直线的参数方程圆锥曲线的参数方程及其应用等高中数学

直线的参数方程圆锥曲线的参数方程及其应用等高中数学
直线的参数方程圆锥曲线的参数方程及其应用等高中数学

直线的参数方程,圆锥曲线的参数方程及其应用

一. 教学内容:

直线的参数方程,圆锥曲线的参数方程及其应用,极坐标系,曲线的极坐标方程及其应用。

[基本知识点]

(1)直线的参数方程

<1>标准形式:

:),y ,x (M 000准形式为的直线的参数方程的标且倾角为过点α

)t (sin t y y cos t x x 00为参数???+=+=αα <2>一般形式

)1b a 't ('bt y y 'at x x 2200≠+???+=+=为参数且

(2)参数t 的几何意义及其应用 标准形式:

)y ,x (M t ,)t (sin t y y cos t x x 00000的几何意义是表示定点中为参数???+=+=αα 的数量的有向线段到直线上动点M M y)(x,M 0

:t,M M 0故即= <1>直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长|AB|=|t 1-t 2|

<2>定点M 0是弦M 1、M 2的中点?t 1+t 2=0

<3>设弦M 1,M 2中点为M ;则点M 相应的参数

2t t t 2

1M += (3)圆锥曲线的参数方程

<1>)(sin r y cos r x r y x 222为参数的参数方程为圆ααα???===+

轴正方向的旋转角

的几何意义动半径对于其中x α <2>

其几何意义为离心为参数的参数方程为椭圆,(sin b y cos a x 1b y a x 2222

ααα???===+ 角)。

<3>)(btg y asec x 为参数双曲线的参数方程为ααα???==

<4>抛物线y 2=2px 的参数方程为

)(t pt 2y pt 2x 2

为参数?????==

(4)极坐标系的基本概念。 在平面内任取一个定点O ,叫做极点,引一条射线O x ,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向),对于平面内任一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角度,ρ叫做M 的极径,θ叫做点M 的极角,有序数对(ρ,θ)就叫做点M 的极坐标系,这样建立的坐标叫做极坐标系。

(5)极坐标与直角坐标的互化

<1>互化条件:

极点与直角坐标系原点重合;

极轴与直角坐标系O x 轴重合; 两坐标系中的长度单位统一。

<2>互化公式

?????≠==+???==)0x (x y tg y x )2(sin y cos x )1(2

22θρθ

ρθρ (6)曲线的极坐标方程

<1>定义:在极坐标系中,曲线可以用含有ρ、θ这两个变数的方程来表示,这种方程叫做曲线的极坐标方程。

<2>直线与圆的极坐标方程。 过极点的直线方程θ=θ0(ρ∈R )

过点A (a,0),倾角为α的直线方程

αθαρsin )sin(a =-

以极点为圆心,半径为r 的圆的方程ρ=r

圆心在C (a,0),半径为a 的圆的方程ρ=2acos θ

圆心在(ρ0,θ0),半径为r 的圆的方程

220002r )cos(2=+--ρθθρρρ

【例题选讲】

例1

两点与双曲线交于的直线作倾角为的右焦点过双曲线B ,A l 45F 116y 9x 2

2 =-

,M 是AB 的中点,求|MF|。

解:方法一

依题意a =3,b =4,c =5

所以F(5,0),又直线l 的倾斜角为45度

所以k=1

5-=∴x y l 的方程为

5x y 116y 9x 2

2-==-和联立 0369x 90x 7:2=-+得 7805x y 7

452x x x M M

21M -=-=-=+=∴

2760|MF |=∴ 解法2:依题意l 的参数方程为:

116y 9x t 22y t 225x 22=-???????=+=代入 0512t 2160t 72=-+得

27802||||21=+=∴t t MF

小结: 方法二:用参数方程求解,且灵活运用参数t 的几何意义,使求解过程变得简洁,同学们可以多尝试。

例2

?????=+=??sin 3y cos 2m x ,椭圆在直角坐标系中 (m 为常数,?是参数) ,和抛物线

)t (t 6y t 23x 2为参数?????=+=有交点,试求m 的取值范围。

解:解法1 化椭圆方程为普通方程。

)1(012y 4)m x (322=-+-

抛物线方程化为普通方程为y 2=6x-9 (2)

由(1)(2)联立消去y 得x 2+2(4-m)x+m 2-16=0 (3)

因为椭圆与抛物线有交点

所以方程(3)的判别式:

0)16m (4)m 4(422≥---=?

4≤m 解得 23

x ,,0),23(,)23

x (6y 2≥-=故开口向右顶点坐标为又

23

m 2824m m

282)m 4(x (3)≥-+-∴-±--=得由 m 211

2m -82-≥整理得 2

m m 114121

m 8320

m 211

+-≥-∴>- 27

m 21≤≤-解得

若,m ,23

m 2824m 值不存在时≥--- 27

m 21m ,≤≤-的取值范围为综上可知

解法2:

根据题意,椭圆与抛物线有交点,而抛物线化为普通方程为y 2=6x-9

(1)

又椭圆的方程为: )

2()(sin 3y cos 2m x 为参数θθθ

?????=+=

9cos 12m 63sin (1)(2)2-+=θθ得代入把 4)2(cos 21

m :2++-=θ整理得 为最小值时当21

429

m ,1cos -=+-==∴θ 27

m 21m 27

421

m ,1cos ≤≤-∴=+-=-=的取值范围为为最大值

时当θ

例3 极坐标系中,圆ρ=4cos θ+3sin θ的圆心坐标是(

) )54

arcsin ,5.(B )53

arcsin ,25(.A

)54a r c s i n ,25

.(D )53

arcsin ,5(.C

解法一:化为圆的一般方程。 )53

arcsin cos(5)

43

arctg cos(5sin 3cos 4-=-=∴+=θρθρθ

θρ即 0)25

()25()53

arcsin cos(25

2222=-+-?=∴θρρ )53

arcsin ,25(圆心坐标为∴

故选A 。

解法2 依互化关系求。

:sin 3cos 4的直角坐标系方程是θθρ+= 425)23y ()2x (y

3x 4y x 2222=-+-+=+即

532523

sin ,2

5)23(2),2

3,2(22===+=∴θρ其极坐标可求圆心的直角坐标是 例4

被圆截得的弦直线半径为的圆心为已知圆)R ,(05,),2(6,C ∈<≤=ρπααθπ 长为8,求α的值。

解法一:

得一般方程之中代入圆的极坐标系下的及半径将圆心坐标, 5r )2,6(=π

011sin 122=+-θρρ

?????==+-αθθρρ011sin 122由

8|-|11sin 120

11sin 122121212===+∴=+-ρρρραρραρρ又得

644)(21221=-+∴ρρρρ

64114)sin 12(2=?-∴α

32302

3

sin 3

6sin 12π

παπ

ααα或又从而得=∴<≤=∴=

解法2 (几何法)

x

设直线ρ与圆C 相交于A 、B 两点

如图作CD ⊥AB 于D

则|CD|=3,|OC|=6

21

63

|OC ||OD ||cos |===∴α

323)

,0[2

1

cos π

παπαα或=∴∈±=∴

解法3 化为直角坐标方程后求解。

【同步类型题选】

1. )

(

|AB |,t ,t B A,)t (bt y y at x x 2100等于则对应的参数值是上两点为参数直线???+=+

=

|t t |.B |t t |.A 2121-+ 22212122b a |

t t |.D |t t |b a .C +--+

2. )

(

2P(-2,3))t (t 23y t 2--2x 的点的坐标是的距离等于上的点到为参数直线?????+==

A. (-4 , 5)

B. (-3,4)

C. (-4,5)或(0,1)

D. (-3,4)或(-1,2)

3. )

(,0ab ),t (bt y y at

x x 00则直线的倾斜角为为参数直线

arctg .B a b

arctg .A -π a b

arctg D a b arctg C +-π..

4. )

(cos 22)4D(2,-),34

,2C(-),4B(2,),3(0,A 上的点的个数有中在曲线点θρπ

ππ

π

= A. 1 B. 2 C. 3 D. 4

5. 已知点P 的极坐标为(1,π),那么过点P 且与极轴垂直的直线的方程为( )。

A. ρ=1

B. ρ=cos θ θρθρcos 1

.cos 1.=-=D C

6. )()4cos(所表示的曲线为θπρ-=

A. 双曲线

B. 椭圆

C. 抛物线

D. 圆

7. 曲线ρ=sin θ和2sin θ=1的交点个数是( )。

8. ) (,22

)4sin(则极点到直线的距离为已知直线的极坐标方程=+π

θρ

【试题答案】

1. C

2. D (提示:把直线方程化为标准方程)

3. D

4. D

5. C.(解三角形即得)

6. D (化为直角坐标方程)

7. 3个(数形结合)

8. 22

22)4,22(,22)4sin(:为且极点到该直线的距离表示过点解法一ππ

θρ=+

的直线。

解法二:将直线的极坐标化为普通方程为x+y =1,极点即为原点,原点到直线的距离为 22

(97年,全国高考)

人教版高中数学选修44坐标系与参数方程全套教案

人教版高中数学选修4-4坐标系与参数方程全套教案 课型: 复习课 课时数: 1 讲学时间: 2010年1月18号 班级: 学号: 姓名: 一、【学习目标】: 1、了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。 2、能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化。 3、能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程。通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义。 4、分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程,能进行参数方程与普通方程的互化。 二、【回归教材】: 1、阅读选修4-4《坐标系与参数方程》152P P -,试了解以下内容: (1)设点),(y x P 是平面直角坐标系中的任意一点,在伸缩变换公式???>?='>?=') 0()0(:μμλλ?y y x x 的作用下,如何找到点P 的对应点),(y x P '''?试找出x y sin =变换为x y 2sin 3=的伸缩变换公式 . (2)极坐标系是如何建立的?试类比平面直角坐标系的建立过程画一个,并写出点M 的极径与极角来 表示它的极坐标,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,写出极坐标和直角坐标的互化公式 . (3)在平面直角坐标系中,曲线C 可以用方程0),(=y x f 来表示,在极坐标系中,我们用什么方程来 表示这段曲线呢?例如圆222r y x =+,直线x y =,你是如何用极坐标方程表示它们的? 2、阅读选修4-4《坐标系与参数方程》3721P P -,了解以下内容: (1)直接给出这条曲线上点的坐标间的关系的方程叫做普通方程,那如果变数t 都是点坐标x ,y 的函 数,我们如何建立这条曲线的参数方程呢? (2)将曲线的参数方程化为普通方程,有利于识别曲线的类型,我们是如何做到的?在互化的过程中, 必须注意什么问题?试探究一下圆锥曲线的参数方程与普通方程的互化。

最新高中数学参数方程大题(带答案)精选

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos= ∴

y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值. 由题意椭圆的参数方程为为参数)直线的极坐标方程为

2.3.1圆锥曲线的参数方程教案新人教版选修4_4

第三课时 圆锥曲线的参数方程 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、重难点:教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 (1)圆2 2 2 r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆2 2020)\()(r y y x x =+-参数方程为:?? ?+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程。 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆122 22=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为参数),参 数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 2.双曲线的参数方程的推导:双曲线122 22=-b y a x 参数方程 ???==θ θtan sec b y a x (θ为参数)

参数θ几何意义为以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 3.抛物线的参数方程:抛物线Px y 22 =参数方程???==Pt y Pt x 222 (t 为参数),t 为以抛物 线上一点(X,Y )与其顶点连线斜率的倒数。 (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。 B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标。 (3)、参数方程求法:(A )建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B )选取适当的参数;(C )根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D )证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单。与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等。 4、椭圆的参数方程常见形式:(1)、椭圆12222=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为

高中数学直线与方程知识点总结

直线与方程 1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°. 2、倾斜角α的取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα ⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. 4、直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即

注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即 直线的点斜式方程 1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=- 2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y += 3.2.2 直线的两点式方程 1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠ y-y1/y-y2=x-x1/x-x2 2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 3.2.3 直线的一般式方程 1、直线的一般 式方程:关于y x ,的二元一次 方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。

高中数学 《参数方程的概念》教案 新人教A版选修4-4

参数方程 目标点击: 1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题. 基础知识点击: 1、曲线的参数方程 在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,?? ?==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数. 2、求曲线的参数方程 求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程 相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程 (ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点. (ⅱ)过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) (2)圆的参数方程

最新高考数学解题技巧-极坐标与参数方程

2018高考数学解题技巧 解答题模板3:极坐标与参数方程 1、 题型与考点(1){极坐标与普通方程的互相转化 极坐标与直角坐标的互相转化 (2) {参数方程与普通方程互化参数方程与直角坐标方程互化 (3) {利用参数方程求值域参数方程的几何意义 2、【知识汇编】 参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+??=+?为参数 00(,)x y 为直线上的定点, t 为直线上任一点(,)x y 到定 点00(,)x y 的数量; 圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+?? =+?为参数(a,b)为圆心,r 为半径; 椭圆22221x y a b +=的参数方程是cos ()sin x a y b θθθ=??=? 为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ=??=? 为参数; 抛物线22y px =的参数方程是2 2()2x pt t y pt ?=?=?为参数 极坐标与直角坐标互化公式: 若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y , 则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ=。 解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程?????+=-=--t t t t y x 2 222(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有422=+y x ,又注意到 02>t ,222222=?≥+--t t t t ,即

高中数学直线方程公式

直线方程公式 1.斜率公式 ①若直线的倾斜角为α(00≤α<1800), 则k=tan α (α2π≠ ) ②若直线过点111(,)P x y 和222(,)P x y 两点. 则2121y y k x x -=- 解题时,要从斜率存在与不存在两个方面分类讨论。点P 1(x 1,y 1),P 2(x 2,y 2)的中点P 0(x 0,y 0),则x 0=(x 1+ x 2)/2,y 0=(y 1+ y 2)/2。 2.方向向量坐标 : ()()k y y x x x x p p x x ,1,11 1 212122112=---=- 3.两条直线的平行和垂直 【1】两直线平行的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1∥l 2充要条件是k 1=k 2,且b 1≠b 2。 (2)若l 1:x=x 1, l 2:x=x 2,则l 1∥l 2充要条件是x 1≠x 2。 (3)不重合的两条直线l 1、l 2倾斜角分别为α1、α2,则l 1∥l 2充要条件是α1=α2。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1∥l 2充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0)。11112222 ||A B C l l A B C ?=≠。 【2】两直线垂直的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1⊥l 2充要条件是k 1·k 2=-1。 (2)若l 1的斜率不存在,则l 1⊥l 2充要条件是l 2的斜率为零。 (3)两条直线l 1、l 2倾斜角分别为α1、α2,则l 1⊥l 2充要条件是21a -a =900。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1⊥l 2充要条件是A 1A 2+B 1B 2=0。 【3】两直线相交的判断 (1)两直线方程组成的方程组有唯一解是两直线相交的充要条件。 (2)两直线斜率存在时,斜率不等是两直线相交的充要条件。 (3)两直线倾斜角不相等是两直线相交的充要条件。

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

高中数学选修4-4-极坐标与参数方程-知识点与题型

选做题部分 极坐标系与参数方程 一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2.极坐标与直角坐标的互化 点M 直角坐标(x ,y ) 极坐标(ρ,θ) 互化公式 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为)4 ,2(π ,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点P 的直角坐标为(3,3)-,以原点为极点,实轴正半轴为极轴建立极坐标系(02)θπ≤<,则点P 的极坐标为( ) A .3(32, )4π B .5(32,)4π- C .5(3,)4π D .3(3,)4 π- 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标.

高中数学选修4-4-极坐标与参数方程-知识点与题型

一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点的直角坐标为,以原点为极点,实轴正半轴为极轴建立极坐标系,则点的极坐标为( ) A . B . C . D . 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标. 题型二 极坐标方程的应用 由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.

高中数学选修4-4坐标系与参数方程-高考真题演练

高中数学选修4-4坐标系与参数方程------高考真题演练 1(1)(2018全国卷III ) 在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=?? =? , (θ为参数), 过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围; (2)求AB 中点P 的轨迹的参数方程. 1(2)(2018全国卷II )在直角坐标系中,曲线的参数方程为(为参 数),直线的参数方程为(为参数). (1)求和的直角坐标方程; (2)若曲线截直线所得线段的中点坐标为,求的斜率. 1(3)(2018全国卷I )在直角坐标系 中,曲线的方程为,以坐标原点为 极点,轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 (1)求的直角坐标方程 (2)若 与有且仅有三个公共点,求 的方程 1(1)(2018全国卷III ) 在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ =?? =?, (θ为参数), 过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围; (2)求AB 中点P 的轨迹的参数方程. xOy C 2cos 4sin x θy θ=?? =? , θl 1cos 2sin x t αy t α=+??=+? , t C l C l (1,2) l

解:(1)O e 的参数方程为cos sin x y θθ =?? =?,∴O e 的普通方程为22 1x y +=,当90α=?时, 直线::0l x =与O e 有两个交点,当90α≠?时,设直线l 的方程为tan y x α=-直线l 与O e 1<,得2tan 1α>,∴tan 1α>或tan 1α<-,∴ 4590α?<

高考数学参数方程所有经典类型

高考数学参数方程所有经典类型(必刷题) 1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为1222 x t y ?=+????=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=. (Ⅰ)求C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB . 2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π,圆C 的极坐标方程为)4πρθ=-. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.在平面直角坐标系xOy 中,已知曲线1C :cos sin θθ=??=? x y (θ为参数),将1C 上的所有 和2倍后得到曲线2C .以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :sin )4ρθθ+=. (1)试写出曲线1C 的极坐标方程与曲线2C 的参数方程; (2)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值. 4.在直角坐标系xoy 中,直线l 的方程为40x y -+=,曲线C 的参数方程为

x 3cos y sin ααα ?=??=??(为参数). (1)已知在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π ,判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 5.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ? ?- ??? ,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)求直线OM 的极坐标方程. 6.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线 (为参数),(为参数). (1)化 的方程为普通方程; (2)若上的点P 对应的参数为为上的动点,求中点到直线 (为参数)距离的最小值.

《圆锥曲线的参数方程》教学案

2.3《圆锥曲线的参数方程》教学案 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识. 二、重难点: 教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法: 启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程. (1)圆222r y x =+参数方程?? ?==θ θ sin cos r y r x (θ为参数) (2)圆2 2 02 0r y y x x =+-)\()(参数方程为:?? ?+=+=θ θ sin cos r y y r x x 00 (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程. 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆 12 22 2=+ b y a x 参数方程 ?? ?==θ θ sin cos b y a x (θ为参数),参数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角 2.双曲线的参数方程的推导:双曲线12 22 2=- b y a x 参数方程 ?? ?==θ θ tan sec b y a x (θ为参数)

. 3.抛物线的参数方程:抛物线Px y 22 =参数方程?? ?==Pt y Pt x 222 (t 为参数),t 为以抛物线上一点(X ,Y)与其顶点连线斜率的倒数. (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义. B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标. (3)、参数方程求法:(A)建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B)选取适当的参数;(C)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D)证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单.与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等. 4、椭圆的参数方程常见形式:(1)、椭圆122 22=+b y a x 参数方程 ?? ?==θ θsin cos b y a x (θ 为参数);椭圆 2 2 221(0)y x b a b a +=>>的参数方程是 c o s s i n (2x b y a θθθθ==≤≤π? 为参数,且0). (2)、以0 ( ,)y x 为中心焦点的连线平行于x 轴的椭圆的参数方程是 00 cos sin ({x a y b x y θθ θ= +=+为参数). (3)在利用???==θθ sin cos b y a x 研究椭圆问题时,椭圆上的点的坐标可记作(acos θ,bsin θ). (三)、巩固训练

高中数学选修4-4坐标系与参数方程完整教案

第一讲坐标系 一平面直角坐标系 课题:1、平面直角坐标系 教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会直角坐标系的作用 教学难点:能够建立适当的直角坐标系,解决数学问题 授课类型:新授课 教学模式:启发、诱导发现教学. 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位 置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景 图案,需要缺点不同的画布所在的位置。 问题1:如何刻画一个几何图形的位置? 问题2:如何创建坐标系? 二、学生活动 学生回顾 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定 三、讲解新课: 1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足: 任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置 2、确定点的位置就是求出这个点在设定的坐标系中的坐标 四、数学运用 例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

高考数学参数方程大题

高考数学参数方程大题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高三最后一题 1、以平面直角坐标系的原点为极点,x 轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点A 的极坐标为)6 ,2(π ,直线l 过点A 且与极轴成角 为 3π,圆C 的极坐标方程为)4 cos(2πθρ-=. (1)写出直线l 参数方程,并把圆C 的方程化为直角坐标方程; (2)设直线l 与曲线圆C 交于B 、C 两点,求AC AB .的值. 【答案】(1)直线l C 的直角坐标方程为02222=--+y x y x ;(2 2、已知曲线C 的参数方程为31x y α α ?=+??=+??(α为参数),以直角坐标系原点 为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程,并说明其表示什么轨迹. (2)若直线的极坐标方程为1 sin cos θθρ -= ,求直线被曲线C 截得的弦长. 【答案】(1)6cos 2sin ρθθ=+(2 3、在直角坐标系xOy 中,直线l 的参数方程为t t y t x (22522 5??? ??? ?+=+ -=为参数),若以 O 点为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 θρcos 4=。 (1)求曲线C 的直角坐标方程及直线l 的普通方程; (2)将曲线C 上各点的横坐标缩短为原来的 2 1 ,再将所得曲线向左平移1个单位,得到曲线1C ,求曲线1C 上的点到直线l 的距离的最小值 【答案】(1)() 422 2 =+-y x ,052=+-y x (2 )

圆锥曲线的参数方程练习题(带答案)

圆锥曲线的参数方程练习题 1、若点()3,P m 在以点F 为焦点的抛物线2 4{4x t y t == (t 为参数)上,则PF 等于( ) A.2 B.3 C.4 D.5 答案:C 解析:抛物线为24y x =,准线为1x =-, PF 为()3,P m 到准线1x =-的距离,即为4. 故选C. 2、参数方程sin cos , {1sin 2x y θθθ=+=+ (θ为参数)所表示的曲线为( ) A.圆的一部分 B.抛物线的一部分 C.双曲线的一部分 D.椭圆的一部分 答案:B 解析:参数方程sin cos , {1sin 2x y θθθ=+=+ (θ为参数),化为普通方程为2(02)x y y =≤≤, 表示抛物线的一部分. 3、椭圆5cos ,{3sin x y ?? == (?为参数)的焦点坐标为( ) A.(5,0)± B.(4,0)± C.(3,0)± D.(0,4)± 答案:B 解析:椭圆5cos ,{3sin x y ?? == (?为参数)的普通方程为22 1259x y +=,故4c =. 又椭圆焦点在x 轴上,故焦点坐标为(4,0)±.

4、已知过曲线3cos ,{ 4sin x y θθ== (θ为参数,0θπ≤≤)上一点P 和原点O 的连线PO 的倾斜角为4 π,则P 点的坐标是( ) A.(3,4) B.1212,55??- ??? C.? D.1212,55?? ??? 答案:D 解析:直线PO 的方程是y x =,又点P 为曲线3cos ,{ 4sin x y θθ==上一点,故3cos 4sin θθ=,即3tan 4θ=,因为倾斜角为4 π,0θπ≤≤,所以曲线与直线的交点在第一象限,故3sin 5θ=,4cos 5θ=,所以125 x y ==. 5、已知O 为原点,P 为椭圆4cos ,{ x y αα== (α为参数)上第一象限内一点,OP 的倾斜角为3 π,则点P 坐标为( ) A.()2,3 B.()4,3 C.( D.( ,55 答案:D 解析:椭圆4cos , {x y αα== (α为参数)化为普通方程,得22 11612x y +=.由题意可得直线OP 的方程为y = (0x >). 由22(0), {11612y x x y =>+= 解得x y ==∴点P 的坐标为()55 .故选D. 6、参数方程cos 2sin x y θθ=??=? (θ为参数)化为普通方程为( ) A.22 14y x += B.2212y x += C.2214x y += D.2 212x y +=

高中数学选修坐标系与参数方程知识点总结

坐标系与参数方程 知识点 1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0) x x y y λλ?μμ'=>?? '=>?g g 的作用下,点P(x,y)对应到点(,)P x y ''',称?为平面直角坐标系中的坐标伸 缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标:设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ. 一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示. 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.

3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表: 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程

高一数学直线方程知识点归纳及典型例题

直线的一般式方程及综合 【学习目标】 1.掌握直线的一般式方程; 2.能将直线的点斜式、两点式等方程化为直线的一般式方程,并理解这些直线的不同形式的方程在表示直线时的异同之处; 3.能利用直线的一般式方程解决有关问题. 【要点梳理】 要点一:直线方程的一般式 关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0,这个方程(其中A、B不全为零)叫做直线方程的一般式. 要点诠释: 1.A、B不全为零才能表示一条直线,若A、B全为零则不能表示一条直线. 当B≠0时,方程可变形为 A C y x B B =--,它表示过点0, C B ?? - ? ?? ,斜率为 A B -的直线. 当B=0,A≠0时,方程可变形为Ax+C=0,即 C x A =-,它表示一条与x轴垂直的直线. 由上可知,关于x、y的二元一次方程,它都表示一条直线. 2.在平面直角坐标系中,一个关于x、y的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着无数个关于x、y的一次方程(如斜率为2,在y轴上的截距为1的直线,其方程可以是2x―y+1=0, 也可以是 11 22 x y -+=,还可以是4x―2y+2=0等.) 要点二:直线方程的不同形式间的关系 直线方程的五种形式的比较如下表: 要点诠释: 在直线方程的各种形式中,点斜式与斜截式是两种常用的直线方程形式,要注意在这两种形式中都要求直线存在斜率,两点式是点斜式的特例,其限制条件更多(x1≠x2,y1≠y2),应用时若采用(y2―y1)(x―x1)―(x2―x1)(y―y1)=0的形式,即可消除局限性.截距式是两点式的特例,在使用截距式时,首先要判断是否满足“直线在两坐标轴上的截距存在且不为零”这一条件.直线方程的一般式包含了平面上的所有直线形式.一般式常化为斜截式与截距式.若一般式化为点斜式,两点式,由于取点不同,得到的方程也不同. 要点三:直线方程的综合应用 1.已知所求曲线是直线时,用待定系数法求. 2.根据题目所给条件,选择适当的直线方程的形式,求出直线方程. 对于两直线的平行与垂直,直线方程的形式不同,考虑的方向也不同.

高中数学 选修4-4参数方程讲义

——基础梳理—— 1.椭圆的参数方程 (1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是__________.规定参数φ的取值范围为__________. (2)中心在(h ,k)的椭圆的普通方程为-a2+-b2=1,则其参数方程为__________. 2.双曲线的参数方程 (1)中心在原点,焦点在x 轴上的双曲线x2a2-y2b2 =1(a >0,b >0)的参数方程是__________.规定参数φ的取值范围为__________. (2)中心在原点,焦点在y 轴上的双曲线y2a2-x2b2 =1(a >0,b >0)的参数方程是__________. 3.抛物线的参数方程 (1)抛物线y2=2px(p >0)的参数方程为__________,t ∈__________. (2)参数t 的几何意义是__________. [答案] 1.(1)????? x =acos φy =bsin φ(φ为参数) [0,2π) (2)????? x =h +acos φy =k +bsin φ (φ为参数) 2.(1)????? x =asec φy =btan φ (φ为参数) [0,2π),且φ≠π2,φ≠3π2 (2)????? x =btan φy =asec φ(φ为参数) 3.(1)????? x =2pt2y =2pt (t 为参数) (-∞,+∞) (2)抛物线上除顶点外的任意一点与原点连线的斜率的倒数 自主演练 1.已知方程x2+my2=1表示焦点在y 轴上的椭圆,则() A .m <1 B .-1<m <1 C .m >1 D .0<m <1 [解析]方程化为x2+y21m =1,若要表示焦点在y 轴上的椭圆,需要1m >1,解得0<m <1.故应选D.

高考数学参数方程和普通方程的互化练习精选.

【参数方程和普通方程的互化】 例1求曲线(为参数)与曲线(为参数)的交点. 解:把代入 得:两式平方相加可得 ∴(舍去) 于是即所求二曲线的交点是(,-). 说明:在求由参数方程所确定的两曲线的交点时,最好由参数方程组求解,如果化为普通方程求交点时要注意等价性.如该例若化为普通方程求解时要注意点(-,)是增解. 例2化直线的普通方程为参数方程(其中倾斜角满足且) 解法一:因,,故 ∴ 设。取为参数,则得所求参数方程 解法二:如图,()为直线上的定点,为直线上的动点.因动点M 与的数量一一对应(当M在的向上方向或正右方时,;当M在的下方或正左方时,;当M与重合时,),故取为参数.

过点M作y轴的平行线,过点作轴的平行线,两直线相交于点Q(如图).则有 ∴ 即为所求的参数方程。 说明:①在解法二中,不必限定,,即不必限定,.由 此可知,无论中任意值时,所得方程都是经过(),倾斜角为的直线的参数方程.可称它是直线参数方程的“点角式”或“标准式”. ②要充分理解解法二所示的参数的几何意义,这对解决某些问题较为方便. ③如果取为参数,则得直线参数方程 一般地,直线的参数方程的一般形式是 (,为参数) 但只有当且仅当,且时,这个一般式才是标准式,参数才具有上述的几何意义. 例3求椭圆的参数方程. 分析一:把与对比,不难发现,可设,也可设

解法一:设(为参数),则 ∴ 故 因此,所得参数方程是 (Ⅰ)或(Ⅱ) 由于曲线(Ⅱ)上的点(,),就是曲线(Ⅰ)上的点(,),所以曲线(Ⅱ)上的点都是曲线(Ⅰ)上的点. 显然.椭圆的参数方程是 分析二:借助于椭圆的辅助圆,可明确椭圆参数方程中的几何意义. 解法二:以原点O为圆心,为半径作圆,如图.设以轴正半轴为始边,以动半径OA为终边的变角为,过点A作轴于N,交椭圆于M,取为参数,则点M()的横坐标(以下同解法一). 由解法二知,参数是点M所对应的圆半径OA的转角,而不是OM的转角,因而称为椭圆的离角.(如果以O为圆心,为半径作圆,过M作,交圆于B,由 可知也是半径OB的转角). 例4用圆上任一点的半径与x轴正方向的夹角为参数,把圆化为参数方程。 分析:由圆的性质及三角函数的定义可把圆上任意一点化为的参数形式。 解:如图所示,圆方程化为,设圆与x轴正半轴交于A,为圆上任一点,过P作轴于B,OP与x轴正半轴所成角为,,则:

相关文档
最新文档