高三物理专题讲座

高三物理专题讲座
高三物理专题讲座

高三物理专题讲座(八)

----霍尔效应

霍尔效应它解释涉及高中物理中的电磁学、力学、运动学等有关知识。考试以现代高科技为载体,综

合考查力的平衡、欧姆定律、电场、磁场、能量守恒和功率等知识点,一般为学科内综合题,另外此类题

信息量较大,只有认真读题审题才有可能将题意弄懂,并将有用的信息提取出来,应用于解题。霍尔效应

原理的应用常见的有速度选择器、磁流体发电机、霍尔效应、电磁流量计、血流计、磁强计等。

霍尔效应:如图1所示,将一导电板放在垂直于它的磁场中。当有电流通过它时,垂直于电流和磁

场方向会产生一个附加的横向电场,在导电板的A A '、两侧会产

生一个电势差A A U '。这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。 霍尔效应可以用带电粒子在磁场中所受的洛仑兹力来说明。因为磁场使导体内移动的电荷发生偏转,结果在A A '、两侧分别聚集了正、负电荷,形成电势差。

设导电板内定向移动电荷的平均定向移动为v ,它们在磁场

中受到的洛仑兹力为qvB 。当A A '、之间形成电势差后,电荷还受到一个相反方向的电场力(E 为电场强

度,b 为导电板的宽度,如图(1),最后达到稳恒状态时,两个力平衡:

b

U q qvB A A '=。 例1. (北京市东城区试题)将导体放在沿x 方向的匀强磁场中,并通有沿y 方向的电流时,在导体

的上下两侧面间会出现电势差,此现象称为霍尔效应。利用霍尔效应的原理可以制造磁强计,测量磁场的

磁感应强度。磁强计的原理如图所示,电路中有一段金属导体,它的横截面为边长等于a 的正方形,放在

沿x 正方向的匀强磁场中,导体中通有沿y 方向、电流强度为I 的电流,

已知金属导体单位体积中的自由电子数为n ,电子电量为e ,金属导体导

电过程中,自由电子所做的定向移动可以认为是匀速运动,测出导体上下

两侧面间的电势差为U 。求:(1)导体上、下侧面那个电势较高?(2)

磁场的磁感应强度是多少?

答案(1)上侧电势高(2)I

neaU B = 二、速度选择器

例2。带电粒子以速率v 0从小孔沿着与电场线和磁感线都垂直的方向射入一粒子速度选择器时,恰能

做匀速直线运动。如果粒子以速率v v <0仍沿与电场线和磁感线都垂直的方向射入,那么此带电粒子飞离

场区时的速率v '和v 的关系如何。(不计粒子的重力)

解:由粒子以v 0垂直射入时恰能做匀速直线运动可知,此种情况下粒子所受的洛仑兹力与电场力平衡,

从而有

Bqv Eq v E B 00==,从而得 由于粒子电量不变、板间电场强度不变,可知粒子所受的电场力是恒定的。当粒子以v v <0垂直射入

时将有Bqv Eq <。从而可知

b U q qE A A '= 图2

v E B v v <<,即0 以v 射入时,由于Bqv Eq <,粒子将沿电场力方向偏离ab 直线,因粒子在场区内运动时电场对粒子做正功(这与粒子带正电还是带负电无关)。在这种情况下,设粒子飞出的速率为v ',则由动能定理可知 121222mv mv '>,从而得v v '>。 要研究v '与v 0的关系需要知道v 与v 0的定量关系,还需知道电场力功的确切值,题中没有给出这样的条件,因而无法确定v '与v 0的关系。

此题答案应为:v v v v '><,0

三.磁强计

磁强计是利用霍尔效应来测量磁感应强度B 的仪器。其原理可解为:如图3所示,一块导体接上a 、b 、c 、d 四个电极,将导体放在匀强磁场之中,a 、b 间通以电流I ,c 、d 间就会出现电势差,只要测出c 、d 间的电势差U ,就可测得B 。

设c 、d 间电势差达到稳定,则U=EL ,此时导电的自由电荷受到的

电场力与洛伦兹力相平衡,Eq=qvB ,式中v 为自由电荷的定向移动速度。由此可知, Lv U v E B ==。设导体中单位体积内的自由电荷数为n ,则电流I=nqsv ,式中S 为导体横截面积,S=Ld 。因此I nqdU B nqLd I v ==,,由此可知B ∝U 。这样只要将装置先在已知磁场中定出标度,就可通过测定U 来确定B 的大小了。

四.电磁流量计

电磁流量计根据霍尔效应其原理可解释为:如图4所示,一圆形导管直

径为d ,用非磁性材料制成,其中有可以导电的液体向左流动。导电液体中

的自由电荷(正负离子)在洛伦兹力作用下横向偏转,a 、b 间出现电势差。

当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定。由q v B=Eq=q d U ,可得v =Bd U ,流量Q=sv =B

dU Bd U d 4.42ππ= 例3(湖北省高考题):电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(单位时间内通过管内横截面的流体的体

积)。为了简化,假设流量计是如图5所示的横截面为长方形的一段管道,其中空部分的长、宽、 高分别为图中的a 、b 、c 。流量计的两端与输送流体的管道连接(图中虚线)。图中流量计的上下两面是金属材料,前后两侧面是绝缘材料。现于流量计所在处加磁感应强度为B 的匀强磁场,磁场方向垂直于前后两面。当导电流体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R 的电流表的两端连接,I 表示测得的电流值。已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为(A )。 A. )(a c bR B I ρ+ B. )(c b aR B I ρ+ C. )(b a cR B I ρ+ D. )(a

bc R B I ρ+ 五.磁流体发电机

磁流体发电机所依据的基本原理就是霍尔效应。如图6所示,等

离子气体喷入磁场,正、负离子在洛伦兹力作用下发生偏转而聚集到

A 、

B 板上,产生电势差。设A 、B 平行金属板的面积为S ,相距L ,等

离子气体的电阻率为ρ,喷入气体速度为v ,板间磁场的磁感应强度

为B ,板外电阻为R ,当等离子气体匀速通过A 、B 板间时,A 、B 板上

聚集的电荷最多,板间电势差最大,即为电源电动势。此时离子受力

平衡:Eq=qvB ,E=Bv ,ε=EL=BLv 。电源内阻S L r ρ=。 例4(江西省试题):图7为磁流体发电机的示意图。设

两金属板间的距离为d ,两极板间匀强磁场的磁感应强度为

B 。等离子体垂直进入磁场的速度为v ,单个离子所带的电量

为q 。离子通道(即两极板内所围成空间)的等效电阻为r ,

负载电阻为R 。求(1)该发电机的电动势;(2)发电机的总功率。答案(1)电动势E=Bd v (2)总功率r

R v d B +=P 2

22 作业 1.(09年广东物理)12.图是质谱仪的工作原理示意图。带电粒子被加速电场加速后,进入速度选择器。速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E 。平板S 上有可让粒子通过的狭缝P 和记录粒子

位置的胶片A 1A 2。平板S 下方有强度为B 0的匀强磁场。下列表述正确的是 ( ABC )

A .质谱仪是分析同位素的重要工具

B .速度选择器中的磁场方向垂直纸面向外

C .能通过的狭缝P 的带电粒子的速率等于E/B

D .粒子打在胶片上的位置越靠近狭缝P ,粒子的荷质比越小

解析:由加速电场可见粒子所受电场力向下,即粒子带正电,在速度选择器中,电场力水平向右,洛伦兹力水平向左,如图所示,因此速度选择器中磁场方向垂直纸面向外B 正确;经过速度选择器时满足qvB qE =,可知能通过的狭缝P 的带电粒子的速率等于E/B ,带电粒子进入磁场做匀速圆周运动则有qB mv R =,可见当v 相同时,q

m R ∝,所以可以用来区分同位素,且R 越大,比荷就越大,D 错误。 2.(09年宁夏卷)16. 医生做某些特殊手术时,利用电磁血流计来监测通过动脉

的血流速度。电磁血流计由一对电极a 和b 以及磁极N 和S 构成,磁极间的磁

场是均匀的。使用时,两电极a 、b 均与血管壁接触,两触点的连线、磁场方向

和血流速度方向两两垂直,如图所示。由于血液中的正负离子随血流一起在磁场

中运动,电极a 、b 之间会有微小电势差。在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零。在某次监测中,两触点的距离为3.0mm ,血管壁的厚度可忽略,

两触点间的电势差为160μV ,磁感应强度的大小为0.040T 。则血流速度的近似值和电极a 、b 的正负为 ( A )

A. 1.3m/s ,a 正、b 负

B. 2.7m/s , a 正、b 负

C .1.3m/s ,a 负、b 正 D. 2.7m/s , a 负、b 正

3.2010·北京·23利用霍尔效应制作的霍尔元件以及传感器,广泛应用于测量和自动控制等领域。

如图1,将一金属或半导体薄片垂直至于磁场B 中,在薄片的两个侧面a 、b 间通以电流I 时,另外两侧c 、f 间产生电势差,这一现象称霍尔效应。其原因是薄片中的移动电荷受洛伦兹力的作用相一侧偏转和积累,于是c 、f 间建立起电场EH,同时产生霍尔电势差UH。当电荷所受的电场力与洛伦兹力处处相等时,EH和UH达到稳定值,UH的大小与I 和B 以及霍尔元件厚度d 之间满足关系式H H

IB U R d

=,其中比例系数RH称为霍尔系数,仅与材料性质有关。

(1) 设半导体薄片的宽度(c 、f 间距)为l ,请写出UH和EH的关系式;若半导体材料是电子导电的,

请判断图1中c 、f 哪端的电势高;

(2) 已知半导体薄片内单位体积中导电的电子数为n,电子的电荷量为e,请导出霍尔系数RH的表达

式。(通过横截面积S的电流I nevS =,其中v 是导电电子定向移动的平均速率);

(3) 图2是霍尔测速仪的示意图,将非磁性圆盘固定在转轴上,圆盘的周边等距离地嵌装着m个永磁

体,相邻永磁体的极性相反。霍尔元件置于被测圆盘的边缘附近。当圆盘匀速转动时,霍尔元件输出的电压脉冲信号图像如图3所示。

a.若在时间t内,霍尔元件输出的脉冲数目为P ,请导出圆盘转速N 的表达式。

b.利用霍尔测速仪可以测量汽车行驶的里程。除除此之外,请你展开“智慧的翅膀”,提出另一个实例或设想。

解析:(1)由H H

IB U R d = ① 得 IB

d U R H H = ② 当电场力与洛伦兹力相等时

e H E evB = ③

得 H E vB = ④

将 ③、④代入②,

得 1H d d ld R vBl vl IB nevS neS ne

==== (2) a.由于在时间t 内,霍尔元件输出的脉冲数目为P ,则

P=mNt

圆盘转速为 N=P N mt

=

提出的实例或设想

(完整word版)高三物理专题复习--气体压强的计算

封闭气体压强的计算 (一)、液体封闭的静止容器中气体的压强(液柱类) 1、如图所示,均匀直玻璃管中被水银封闭了一定量气体,试计算封闭气体的压强(水银柱长度为h,大气压强为P0) __________________ _________________ __________________ 2、如图所示,分别求出三种情况下气体的压强(设大气压强为P0 =1x105Pa)。 甲:乙:丙: 3、计算图中各种情况下,被封闭气体的压强。(标准大气压强p0=76cmHg,图中液体为水银 —————————————————————————————————— (二)、活塞封闭的静止容器中气体的压强 1、如图,气缸被倒挂在O点,气缸中有被活塞封闭的气体A,已 知活塞的质量为m、横截面积为S、活塞与气缸间光滑接触但不漏 气、大气压为P0,求封闭气体的压强P A。 2、三个长方体容器中被光滑 的活塞封闭一定质量的气 体。如图所示,M为重物质量, F是外力,p0为大气压,S为活 塞面积,G为活塞重,则压强 各为: P0 A h θ h B C h P C S P0S P0S mg P A S A C O

练习 1.如图6-B-6所示,玻璃管中被水银封闭了一定量气体,试计算下列4种情况下封闭气体的压强(水银柱长度图中标出,大气压强为P0,纸面表示竖直平面) 2.如图6-B-7所示,用汞压强计测封闭容中气体压强,大气压强P0=76cmHg,求下列3种情况下封闭气体的压强: (a)图中P A=___________ ;(b)图中P B= ___________;(c)图中P C=_____________。 若大气压强 P0=1x105Pa,求 (a)图中P A=___________ ;(b)图中P B= ___________;(c)图中P C=_____________。 3.如图6-B-8所示,气缸所受重力为1000N、活塞所受重力为100N,横截面积为0.1 m2,大气压为1.0×105Pa,气缸内密闭着一定质量的气体,求图A、B、C 所示三种情况中密闭气体的压强。 4.如图6-B-9所示,玻璃管粗细均匀,图中所示液体都是水银,已知 h1 =10cm、h2 = 5cm,大气压强P0 =76cmHg,纸面表示竖直平面,求下列各图中被封闭气体的压强。 P0 h (1) h P0 (2) h (3) θ h (4) A B C

高三物理高考第一轮专题复习——电磁场(含答案详解)

高三物理第一轮专题复习——电磁场 在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ’,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ’多大?此次粒子在磁场中运动所用时间t 是多少? 电子自静止开始经M 、N 板间(两板间的电压 为U )的电场加速后从A 点垂直于磁场边界射入宽度为d 的匀强磁场中, 电子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.求匀强磁 场的磁感应强度.(已知电子的质量为m ,电量为e ) 高考)如图所示,abcd 为一正方形区域,正离子束从a 点沿ad 方向以0 =80m/s 的初速度射入,若在该区域中加上一个沿ab 方向的匀强电场,电场强度为E ,则离子束刚好从c 点射出;若撒去电场,在该区域中加上一个垂直于abcd 平面的匀强磁砀,磁感应强度为B ,则离子束刚好从bc 的中点e 射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算: (1)所加磁场的方向如何?(2)E 与B 的比值B E /为多少?

制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。两个D 型盒处在匀强磁场中并接有高频交变电压。图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。在磁场力的作用下运动半周,再经狭缝电压加速。如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。每次加速的时间很短,可以忽略不计。正离子从离子源出发时的初速度为零。 (1)为了使正离子每经过窄缝都被加速,求交变电压的频率; (2)求离子能获得的最大动能; (3)求离子第1次与第n 次在下半盒中运动的轨道半径之比。 如图甲所示,图的右侧MN 为一竖直放置的荧光屏,O 为它的中点,OO’与荧光屏垂直,且长度为l 。在MN 的左侧空间内存在着方向水平向里的匀强电场,场强大小为E 。乙图是从甲图的左边去看荧光屏得到的平面图,在荧光屏上以O 为原点建立如图的直角坐标系。一细束质量为m 、电荷为q 的带电粒子以相同的初速度 v 0从O’点沿O’O 方向射入电场区域。粒子的重力和粒子间的相互作用都可忽略不计。 (1)若再在MN 左侧空间加一个匀强磁场,使得荧光屏上的亮点恰好位于原点O 处,求这个磁场的磁感强度的大小和方向。 (2)如果磁感强度的大小保持不变,但把方向变为与电场方向相同,则荧光屏上的亮点位于图中A 点处,已知A 点的纵坐标 l y 3 3 ,求它的横坐标的数值。 E 、方向水平向右,电场宽度为L ;中间区域匀强磁场的磁感应强度大小为B ,方向垂直纸面向里。一个质量为m 、电量为q 、不计重力的带正电的粒子从电场的左边缘的O 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O 点,然后重复上述运动过程。求: (1)中间磁场区域的宽度d ; (2)带电粒子从O 点开始运动到第一次回到O 点所用时间t 。 如下图所示,PR 是一块长为L= 4m 的绝缘平板,固定在水平地面上,整个空间有一个平行 B B l O 甲 乙

高三物理电磁场测试题

高三物理电磁场测试题 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分. 1.如图1所示,两根相互平行放置的长直导线a 和b 通有大小相等、方向相反的电流,a 受到磁场力的大小为F 1,当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力大小变为F 2.则此时b 受到的磁场力大小为( ) A .F 2 B .F 1-F 2 C .F 1+F 2 D .2F 1-F 2 2.如图2所示,某空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知一离子在电场力和磁场力作用下, 从静止开始沿曲线acb 运动,到达b 点时速度为 零,c 为运动的最低点.则 ( ) A .离子必带负电 B .a 、b 两点位于同一高度 C .离子在c 点速度最大 D .离子到达b 点后将沿原曲线返回 3.如图3所示,带负电的橡胶环绕轴OO ′以角速 a I I 图 图3 图2

度ω匀速旋转,在环左侧轴线上的小磁针最后平衡的位置是() A.N极竖直向下 B.N极竖直向上 C.N极沿轴线向左 D.N极沿轴线向右 4.每时每刻都有大量带电的宇宙射线向地球 射来,幸好地球磁场可以有效地改变这些 宇宙射线中大多数射线粒子的运动方向, 使它们不能到达地面,这对地球上的生命 有十分重要的意义。假设有一个带正电的 宇宙射线粒子垂直于地面向赤道射来(如图4,地球由西向东转,虚线表示地球自转轴,上方为地理北极),在地球磁场的作用下,它将向什么方向偏转?()A.向东B.向南C.向西D.向北 5.如图5所示,甲是一个带正电的小物块,乙是一个不带电的绝缘物块,甲、乙叠放在一起静置于粗糙的水平 地板上,地板上方空间有水平方向的匀强磁 场。现用水平恒力拉乙物块,使甲、乙无相 对滑动地一起水平向左加速运动, 在加速运动阶段()图5 图4

高中物理磁场经典习题含答案

寒假磁场题组练习 题组一 1.如图所示,在xOy平面内,y ≥ 0的区域有垂直于xOy平面向里的匀强磁场,磁感应强度为B,一质量为m、带电量大小为q的粒子从原点O沿与x轴正方向成60°角方向以v0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。 在着沿ad方向的匀强电场,场强大小为E,一粒子源不断地从a处的小孔沿 ab方向向盒内发射相同的带电粒子,粒子的初速度为v0,经电场作用后恰好 从e处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场, 磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出。(带电粒子的重 力和粒子之间的相互作用均可忽略不计) (1)所加的磁场的方向如何? (2)电场强度E与磁感应强度B的比值为多大? 题组二 4.如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小B1 = T的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = m的匀强磁场B2。某时刻一质量m = ×10-8 kg、电量q = +×10-4 C的带电微粒(重力可忽略不计),从x轴上坐标为( m,0)的P点以速度v = ×103 m/s沿y轴正方 向运动。试求: (1)微粒在y轴的左侧磁场中运动的轨道半径; (2)微粒第一次经过y轴时速度方向与y轴正方向的夹角; (3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件。 5.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁场应强度大小为B0,

方向平行于板面并垂直于纸面朝里。图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。假设一系列电荷量为q 的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。不计重力。 (1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量。 (2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为3a /4,求离子乙的质量。 (3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。 题组三 7.如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布 在以直径A 2A 4为边界的两个半圆形区域I 、II 中,A 2A 4与A 1A 3的夹角为60°。一质量为m 、带电荷量为+q 的粒子以某一速度从I 区的边缘点A 1处沿与A 1A 3成30°角的方向射入磁场,随后该粒子以垂直于A 2A 4的方向经过圆心O 进入II 区,最 后再从A 4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t ,求I 区和II 区中磁感应强度的大小(忽略粒子重力)。 8.如图所示,在以O 为圆心,内外半径分别为R 1和R 2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U 为常量,R 1=R 0,R 2=3R 0,一电荷量为+q ,质量为m 的粒子从内圆上的A 点进入该区域,不计重力。 (1)已知粒子从外圆上以速度射出,求粒子在A 点的初速度的大小; (2)若撤去电场,如图(b ),已知粒子从OA 延长线与外圆的交点C 以速度射出,方向与OA 延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间; (3)在图(b )中,若粒子从A 点进入磁场,速度大小为,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少? A 23

高三物理磁场大题

1.如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成600 角。现将带电粒子的速度变为v/3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为 A . 12 t ? B .2t ? C .13 t ? D .3t ? 2.半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0。圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B 。杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示。则 A .θ=0时,杆产生的电动势为2Bav B .3π θ=3Bav C .θ=0时,杆受的安培力大小为20 3(2)R B av π+ D .3π θ=时,杆受的安培力大小为203(53)R B av π+

3.如图,质量分别为m A 和m B 的两小球带有同种电荷,电荷最分别为q A 和q B ,用绝缘细线悬挂在天花板上。平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为θ1与θ2(θ1>θ2)。两小球突然失去各自所带电荷后开始摆动,最大速度分别v A 和v B ,最大动能分别为E kA 和E kB 。则 ( ) (A )m A 一定小于m B (B )q A 一定大于q B (C )v A 一定大于v B (D )E kA 一定大于E kB 4.如图,理想变压器原、副线圈匝数比为20∶1,两个标有“12V ,6W ”的小灯泡并联在副线圈的两端。当两灯泡都正常工作时,原线圈中电压表和电流表(可视为理想的)的示数分别是 A .120V ,0.10A B .240V ,0.025A C .120V ,0.05A D .240V ,0.05A 5.如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。现使线框保持图中所示位置,磁感应强度大小随时间线性变化。为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率t B ??的大小应为 A.πω0 4B B.πω0 2B C.πω0B D.π ω20B

高考物理一轮复习磁场专题

第十一章、磁场 一、磁场: 1、基本性质:对放入其中的磁极、电流有力的作用。 磁极间、电流间的作用通过磁场产生,磁场是客观存在的一种特殊形态的物质。 2、方向:放入其中小磁针N极的受力方向(静止时N极的指向) 放入其中小磁针S极的受力的反方向(静止时S极的反指向) 3、磁感线:形象描述磁场强弱和方向的假想的曲线。 磁体外部:N极到S极;磁体内部:S极到N极。 磁感线上某点的切线方向为该点的磁场方向;磁感线的疏密表示磁场的强弱。 4、安培定则:(右手四指为环绕方向,大拇指为单独走向) 二、安培力: 1、定义:磁场对电流的作用力。 2、计算公式:F=ILBsinθ=I⊥LB式中:θ是I与B的夹角。 电流与磁场平行时,电流在磁场中不受安培力;电流与磁场垂直时,电流在磁场中受安培力最大:F=ILB 0≤F≤ILB 3、安培力的方向:左手定则——左手掌放入磁场中,磁感线穿过掌心,四指指向电流方向,大拇指指向为通电导线所受安培力的方向。 三、磁感应强度B: 1、定义:放入磁场中的电流元与磁场垂直时,所受安培力F跟电流元IL的比值。

qB m v r =2、公式: 磁感应强度B是磁场的一种特性,与F、I、L等无关。 注:匀强磁场中,B与I垂直时,L为导线的长度; 非匀强磁场中,B与I垂直时,L为短导线长度。 3、国际单位:特斯拉(T)。 4、磁感应强度B是矢量,方向即磁场方向。 磁感线方向为B方向,疏密表示B的强弱。 5、匀强磁场:磁感应强度B的大小和方向处处相同的磁场。磁感线是分布均匀的平行直线。例:靠近的两个异名磁极之间的部分磁场;通电螺线管内的磁场。 四、电流表(辐向式磁场) 线圈所受力矩:M=NBIS ∥=k θ 五、磁场对运动电荷的作用: 1、洛伦兹力:运动电荷在磁场中所受的力。 2、方向:用左手定则判断——磁感线穿过掌心,四指所指为正电荷运动方向(负电荷运动的反方向),大拇指所指方向为洛伦兹力方向。 3、大小:F=qv ⊥B 4、洛伦兹力始终与电荷运动方向垂直,只改变电荷的运动方向,不对电荷做功。 5、电荷垂直进入磁场时,运动轨迹是一个圆。 IL F B =

高三物理复习气体计算题含答案以及解析

高三物理复习气体计算 题含答案以及解析 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

气体计算题 1.如图所示,一连通器与贮有水银的瓶M 通过软管相连,连通器的两支上端封闭、粗细均匀、内径相同的直管A 和B 竖直放置,管内水银的上方均封有空气。A 、B 两管内水银面的高度差为h cm 、空气柱的长度均为2h cm 。已知当时空气的温度为T 0 K ,A 管内空气的压强与3h cm 高的水银柱产生的压强相等。现使两管内空气柱的温度都升高到1.5T 0 K ,同时调节M 的高度,使B 管中的水银面的高度不变。求: (1)此时B 管中气体的压强; (2)流入A 管的水银柱的长度。 2.如图所示,左端封闭的U 形管中,空气柱将水银分为A 、B 两部分,空气柱的温度t =87 C ,长度L =12.5cm ,水银柱A 的长度h 1=25cm ,水银柱B 两边液面的高度差h 2=45cm ,大气压强p 0=75cmHg , (1)当空气柱的温度为多少时,水银柱A 对U 形管的顶部没有压力; (2)空气柱保持(1)中温度不变,在右管中注入多长的水银柱,可以使形管内水银柱B 两边液面相平。 3.如图所示,U 型玻璃细管竖直放置,水平细管又与U 型玻 璃细管底部相连通,各部分细管内径相同。U 型管左管上端封有长11cm 的理想气体B ,右管上端开口并与大气相通,此时U 型玻璃管左、右两侧水银面恰好相平,水银面距U 型玻璃管底部为15cm 。水平细管内用小活塞封有长度10cm h A B M h 1 L h 2

的理想气体A 。现将活塞缓慢向右推,使气体B 的长度为10cm ,此时气体A 仍封闭在气体B 左侧的玻璃管内。已知外界大气压强为75cmHg 。 试求: (1)最终气体B 压强; (2)活塞推动的距离。 4.如图所示,封闭有一定质量理想气体的汽缸固定在水平桌面上,开口向右放置,活塞的横截面积为S .活塞通过轻绳连接了一个质量为m 的小物体,轻绳跨在定滑轮上。开始时汽缸内外压强相同,均为大气压 0p 0(mg s)p .汽缸内气体的温度0T ,轻绳处在伸直状态.不计摩擦.缓慢降低汽缸内温度,最终使得气体体积减半,求: (1)重物刚离地时气缸内的温度1T ; (2)气体体积减半时的温度2T ; (3)在下列坐标系中画出气体状态变化的整个过程. 并标注相关点的坐标值. 5.如图,一定质量的理想气体被不计质量的活塞封闭在可导热的气缸内,活塞距底部的高度为h ,可沿气缸无摩擦地滑动。取一小盒沙子缓慢地倒在活塞的上表面上,沙子倒完时,活塞下降了h /5。再取相同质量的一小盒沙子缓慢地倒在活塞的上表面上。外界大气的压强和温度始终保持不变,已知大气压为p 0,活塞横截面积为S ,重力加速度为g ,求: 题4图 V P

(完整word版)高三物理综合大题

高三二轮复习综合大题汇编 1. (16分)如图所示,在水平方向的匀强电场中,用长为L的绝缘细线拴住一质量为m,带电荷量为q的小球,线的上端固定,开始时连线带球拉成水平,突然松开后,小球由静止开始向下摆动,当细线转过60°角时的速度恰好为零。问: (1)电场强度E的大小为多少? (2)A、B两点的电势差U AB为多少? (3)当悬线与水平方向夹角θ为多少时,小球速度最大?最大为多少? 2. (12分)如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg在斜面上,用F=50N的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g取10N/kg,sin37°=0.6,cos37°=0.8,求: (1)物块与斜面间的动摩擦因数μ; (2)若将F改为水平向右推力F',如图乙,则至少要用多大的力F'才能使物体沿斜面上升。(设最大静摩擦力等于滑动摩擦力) 3. (18分)如图(甲)所示,弯曲部分AB和CD是两个半径相等的四分之一圆弧,中间的BC段是竖直的薄壁细圆管(细圆管内径略大于小球的直径),细圆管分别与上、下圆弧轨道相切连接,BC段的长度L可作伸缩调节。下圆弧轨道与地面相切,其中D、A分别是上、下圆弧轨道的最高点与最低点,整个轨道固定在竖直平面内。一小球多次以某一速度从A点水平进入轨道而从D点水平飞出。今在A、D两点各放一个压力传感器,测试小球对轨

道A、D两点的压力,计算出压力差△F。改变BC间距离L,重复上述实验,最后绘得△F-L 的图线如图(乙)所示。(不计一切摩擦阻力,g取10m/s2) (1)某一次调节后D点离地高度为0.8m。小球从D点飞出,落地点与D点水平距离为2.4m,求小球过D点时速度大小。 (2)求小球的质量和弯曲圆弧轨道的半径大小。 4. (18分)如图所示,在光滑的水平地面上,质量为M=3.0kg的长木板A的左端,叠放着一个质量为m=1.0kg的小物块B(可视为质点),处于静止状态,小物块与木板之间的动摩擦因数μ=0.30。在木板A的左端正上方,用长为R=0.8m的不可伸长的轻绳将质量为m=1.0kg的小球C悬于固定点O点。现将小球C拉至上方使轻绳拉直且与水平方向成θ=30°角的位置由静止释放,到达O点的正下方时,小球C与B发生碰撞且无机械能损失,空气阻力不计,取g=10m/s2,求: (1)小球C与小物块B碰撞前瞬间轻绳对小球的拉力; (2)木板长度L至少为多大时,小物块才不会滑出木板。 5. (20分)如图所示,在高为h的平台上,距边缘为L处有一质量为M的静止木块(木块的尺度比L小得多),一颗质量为m的子弹以初速度v0射入木块中未穿出,木块恰好运动到平台边缘未落下,若将子弹的速度增大为原来的两倍而子弹仍未穿出,求木块的落地点距平台边缘的水平距离,设子弹打入木块的时间极短。

全国高中物理磁场大题(超全)

高中物理磁场大题 一.解答题(共30小题) 1.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t0时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t0时刻经极板边缘射入磁场.上述m、q、l、t0、B为已知量.(不考虑粒子间相互影响及返回板间的情况) (1)求电压U0的大小. (2)求t0时进入两板间的带电粒子在磁场中做圆周运动的半径. (3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.2.如图所示,在xOy平面内,0<x<2L的区域内有一方向竖直向上的匀强电场,2L<x<3L的区域内有一方向竖直向下的匀强电场,两电场强度大小相等.x>3L 的区域内有一方向垂直于xOy平面向外的匀强磁场.某时刻,一带正电的粒子从坐标原点以沿x轴正方向的初速度v0进入电场;之后的另一时刻,一带负电粒子以同样的初速度从坐标原点进入电场.正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60°和30°,两粒子在磁场中分别运动半周后在某点相遇.已经两粒子的重力以及两粒子之间的相互作用都可忽略不计,两粒子带电量大小相等.求: (1)正、负粒子的质量之比m1:m2; (2)两粒子相遇的位置P点的坐标;

(3)两粒子先后进入电场的时间差. 3.如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场.粒子在s1处的速度和粒子所受的重力均不计. (1)当M、N间的电压为U时,求粒子进入磁场时速度的大小υ; (2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U0; (3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t的最小值. 4.如图所示,直角坐标系xoy位于竖直平面内,在?m≤x≤0的区域内有磁感应强度大小B=4.0×10﹣4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E=4N/C、方向沿y轴正方向的条形匀强电场,其宽度d=2m.一质量m=6.4×10﹣27kg、电荷量q=﹣3.2×10?19C 的带电粒子从P点以速度v=4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力.求:

高三物理磁场大题知识讲解

高三物理磁场大题

1.如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成600角。现将带电粒子的速度变为v/3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为 A .1 2t ? B .2t ? C .1 3 t ? D .3t ? 2.半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0。圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B 。杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示。则 A .θ=0时,杆产生的电动势为2Bav B .3 π θ= 3Bav C .θ=0时,杆受的安培力大小为23(2)R B av π+

D. 3 π θ=时,杆受的安培力大小为 2 3 (53)R B av π+ 3.如图,质量分别为m A 和m B 的两小球带有同种电荷,电荷最分别为q A 和 q B ,用绝缘细线悬挂在天花板上。平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为θ1与θ2(θ1>θ2)。两小球突然失去各自所带电荷后开始摆动,最大速度分别v A和v B ,最大动能分别为E kA 和E kB 。则() (A)m A一定小于m B (B)q A一定大于q B (C)v A一定大于v B (D)E kA一定大于E kB 4.如图,理想变压器原、副线圈匝数比为20∶1,两个标有“12V,6W”的小灯泡并联在副线圈的两端。当两灯泡都正常工作时,原线圈中电压表和电流表(可视为理想的)的示数分别是 A.120V,0.10A B.240V,0.025A C.120V,0.05A D.240V,0.05A 5.如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。现使线框保持图中所示位置,磁感应强度

高考物理:专题9-磁场(附答案)

专题9 磁场 1.(15江苏卷)如图所示,用天平测量匀强磁场的磁感应强度,下列各选项所示的载流线圈匝数相同,边长NM 相等,将它们分别挂在天平的右臂下方,线圈中通有大小相同的电流,天平处于平衡状态,若磁场发生微小变化,天平最容易失去平衡的是 答案:A 解析:因为在磁场中受安培力的导体的有效长度(A)最大,所以选A. 2.(15海南卷)如图,a 是竖直平面P 上的一点,P 前有一条形磁铁垂直于P ,且S 极朝向a 点,P 后一电子在偏转线圈和条形磁铁的磁场的共同作用下,在水平面内向右弯曲经过a 点.在电子经过a 点的瞬间.条形磁铁的磁场对该电子的作用力的方向() A .向上 B.向下 C.向左 D.向右 答案:A 解析:条形磁铁的磁感线方向在a 点为垂直P 向外,粒子在条形磁铁的磁场中向右运动,所以根据左手定则可得电子受到的洛伦兹力方向向上,A 正确. 3.(15重庆卷)题1图中曲线a 、b 、c 、d 为气泡室中某放射物质发生衰变放出的部分粒子的经迹,气泡室中磁感应强度方向垂直纸面向里.以下判断可能正确的是 A.a 、b 为粒子的经迹 B. a 、b 为粒子的经迹 C. c 、d 为粒子的经迹 D. c 、d 为粒子的经迹 答案:D 解析:射线是不带电的光子流,在磁场中不偏转,故选项B 错误.粒子为氦核带正电,由左手定则知受到向上的洛伦兹力向上偏转,故选项A 、C 错误;粒子是带负电的电子流,应向下偏转,选项D 正确. 4.(15重庆卷)音圈电机是一种应用于硬盘、光驱等系统的特殊电动机.题7图是某音圈电机的原理示意图,它由一对正对的磁极和一个正方形刚性线圈构成,线圈边长为,匝数为,磁极正对区域内的磁感应强度方向垂直于线圈平面竖直向下,大小为,区域外的磁场忽略不计.线圈左边始终在磁场外,右边始终在磁场内,前后两边在磁场内的长度始终相等.某时刻线圈中电流从P 流向Q,大小为. βγαβγαβL n B I

高中物理磁场知识点汇总

高中物理磁场知识点汇总 一、磁场 磁体是通过磁场对铁一类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在。小磁针的指南指北表明地球是一个大磁体。磁体周围空间存在磁场;电流周围空间也存在磁场。电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场。磁场存在于磁体、电流、运动电荷周围的空间。磁场是物质存在的一种形式。磁场对磁体、电流都有磁力作用。与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。如图所示为证明通电导线周围有磁场存在? ?奥斯特实验,以及磁场对电流有力的作用实验。 1.地磁场地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。 2.地磁体周围的磁场分布与条形磁铁周围的磁场分布情况相似。 3.指南针放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。 4.磁偏角地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。说明:①地球上不同点的磁偏角的数值是不同的。 ②磁偏角随地球磁极缓慢移动而缓慢变化。③地磁轴和地球自转轴的夹角约为11°。 二、磁场的方向 在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。规定:在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。确定磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针 N 极的指向即为该点的磁场方向。磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。 电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。 三、磁感线

高中物理气体性质模拟考试题大全

1.(13分)如图所示,质量为m 1=10kg 的气缸A 倒扣在水平桌面上,内有质量为m 2 =2kg 、截面积为S =50cm 2的活塞B 被支柱C 支撑。活塞下方的气体与外界大气相通,外界大气压强为p 0=1.0?105 Pa ,活塞B 上方密闭有压强p 1=1.0?105 Pa 、温度为27?C 的气柱D ,气柱长l 1=30cm ,活塞B 可在A 中无摩擦滑动。(g 取10m/s 2 ) (1)若气柱D 的温度缓慢升至57?C ,D 中气体的压强为多大? (2)若气柱D 的温度缓慢升至127?C ,D 中气体的压强又为多大? (3)在气柱D 的温度由27?C 升至127?C 的过程中,气体D 对外做了多少功? 2.(12分)如图所示,一个开口向上的圆筒气缸直立于地面上,距缸底2L 处固定一个中心开孔的隔板a ,在小孔处装有一个能向下开启的单向阀门b ,只有当上部压强大于下部压强时,阀门才开启。C 为一质量与摩擦均不计的活塞,开始时隔板以下封闭气体压强为1.1P0(P0为大气压强);隔板以上由活塞c 封闭的气体压强为P0,活塞c 与隔板距离为L 。现对活塞c 施加一个竖直向下缓慢增大的力F ,设气体温度保持不变,已知F 增大到Fo 时,可产 生向下的压强为0.1P0,活塞与隔板厚度均可不计,求: (1)当力缓慢增大到2Fo 时,活塞c 距缸底高度是多少? (2)当力F 增大到多少时,活塞c 恰好落到隔板上? 3、竖直平面内有一足够长、粗细均匀、两端开口的U 型管,管内水银柱及被封闭气柱的长度如图所示,外界大气压强为75cmHg 。现向管中缓慢加入8cm 长的水银柱,求: (1)未加水银前,右侧被封闭气体的压强多大? (2)若水银加在左管,封闭气柱的下表面向上移动的 距离为多少? (3)若水银加在右管,封闭气柱的上表面向下移动的 距离为多少? 1、布朗运动实验中,在一杯清水中滴一滴墨汁,制成 悬浊液在显微镜下进行观察.若追踪一个小炭粒的运动,每隔30s 把观察 到的炭粒的位置记录下来,然后用直线把这些位置依次连接成折线,即布朗运动图像(如图).则以下判断正确的是: A .图中折线为小炭粒运动的轨迹 B .图中折线为液体分子的无规则运动轨迹 C .记录的是炭分子无规则运动的状况 D .从炭粒运动反映了液体分子的无规则运动 2.一定质量的理想气体在A 状态的内能一定大于B 状态的内能的图线是( ) 3.(6分)如图1实验装置,利用玻意耳定律测量形状不规则的小物体的体积。 5cm 11cm 10cm 题4图

高中物理磁场专题(2020年九月整理).doc

磁场 一.知识点梳理 考试要点 基本概念 一、磁场和磁感线(三合一) 1、磁场的来源:磁铁和电流、变化的电场 2、磁场的基本性质:对放入其中的磁铁和电流有力的作用 3、磁场的方向(矢量) 方向的规定:磁针北极的受力方向,磁针静止时N极指向。

4、磁感线:切线~~磁针北极~~磁场方向 5、典型磁场——磁铁磁场和电流磁场(安培定则(右手螺旋定则)) 6、磁感线特点:① 客观不存在、②外部N极出发到S,内部S极到N极③闭合、不相交、④描述磁场的方向和强弱 二.磁通量(Φ 韦伯Wb 标量) 通过磁场中某一面积的磁感线的条数,称为磁通量,或磁通 二.磁通密度(磁感应强度B 特斯拉T 矢量) 大小:通过垂直于磁感线方向的单位面积的磁感线的条数叫磁通密度。 S B Φ = 1 T = 1 Wb / m2 方向:B的方向即为磁感线的切线方向 意义:1、描述磁场的方向和强弱 2、由场的本身性质决定 三.匀强磁场 1、定义:B的大小和方向处处相同,磁感线平行、等距、同向 2、来源:①距离很近的异名磁极之间 ②通电螺线管或条形磁铁的内部,边缘除外 四.了解一些磁场的强弱 永磁铁―10-3 T,电机和变压器的铁芯中―0.8~1.4 T 超导材料的电流产生的磁场―1000T,地球表面附近―3×10-5~7×10-5 T 比较两个面的磁通的大小关系。如果将底面绕轴L旋转,则磁通量如何 变化? 地球磁场通电直导线周围磁场通电环行导 N S L

Ⅱ 磁场对电流的作用——安培力 一.安培力的方向 ——(左手定则)伸开左手,使大拇指与四指在同一个平面内,并跟四指垂直,让磁感线穿入手心,使四指指向电流的流向,这时大拇指的方向就是导线所受安培力的方向。(向里和向外的表示方法(类比射箭)) 规律: ,F I ,F 垂直于B 和I 所决定的平面。但B 900时,力最大,夹角为00时,力=0 B ⊥时,F = B I L 在匀强磁场中,当通电导线与磁场方向垂直时,电流所受的安培力等于磁感应将度B 、电流I 和导线的长度L 三者的乘积 在非匀强磁场中,公式F =BIL 近似适用于很短的一段通电导线 三.磁感应强度的另一种定义 匀强磁场,当B ⊥ I 时,IL F B 练习 有磁场就有安培力(×) 磁场强的地方安培力一定大(×) 磁感线越密的地方,安培力越大(×) 判断安培力的方向 Ⅲ电流间的相互作用和等效长度 一.电流间的相互作用 总结:通电导线有转向电流同向的趋势 二.等效长度 推导: I 不受力 F 同向吸引 F F 转向同向, 同 时靠近

高三物理有界磁场专题复习

高三物理有界磁场专题复习 一、带电粒子在圆形磁场中的运动 例1、圆心为O 、半径为r 的圆形区域中有一个磁感强度为B 、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L 的O '处有一竖直放置的荧屏MN ,今有一质量 为m 的电子以速率v 从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P 点,如图1所示,求O 'P 的长度和电子通过磁场所用的时间. 解析 :电子所受重力不计。它在磁场中做匀速圆周运 动,圆心为O ″,半径为R 。圆弧段轨迹AB 所对的圆心角为θ,电子越出磁场后做速率仍为v 的匀速直线运动, 如图 2所示,连结OB ,∵△OAO ″≌△OBO ″,又OA ⊥O ″A ,故 OB ⊥O ″B ,由于原有BP ⊥O ″B ,可见O 、B 、P 在同一直线上,且∠O 'OP =∠AO ″B =θ,在直角 三角形OO'P 中,O 'P =(L +r )tan θ,而) 2 (t a n 1) 2 t a n ( 2t a n 2 θ θ θ-= , R r =)2tan(θ ,所以求得R 后就可以求出O 'P 了,电子经过磁 场的时间可用t =V R V AB θ= 来求得。 由R V m BeV 2 =得R=θtan )(.r L OP eB mV += mV eBr R r = =)2tan(θ , 2 222222) 2 (tan 1) 2tan(2tan r B e V m eBrmV -=-=θθ θ 2 222 2,)(2tan )(r B e V m eBrmV r L r L P O -+=+=θ, )2arctan(2 2222r B e V m eBrmV -=θ )2arctan(2 2222r B e V m eBrmV eB m V R t -==θ 例2、如图2,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度 T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个 方向射出速度为s m v /102.36 ?=的粒子.已知α粒子质量 kg m 271064.6-?=,电量C q 19102.3-?=,试画出α粒子通过磁场空 间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角. M N O , 图1 M N O , 图2

2016年高考最新物理大题及答案分析

2016年最新高考冲刺题 1.如图所示,在xoy平面直角坐标系的第一象限有射线OA,OA与x轴正方向夹角为30°,OA与y轴所夹区域内有沿y轴负方向的匀强电场,其他区域存在垂直于坐标平面向外的匀强磁场.有一质量为m、电量为q的带正电粒子,从y轴上的P点沿着x轴正方向以初速度v0射入电场,运动一段时间后经过Q点垂直于射线OA进入磁场,经磁场偏转,过y轴 正半轴上的M点再次垂直进入匀强电场.已知OQ=h,不计粒子重力,求: (1)粒子经过Q点时的速度大小; (2)电场强度E和磁场磁感应强度B的大小; (3)粒子从Q点运动到M点所用的时间. 2.如图所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别 为E和;Ⅱ区域内有垂直向外的水平匀强磁场,磁感应强度为B.一质量为m、带电量为 q的带负电粒子(不计重力)从左边界O点正上方的M点以速度v0水平射入电场,经水平分界线OP上的A点与OP成60°角射入Ⅱ区域的磁场,并垂直竖直边界CD进入Ⅲ区域的匀强电场中.求: (1)粒子在Ⅱ区域匀强磁场中运动的轨道半径 (2)O、M间的距离 (3)粒子从M点出发到第二次通过CD边界所经历的时间.

3.坐标原点O处有一点状的放射源,它向xoy平面内的x轴上方各个方向发射α粒子,α粒子的速度大小都是v0,在0<y<d的区域内分布有指向y轴正方向的匀强电场,场强大 小为,其中q与m分别为α粒子的电量和质量;在d<y<2d的区域内分布有垂直 于xoy平面的匀强磁场.ab为一块很大的平面感光板,放置于y=2d处,如图所示.观察发现此时恰无粒子打到ab板上.(不考虑a粒子的重力) (1)求α粒子刚进人磁场时的动能; (2)求磁感应强度B的大小; (3)将ab板平移到什么位置时所有粒子均能打到板上?并求出此时ab板上被α粒子打中的区域的长度. 4.如图,在直角坐标系xOy平面内,虚线MN平行于y轴,N点坐标(﹣l,0),MN与y 轴之间有沿y轴正方向的匀强电场,在第四象限的某区域有方向垂直于坐标平面的圆形有界匀强磁场(图中未画出).现有一质量为m、电荷量为e的电子,从虚线MN上的P点,以平行于x轴正方向的初速度v0射入电场,并从y轴上A点(0,0.5l)射出电场,射出时速度方向与y轴负方向成30°角,此后,电子做匀速直线运动,进入磁场并从圆形有界磁场边 界上Q点(,﹣l)射出,速度沿x轴负方向.不计电子重力,求: (1)匀强电场的电场强度E的大小? (2)匀强磁场的磁感应强度B的大小?电子在磁场中运动的时间t是多少? (3)圆形有界匀强磁场区域的最小面积S是多大?

(完整)高考物理磁场经典题型及其解题基本思路

高考物理系列讲座——-带电粒子在场中的运动 【专题分析】 带电粒子在某种场(重力场、电场、磁场或复合场)中的运动问题,本质还是物体的动力学问题 电场力、磁场力、重力的性质和特点:匀强场中重力和电场力均为恒力,可能做功;洛伦兹力总不做功;电场力和磁场力都与电荷正负、场的方向有关,磁场力还受粒子的速度影响,反过来影响粒子的速度变化. 【知识归纳】一、安培力 1.安培力:通电导线在磁场中受到的作用力叫安培力. 【说明】磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力. 2.安培力的计算公式:F=BILsinθ;通电导线与磁场方向垂直时,即θ = 900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F min=0N;0°<θ<90°时,安培力F介于0和最大值之间. 3.安培力公式的适用条件; ①一般只适用于匀强磁场;②导线垂直于磁场; ③L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端; ④安培力的作用点为磁场中通电导体的几何中心; ⑤根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力. 【说明】安培力的计算只限于导线与B垂直和平行的两种情况. 二、左手定则 1.通电导线所受的安培力方向和磁场B的方向、电流方向之间的关系,可以用左手定则来判定. 2.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿入手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向. 3.安培力F的方向既与磁场方向垂直,又与通电导线方向垂直,即F总是垂直于磁场与导线所决定的平面.但B与I的方向不一定垂直. 4.安培力F、磁感应强度B、电流I三者的关系 ①已知I、B的方向,可惟一确定F的方向; ②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向; ③已知F、I的方向时,磁感应强度B的方向不能惟一确定. 三、洛伦兹力:磁场对运动电荷的作用力. 1.洛伦兹力的公式:F=qvBsinθ; 2.当带电粒子的运动方向与磁场方向互相平行时,F=0; 3.当带电粒子的运动方向与磁场方向互相垂直时,F=qvB; 4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0; 四、洛伦兹力的方向 1.运动电荷在磁场中受力方向可用左手定则来判定; 2.洛伦兹力f的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即f

相关文档
最新文档