STEP( time , 36 , -15d , 39 , 0d ) 机械手的运动过程:立柱向左(右)旋转120度——大臂向下转动45度——手爪开、合(夹持物体)——大臂向上转动45度——立柱向右(左)旋转120度(回到原位)。

5.生成曲线(Measure)

在仿真结束后,进行测量输出。ADAMS的测量功能非常广泛,不仅可以在仿真分析过程中跟踪绘制感兴趣的变量,以便跟踪了解仿真分析过程,同时还可以在仿真分析结束后绘制有关变量的变化线。在这里我们测量手爪随时间的角速度变化,得图5.2和图5.3所示曲线图。图5.2和图5.3中可以清楚地看到机械手爪全部位移运动大部分集中在33-39s 内,也就是说,腰关节,肘关节的旋转已经基本达到所需位置。

毕业设计论文-四自由度的工业机器人机械手设计说明书

摘要 在当今大规模制造业中,企业为提高生产效率,保障产品质量,普遍重视生产过程的自动化程度,工业机器人作为自动化生产线上的重要成员,逐渐被企业所认同并采用。工业机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平,目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动强度极大的工作,工作方式一般采取示教再现的方式。 本文将设计一台四自由度的工业机器人,用于给冲压设备运送物料。首先,本文将设计机器人的底座、大臂、小臂和机械手的结构,然后选择合适的传动方式、驱动方式,搭建机器人的结构平台;在此基础上,本文将设计该机器人的控制系统,包括数据采集卡和伺服放大器的选择、反馈方式和反馈元件的选择、端子板电路的设计以及控制软件的设计,重点加强控制软件的可靠性和机器人运行过程的安全性,最终实现的目标包括:关节的伺服控制和制动问题、实时监测机器人的各个关节的运动情况、机器人的示教编程和在线修改程序、设置参考点和回参考点。 关键词:机器人,示教编程,伺服,制动

ABSTRACT In the modern large-scale manufacturing industry, enterprises pay more attention on the automation degree of the production process in order to enhance the production efficiency, and guarantee the product quality. As an important part of the automation production line, industrial robots are gradually approved and adopted by enterprises. The technique level and the application degree of industrial robots reflect the national level of the industrial automation to some extent, currently, industrial robots mainly undertake the jops of welding, spraying, transporting and stowing etc. , which are usually done repeatedly and take high work strength, and most of these robots work in playback way. In this paper I will design an industrial robot with four DOFs, which is used to carry material for a punch. First I will design the structure of the base, the big arm, the small arm and the end manipulator of the robot, then choose proper drive method and transmission method, building the mechanical structure of the robot. On this foundation, I will design the control system of the robot, including choosing DAQ card, servo control, feedback method and designing electric circuit of the terminal card and control software. Great attention will be paid on the reliability of the control software and the robot safety during running. The aims to realize finally include: servocontrol and brake of the joint, monitoring the movement of each joint in realtime, playback programming and modifying the program online, setting reference point and returning to reference point. KEY WORDS: robot, playback, servocontrol, brake

气动机械手设计说明书

气动机械手设计说明书

作者: 日期:

目录 气动机械手及继电器控制系统设计 (4) 第一章绪论 (4) 1.1气动机械手概述 (4) 1.2机械手的组成和分类 (5) 1.2.1.......................................................... 机械手的组成 5 1.2.2.......................................................... 机械手的分类 5 1.3 课题的提出及主要任务 (7) 第2章继电器硬件系统设计 (8) 2.1系统分析 (8) 2.2方案确定 (9) 2.3元器件介绍 (9) 第三章软件系统设计 (14) 3.1控制方案的确定 (14) 3.2工作过程 (17) 第四章调试过程 (19) 第五章设计总结 (23) 第六章附图 (25) 6.1 三维零件图: (25) 6.2三维装配图: (26) 第七章参考文献 (28)

气动机械手及继电器控制系统设计 第一章绪论 1.1 气动机械手概述 气动机械手由操作机(机械本体)、控制器、驱动系统和检测传感装置构成, 是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率, 改善劳动条件和产品的快速更新换代起着十分重要的作用。机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被称为“工业机械手”。生产中应用机械手可以提高生产的自动化水平和劳动生产率: 可以减轻劳动强度、保证产品质量、实现安全生产; 尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中, 它代替人进行正常的工作, 意义更为重大。因此, 在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的引用. 机械手的结构形式开始比较简单,专用性较强,仅为某台机床

上下料机械手课程设计说明书

上下料机械手课程设计说明书

专业课程设计 任务书 一、目的与要求 《专业课程设计》是机械设计及自动化专业方向学生的重要实践性教育环节,也是该专业学生毕业设计前的最后一次课程设计。拟通过《专业课程设计》这一教学环节来着重提高学生的机构分析与综合的能力、机械结构功能设计能力、机械系统设计的能力和综合运用现代设计方法的能力,培养学生的创新与实践能力。在《专业课程设计》中,应始终注重学生能力的培养与提高。《专业课程设计》的题目为工业机械手设计,要求学生在教师的指导下,独立完成整个设计过程。学生通过《专业课程设计》,应该在下述几个方面得到锻炼: 1.综合运用已学过的“机械设计学”、“液压传动”、“机械系统设计”、“计算机辅助设计”等课程和其他已学过的有关先修课程的理论和实际知识,解决某一个具体设计问题,是所学知识得到进一步巩固、深化和发展。 2.通过比较完整地设计某一机电产品,培养正确的设计思想和分析问题、解决问题的能力,掌握机电产品设计的一般方法和步骤。 3.培养机械设计工作者必备的基本技能,及熟练

地应用有关参考资料,如设计图表、手册、图册、标 准和规范等。 4. 进一步培养学生的自学能力、创新能力和综合 素质。 二.主要内容 表1精锻机上料机械手主要技术参数 手臂运动形式 ( 圆柱坐标式 抓取重量 60kgf 自由度 4个 手 手臂运动行程和速度 水平伸缩 500mm 设定点2 升降 600mm 设定点2 左右旋转 200度 设定点3 手腕回转和速度180度 设定点2 手指夹持范围 四种规格 90-120 定位方式和定位精度 机械挡块 +-1mm 控制方式 点位程控,开关板预选 驱动方式 液压 kgf/cm2

机械手说明书

电气控制与PLC 课程设计说明书 题目机械手控制 院系机械工程学院 专业机械工程及自动化(电梯工程) 班级0722112 学号072211221 学生姓名孙奇 指导教师胡朝斌、易风 机械工程学院 2014年6月

目录 一、绪论 (3) 二、机械手的工作原理 (4) 2.1机械手的概述 (4) 2.2机械手的工作原理 (5) 三、机械手的工作流程图 (7) 四、输入和输出点分配图及原理接线图 (8) 五、元器件选型清单 (10) 六、控制程序 (14) 6.1初始化流程图设计 (14) 6.2手动操作梯形图 (15) 6.3回原点方式顺序功能图 (16) 6.4自动方式顺序功能图 (17) 6.5 PLC总程序梯形图 (18) 七、总结 (23) 参考文献 (24)

一、绪论 1.1 可编程序控制器的应用和发展概况 可编程序控制器(programmable controller),现在一般简称为PLC (programmable logic controller),它是以微处理器为基础,综合了计算机技术、半导体集成技术、自动控制技术、数字技术、通信网络技发展起来的一种通用的工业自动控制装置。以其显著的优点在冶金、化工、交通、电力等领域获得了广泛的应用,成为了现代工业控制三大支柱之一。 1.2 PLC的应用概况 PLC的应用领域非常广,并在迅速扩大,对于而今的PLC几乎可以说凡是需要控制系统存在的地方就需要PLC,尤其近几年来PLC的性价比不断提高已被广泛应用在冶金、机械、石油、化工、轻功、电力等各行业。 按PLC的控制类型,其应用大致可分为以下几个方面。 (1)用于逻辑控制 这是PLC最基本,也是最广泛的应用方面。用PLC取代继电器控制和顺序控制器控制。例如机床的电气控制、包装机械的控制、自动电梯控制等。 (2)用于模拟量控制 PLC通过模拟量I/O模块,可实现模拟量和数字量之间转换,并对模拟量控制。 (3)用于机械加工中的数字控制 现代PLC具有很强的数据处理功能,它可以与机械加工中的数字控制(NC)及计算机控制(CNC)紧密结合,实现数字控制。 (4)用于工业机器人控制 (5)用于多层分布式控制系统 高功能的PLC具有较强的通信联通能力,可实现PLC与PLC之间、PLC与远程I/O之间、PLC与上位机之间的通信。从而形成多层分布式控制系统或工厂自动化网络。 1.3 PLC概况及在机械手中的应用 (1)可靠性高、抗干扰能力强 (2)控制系统构成简单、通用性强 由于PLC是采用软件编程来实现控制功能,对同一控制对象,当控制要求改变需改变控制系统的功能时,不必改变PLC的硬件设备,只需相应改变软件程序。

机械手机械原理课程设计说明书

(2)水平面内转30度,手臂自转90度,前进50mm。

机械手的夹持器还有夹紧和放松动作; 机械手工作频率:20/min; 升降 0.3kw,摆动 0.1kw,伸缩 0.1kw,夹持 0.2kw。2执行机构的选择与比较 §2-1 转角机构(实现平面转角0 30功能) 方案一 实现平面转角0 30的过程:电机带动不完全 齿轮运动,不完全齿轮带动全齿轮运动,与全 齿轮固结的四杆机构,使滚子在预先设计好形 状的槽内运动,左右运动的极限位置恰好是30 度。 机构评价: 优点:因为槽的形状固定,所以能保证在一个 行程内,机构的平面转角就是30度。 不完全齿轮的使用,为机械手在抓放物 体时留下了工作时间。 缺点:由于四杆机构的运动被槽限制住,最短杆 无法做周转运动,导致机构的回程要求齿 轮的翻转,必须在前面加入变速箱改变速 度方向。 方案二 实现平面转角0 30的过程:皮带轮传动给蜗 轮蜗杆从而使不完全齿轮,有间歇地带动完全齿 轮转动,齿轮通过杆拉动齿条,由齿轮来回往复 地带动固接杆转动0 30 机构评价: 优点:同样具有结构简单,传力较小运 动灵活,造价低准确地实现转角0 30的 要求,可以控制间歇实现循环功能。 缺点:磨损较严重,效率较低,齿轮尺 寸过大加工难。 方案三 30的过程:使用槽 实现平面转角0 轮实现平面转角30度,只要计算好槽轮 的槽数,就能在主动圆盘转360度时, 使从动轮转30度。机构评价: 优点:结构简单,外形尺寸小,机械效

率高,并能平稳的间歇地进行转位。 缺点:传动存在柔性冲击,且是单向的间歇运动,同样要求变速箱改变运动方向。 方案的选择与比较: 只有第二个方案能较好的实现对传动系统的功能要求在平面转动上能准确地控制在30度,制造简单方便。 §2-2 上升机构(实现上升100功能要求) 方案一 实现上升的过程:皮带轮传动,使蜗杆带动蜗轮,蜗轮和齿条配合。通过控 制蜗杆的半径,使转动一周后,使齿条上升100. 机构评价: 优点:蜗杆的轮齿是连续的螺旋尺,故传动平 稳,啮合冲击小。 缺点:啮合齿轮间的相对滑动速度较大,摩擦 磨损较大,传动效率较低,易出现发热 现象,常用耐磨材料制作,成本高。 方案二 实现上升的过程:皮带轮传动给蜗轮蜗杆 从而使凸轮转动,凸轮通过顶杆推动滑块滑 动,从而使工作杆上升100mm。 机构评价: 优点:结构简单,传力较小,凸轮不用太大就 可以达到所需要的高度。 缺点:效率过低,滑块容易磨损且一旦磨断严重影响上升高度,寿命不高。

显像管搬运机械手课程设计.doc

目录 前言 1 课题的基本要求 (4) 2 总体设计 (5) 2.1 PLC选型 (5) 2.2 I/O点及地址分配 (7) 2.3 PLC端子接线 (9) 2.4 操作面板示意图 (11) 3 PLC程序设计 (12) 3.1 设计思想 (12) 3.2 显像管搬运机械手顺序功能图 (13) 3.3 PLC梯形图 (15) 3.3.1自动梯形图 (15) 3.3.2复位梯形图 (25) 3.3.3手动梯形图 (26) 4 程序调试说明............. (28) 结束语 (29) 参考文献 (30)

前言 1、PLC的概念 可编程控制器(Programmable Controller)是以微处理器为核心,综合了微电子技术,自动化技术,网络通讯技术于一体的通用工业控制装置。英文缩写为PC或PLC。它具有体积小、功能强、程序设计简单、灵活通用、维护方便等一系列优点,特别是它的高可靠性和较强的适应恶劣工业环境的能力,更得到用户的好评。因而在机械、能源、化工、交通、电力等领域得到了越来越广泛的应用,成为现代工业控制的三大支柱(PLC,机器人和CAD/CAM)。 2、PLC的特点 (1)可靠性高,抗干扰能力强 PLC用软件代替大量的中间继电器和时间继电器,仅剩下与输入和输出有关的少量硬件,接线可减少到继电器控制系统的1/10~1/100,因触点接触不良造成的故障大为减少。 (2)硬件配套齐全,功能完善,适用性强 PLC发展到今天,已经形成了大、中、小各种规模的系列化产品,并且已经标准化、系列化、模块化,配备有品种齐全的各种硬件装置供用户选用,用户能灵活方便地进行系统配置,组成不同功能、不同规模的系统。 (3)PLC的安装接线方便,一般用接线端子连接外部接线。 (4)PLC有较强的带负载能力,可直接驱动一般的电磁阀和交流接触器 可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。 (5)易学易用,深受工程技术人员欢迎 PLC作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程

【精品毕设】简易机械手机械结构设计

机电工程学院 《专业综合课程设计》 说明书 课题名称:简易机械手机械机构设计 学生姓名:沈柳根学号:20110611119 专业:机械电子工程班级:11机电 成绩:指导教师签字: 2015年1月5日

摘要 简易机械手是工业机械手的简化,功能相似,而工业机械手是近代自动控制领域中出现的一项新的技术,是现代控制理论与工业生产自动化实践相结合的产物,并以成为现代机械制造生产系统中的一个重要组成部分。工业机械手是提高生产过程自动化、改善劳动条件、提高产品质量和生产效率的有效手段之一。工业机械手设计是机械制造、机械设计和机械电子工程等专业的一个重要教学环节,是学完技术基础课及有关专业课以后的一次专业课程内容得综合设计。通过设计提高学生的机械分析与综合能力、机械结构设计的能力、机电液一体化系统设计的能力,掌握实现生产过程自动化的设计方法。 通过对于气动机械手的设计,展现了各个相关学科知识在这里的整合,有利于理解专业知识。 关键词:简易机械手;结构设计;气动

目录 摘要....................................................... 错误!未定义书签。 1 设计任务介绍及意义 (1) 1.1设计任务意义: (1) 1.2设计任务要求介绍: (1) 2 总体方案设计 (3) 2.1 结构分析 (3) 2.3 设计简介 (3) 3 机械传动结构设计 (5) 3.1传动结构总体设计 (5) 3.2手指气缸的设计 (6) 3.3纵向气缸的设计 (12) 3.4横向气缸的设计 (13) 4最终图纸 (15) 4.1装配图 (15) 5 总结 (16) 参考文献 (17)

机械手臂设计说明书_

成都航空职业技术学院 汽车工程系 设计说明书 设计题目: 汽车模拟装配线两关节机械手臂 组员姓名:赵治帅张良李杉李廷堃郑宁波 专业班级:机电一体化 10939 指导教师:申爱民 20011 年10 月30日

摘要 本文对模拟汽车装配线的工作原理和运动控制做了阐述,对如何防止故障时撞车和故障报警做出了系统说明,并深入研究了导轨的滑撬式传动和脱钩式等其他传动的优缺点;认真研究了步进电机伺服电机的原理,然后给出了具体的实现方法。现代汽车总装工艺自动化程度越来越高。汽车制造总装机械化生产包括整车装配线、车身输送线、储备线、升降机等。主要分为一次内饰装配线(车身打号、天窗、线束、ABS、顶棚、地毯、气囊帘、车门支撑板、车门玻璃、密封条、仪表盘、水箱等)、底盘线(油管、油箱、隔热板、动力总成、后悬、排气管、挡泥板、轮胎等)、二次内饰线(风窗玻璃、座椅、仪表板后端、电瓶、空滤器、备胎、后备箱备附件、雨刷、介质加注、车门调整、线路管路插接等)、整车完整性检查、整车测试线、路试跑到、调整雨淋线等。 但由于受资源和能力限制,我们的模拟生产线只取其中的一次内饰、底盘、二次内饰,加上上线和下线工位,一共是五个工位且都采用一个工位表示。主要目的是将说学过的机电一体化只是都用到,并实现部分功能。达到训练、学以致用,能力提高的目的。 关键词:汽车装配工艺结构原理

目录 摘要................................................................................................................................. 目录 ............................................................................................................................. 序言................................................................................................................................... 1总体结构方案说明: ....................................................................................................... 1.1 ........................................................................................................................... 1.1.1..................................................................................................................... 1.1. 2..................................................................................................................... 1.2 .............................................................................................................................. 1.3 ........................................................................................................................... 1.3.1..................................................................................................................... 1.3. 2..................................................................................................................... 1.3.3..................................................................................................................... 1.3.4..................................................................................................................... 2.系统主要功能及技术指标、原理图................................................................................

工业机器人课程设计

河南机电高等专科学校《机器人应用技术》课程作品 设计说明书 作品名称:多功能机械手 专业:机电一体化技术 班级:机电124班 扣号: 姓名:流星 2014 年 10 月 1 日

目录 一课题概述 (2) 1、选题背景 (2) 2、发展现状和趋势 (3) 3、研究调研 (4) 二机械手组成及工作过程 (6) 1、整体结构分析 (6) 2、所需器材 (6) 3、底座部分 (8) 4、躯干部分 (9) 5、上臂部分 (10) 6、手爪部分 (11) 7、机械手系统的总调试 (12) 三软件部分 (13) 1、机械手软件编制流程图 (13) 2、机械手运行控制程序图 (14) 四设计体会 (15) 一课题概述 1、选题背景 随着我国经济的高速发展,各种电子产品和各种创新机械结构的出现,工业机器人的作用在装配制造业产业中的地位更加重要了。另一方面随着人们生活水平的提高传统制造产业劳动力生产成本进一

步提高,这也使企业意识到用高速准确的机械自动化生产代替传统人工操作的重要性。其中机械手是其发展过程中的重要产物之一,它不仅提高了劳动生产的效率,还能代替人类完成高强度、危险、重复枯燥的工作,减轻人类劳动强度,可以说是一举两得。在机械行业中,机械手越来越广泛的得到应用,它可用于零部件的组装,加工工件的搬运、装卸,特别是在自动化数控机床、组合机床上使用更为普遍。目前,机械手已发展成为柔性制造系统FMS和柔性制造单元FMC中一个重要组成部分。把机床设备和机械手共同构成一个柔性加工系统或柔性制造单元,可以节省庞大的工件输送装置,结构紧凑,而且适应性很强。但目前我国的工业机械手技术及其工程应用的水平和国外比还有一定的距离,应用规模和产业化水平低,机械手的研究和开发直接影响到我国机械行业自动化生产水平的提高,从经济上、技术上考虑都是十分必要的。因此,进行机械手的研究设计具有重要意义。 在这样一个大的背景下结合自己的专业机电一体化,我们选择多功能机械手来作为我们的设计题目。结合专业特点使用德国慧鱼机器人教学模型作为我们实现这一课题的元件。利用慧鱼模型的各种机械结构组装出机械手的机械部分,用pc编程实现对机械手的自动控制,利用限位开关来保护电机和控制机械手位置的准停。 这个课题可以充分的体现机电一体化的由程序自动控制机械结构的运动,对自己以前的所学的课程也是一种巩固。另一方面这个机械手可以实现一定的搬运功能具有很强的实用性能。 2、发展现状和趋势

机械手手爪部位毕业设计说明书汇总

目录 摘要 (1) 引言 (1) 1.机械手总体方案设计 (2) 1.1设计要求 (2) 1.2运动形式的选择 (2) 1.3驱动方式的选择 (4) 1.4总体结构设计 (5) 2.机械手手部设计 (6) 2.1结构分析 (6) 2.2计算分析 (6) 3.PLC控制系统设计 (1) 1 3.1机械手移动工件控制系统的控制要求 (1) 1 3.2机械手移动工件控制系统的PLC选型和资源配置 (1) 3 3.3机械手移动工件控制系统的PLC程序 (1)

4 4.动画制作 (1) 8 4.1建立机械手模型 (1) 8 4.2制作机械手的动画 (1) 8 结束语 (2) 6 致谢 (2) 6 参考文献 (2) 6 附录 (2) 7

摘要 机械手设计包括机械结构设计,检测传感系统设计和控制系统设计等,是机械、电子、检测、控制和计算机技术的综合应用。本课题通过对设计要求的分析,设计出机械手的总体方案,重点阐述了手部结构的设计以及控制系统硬软件的设计,完成了整个系统工作的动画设计。实现了机械手的基本搬运功能,达到了预期要求,具有一定的应用前景。 关键词:机械手PLC 动画 引言 随着世界经济和技术的发展,人类活动的不断扩大,机器人应用正迅速向社会生产和生活的各个领域扩展,也从制造领域转向非制造领域,各种各样的机器人产品随之出现。像海洋开发、宇宙探测、采掘、建筑、医疗、农林业、服务、娱乐等行业都提出了自动化各机器人化的要求。随着机器人的产生和大量应用,很多领域,许多单一、重复的机械工作由机器人(也称机械手)来完成。 工业机器人是一种能进行自动控制的、可重复编程的,多功能的、多自由度的、多用途的操作机, 广泛采用工业机器人,不仅可提高产品的质量与产量,而且对保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。和计算机、网络技术一样,工业机器人的广泛应用正在日益改变着人类的生产和生活方式。 机械手是一种模仿人手动作,并按设定的程序来抓取、搬运工件或夹持工具,

机械手设计说明书doc

机械手设计说明书 篇一:机械手设计说明书 指导老师: 设计合作成员: 一、设计项目名称 机械手臂手指机构2 二、设计目的 本设计拟搬运宽度尺寸90~110mm、质量为5kg以内的六菱柱形钢质工件,手指机构带水平转盘。手指的动力驱动方式为液压传动。液压传动的机械手是以压缩液体的压力来驱动执行机构运动的机械手。 三、设计要求 (1)机械手为专用机械手,适用于夹六菱柱形钢质工件。 (2)选取机械手的座标型式和自由度。 (3)主要设计出机械手的手部机构。 (4)液压传动系统液压缸的选用 四、设计方案 4.1 机械手基本形式的选择 机械手的典型结构一般可分为:回转型(包括滑槽杠杆式和连杆杠杆式两种)、移动型(移动型即两手指相对支座作往复运动)和平面平移型。本设计采用二指回转型手抓。 4.2 机械手的主要部件及运动 本机械手的部件有齿轮、齿条、连杆和液压缸等。主要

的运动有直动液压缸驱动齿条的平动、齿轮和齿条的啮合运动、连杆的转动和手抓的平行移动。 4.3 驱动方式的选择 本机械手的驱动方案采用液压机构驱动机械手,结构简单、尺寸紧凑、重量轻、控制方便。 4.4 机械手的技术参数列表 用途:卸码垛机械手臂抓重:5kg 抓取的物体的几何形状:宽度为90~110mm六菱柱形钢质工件机械手自重:小于等于10kg 4.5 机械工作原理 机械手的夹工件的工作原理框图如图1所示。 图1. 机械手夹工件的工作原理框图 该机械手采用了液压驱动方式来实现其工作的要求,工作要求就是机械手能适应六菱柱形钢质工件不同面的夹持,故带有水平转盘手臂的回转运动。 传动机构采用齿条与齿轮啮合。本机械通过液压驱动传递动力推动齿条平动,齿条与齿轮啮合将液压缸传来的水平运动转化为齿轮连杆的回转运动。而齿条与齿轮啮合驱动四连杆转动,四连杆机构使夹板水平移动,完成对工件的夹紧松开。机械手的整体结构图如图2、图3所示。手爪部分特点如下表述: 1. 机械手手部由手爪(即夹板)和传力机构所构成。

显像管搬运机械手课程设计

沈阳理工大学课程设计专用纸 目录 前言 (1) 1 课题的基本要求 (4) 2 总体设计 (5) 2.1 PLC选型 (5) 2.2 I/O点端子接线图 (6) 2.3 操作面板示意图 (9) 3 PLC程序设计 (10) 3.1 设计思想 (10) 3.2 显像管搬运机械手顺序功能图 (11) 3.3 PLC梯形图 (14) 3.3.1主程序梯形图 (14) 3.3.2通用程序梯形图 (14) 3.3.3自动程序梯形图 (15) 3.3.4 手动程序梯形图 (20) 3.3.5 复位程序梯形图 (22) 4 程序调试说明............. (24) 4.1 自动模拟调试 (24) 4.2 复位模拟调试 (26) 结束语 (27) 参考文献 (28)

前言 1、PLC的概念 可编程控制器(Programmable Controller)是以微处理器为核心,综合了微电子技术,自动化技术,网络通讯技术于一体的通用工业控制装置。英文缩写为PC或PLC。它具有体积小、功能强、程序设计简单、灵活通用、维护方便等一系列优点,特别是它的高可靠性和较强的适应恶劣工业环境的能力,更得到用户的好评。因而在机械、能源、化工、交通、电力等领域得到了越来越广泛的应用,成为现代工业控制的三大支柱(PLC,机器人和CAD/CAM)之一。 2、PLC的特点 (1)可靠性高,抗干扰能力强 PLC用软件代替大量的中间继电器和时间继电器,仅剩下与输入和输出有关的少量硬件,接线可减少到继电器控制系统的1/10-1/100,因触点接触不良造成的故障大为减少。 (2)硬件配套齐全,功能完善,适用性强 PLC发展到今天,已经形成了大、中、小各种规模的系列化产品,并且已经标准化、系列化、模块化,配备有品种齐全的各种硬件装置供用户选用,用户能灵活方便地进行系统配置,组成不同功能、不同规模的系统。 (3)PLC的安装接线方便,一般用接线端子连接外部接线。 (4)PLC有较强的带负载能力,可直接驱动一般的电磁阀和交流接触器 可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。 (5)易学易用,深受工程技术人员欢迎 PLC作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程

机械手设计说明书

机械手设计说明书 篇一: 指导老师: 设计合作成员: 一、设计项目名称 机械手臂手指机构2 二、设计目的 本设计拟搬运宽度尺寸90~110mm、质量为5kg以内的六菱柱形钢质工件,手指机构带水平转盘。手指的动力驱动方式为液压传动。液压传动的机械手是以压缩液体的压力来驱动执行机构运动的机械手。 三、设计要求 机械手为专用机械手,适用于夹六菱柱形钢质工件。选取机械手的座标型式和自由度。主要设计出机械手的手部机构。液压传动系统液压缸的选用 四、设计方案 4.1 机械手基本形式的选择 机械手的典型结构一般可分为:回转型(包括滑槽杠杆式和连杆杠杆式两种)、移动型(移动型即两手指相对支座作往复运动)和平面平移型。本设计采用二指回转型手抓。 4.2 机械手的主要部件及运动 本机械手的部件有齿轮、齿条、连杆和液压缸等。主要

的运动有直动液压缸驱动齿条的平动、齿轮和齿条的啮合运动、连杆的转动和手抓的平行移动。 4.3 驱动方式的选择 本机械手的驱动方案采用液压机构驱动机械手,结构简单、尺寸紧凑、重量轻、控制方便。 4.4 机械手的技术参数列表 用途:卸码垛机械手臂抓重:5kg 抓取的物体的几何形状:宽度为90~110mm六菱柱形钢质工件机械手自重:小于等于10kg 4.5 机械工作原理 机械手的夹工件的工作原理框图如图1所示。 图1. 机械手夹工件的工作原理框图 该机械手采用了液压驱动方式来实现其工作的要求,工作要求就是机械手能适应六菱柱形钢质工件不同面的夹持,故带有水平转盘手臂的回转运动。 传动机构采用齿条与齿轮啮合。本机械通过液压驱动传递动力推动齿条平动,齿条与齿轮啮合将液压缸传来的水平运动转化为齿轮连杆的回转运动。而齿条与齿轮啮合驱动四连杆转动,四连杆机构使夹板水平移动,完成对工件的夹紧松开。机械手的整体结构图如图2、图3所示。手爪部分特点如下表述: 1. 机械手手部由手爪(即夹板)和传力机构所构成。

搬运机械手设计说明书

机械与装备工程学院 课程设计说明书(2016/2017学年第 1学期) 课程名称:机械设计课程设计 题目:搬运机械手的设计 专业班级:机械设计制造及其自动化学生: 学号: 130200216 指导教师: 设计周数: 2周 设计成绩: 2016年 12月 31日

第一章绪论 (1) 1.1 机械手的应用现状 (1) 1.2 机械手研究的目的、意义 (1) 1.3 设计时要解决的几个问题 (1) 第二章机械手总体方案的设计 (3) 2.1 机械手的系统工作原理及组成 (3) 2.2 机械手的基本结构及工作流程 (3) 第三章机械手的方案设计及其主要参数 (5) 3.1 坐标形式和自由度选择 (5) 3.2 执行机构 (5) 3.3 驱动系统 (6) 3.4 控制系统 (7) 第四章结构设计及优化 (8) 4.1手部夹紧气缸的设计 (8) 4.1.1手部夹紧气缸的设计 (8) 4.1.2 确定气缸直径 (9) 4.1.3 气缸作用力的计算及校核 (9) 4.1.4 缸筒壁厚的设计 (10) 4.1.5 气缸的基本组成部分及工作原理 (10) 4.2手臂结构优化设计 (10) 4.2.1问题描述 (10) 4.2.2设计分析 (10) 4.2.3建立数学模型 (12) 4.2.4优化计算 (13) 4.2.5优化结果分析 (16) 第五章 Adams运动仿真 (17) 总结与展望 (20)

机械手是近几十年发展起来一种高科技自动化生产设备,它对稳定、提高产品质量、提高生产效率、改善劳动条件和产品的快速更新换代起着十分重要的作用,随着工业机械化和自动化的发展以及气动技术自身的一些优点,气动机械手已经广泛应用在生产自动化的各个行业。 本设计中的搬运机械手的动作由气动缸驱动,气动缸由相应的电磁阀来控制,电磁阀由PLC控制。驱动执行元件完成,能十分方便的嵌入到各类工业生产线中。 本文中对机械手臂运用MATLAB算法进行优化设计,它使得优化过程变得非常简单、容易理解和掌握,从而避免编写各种复杂的运算程序,提高了设计效率。 用 ADAMS 软件建立虚拟样机进行仿真并优化参数,得出了机械手的运动过程的演示动画,发现设计结构能有机地结合在一起,工作平稳,并在指定的速度和负载等参数下得出了所需要的驱动力和结构参数等。虚拟样机代替物理样机对工程机械进行创新设计、测试和评估,可以降低设计成本,缩短开发周期,而且设计质量和效率都可以得到提高。 关键词:机械手,气动,优化设计,仿真

plc机械手课程设计报告书

目录 1 引言 (5) 2 设计目的及主要内容 (6) 2.1设计目的 (4) 2.2.主要内容 (4) 3 气动机械手的操作要求及功能 (4) 3.1.操作要求 (4) 3.2操作功能 (5) 4 PLC及机械手的选择和论证 (6) 4.1 PLC (6) 4.1.1 PLC简介 (6) 4.1.2 PLC的结构及基本配置 (6) 4.1.3 PLC的选择及论证. (7) 4.2机械手 (7) 4.2.1机械手简介 (7) 4.2.2机械手的选择 (8) 5 硬件电路设计及描述 (8) 5.1操作方式 (8) 5.2 PLC的I/O分配接线 (9) 6 软件电路设计及描述 (10) 6.1机械手的操作系统程序 (10) 6.2回原位程序 (10)

6.3手动单步操作程序 (11) 6.4自动操作程序 (12) 6.5机械臂传送系统梯形图 (12) 6.6指令语句表 (13) 7 心得体会 (15) 参考文献 (16) 1引言 在现代工业中,生产过程的机械化,自动化已成为突出的主题。化工等连续 性生产过程的自动化已基本得到解决。但在机械工业中,加工、装配等生产是不 连续的。专用机床是大批量生产自动化的有效的办法;控制机床、数控机床、加 工中心等自动化机械是有效地解决多品种小批量生产自动化的重要办法。但除切 削加工本身外,还有大量的装卸、搬运、装配等作业,有待于进一步实现机械化。 据资料介绍,美国生产的全部工业零件中,有75%是小批量生产,金属加工生 产批量中有四分之三有50件以下,零件真正在机床上加工的时间仅占零件生产 时间的5%。从这里看出,装卸、搬运等工序机械化的迫切性,工业机械手就是 为实现这些工序的自动化而生产的。并且在工业生产和其他领域内,由于工作的 需要,人们经常受到高温、腐蚀及有毒气体等因素的危害,增加了工人的劳动强 度,甚至于危及生命。自从机械手问世以来,相应的各种难题迎刃而解。机械手 可在空间抓、放、搬运物体,动作灵活多样,适用于可变换生产品种的中、小批 量自动化生产,广泛应用于柔性自动线。机械手一般由耐高温,抗腐蚀的材料制 成,以适应现场恶劣的环境,大大降低了工人的劳动强度,提高了工作效率。 可编程控制器是继电器控制和计算机控制出上开发的产品,逐渐发展成以微 器处理为核心把自动化技术、计算机技术、通信技术融为一体的新型工业自动控 制装置。 机械手采用plc控制,具有可靠性高,改变程序灵活等优点。无论进行时间 控制还是控制或混合控制,都可以通过设置plc的程序实现。可以根据机械手的 动作顺序改变程序,是机械手通用性更好。 采用气压传动,动作迅速,反应灵敏,能实现过载保护,便于自动控制。工 作环境适应性好。阻力损失和泄露减少。不会污染环境,造价低。

气动机械手设计说明书

气动机械手-设计说明书

————————————————————————————————作者:————————————————————————————————日期: ?

一、设计要求 为卸码垛机械手臂配制造附件,即夹持工件的手指机构。机构应根据工件的形状、尺寸、工件质量大小、表面性质等因素专门设计。本设计拟搬运宽度尺寸90~110mm、质量为5kg以内的六菱柱形钢质工件,手指机构带水平转盘。设计手指机构的机械结构,机构自身重量控制在10kg以内,手指的动力驱动方式自选。 二、具体设计方案 本次机械手的主要设计构思来源于实验室的机械手模型,通过对实验室机械手的一系列观察研究,开始了如下方案的设计。 首先,我们选择了气动的方式来驱动机械手的运动,而对于气缸的选择,因为在这方面的学习还不够,而且对于我们所设计的机械手结构在气缸方面的要求不高,故在此不作进一步研究。 根据实验室的机械手模型,我们仿照其结构把机械手设计为平行式夹持手爪,接下来是对一些重要尺寸的确定做一较为详细的介绍。 2.1机械手手爪伸缩运动的设计 通过查阅相关资料,对于夹持型手爪进行受力分析如图所示,两个手指总夹持力2μF必须大于夹持工件的重力mg 故应满足2μF>mg,即F>mg/2μ 式中μ为摩擦系数,本次设计的手指夹持处设有辅助件,材料取为硬质橡胶,一般令μ=0.65; 另外已知m为5kg; 由此可得 F>mg/2μ=5×9.8/(2×0.65)=38N

机械手的结构图如下: 此部分为机械手的夹持部分,由图中可知,此结构主要是以齿轮齿条的啮合运动来实现手指的夹紧与放松,而通过两个类似于单缸气缸的腔体充气和放气产生推动力。因此根据公式可得: D=(4F/(πPη))? 其中η为负载率,一般取0.4。代入相关数据可得:D=0.017m 又知腔体中受压缩气体作用的面积为一圆环,即 s=π*(R2-r2)=π*D2/4 (其中R为腔体外半径,r为轴半径) 只要圆环面积s大于π*D2/4即可,现取D=0.02m=20mm r=10mm R=20mm 则s的面积足够大,能提供足够的推力来满足运动。 之后根据所夹持件尺寸的要求是90至110mm,则按照90mm来计算(最小的工件尺寸),若能夹到的话,则110mm的也一定能夹到,然后通过一系列的尺寸推导运算(该部分是通过先初步设计尺寸,然后在建模过程中不断修改所得),即可设计出如上所示的机械手结构。其中最主要的就是齿轮齿条的行程大小确定,它是根据所要夹持工件的尺寸要求来设计的。

PLC搬运机械手课程设计

第1章概述 1.1搬运机械手概述 图1.1是搬运机械手工作示意图。该机械手的任务是将传送带A上的物品搬运到传送带B。为使动作准确,安装了限位开关SQ1、SQ2、SQ3、SQ4、SQ5。分别对机械手进行抓紧、左旋、右旋、上升、下降等行程的检测,并给出动作到位的检测信号。另外还安装了光电开关SP。负责检测传送带A上的物品是否到位。此外,还设置了起动按钮SB1和停止按钮SB2,分别用以启动和停止机械手的动作。 图1.1 搬运机械手工作示意图 传送带A、B由电动机M1、M2拖动,M1、M2分别由接触器KM1、KM2控制,机械手的上、下、左、右、抓、放等动作由液压系统驱动,并分别由6个电磁阀YV1—YV6来控制。

1.2搬运机械手运动过程 根据对机械手的工艺过程及控制要求分析,机械手的动作过程如图1.2所示: 图1.2机械手动作过程 1.3设计要求 传送带B处于连续运行状态,不用PC控制。 机械手和传送带A要求按照一定的顺序动作,其步序图如图1.3所示。 启动时,机械手按照步序图的工步顺序动作;停止时,机械手停止在现行工步上。重新启动时机械手从停止前一瞬间的动作继续进行;PLC断电时的要求与停止时的要求一致。 要求搬运机械手控制系统具有手动、单周期和连续循环三种工作方式。 1.4设计任务 1.设计和绘制电气控制原理图或PC I/O接线图、功能表图和梯形图,编写指令程序清单。 2.选择电气元件,编制电气元件明细表。 3.设计操作面板电器元件布置图。 4.上机调试程序。 5.编写设计说明书。

启动按钮SB1停止按钮SB2手爪抓限位开关SQ1手臂左限位开关SQ2手臂右限位开关SQ3手臂上限位开关SQ4手臂下限位开关SQ5 光电开关SP 传送带A运行KM1 手臂左旋YV3手臂右旋YV4手臂上升YV1手臂下降YV2手爪抓紧YV5手爪松开YV6步序 2 3 4 5 6 7 8 9 1s 1 1个搬运周期 图1.3搬运机械手动作步序图

相关文档
最新文档