生物化学讲义

生物化学讲义
生物化学讲义

第一章绪论(2学时)

一、生物化学研究的主要内容

生物分子是生物体和生命现象的结构基础和功能基础,是生物化学研究的基本对象。

生物分子和结构与功能:探讨生物体的物质组成以及分子结构、性质和功能。

物质代谢及其调节:物质代谢的规律、能量转化及其调节控制。

二、生物化学的定义

简单地说生物化学就是研究生命现象的化学本质。

具体来说生物化学是用物理的、化学的原理与技术,从分子水平来研究生物体的化学组成、生命活动的基本规律及调节方式,从而阐述生命现象化学本质的一门科学。

三、生物化学的分类

根据研究对象不同,生物化学可分为:

植物生物化学

动物生物化学

微生物生物化学和病毒生物化学。

根据研究的目的不一样,生化又可分为:

农业生物化学

工业生物化学

医用生物化学和药物生物化学。

四、生物化学发展简史

起源于18世纪晚期、发展于19世纪、直到20世纪初始成独立学科。

依据发展过程及其特点可大致划分为:

起始阶段 -- 叙述生化 (descriptive)

快速发展阶段 -- 动态生化 (dynamic)

分子生物学崛起 -- 机能生化 (functional)

第二章蛋白质(10学时)

第一节通论

蛋白质(protein)在生物体内具有广泛和重要的生理功能,它不仅是各器官、组织的主要化学组成,且生命活动中各种生理功能的完成大多是通过蛋白质来实现的,而且蛋白质在其中还起着关键的作用,所以蛋白质是生物化学学科中传统、基础的内容,在分子生物学学科中又是发展最快、最重要的部分之一,

protein一词就是来自1938年Jons J Berzelius创造的希腊单词protios,意为第一或最重要的意思。

一、蛋白质的概念

蛋白质(protein,简写pro): 是由20种L-氨基酸按一定的序列通过酰胺键(肽键)缩合而成的,具有稳定构象和一定生物功能的生物大分子。

二、蛋白质的分类

三、蛋白质的元素组成

1.共有的元素有C、H、O、N,其次S、稀有P等

2.其中N元素的含量相对恒定,占13%~19%,平均为16%,因此通过样品中含氮量的测定,乘以6.25,即可推算出其中蛋白质的含量(凯氏定氮法)。

四、蛋白质的生物学功能

.蛋白质是生命的表征,哪里有生命活动哪里就有蛋白质

1.酶:作为酶的化学本质,温和、快速、专一,任何生命活动之必须,酶的另一化学本质是RNA,不过它比蛋白质差远了,种类、速度、数量。

2.免疫系统:防御系统,抗原(进入“体内”的生物大分子和有机体),发炎。

细胞免疫:T细胞本身,分化,脓细胞。

体液免疫:B细胞,释放抗体,导弹,免疫球蛋白(Ig)。

3.肌肉:肌肉的伸张和收缩靠的是肌动蛋白和肌球蛋白互动的结果。

4.运输和储存氧气:Hb和Mb。

5.激素:含氮类激素,固醇类激素。

6.基因表达调节:操纵子学说,阻遏蛋白。

7.生长因子:EGF(表皮生长因子),NGF(神经生长因子),促使细胞分裂。

8.信息接收:激素的受体,糖蛋白,G蛋白。

9.结构成分:胶原蛋白(肌腱、筋),角蛋白(头发、指甲),膜蛋白等。生物体就是蛋白质堆积而成,人的长相也是由蛋白质决定的。

10.精神、意识方面:记忆、痛苦、感情靠的是蛋白质的构象变化,蛋白质的构象分类是目前热门课题。

第二节氨基酸(amino acids)--------蛋白质组成单位

氨基酸(amino acid, aa):蛋白质的基本组成单位,是含氨基的羧酸。是羧酸分子中Cα上的一个H被氨基取代而成的化合物。

一、氨基酸的一般结构特征

大分子蛋白质的基本组成单位或构件分子(building-block molecule)是氨基酸(amino acid,AA)。

在种类上,虽然自然界中存在着300多种氨基酸,但构成蛋白质的只有20种氨基酸,且都是L-α-氨基酸,在蛋白质生物合成时它们受遗传密码控制。另外,组成蛋白质的氨基酸,不存在种族差异和个体差异。

在20种氨基酸中,除甘氨酸不具有不对称碳原子和脯氨酸是亚氨基酸外,其余均为L-α-氨基酸。氨

基酸分子的结构通式为:R H |

C

|

COOH

N H 2--

氨基酸的构型:自然选择L-型,D-型氨基酸没有营养价值,仅存在于缬氨霉素、短杆菌肽等极少数寡肽之中,没有在蛋白质中发现。

二、氨基酸的分类和结构

1.按侧链R 基的极性

<1>极性氨基酸:亲水氨基酸:溶解性较好,酸性氨基酸、碱性氨基酸、含巯基、羟基、酰胺基的氨基酸,Glu 、Asp 、Arg 、Lys 、His 、Cys 、Ser 、Thr 、Tyr 、Gln 、Asn 。

<2>非极性氨基酸:疏水氨基酸:溶解性较差,具有烷烃链、甲硫基、吲哚基等的氨基酸,Gly 、Ala 、Leu 、Ile 、Val 、Pro 、Met 、Trp 、Phe 。

20种基本氨基酸的表示方法有下列几种:

(1)中文名:X (X )氨酸,如甘氨酸、半胱氨酸。20种要会背。

(2)英文名:3字名,如Gly 、Cys 等,20种要会背。

(3)按顺序演示,记忆技巧。

Ala Arg Asp Asn Cys Glu Gln Gly His Ile

丙 精 天 天冬酰氨 半 谷 谷氨酰氨 甘 组 异亮

Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

亮 赖 甲硫 苯丙 脯 丝 苏 色 酪 缬

氨基酸的具体结构:20种全部记住,仅注意R 。

讲解顺序:

甘Gly (最特殊,唯一无旋光性)、丙Ala (顾名思义)、苯丙Phe (顾名思义)。

酪Tyr (有β-苯酚基)、半胱Cys (β-巯基)、丝Ser (β-羟基)、苏Thr (β-羟基)、天冬Asp (酸性氨基酸,β-羧基)、天冬酰胺Asn (β-酰胺)、色Trp (β-吲哚基)、组His (β-咪唑基)。谷Glu (酸性氨基酸,γ-羧基)、谷氨酰胺Gln (γ-酰胺)、甲硫Met (γ-甲硫基)。精Arg (δ-胍基)。赖Lys (碱性氨基酸,ε-氨基)。缬Val 、亮Leu 、异亮Ile :都是烷烃链。脯Pro (亚氨基)。

2.按侧链R基的结构

<1>脂肪族氨基酸:酸性氨基酸(2羧基1氨基:Glu、Asp),碱性氨基酸(2氨基1羧基:Arg、Lys),中性氨基酸(氨基羧基各一:很多)

<2>芳香族氨基酸:含苯环:Phe、Tyr

<3>杂环氨基酸: His(也是碱性氨基酸)、Pro、Trp

3.按氨基酸营养价值

<1>必需氨基酸:人和哺乳动物不可缺少但又不能合成的氨基酸,只能从食物中补充,共有8种:Leu、Lys、Met、Phe、Ile、Trp、Thr、Val

<2>半必需氨基酸:人和哺乳动物虽然能够合成,但数量远远达不到机体的需求,尤其是在胚胎发育以及婴幼儿期间,基本上也是由食物中补充,只有2种:Arg、His。有时也不分必需和半必需,统称必需氨基酸,这样就共有10种。

<3>非必需氨基酸:人和哺乳动物能够合成,能满足机体需求的氨基酸,其余10种

4.非基本氨基酸

<1>氨基酸的衍生物:蛋白质分子中尚含有一些经修饰的氨基酸,并无遗传密码编码,它们往往是在蛋白质生物合成后,由其中相应氨基酸经加工修饰生成。如胱氨酸是由2个半胱氨酸脱氢氧化生成,含有二硫键,存在于部分蛋白质分子中;而羟赖氨酸与羟脯氨酸来自蛋白质中赖氨酸和脯氨酸的羟化,主要存在于胶原蛋白分子中,它与胶原蛋白分子结构的稳定与功能均有关;一些凝血因子分子中含有γ-羧基谷氨酸,也来自蛋白质分子中谷氨酸的羧化,且与其凝血活性密切有关;而一些酶蛋白分子中的丝氨酸、苏氨酸或酪氨酸羟基,还可与磷酸结合被磷酸化等,更与酶活性的调节功能密切相关。

<2>非蛋白氨基酸:仅游离存在,瓜氨酸、鸟氨酸、β-丙氨酸

<3>D-氨基酸:缬氨霉素、短杆菌肽中含有。

三、氨基酸的性质

1.物理性质

<1>溶解性:溶解于水,特别是稀酸稀碱溶液,不溶于乙醇、氯仿等有机溶剂。

<2>紫外吸收:有共轭双键的物质都具有紫外吸收,在20种基本aa中,有4种是具有共轭双键的,Trp、Tyr、Phe、His,其中His只有2个双键共轭,紫外吸收比较弱,Trp、Tyr、Phe均有3个双键共轭,紫外吸收较强,其中Trp的紫外吸收最厉害,是蛋白质紫外吸收特性的最大贡献者。

2.化学性质

<1>两性解离和等电点:

氨基酸是个两性电解质,既可进行酸解离也可进行碱解离,用解离方程式表示,这样,氨基酸在水溶液中

就可能带电,+或-,以及呈电中性,到底是什么情况,完全由溶液的PH值来决定。

等电点:如果调节溶液的PH值使得氨基酸所带正负电荷相等,即净电荷为零时溶液的pH值即为该氨基酸的等电点。PI是氨基酸的重要常数之一,它的意义在于,物质在PI处的溶解度最小,是分离纯化物质的重要手段。

<2>等电点的计算:对于所有的R基团不解离的氨基酸而言(即解离只发生在α-羧基和α-氨基上),计算起来非常简单:

PI=(PK1’+PK2’)/2

若是碰到R基团也解离的,氨基酸就有了多级解离,这个公式就不好用了,比如Lys、Glu等。在这种情况下可以按下面的步骤来计算:

一氨基二羧基氨基酸,其公式为: pI=(pK1+Pk2)/2

二氨基一羧基氨基酸,其公式为: pI=(pK2+pK3)/2

氨基酸等电点范围

中性aa:PI 5.0~6.5

酸性aa:PI 2.7~3.2

碱性aa:PI 9.5~10.7

如果给不同的aa溶液通以电流:

PH>PI aa-向阳极移动

PH

PH=PI aa为两性离子不发生电泳

在一定pH范围中,溶液的pH离AA等电点愈远,AA带净电荷愈多。在电场中移动愈快。因此,带电颗粒的迁移速度与其所带净电荷多少,分子大小,分子形状有关.

<3>紫外吸收特征

<4>氨基酸的重要化学反应

α-氨基和α-羧基共同参加的反应

(1)茚三酮反应:Pro产生黄色物质,其它为蓝紫色。

(2)成肽反应

α-氨基参加的反应

(1)DNFB(二硝基氟苯,Sanger试剂),蛋白质N端测定一级结构分析。

(2)PITC(苯异硫氰酸酯,Edman试剂)蛋白质N端测定一级结构分析。

(3)甲醛滴定aa含量:(封闭氨基)。

α-羧基参加的反应

侧链反应

(1)黄色反应----芳香族氨基酸(色氨酸、酪氨酸、苯丙氨酸)

芳香族氨基酸遇浓硝酸生成黄色硝基苯衍生物,在碱性溶液中,进一步形成深橙色的硝醌酸钠。

(2)乙醛酸反应----色氨酸特有反应

色氨酸在浓硫酸中与乙醛酸反应生成红紫色物质。

(3) 福林(Folin)反应----酪氨酸

酪氨酸在碱性条件下与Folin试剂中的磷钼酸\磷钨酸反应生成蓝色化合物。

第三节蛋白质的结构

一.肽与肽键

<1>肽键(peptide bond)是蛋白质分子中的主要共价键,性质比较稳定。它虽是单键,但具有部分双键的性质,难以自由旋转而有一定的刚性,因此形成肽键平面(图2-3),则包括连接肽键两端的C═O、N-H和2个Cα共6个原子的空间位置处在一个相对接近的平面上,而相邻2个氨基酸的侧链R又形成反式构型,从而形成肽键与肽链复杂的空间结构。

<2>肽(peptide)是氨基酸通过肽键相连的化合物,蛋白质不完全水解的产物也是肽。肽按其组成的氨基酸数目为2个、3个和4个等不同而分别称为二肽、三肽和四肽等,一般含10个以下氨基酸组成的称寡肽(oligopeptide),由10个以上氨基酸组成的称多肽(polypeptide),它们都简称为肽。肽链中的氨基酸已不是游离的氨基酸分子,因为其氨基和羧基在生成肽键中都被结合掉了,因此多肽和蛋白质分子中的氨基酸均称为氨基酸残基(amino acid residue)。

多肽有开链肽和环状肽。在人体内主要是开链肽。开链肽具有一个游离的氨基末端和一个游离的羧基末端,分别保留有游离的α-氨基和α-羧基,故又称为多肽链的N端(氨基端)和C端(羧基端),书写时一般将N端写在分子的左边,并以此开始对多肽分子中的氨基酸残基依次编号,而将肽链的C端写在分子的右边。

写法和读法:规定书写方法为N端→C端,例如:Ala-Gly-Phe,读作:丙氨酰甘氨酰苯丙氨酸。

<3>肽的性质

1.酸碱性:肽至少有一个游离的氨基和游离的羧基,也是两性化合物,至少有2级解离,通常都有多级解离。因此,肽在水溶液中也能够带电,也有自己的等电点PI,其计算与测定完全同氨基酸的。

例如:谷胱甘肽,Glu-Cys-Gly,,注意Glu-Cys之间的肽键(γ-,而不是正常的α-),各解离基团的PK’值,PI=(2.13+2.34)/2=2.235,很酸。

2.双缩脲反应:双缩脲(相似于三肽,即2个肽键)、碱性铜离子、紫红色化合物。凡大于三肽的肽都能发

生此反应,2肽不行。

<4>肽的实例

1.谷胱甘肽:注意Glu与Cys的连接(γ-,而不是正常的α-),还原型GSH和氧化型GSSG,主要作用是还原剂,消除体内的自由基。

2.催产素和加压素:9肽或环8肽,都是脑垂体后叶激素,都有升血压、抗利尿、刺激子宫收缩、排乳的作用,催产素促进遗忘,加压素增强记忆。

二、蛋白质分子结构及其规律性

蛋白质是大分子化合物,一般由一条肽链、上百个氨基酸,即成千上万个原子组成,分为一、二、三、四4级、四个不同的层次(表2-5),以便进行深入研究,其中二、三、四级均属于蛋白质的三维空间结构(three-dimensional structure,3D)或构象(conformation)。随着研究的深入,现在在蛋白质二级和三级结构之间,又增加了一些超二级结构和结构域(domain)。

(一)蛋白质的一级结构(primary structure)

蛋白质的一级结构,专指多肽链中氨基酸(残基)的排列的序列(sequence)。若蛋白质分子中含有二硫键,一级结构也包括生成二硫键的半胱氨酸残基位置。一级结构就是指蛋白质分子中由共价肽键相连的基本分子结构。不同的蛋白质,首先具有不同的一级结构,因此一级结构是区别不同蛋白质最基本、最重要的标志之一。

蛋白质一级结构的重要性,首先是由于其序列中不同氨基酸侧链R的大小、性质不同,决定着肽链折叠盘曲形成不同的空间结构和功能。

1.一级结构:即蛋白质的共价结构或平面结构,核心内容就是aa的排列顺序,它的改变涉及到蛋白质共价键的破坏和重建。

一级结构的全部内容包括:肽链的个数、aa的顺序、二硫键的位置、非aa成分。

2.蛋白质一级结构的测定

间接法:通过测定蛋白质之基因的核苷酸顺序,用遗传密码来推断aa的顺序。这是因为核苷酸的测序比蛋白质的测序工作要更方便、更准确。

直接法:用酶和特异性试剂直接作用于蛋白质而测定出aa顺序。

<1>第一步:前期准备

分离纯化蛋白质:纯度要达到97%以上才能分析准确。

蛋白质分子量的测定:渗透压法、凝胶电泳法(聚丙烯酰胺、SDS)*、凝胶过滤法*、超离心法*等

aa组成的测定:氨基酸自动分析仪

肽链拆分:非共价键的如氢键、离子键、疏水键、范德华力4种,可用尿素或盐酸胍等有机溶液来拆分。共价键的仅二硫键1种,可用巯基乙醇、碘代乙酸、过甲酸来拆分。

<2>第二步:肽链的端点测定

N端测定:Sanger法,DNFB→DNP-肽→水解→乙醚萃取→层析鉴定

Edman法,PITC→PTC-肽→PTH-aa→层析鉴定

C端测定:肼解法,唯有C端aa与众不同,酰肼化合物与游离aa,再通过Sanger法来鉴定。Asn、Gln、Cys、Arg将被肼破坏,不能分析。

羧肽酶法:

羧肽酶A:Arg、Lys、Pro除外的氨基酸残基

羧肽酶B:仅Arg、Lys

羧肽酶C:所有的氨基酸残基

<3>每条肽链aa顺序的测定:aa顺序自动分析仪只能准确测定50aa以下的肽链,而一般的蛋白质都含有100以上的aa残基,所以,事先要将蛋白质打断成多肽甚至寡肽,再上机分析,而且要2套以上,便于以后拼接。举例:

→15 698735 125 69845 23

→1569 873512569 84523

常用的工具酶和特异性试剂有:

胰蛋白酶:仅作用于Arg、Lys的羧基与别的氨基酸的氨基之间形成的肽键。

糜蛋白酶:仅作用于含苯环的氨基酸的羧基与别的氨基酸的氨基之间形成的肽键。Trp、Tyr、Phe CNBr:仅作用于Met的羧基与别的氨基酸的氨基之间形成的肽键。

拼接:将2套多肽的aa顺序对照拼接,

<4>第四步:二硫键位置的确定:包括链内和链间二硫键的位置,用对角线电泳来测。在肽链未拆分的情况下用胃蛋白酶水解之,可以得到被二硫键连着的多肽产物。先进行第一向电泳,将产物分开。再用过甲酸、碘代乙酸、巯基乙醇处理,将二硫键打断。最后进行第二向电泳,条件与第一向电泳完全相同。选取偏离对角线的样品(多肽或寡肽),它们就是含二硫键的片段,上机测aa顺序,根据已测出的蛋白质的aa 顺序,把这些片段进行定位,就能找到二硫键的位置。

3.蛋白质一级结构测定的意义

<1>分子进化:将不同生物的同源蛋白质的一级结构进行比较,以人的为最高级,从而确定其它物种的进化程度,也可以制成进化树,由于这是由数据决定的,因此比形态上确定的进化更加科学和精确。

<2>证明了一个理论,即蛋白质的一级结构决定高级结构,最终决定蛋白质的功能。

<3>疾病的分子生物学:镰刀型贫血症的内因是血红蛋白的β6Val,正常的血红蛋白的β6Glu

4.1954年英国生化学家Sanger报道了胰岛素的一级结构,是世界上第一例确定一级结构的蛋白质。

弗雷德里克·桑格,英国生物化学家,曾经在1958年及1980年两度获得诺贝尔化学奖:1955年确定了牛胰岛素结构而获得1958年度奖;设计出用P32放射性标记法结合双向电泳分离技术测定DNA分子中的核苷酸排列顺序的方法而分享1980年度奖。

1965年9月17日,中国首次人工合成胰岛素。这也是世界上第一个蛋白质的全合成。

(二)蛋白质的二级结构(secondary structure)

蛋白质的二级结构为主链构象,不涉及侧链构象。主链基本构象都是以酰胺平面(或称肽键平面、肽单元)为基本结构单位。蛋白质分子的空间结构有一些共同的规律可遵循,其中二级结构主要是周期性出现的有规则的α-螺旋、β-折叠、β-转角、和无规卷曲等几种二级结构单元,且这些有序的二级结构单元,主要是靠氢键等非共价键来维持其空间结构的相对稳定的。

1.二级结构概论

<1>二级结构的定义:肽链主干在空间的走向。主干指的是肽平面与α-C构成的链子。

<2>二级结构的内容:空间走向以及维持这种走向的力量:氢键和R基团的影响。

<3>二级结构的数学描述:ф角:肽平面绕N-Cα单键旋转的角度;ψ角:肽平面绕Cα-C羧基单键旋转的角度。

2.二级结构的常见类型

Pauling的贡献:莱纳斯·鲍林是著名的量子化学家,他在化学的多个领域都有过重大贡献。曾两次荣获诺贝尔奖金(1954年化学奖,1962年和平奖),有很高的国际声誉。

X光衍射法是研究蛋白质构象的最好技术。

<1>α-螺旋(α-helix):蛋白质中最常见,最典型,含量最丰富的二级结构单元.由1950年Pauling等人提出的.

其基本特征是:

⑴α-螺旋即像弹簧一样的螺旋,α-螺旋为右手螺旋。侧链伸向螺旋外侧。

⑵每一圈含有3.6个aa残基(或肽平面),每一圈高(螺距)0.54nm,即每一个aa残基上升0.15nm,

旋转了100o。

⑶维持α-右手螺旋的力量是链内氢键,它由第1个氨基酸肽键上C═O,隔三个氨基酸残基,与第5

个氨基酸肽键上N—H形成氢键,其间包括13个原子,故又称3.613螺旋,且氢键方向与α-螺旋长轴基本平行。

影响 -螺旋形成的因素:破坏者Pro,该处折断,因为亚氨基不能形成氢键;不稳定者酸性aa、碱性aa,形成静电斥力,若一段肽链有多个碱性(酸性)氨基酸残基相邻, 防碍α螺旋的形成(Glu、Asp、Arg、Lys);太大R基团、太小R基团,产生空间位阻,,防碍α螺旋的形成(Gly、Ile、Asn、Leu)。

分布:毛发中的α-角蛋白,例如头发中的α-角蛋白。

<2>β-折叠:是肽链中比较伸展的空间结构,其中肽键平面接近平行、但略呈锯齿状或扇形。

维持β-折叠的力量:链间的氢键,它由2~5个肽段片层之间经C═O与N—H间形成的氢键系,但氢键方向与肽链长轴方向相垂直,且反平行方式排列在热力学上最为稳定。

β-折叠有平行式和反平行式两种。

平行式:两条链的走向相同;反平行式:两条链的走向相反。

反平行式的β-折叠比平行式的更稳定

结构特征:

(1)由若干条肽段或肽链平行或反平

行排列组成片状结构;

(2)主链骨架伸展呈锯齿状;

(3)反平行中重复周期(肽链同侧两个相邻的同一基团之间的距离)为0.70nm,而平行中为0.65nm.

(4)借相邻主链之间的链间氢键维系。

一条肽链回折后就可形成两条走向相反肽段,就可以形成反平行式的β-折叠,β-折叠不限于两条肽链之间,多条肽链可以形成很宽的β-折叠片层,片层与片层之间以范德华力相互作用,形成厚厚的垫子。

α-右手螺旋与β-折叠相比更具弹性,不易拉断,β-折叠易拉断,α-右手螺旋经加热后可变成β-折叠,长度增加,毛衣越洗越长也是这种变化。

<3>(β-turn,T),指肽链出现180o左右转向回折时的“U”形有规律的二级结构单元。这个结构包括的长度为4个aa残基,其中的第三个为Gly,稳定该结构的力量是第一和第四个aa残基之间形成的氢键。此结构广泛存在球状蛋白中。

甘氨酸和脯氨酸经常出现在β-转角序列中:甘氨酸缺少侧链(只有一个H),在β-转角中能很好地调整其他残基的空间阻碍,脯氨酸具有刚性的吡咯环,在一定程度上迫使β-转角形成.促使多肽链自身回折.

<5>无规卷曲(randon coil):是指各种蛋白质分子中彼此各不相同、没有共同规律可遵循的那些肽段空间结构,它是蛋白质分子中一系列无序构象的总称,也可以说是各种蛋白质分子中的特征性二级结构。因为在蛋白质分子中,并不是所有肽段都形成有序的α-螺旋、β-片层、β-转角等二级结构的,而是有相当部分的肽段,其二级结构在各蛋白质分子间彼此并不相似,无共同规律可遵循,它也普遍存在于各种天然蛋白质分子中,同时也是蛋白质分子结构和功能的重要组成部分。

(三)超二级结构(super secondary structure)和结构域

近年来随着蛋白质结构与功能研究的深入,发现不少蛋白质分子中的一些二级结构单元,往往有规则地聚集在一起形成全由α-螺旋、全由β-片层或α-螺旋与β-片层混合、均有的超二级结构基本形式,具体说,形成相对稳定的αα、βββ、βαβ、β2α和αTα等超二级结构(图2-12)又称模体(motif)或模序。具有调控作用的转录因子蛋白质中,就有β2α和αTα超二级结构存在。且单个或多个超二级结构,尚可进一步集结起来,形成在蛋白质分子空间结构中明显可区分的区域,称结构域(图2-13),它们分别又是蛋白质分子中的一个个功能单位,故不严格地又称之为功能域。蛋白质的结构域一般由40~400个氨基酸残基组成。

(四)蛋白质的三级结构(tertiary structure)

蛋白质的三级结构是指整条多肽链中所有氨基酸残基,包括相距甚远的氨基酸残基主链和侧链所形成的全部分子结构。因此有些在一级结构上相距甚远的氨基酸残基,经肽链折叠在空间结构上可以非常接近。

如果蛋白质是单条肽链,则三级结构就是它的最高级结构,这是蛋白质分子最显著的特征之一。

三级结构由二硫键和次级键(氢键、疏水键、离子键、范德华力)维持。

肽链折叠卷曲形成的球状、椭圆形等三级结构蛋白质分子,往往形成一个亲水的分子表面和一个疏水的分子内核,靠分子内部疏水键和氢键等来维持其空间结构的相对稳定。有些蛋白质分子的亲水表面上也常有一些疏水微区,或在分子表面形成一些形态各异的“沟”、“槽”或“洞穴”等结构,一些蛋白质的辅基或金属离子往往就结合在其中。例如上述肌红蛋白分子亲水表面上,就有一个疏水洞穴,其中结合着一个含Fe2+的血红素辅基,起着结合并储存氧的功能,供肌肉剧烈收缩氧供应相对不足时释放被利用的需要。如果蛋白质是单条肽链,则三级结构就是它的最高级结构,三级结构由二硫键和次级键(氢键、疏水键、离子键、范德华力)维持。

例如肌红蛋白:由153个氨基酸残基形成8个α-螺旋段A、B、C、D、E、F、G、H;螺旋段之间的转折为不规则卷曲;在疏水性裂隙中插入1个血红素,F8和E7的两个His残基夹者血红素;F8的His残基连接在血红素中心的Fe原子。

蛋白质三级结构的构象特点:(1)三级结构构象近似球形。(2)形成所谓“亲水表面,疏水核”。(3)构象的稳定性主要靠疏水相互作用维系。亲水表面的水化膜和双电层,对分子构象起很好的保护作用。(4)分子表面有一个空穴,是行使生物功能的部位。(5)三级结构形成之后,蛋白质分子的生物活性部位就形成了。

(五)蛋白质的四级结构(quaternary structure)

蛋白质的四级结构是指各具独立三级结构多肽链再以各自特定形式接触排布后,结集所形成的蛋白质最高层次空间结构。在此蛋白质四级结构中,各具独立三级结构的多肽链称亚基(subunit),亚基单独存

在时不具生物活性,只有按特定组成与方式装配形成四级结构时,蛋白质才具有生物活性。

注意,由二硫键连接的几条肽链不具有四级结构。每条肽链都有自己的三级结构,称为亚基或亚单位,一般情况下,具有四级结构的蛋白质含有的肽链不会太多,故称这类蛋白质为寡聚蛋白,如寡聚酶等。

例如血红蛋白就是由两条相同、各由141个氨基酸残基组成的α-亚基和两条相同、各由146个氨基酸残基组成的β-亚基按特定方式接触、排布组成的一个球状、接近四面体的分子结构。每个亚基表面疏水洞穴中都分别结合一个含Fe2+血红素辅基。血红蛋白四个亚基间主要靠八个盐键和众多氢键维系其严密、特定的四级结构,完成其在血液中运输氧气的生理功能。具有四级结构的整个蛋白质分子也大多形成一个亲水的分子表面和一个疏水的分子内核。

并不是所有蛋白质分子都具有四级结构的。大多数蛋白质都只由一条肽链组成,只具有三级结构就有生理活性了,只有一部分分子量更大、或具有调节功能的蛋白质,才具有四级结构,它由几条肽链组成,从而赋予它特殊的别构作用,这对完成其特定生理功能十分重要。另外由于肽链亚基间的连结键都是非共价键,因此由二硫键相连的,如由四条肽链组成的免疫球蛋白、由A、B二条肽链组成的胰岛素分子,不属于具有四级结构的蛋白质,何况胰岛素还是一个分子量很小的蛋白质。

(六)维系蛋白质空间结构的非共价键

这些非共价键,包括氢键、盐键、疏水键和范德华力(van der Waals)等。其中维持蛋白质二级结构的主要是氢键,维持蛋白质三级结构的主要是疏水键,维持蛋白质四级结构的有盐键。事实上各层次蛋白质分子空间结构的稳定,都有这些副键共同参与,以保证蛋白质空间结构的相对稳定和各种生理功能的正常发挥。

非共价键的键能要比共价键的键能小得多,因此容易断裂,但由于蛋白质分子中非共价键数目众多,因此它们在维持蛋白质严密空间结构和生理功能上起着十分重要的作用。

第四节蛋白质的结构与功能的关系

蛋白质的结构与功能的关系

<1>每一种蛋白质都具有特定的结构,也具有特定的功能。

<2>蛋白质的结构决定了蛋白质的功能。

<3>蛋白质的功能直接由其高级结构(构象)决定。例子,蛋白质的变性现象。

<4>蛋白质的一级结构决定高级结构(构象),因此,最终决定了蛋白质的功能。

一、蛋白质分子一级结构决定其高级结构

安芬森(C.B.Anfinsen)实验:核糖核酸酶的变性与复性实验。这个实验充分证明了蛋白质的功能取决于其特定的天然构象,而规定其构象所需要的信息包含在它的氨基酸序列之中。

生物化学复习资料

第二章糖类化学 1.糖的概念:糖类物质是多羟基的醇类或醛累化合物及其他们的衍生物或聚合 物。 2.糖的种类可以分为:单糖寡糖多糖结合唐糖的衍生物。 3.根据旋光性分类,可以将自然界中的糖分为D型和L型。规定,已距醛基或 酮基最远的的不对称性碳原子为准,羟基在右的为D型,羟基在左的为L型. 4.还原性二糖:由一分子糖的的半缩醛羟基与另一分子的糖的醇羟基缩合而 成。 5.非还原性二糖:由二分子糖的半缩醛羟基脱水而成。 6.淀粉、糖原、和纤维素的基本结构单元是葡萄糖。 7.凡是能被费林试剂还原的糖都称为还原糖。 8.糖类的生物学功能:提供能量,细胞间的碳骨架,细胞间的的骨架,细胞间 识别和生物分子识别。 第三章蛋白质 1.蛋白质的基本结构单元是氨基酸。 2.大多数蛋白质的含氮量接近16% 3.蛋白质的一级结构是多肽链中氨基酸的排列顺序。 4.氨基酸:分子中含有氨基的羧酸称为氨基酸。 5.氨基酸为两性电解质,当PH等于PI时,氨基酸为兼性离子。 6.肽键是蛋白质中的主要共价键,也称为主键。 7.必需氨基酸:人体中不能合成的,必须从食物中摄取的氨基酸称为必须氨基 酸。 8.必需氨基酸包括:赖氨酸、蛋氨酸、亮氨酸、异亮氨酸、苏氨酸、缬氨酸、 色氨酸、苯丙氨酸。 9.极中性氨基酸包括:丝氨酸、酪氨酸、苏氨酸、谷氨酰胺、半胱氨酸、天冬 酰胺。 10.酸性氨基酸包括:天冬氨酸、谷氨酸 11.碱性氨基酸包括:组氨酸、赖氨酸、精氨酸 12.氨基酸的等电点(PI):在一定PH值得溶液中,氨基酸所带的正负电荷相等, 净电荷为零,此时溶液的PH值称为氨基酸的等电点。(当PH>PI,氨基酸带净负电荷,在电场中向正极移动;当PH<PI,氨基酸带净正电荷,在电场中

《生物化学》实验讲义

实验一 蛋白质及氨基酸的颜色反应 一、目的意义 1、学习几种鉴定氨基酸与蛋白质的一般方法及其原理。 2、学习和了解一些鉴定蛋白质的特殊颜色反应及其原理。 二、实验原理 1、双缩脲反应 当尿素加热到180℃左右时,2分子尿素发生缩合放出1分子氨而形成双缩脲。双缩脲在碱性溶液中与铜离子结合生成复杂的紫红色化合物,这一呈色反应称为双缩脲反应。 蛋白质分子中含有多个与双缩脲相似的键,因此也具有双缩脲的颜色反应。借此可以鉴定蛋白质的存在或测定其含量。应当指出,双缩脲反应并非蛋白质的特异颜色反应,因为凡含有肽键的物质并不都是蛋白质。 2、茚三酮反应 蛋白质与茚三酮共热,产生蓝紫色化合物,此反应为一切蛋白质及α-氨基酸(除脯氨酸 和羟脯氨酸)所共有。含有氨基酸的其他化合物也呈此反应。 该反应十分灵敏,1:浓度的氨基酸水溶液就能呈现反应。因此,此反应广泛用于氨基酸的定量测定。 3、黄色反应 含有苯环侧链的(特别是含酪氨酸)蛋白质溶液与硝酸共热时,呈黄色(硝基化合物),再加碱则变为橙黄色,此反应也称为黄蛋白反应。 OH + HNO 3 HO NO 2 + H 2O HO NO 2 + O N OH OH

三、仪器与试剂 1、试剂 (1) 蛋白质溶液:取10mL鸡蛋清,用蒸馏水稀释至100mL,搅拌均匀后用纱布过滤得上清液。 (2) 0.3%色氨酸溶液、0.3%酪氨酸溶液、0.3%脯氨酸溶液、0.5%甘氨酸溶液、0.5%苯酚溶液。 (3) 0.1%茚三酮-乙醇溶液:称取0.1g茚三酮,溶于100mL 95%乙醇。 (4) 10%NaOH溶液、1%硫酸铜溶液、尿素、浓硝酸。 2、仪器:试管及试管夹、酒精灯。 四、操作方法 1、双缩脲反应 (1) 取一支干燥试管,加入少量尿素,用微火加热使之熔化,待熔化的尿素开始变硬时停止加 热。此时,尿素已缩合为双缩脲并放出氨气(可由气味辨别)。待试管冷却,加入约1mL10%NaOH溶液,振荡使其溶解,再加入1滴1%硫酸铜溶液。混匀后观察出现的粉红色。(2) 另取1支试管,加入1mL蛋白质溶液,再加入2mL 10%NaOH溶液摇匀,然后再加入2 滴1%的硫酸铜溶液。摇匀观察其颜色变化。 (3) 注意事项 加入的硫酸铜不可过量,否则会产生蓝色的氢氧化铜,从而掩盖了双缩脲反应的粉红色。 (4) 记载上述实验过程和结果,并解释现象。 2、茚三酮反应 (1) 取3支试管,分别加入蛋白质溶液、0.3%脯氨酸溶液、0.5%甘氨酸溶液各1mL,再加0.5mL 0.1%茚三酮-乙醇溶液,混匀后在小火上加热煮沸1-2min,放置冷却,观察颜色变化。 (2) 在滤纸的不同部位分别滴上一滴0.3%脯氨酸溶液、0.5%甘氨酸溶液,风干后再在原处滴 一滴0.1%茚三酮-乙醇溶液,在微火旁烘干显色,观察斑点出现及其颜色。 (3) 记载上述实验过程和结果,并解释现象。 3、黄色反应 向6个试管中按下表加试剂,观察现象并记录。

生物化学复习资料

什么是蛋白质的变性作用?引起蛋白质变性的因素有哪些?有何临床意义?在某些理化因素作用下, 使蛋白质严格的空间结构破坏,引起蛋白质理化性质改变和生物学活性丧失的现象称为蛋白质变性。引起蛋白质变性的因素有:物理因素,如紫外线照射、加热煮沸等;化学因素,如强酸、强碱、重金属盐、有机溶剂等。临床上常常利用加热或某些化学士及使病原微生物的蛋白质变性,从而达到消毒的目的,在分离、纯化或保存活性蛋白质制剂时,应采取防止蛋白质变性的措施。 比较蛋白质的沉淀与变性 蛋白质的变性与沉淀的区别是:变性强调构象破坏,活性丧失,但不一定沉淀;沉淀强调胶体溶液稳定因素破坏,构象不一定改变,活性也不一定丧失,所以不一定变性。 试述维生素B1的缺乏可患脚气病的可能机理 在体内Vit B1 转化成TPP,TPP 是α-酮酸氧化脱羧酶系的辅酶之一,该酶系是糖代谢过程的关键酶。维生素B1 缺乏则TPP 减少,必然α-酮酸氧化脱羧酶系活性下降,有关代谢反应受抑制,导致ATP 产生减少,同时α-酮酸如丙酮酸堆积,使神经细胞、心肌细胞供能不足、功能障碍,出现手足麻木、肌肉萎缩、心力衰竭、下肢水肿、神经功能退化等症状,被通称为“脚气病”。 简述体内、外物质氧化的共性和区别 共性①耗氧量相同。②终产物相同。③释放的能量相同。

区别:体外燃烧是有机物的C 和H 在高温下直接与O2 化合生成CO2 和H2O,并以光和热的形式瞬间放能;而生物氧化过程中能量逐步释放并可用于生成高能化合物,供生命活动利用。 简述生物体内二氧化碳和水的生成方式 ⑴CO2 的生成:体内CO2 的生成,都是由有机酸在酶的作用下经脱羧反应而生成的。根据释放CO2 的羧基在有机酸分子中的位置不同,将脱羧反应分为: α-单纯脱羧、α-氧化脱羧、β-单纯脱羧、β-氧化脱羧四种方式。 ⑵水的生成:生物氧化中的H2O 极大部分是由代谢物脱下的成对氢原子(2H),经一系列中间传递体(酶和辅酶)逐步传递,最终与氧结合产生的。 试述体内两条重要呼吸链的排练顺序,并分别各举两种代谢物氧化脱氢 NADH 氧化呼吸链:顺序:NADH→FMN/(Fe-S)→CoQ→Cytb→c1→c→aa3 如异柠檬酸、苹果酸等物质氧化脱氢,生成的NADH+H+均分别进入NADH 氧化呼吸链进一步氧化,生成2.5 分子ATP。 琥珀酸氧化呼吸链:FAD·2H/(Fe-S)→CoQ→Cytb→c1→c→aa3 如琥珀酸、脂酰CoA 等物质氧化脱氢,生成的FAD·2H 均分别进入琥珀酸氧化呼吸链进一步氧化,生成1.5 分子ATP。 试述生物体内ATP的生成方式 生物体内生成ATP 的方式有两种:底物水平磷酸化和氧化磷酸化。

生化实验讲义2010(10个)

生物化学实验讲义 赵 国 芬 2010年9月

实验之前说明 1.各班学习委员将成员分成10个大组,每个大组中2人一小组,大组采用循环实 验的方法,同时开出不同的10个实验. 2.共开出10个不同的实验 实验一温度、pH及酶的激活剂、抑制剂对酶活性的影响 实验二牛奶中蛋白质的提取与鉴定 实验三血液葡萄糖的测定-福林(Folin)-吴宪氏法 实验四双缩脲测定蛋白质的含量 实验五血清蛋白质醋酸纤维薄膜电泳 实验六植物组织中还原糖和总糖的含量测定 实验七应用纸层析法鉴定动物组织中转氨基作用 实验八植物组织中维生素C的定量测定 实验九琥珀酸脱氢酶的作用及其竞争性抑制的观察 实验十植物组织中DNA的提取和鉴定 3.穿着要利索,做好实验记录 4.注意实验室卫生和安全. 一. 实验室规则:按照实验室的规则给学生讲解. 二. 生物化学所用的实验技术 1.样品: :血液、血浆、血清、组织 植物样品:果实、花蕾、茎等 无论用什么做材料,为了提取物质,需匀浆 2.移液管的使用: 移液管吸管 移液管 奥氏吸管 读数时视线与凹面相平,取液时要用吸管嘴吸,放出液体时注意嘴部液体的残留问题。 3.离心机的使用: 平衡(管平衡、机器平衡)缓起和慢停 4.分光光度计 机器原理和测定原理(比尔定律) 5.水浴锅的使用 三、实验报告的书写(用教务处统一印刷的报告纸写) 目的、原理、仪器、药品、步骤、结果及结论、讨论

实验一、温度、pH及酶的激活剂、抑制剂对酶活性的影响 一、实验目的 通过本实验了解酶催化的特异性以及pH、温度、抑制剂和激活剂对酶活力的影响,对于进一步掌握代谢反应及其调控机理具有十分重要的意义。 二、实验原理 酶的化学本质是蛋白质。凡是能够引起蛋白质变性的因素,都可以使酶丧失活性。此外,温度、pH和抑制剂、激活剂对酶的活性都有显著的影响。酶的活性通常是用测定酶作用底物在酶作用前后的变化来进行观察的。 本实验用唾液淀粉酶作用的底物—淀粉,被唾液淀粉酶分解成各种糊精、麦芽糖等水解产物的变化来观察该酶在各种环境条件下的活性。 淀粉被酶水解的变化,可以用遇碘呈不同颜色来观察。淀粉遇碘呈蓝色;糊精按分子从大到小的顺序,遇碘可呈蓝色、紫色、暗褐色和红色;最小的糊精和麦芽糖遇碘不呈现颜色反应。 三、试剂 1.0.5%淀粉溶液 2.碘化钾-碘溶液 3.1%尿素溶液。 4.1%CuSO4溶液 5.磷酸氢二钠-柠檬酸缓冲液pH5.0-8.0: 6.0.5%NaCl溶液。 7.唾液淀粉酶制备每人用自来水漱口3次,然后取20m1蒸馏水含于口中,半分钟后吐入烧杯中,纱布过滤,取滤液lOml,稀释至2Oml为稀释唾液,供实验用。 四、操作步骤 一、温度对酶活性的影响 (一)淀粉酶的观察 1、取3支大试管,编号后按表操作 2、在白色比色板上,置碘液2滴于各孔中,每隔1分钟,从第二管中取出反应

生化站演讲稿

生化处理站简介 庆华循环经济工业园生化污水处理站总投资4200万元,于2008年4月开工建设,2009年7月试车调试,2009年10月达标运行,2010年4月通过环保验收。 该工艺采用国家环保部2006年130号文件推荐的A∕O内循环生物脱氮工艺。每小时处理生产、生活污废水130吨,该工艺最大特点具有流程简单、运行费用低、容积负荷高、抗冲击能力强等,特别适合煤炭,焦化行业污废水的处理。 废水来源为焦化一期生产废水、焦化二期生产废水、甲醇生产废水、生活污水。具体工艺流程走向为,工业园区生产生活污废水,汇总后进隔油均和池,进行重力除油和均衡水质。由泵提升至缺氧池,在缺氧性菌团作用下进行反硝化脱氮反应。出水自流至好氧池,通过微生物的生物化学作用去除污水中可生物降解的有机物和将氨氮氧化成硝态氮。在缺氧、好养的生化段中使废水中的酚、氰等污染物质得以去除。至二次沉淀池,在二沉池内进行泥水分离。上清液至混凝沉淀池,投加复合混凝剂,进一步降低出水中的悬浮物及COD。出水至处理后吸水井。废水经预处理、生化处理、物化处理。废水经处理后达到国家污废水综合排放一级标准。达标后的废水全部回用于熄焦,煤场喷淋除尘,洁净煤生产用水。产生的剩余活性污泥,在重力脱水后,由槽车送至煤场与原煤拌合,进行炼焦。 在整个污水处理过程中,产生的氮气逸至大气中,对大气无影响。中水全部回用于生产环节中,污泥至原料堆场,进行再生产。真正的

实现了无污染和零排放。 我公司是一个负责任的企业,也是一个追求社会效益的企业,始终坚持“节能减排,清洁生产”的生产理念。污水处理站的投入使用,实现了环保效益、经济效益、社会效益的有机结合,为我公司建设成资源节约型,环境友好型企业做出了应有的贡献。

生物化学复习资料(人卫7版)汇总讲解

生化复习资料 第一章 一、蛋白质的生理功能 蛋白质是生物体的基本组成成分之一,约占人体固体成分的45%左右。蛋白质在生物体内分布广泛,几乎存在于所有的组织器官中。蛋白质是一切生命活动的物质基础,是各种生命功能的直接执行者,在物质运输与代谢、机体防御、肌肉收缩、信号传递、个体发育、组织生长与修复等方面发挥着不可替代的作用。 二、蛋白质的分子组成特点 蛋白质的基本组成单位是氨基酸 ?编码氨基酸:自然界存在的氨基酸有300余种,构成人体蛋白质的氨基酸只有20种,且具有自己的遗传密码。各种蛋白质的含氮量很接近,平均为16%。 ?每100mg样品中蛋白质含量(mg%):每克样品含氮质量(mg)×6.25×100。 氨基酸的分类 ?所有的氨基酸均为L型氨基酸(甘氨酸)除外。 ?根据侧链基团的结构和理化性质,20种氨基酸分为四类。 1.非极性疏水性氨基酸:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、亮氨酸(Leu)、异亮氨酸(Ile)、苯丙氨酸(Phe)、脯氨酸(Pro)。 2.极性中性氨基酸:色氨酸(Trp)、丝氨酸(Ser)、酪氨酸(Tyr)、半胱氨酸(Cys)、蛋氨酸(Met)、天冬酰胺(Asn)、谷胺酰胺(gln)、苏氨酸(Thr)。 3.酸性氨基酸:天冬氨酸(Asp)、谷氨酸(Glu)。 4.碱性氨基酸:赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His)。 ?含有硫原子的氨基酸:蛋氨酸(又称为甲硫氨酸)、半胱氨酸(含有由硫原子构成的巯基-SH)、胱氨酸(由两个半胱氨酸通过二硫键连接而成)。 ?芳香族氨基酸:色氨酸、酪氨酸、苯丙氨酸。 ?唯一的亚氨基酸:脯氨酸,其存在影响α-螺旋的形成。 ?营养必需氨基酸:八种,即异亮氨酸、甲硫氨酸、缬氨酸、亮氨酸、色氨酸、苯丙氨酸、苏氨酸、赖氨酸。可用一句话概括为“一家写两三本书来”,与之谐音。 氨基酸的理化性质 ?氨基酸的两性解离性质:所有的氨基酸都含有能与质子结合成NH4+的氨基;含有能与羟基结合成为COO-的羧基,因此,在水溶液中,它具有两性解离的特性。在某一pH环境溶液中,氨基酸解离生成的阳郭子及阴离子的趋势相同,成为兼性离子。此时环境的pH值称为该氨基酸的等电点(pI), 氨基酸带有的净电荷为零,在电场中不泳动。pI值的计算如下:pI=1/2(pK 1 + pK 2 ),(pK 1 和pK 2 分 别为α-羧基和α-氨基的解离常数的负对数值)。 ?氨基酸的紫外吸收性质 ?吸收波长:280nm ?结构特点:分子中含有共轭双键 ?光谱吸收能力:色氨酸>酪氨酸>苯丙氨酸 ?呈色反应:氨基酸与茚三酮水合物共加热,生成的蓝紫色化合物在570nm波长处有最大吸收峰;蓝紫色化合物=(氨基酸加热分解的氨)+(茚三酮的还原产物)+(一分子茚三酮)。 肽的相关概念 ?寡肽:小于10分子氨基酸组成的肽链。 ?多肽:大于10分子氨基酸组成的肽链。 ?氨基酸残基:肽链中因脱水缩合而基团不全的氨基酸分子。 ?肽键:连接两个氨基酸分子的酰胺键。 ?肽单元:参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,组成肽单元。

生物化学实验讲义

生物化学实验报告 姓名: 专业: 院系: 学号:

实验一蛋白质分子量测定------凝胶层析法 一、实验原理 凝胶层析法是利用凝胶把分子大小不同的物质分开的一种方法,又叫做分子筛层析法,排阻层析法。凝胶本身是一种分子筛,它可以把分子按大小不同进行分离,如同过筛可以把大颗粒与小颗粒分开一样。但这种“过筛”与普通的过筛不一样。将凝胶颗粒放在适宜溶剂中浸泡,使其充分戏液膨胀,然后装入层析柱中,加入欲分离的混合物后,再以同一溶剂洗脱,在洗脱过程中,大分子不能进入凝胶内部而沿凝胶颗粒间的缝隙最先流出柱外,而小分子可以进入凝胶内部,流速缓慢,以致最后流出柱外,从而使样品中分子大小不同的物质得到分离。 凝胶是由胶体溶液凝结而成的固体物质,无论是天然凝胶还是人工凝胶,它们的内部都具有很微细的多孔网状结构。凝胶层析法常用的天然凝胶是琼脂糖凝胶,人工合成的凝胶是聚丙烯酰胺凝胶和葡聚糖凝胶,后者的商品名为Sephadex型的各种交联葡聚糖凝胶,它具有不同孔隙度的立体网状结构的凝胶,不溶于水。 这种聚合物的立体网状结构,其孔隙大小与被分离物质分子的大小有相应的数量级。在凝胶充分溶胀后,交联度高的,孔隙小,只有相应的小分子可以通过,适于分离小分子物质。相反,交联度低得孔隙大,适于分离大分子物质。利用这种性质可分离不同分子量的物质。 以下进一步来说明凝胶层析的原理。将凝胶装载柱后,柱床总体

积称为“总体积”,以Vt表示。实质上Vt是由Vo,Vi与Vg三部分组成,即Vt=Vi+Vg+Vo。Vo称为“孔隙体积”或“外体积”又称“外水体积”,即存在于柱床内凝胶颗粒外面孔隙之间的水相体积,相应于一般层析柱法中内流动相体积;Vi为内体积,即凝胶颗粒内部所含水相的体积,Vg为凝胶本身的体积,因此Vt-Vo等于Vi+Vg。 洗脱体积与Vo及Vi之间的关系可用下式表示: Ve=Vo+KdVi 式中Ve为洗脱体积,自加入样品时算起,到组分最大浓度(峰)出现时所流出的体积;Kd为样品组分在二相间的分配系数,也可以说Kd是分子量不同的溶质在凝胶内部和外部的分配系数。它只与被分离物质分子的大小和凝胶颗粒孔隙的大小分布有关,而与柱的长短粗细无光,也就是说它对每一物质为常数,与柱的物理条件无关。Kd 可通过实验求得,上式可改写成: Kd=(Ve-Vo)/Vi 上式中Ve为实际测得的洗脱体积;Vo可用不被凝胶滞留的大分子物质的溶液通过实际测量求出;Vi可由g.Wr求得。因此,对一层析柱凝胶床来说,只要通过实际实验得知某一物质的洗脱体积Ve就可算出它的Kd值。 Vo表示外体积;Vi内体积;Ve II、Ve III分别代表组分II和III的洗脱体积。Kd可以有下列几种情况: 1、当Kd=0时,则Ve=Vo。即对于根本不能进入凝胶内部的大分子物质,洗脱体积等于空隙体积。

生物化学深刻复习资料(全)

生物化学复习资料 第一章蛋白质化学 第一节蛋白质的基本结构单位——氨基酸 凯氏定氮法:每克样品蛋白质含量(g)=每克样品中含氮量x 6.25 氨基酸结构通式: 蛋白质是由许多不同的α-氨基酸按一定的序列通过肽键缩合而成的具有生物学功能的生物大分子。 氨基酸分类:(1)脂肪族基团:丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甘氨酸、脯氨酸(2)芳香族基团:苯丙氨酸、色氨酸、酪氨酸(3)含硫基团:蛋氨酸(甲硫氨酸)、半胱氨酸(4)含醇基基团:丝氨酸、苏氨酸(5)碱性基团:赖氨酸、精氨酸、组氨酸(6)酸性基团:天冬氨酸、谷氨酸(7)含酰胺基团:天冬酰胺、谷氨酰胺 必需氨基酸(8种):人体必不可少,而机体内又不能合成,必需从食物中补充的氨基酸。蛋氨酸(甲硫氨酸)、缬氨酸、赖氨酸、异亮氨酸、苯丙氨酸、亮氨酸、色氨酸、苏氨酸 氨基酸的两性性质:氨基酸可接受质子而形成NH3+,具有碱性;羧基可释放质子而解离成COO-,具有酸性。这就是氨基酸的两性性质。 氨基酸等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH值。 蛋白质中的色氨酸和酪氨酸两种氨基酸具有紫外吸收特性,在波长280nm处有最大吸收值。镰刀形细胞贫血:血红蛋白β链第六位上的Glu→Val替换。 第二节肽 肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水综合而形成的酰胺键叫肽键。肽键是蛋白质分子中氨基酸之间的主要连接方式,它是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合脱水而形成的酰胺键。 少于10个氨基酸的肽称为寡肽,由10个以上氨基酸形成的肽叫多肽。 谷胱甘肽(GSH)是一种存在于动植物和微生物细胞中的重要三肽,含有一个活泼的巯基。参与细胞内的氧化还原作用,是一种抗氧化剂,对许多酶具有保护作用。 化学性质:(1)茚三酮反应:生产蓝紫色物质(2)桑格反应 第三节蛋白质的分子结构 蛋白质的一级结构:是指氨基酸在肽链中的排列顺序。 蛋白质的二级结构:是指蛋白质分子中多肽链本身的折叠方式。二级结构有α-螺旋、β-折叠、β-转角和无规则卷曲。 蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 蛋白质的四级结构:指数条具有独立的三级结构的多肽链通过非共价键相互连接而成的聚合体结构。 维持蛋白质一级结构的化学键有肽键和二硫键,维持二级结构靠氢键,维持三级结构和四级结构靠次级键,其中包括氢键、疏水键、离子键和范德华力。 第四节蛋白质的重要性质书P16 蛋白质的等电点:当蛋白质解离的阴阳离子浓度相等即净电荷为零,此时介质的pH即为蛋白质的等电点。

生物化学实验

生物化学实验讲义 化学工程与技术学院 基础部

实验一酪蛋白的制备 一、目的 学习从牛乳中制备酪蛋白的原理和方法。 二、原理. 牛乳中主要的蛋白质是酪蛋白,含量约为35g/L。酪蛋白是一些含磷蛋白质的混合物,等电点为4.7。利用等电点时溶解度最低的原理,将牛乳的pH调至4.7时,酪蛋白就沉淀出来。用乙醇洗涤沉淀物,除去脂类杂质后便可得到纯的酪蛋白。 三、器材 1 、离心机2、.抽滤装置 3、精密pH试纸或酸度计 4、电炉 5、烧杯 6、温度计. 四、试剂与材料 1、牛奶2500mL 2、95%乙醇1200mL 3、无水乙醚1200mL

4、0.2mol/L pH 4.7醋酸—醋酸钠缓冲液3000mL 5、.乙醇—乙醚混合液2000mL 五、操作 1、将100mL牛奶加热至40℃。在搅拌下慢慢加入 预热至40℃、pH 4.7的醋酸缓冲液100 mL。用精密pH试纸或酸度计调pH至4.7。将上述悬浮液冷却至室温。离心15分钟(3 000r/min)。弃去清液,得酪蛋白粗制品。 2、用水洗沉淀3次,离心10分钟(3000r/min), 弃去上清液。 3、在沉淀中加入30mL乙醇,搅拌片刻,将全部悬 浊液转移至布氏漏斗中抽滤。用乙醇—乙醚混合液洗沉淀2次。最后用乙醚洗沉淀2次,抽干。 4、将沉淀摊开在表面皿上,风干;得酪蛋白纯晶。 5、准确称重,计算含量和得率。 含量:酪蛋白g/100mL牛乳(g%)

得率: 测得含量 100 % 理论含量 思考题 1、制备高产率纯酪蛋白的关键是什么? 实验二小麦萌发前 后淀粉酶活力的比较 一、目的 1.学习分光光度计的原理和使用方法。 2.学习测定淀粉酶活力的方法。 3.了解小麦萌发前后淀粉酶活力的变化。 二、原理 种子中贮藏的糖类主要以淀粉的形式存在。淀粉酶能使淀粉分解为麦芽糖。 2(C6H10O5)n +nH2O nC12H22O11 麦芽糖有还原性,能使3,5---二硝基水杨酸还原成棕色的3-氨基-5-硝基水扬酸。后者可用分光光度计测定。

生物化学复习资料

第一章绪论 生物化学:简单来讲,研究生物体内物质组成(化学本质)和化学变化规律的学科。生物化学的研究内容:生物分子的结构与功能(静态生化); 物质代谢及其调节(动态生化); 生命物质的结构与功能的关系及环境对机体代谢的影响(功能生化)。 第二章糖类化学 一、糖的定义及分类 糖类是一类多羟基醛(或酮),或通过水解能产生这些多羟基醛或多羟基酮的物质。糖类分类:(大体分为简单糖和复合糖) 单糖:基本单位,自身不能被水解成更简单的糖类物质。最简单的多羟基醛或多羟基酮的化合物。Eg:半乳糖 寡糖:2~10个单糖分子缩合而成,水解后可得到几分子单糖。Eg:乳糖 多糖:由许多单糖分子缩合而成。如果单糖分子相同就称为同聚多糖或均一多糖;由不同种类单糖缩合而成的多糖为杂多糖或不均一多糖。 复合糖:是指糖和非糖物质共价结合而成的复合物,分布广泛,功能多样,具有代表性的有糖蛋白或蛋白聚糖,糖脂或脂多糖。 二单糖 1、单糖的构型:在糖的化学中,采用D/L法标记单糖的构型。单糖构型的确定以甘油醛为标准。距羰基最远的手性碳与D-(+)-甘油醛的手性碳构型相同时,为D型;与L-(-)-甘油醛构型相同时,为L型。 2、对映异构体:互为镜像的旋光异构体。如:D-Glu与L-Glu 3、旋光异构现象:不对称分子中原子或原子团在空间的不同排布对平面偏振光的偏正面发生不同影响所引起的异构现象。 4、差向异构体:具有两个以上不对称碳原子的的分子中仅一个不对称碳原子上的羟基排布方式不同。如:葡萄糖与甘露糖;葡萄糖与半乳糖。 5、环状结构异构体的规定:根据半缩醛羟基与决定直链DL构型的手性碳上羟基处于同侧为α,异侧为β。(只在羰基碳原子上构型不同的同分异构体) 6、还原糖:能还原Fehling试剂或Tollens试剂的糖叫还原糖。分子结构中含有还原性基团(如游离醛基半缩醛羟基或游离羰基)的糖,还原糖是指具有还原性的糖类,叫还原糖。 1)单糖和寡糖的游离羰基,有还原性。 2)以开链结构存在的单糖中除了二羟丙酮外均具有游离羰基。 3)环式结构可通过与开链结构之间的平衡转化为后者,有半缩醛羟基的为还原糖。 4)非还原性双糖相当于由两个单糖的半缩醛羟基失水而成的,两个单糖都成为苷, 这样的双糖没有变旋现象和还原性。如:蔗糖) 7、糖含量的测定:蒽酮测糖。 三寡糖 麦芽糖:两分子葡萄糖通过α-1,4-糖苷键连接而成 纤维二糖:两分子葡糖糖通过β-1,4-糖苷键连接 乳糖:一分子葡萄糖和一分子β半乳糖通过β-1,4-糖苷键连接而成 蔗糖:一分子葡糖糖和一分子果糖通过脱水缩合而成

鲁东大学生物化学期末复习资料试题大题答案

蛋白质结构与功能的关系解答一 (1)蛋白质一级结构与功能的关系 ①一级结构是空间构象的基础 蛋白质一级结构决定空间构象,即一级结构是高级结构形成的基础。只有具有高级结构的蛋白质才能表现生物学功能。实际上很多蛋白质的一级结构并不是决定蛋白质空间构象的惟一因素。除一级结构、溶液环境外,大多数蛋白质的正确折叠还需要其他分子的帮助。这些参与新生肽折叠的分子,一类是分子伴侣,另一类是折叠酶。 ②一级结构是功能的基础 一级结构相似的多肽或蛋白质,其空间构象和功能也相似。相似的一级结构具有相似的功能,不同的结构具有不同的功能,即一级结构决定生物学功能。 ③蛋白质一级结构的种属差异与分子进化 对于不同种属来源的同种蛋白质进行一级结构测定和比较,发现存在种属差异。蛋白质一定的结构执行一定的功能,功能不同的蛋白质总是有不同的序列。如果一级结构发生变化,其蛋白质的功能可能发生变化。 ④蛋白质的一级结构与分子病 蛋白质的氨基酸序列改变可以引起疾病,人类有很多种分子病已被查明是某种蛋白质缺乏或异常。这些缺损的蛋白质可能仅仅有一个氨基酸发生异常所造成的,即所为的分子病。如镰状红细胞贫血症(HbS)。 (2)蛋白质高级结构与功能的关系 ①高级结构是表现功能的形式蛋白质一级结构决定空间构象,只有具有高级结构的蛋白质才能表现出生物学功能。 ②血红蛋白的空间构象变化与结合氧

血红蛋白(Hb)是由α2β2组成的四聚体。每个亚基的三级结构与肌红蛋白(Mb)相似,中间有一个疏水“口袋”,亚铁血红素位于“口袋”中间,血红素上的Fe2+能够与氧进行可逆结合。当第一个O2与Hb结合成氧合血红蛋白(HbO2)后,发生构象改变犹如松开了整个Hb分子构象的“扳机”,导致第二、第三和第四个O2很快的结合。这种带O2的Hb亚基协助不带O2亚基结合氧的现象,称为协同效应。O2与Hb结合后引起Hb构象变化,进而引起蛋白质分子功能改变的现象,称为别构效应。小分子的O2称为别构剂或协同效应剂。Hb则称为别构蛋白。 ③构象病因蛋白质空间构象异常变化——相应蛋白质的有害折叠、折叠不能,或错误折叠导致错误定位引起的疾病,称为蛋白质构象病。其中朊病毒病就是蛋白质构象病中的一种。 蛋白质结构与功能的关系解答二 (一)蛋白质一级结构与功能的关系要明白三点: 1.一级结构是空间构象和功能的基础,空间构象遭破坏的多肽链只要其肽键未断,一级结构未被破坏,就能恢复到原来的三级结构,功能依然存在。 2.即使是不同物种之间的多肽和蛋白质,只要其一级结构相似,其空间构象及功能也越相似。 3.物种越接近,其同类蛋白质一级结构越相似,功能也相似。 但一级结构中有些氨基酸的作用却是非常重要的,若蛋白质分子中起关键作用的氨基酸残基缺失或被替代,都会严重影响其空间构象或生理功能,产生某种疾病,这种由蛋白质分

生物化学(名词解释及简答题)讲课讲稿

生物化学 1、生物化学的主要内容是什么? 答:(一)生物体的化学组成、分子结构及功能 (二)物质代谢及其调控 (三)遗传信息的贮存、传递与表达 2、氨基酸的两性电离、等电点是什么? 答:氨基酸两性电离和等电点,氨基酸的结构特征为含有氨基和羧基。氨基可以接受质子而形成NH4+,具有碱性。羧基可释放质子而解成COO—,具有酸性。因此氨基酸具有两性解离的性质。在酸性溶液中,氨基酸易解离成带正电荷的阳离子,在碱性溶液中,易解成带负电的阴离子,因此氨基酸是两性电解质。当氨基酸解离成阴、阳离子趋势相等,净电荷为零时,此时溶液和PH值为氨基酸的等电点。 3、什么是肽键、蛋白质的一级结构? 答:在蛋白质分子中,一个氨基酸的a羧基与另一个氨基酸的a氨基,通过脱去一分子的H2O所形成化学键(---CO—NH--- )称为肽键。蛋白质肽链中的氨基酸排列顺序称为蛋白质一级结构。 4、维持蛋白质空间结构的化学键是什么? 答:维持蛋白质高级结构的化学键主要是次级键,有氢键、离子键、疏水键、二硫键以及范德华引力。 5、蛋白质的功能有哪些? 答:蛋白质在体内的多种生理功能可归纳为三方面: 1.构成和修补人体组织蛋白质是构成细胞、组织和器官的主要材料。 2.调节身体功能 3. 供给能量 6、蛋白质变性的概念及其本质是什么?

答:天然蛋白质的严密结构在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,如酶失去催化活力,激素丧失活性称之为蛋白质的变性作用。变性蛋白质只有空间构象的破坏,一般认为蛋白质变性本质是次级键,二硫键的破坏,并不涉及一级结构的变化。 7、酶的特点有哪些? 答:1、酶具有极高的催化效率 2、酶对其底物具有较严格的选择性。 3、酶是蛋白质,酶促反应要求一定的PH、温度等温和的条件。 4、酶是生物体的组成部分,在体内不断进行新陈代谢。 8、名词解释:酶活性中心、必需基团、结合基团、催化基团 答:酶活性中心:对于不需要辅酶的酶来说,活性中心就是酶分子在三维结构上比较靠近的少数几个氨基酸残基或是这些残基上的某些基团,它们在一级结构上可能相距甚远,甚至位于不同的肽链上,通过肽链的盘绕、折叠而在空间构象上相互靠近;对于需要辅酶的酶来说,辅酶分子,或辅酶分子上的某一部分结构往往就是活性中心的组成部分。一般还认为活性中心有两个功能部位:第一个是结合部位,一定的底物靠此部位结合到酶分子上,第二个是催化部位,底物的键在此处被打断或形成新的键,从而发生一定的化学变化。 酶的分子中存在有许多功能基团例如,-nh2、-cooh、-sh、-oh等,活性中心是酶分子中能与底物特性异结合,并将底物转化为产物的部位。酶分子的功能团基团中,那些与酶活性密切相关的基团称做酶的必需基团。有些必需基团虽然在一级结构上可能相距很远,但在窨结构上彼此靠近,集中在一起形成且定窨构象的区域,能与底物特异的结合,并将底物转化为产物。这一区域称为酶的活性中心。但并不是这些基团都与酶活性有关。一般将与酶活性有关的基团称为酶的必需基团 构成酶活性中心的必需基团可分为两种,与底物结合的必需基团称为结合基团,促进底物发生化学变化的基团称为催化基团。活性中心中有的必需基团可同时具有这两方面的功能。还有些必需基团虽然不参加酶的活性中心的组成,但为维持酶活性中心应有的空间构象所必需,这些基团是酶的活性中心以外的必需基团 9、酶共价最常见的形式是什么? 答:酶的共价修饰包括磷酸化与脱磷酸化、乙酰化与脱乙酰化、甲基化甩脱甲化、腺苷化与脱腺苷化,以及—SH与—S—S—的互变等。 10、酶促反应动力学中,温度对反应速度的影响是什么?

大学生物化学复习资料

一、名词解释 1、血液:血液中的葡萄糖称为血糖。 2、糖原合成与分解:由单糖合成糖原的过程称为糖原合成。 糖原分解成葡萄糖的过程称为糖原的分解。 3、糖异生:由非糖物质合成葡萄糖的过程叫糖异生。 4、有氧氧化:指糖、脂肪、蛋白质在氧的参与下分解为二氧化碳和水,同时释放大量能量,供二磷酸腺苷(ADP)再合成三磷酸腺苷(ATP)。 5、三羧酸循环(TAC循环):由乙酰CoA和草酰乙酸缩合成有三个羧基的柠檬酸, 柠檬酸经一系列反应, 一再氧化脱羧, 经α酮戊二酸、琥珀酸, 再降解成草酰乙酸。而参与这一循环的丙酮酸的三个碳原子, 每循环一次, 仅用去一分子乙酰基中的二碳单位, 最后生成两 分子的CO2 , 并释放出大量的能量。反应部位在线粒体基质。 6、糖酵解:是指细胞在细胞质中分解葡萄糖生成丙酮酸的过程。(在供氧不足时,葡萄糖在胞液中分解成丙酮酸,丙酮酸再进一步还原乳酸。) 7、血脂:血中的脂类物质称为血脂。 8、血浆脂蛋白:指哺乳动物血浆(尤其是人)中的脂-蛋白质复合物。(脂类在血浆中的存在形式和转运形式) 9、脂肪动员:指在病理或饥饿条件下,储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸(FFA)及甘油并释放入血以供其他组织氧化利用,该过程称为脂肪动员。 (补充知识:脂肪酶—催化甘油三酯水解的酶的统称。甘油三酯脂肪酶—脂肪分解的限速酶。)10、酮体:在肝脏中,脂肪酸的氧化很不完全,因而经常出现一些脂肪酸氧化分解的中间产物,这些中间产物是乙酰乙酸、β-羟基丁酸及丙酮,三者统称为酮体。(知识补充:酮体是脂肪分解的产物,而不是高血糖的产物。进食糖类物质也不会导致酮体增多。)

生物化学说课稿

《生物化学》说课稿 各位领导、老师们,你们好! 今天我要进行说课的内容是生物化学这门课程,首先,我对本门课程内容将从四个方面进行分析,说大纲、教材;说学情;说教学计划;说教法与教学手段。 1.说大纲和教材 1.1说大纲:本门课程以护理学为例子,大纲要求护理学的学习要求为掌握一定的生化基础知识,基本能应用基础生化知识解释常见的遗传疾病、能看懂简单的检验术语及缩写词等作为教学的要求,培养的是高职高专技术型专门人才。 1.2说教材的地位 本门课程现在教材存在种类繁多,版本较多,良莠不齐,教师难以选择好教材,有的教材质量差,水平低等问题,给教学工作带来了很大不便。因此选择陈明雄主编,我校教师参编的国家高职高专规划教材为教学用书,以王镜岩主编的《生物化学》;贾宏褆主编的八年制临床教材《生物化学》等用书为教师参考的材料,作为总的用书。 1.3说教材的作用 生物化学是研究人体化学组成及其代谢以及化学成分之间相互作用的学科,为重要的基础学科,是所有医药类专业必修的课程之一,因此地位比较突出,该课程的作用表现在:阐明人体物质组成、分子结构及其功能,为临床实践操作提供理论指导依据,提高医药卫生人才理论和实践水平,为学生持续发展打牢基础。 1.4说培养目标 知识目标:课程内容分掌握、熟悉和了解三个层次。要求学生重点掌握各生物大分子的结构及主要的代谢过程,相关的的基本理论知识及能够解释常见的遗传病机制。 能力目标:掌握重要的临床生化指标,具有生物化学实验的基本技能,能运用生化基础理论知识分析和解释各种实验现象及运用所学的知识在分子水平上探讨病因和发病机制。

素质目标:培养实事求是的工作作风,树立牢固专业素养,具有良好的思想品质、职业道德和为人类健康服务的奉献精神,具有健康的体魄和良好的心理素质 1.5说教材设计 《生物化学》,中国医药科技出版社出版,系我校教师参编的国家规划教材。编写思路以多年实践教学经验为指导,根据我校实际情况选择的符合高职高专学生学习。结构特点:继承并体现基本内容,具有适用性,重点难点分明,每章节增加趣味知识故事。 1.6课程时数时间分配与考核 理论教学时数为32学时,实验学时16学时,理论与实验比为2:1,理论考试占60%,实验占30%,平时成绩占10%。 2、说学情 2.1学生情况分析 我校3年制大专招收高中起点的学生,其中文科生缺乏化学知识,加之有些学生学习方法欠佳等,这些因素都制约着学习。总体情况欠佳,学生绝大多数勤奋好学,但护理专业在课程设计时缺乏部分医学基础学科学习,导致本学科的学习难度增大。此外学科与专业的联系紧密度也影响了学生的学习态度. 2.2心理状态分析 部分学生心理承受能力差,对应激刺激不知所措,新到一所大学从各方面都不太适应,独立学习和生活能力还存在一些问题。而医学本身涉及生理卫生知识,故对学生应进行科学全面的分析与引导,培养其形成健康、良好的心理素质。 2.2护理专业学生特点 学生以女生为主,课堂纪律好,学习积极性高,态度端正,因此整体学习氛围好 3.说教学计划 3.1生物化学与其他专业课程关系 生物化学等基础课程是专业核心课程的基础,对学生以后的可持续发展至关重要。 3.2教学设计理念

生物化学复习资料

第一章核酸 名词解释 1.增色效应;DNA变性后,其紫外吸收值升高的现象。 2.分子杂交;在一定条件下,不同来源的单链核酸分子按碱基互补配对原则结 合在一起。 3.DNA变性;在一定的物理或化学因素作用下,核酸双螺旋结构中碱基之间的 氢键断裂,变成单链的过程。 4.DNA复性;在适当的条件下,两天彼此分开的单链重新缔合成为双螺旋结构 的过程。 5.Tm;热变性过程中光吸收达到最大吸收的一半时的温度。 填空题: 1. 核酸分子中糖环与碱基之间为核苷键,核苷与核苷之间通过 3ˋ-5ˋ磷酸二 脂键连接成多聚体。 2. DNA变性后,紫外吸收增加,粘度下降,浮力密度升高,生物活性丧失。 3. DNA双螺旋直径为2nm,每隔3.4nm上升一圈,相当于10个碱基对。 4. Z-DNA为左手螺旋。 5.维系DNA双螺旋结构稳定的力主要有氢键和碱基堆积力。 6.DNA双螺旋结构模型是Watson和Crick于1953年提出的。 选择题(在备选答案中选出1个或多个正确答案) 1、有关核酸的杂交A

A.DNA变性的方法常用加热变性 B.相同来源的核酸才能通过变性而杂交 C.不同来源的核酸复性时,若全部或部分碱基互补就可以杂交 D.杂交可以发生在DNA与DNA之间,RNA与DNA,RNA与RNA之间 E.把待测DNA标记成探针进行杂交 2.DNA的复性速度与以下哪些有关ABCD A.温度B.分子内的重复序列C.变性DNA的起始浓度 D.以上全部3.某DNA分子中腺嘌呤的含量为15%,则胞嘧啶的含量应为D A.15% B.30% C.40% D.35% E.70% 4.DNA变性是指D A.分子中磷酸二酯键断裂B.多核苷酸链解聚 C.DNA分子由超螺旋→双螺旋D.互补碱基之间氢键断裂 E.DNA分子中碱基丢失 5.关于双螺旋结构学说的叙述哪一项是错误的BCD A.由两条反向平行的脱氧多核苷酸链组成 B.碱基在螺旋两侧,磷酸与脱氧核糖在外围 C.两条链间的碱基配对非常严格,A与T间形成三个氢键,G与C间形成两个氢键 D.碱基对平面垂直于中心轴,碱基对之间的作用力为范德华力 E.螺旋每转一圈包含10个碱基对 6.下列关于双链DNA碱基含量关系,哪一个是错误的AB A.A=T,G=C B.A+T=G+C C.A+G=C+T D.A+C=G +T 7.下列是几种DNA分子的碱基组成比例。哪一种的Tm值最高C A.A+T=15% B.G+C=25% C.G+C=40% D.A+T=80% 8.ATP分子中各组分的连接方式是:B A.R-A-P-P-P B.A-R-P-P-P C.P-A-R-P-P D.P-R-A-P-P 9.决定tRNA携带氨基酸特异性的关键部位是:E A.–XCCA3`末端 B.TψC环; C.DHU环 D.额外环 E.反密码子环 10.根据Watson-Crick模型,求得每一微米DNA双螺旋含核苷酸对的平均数为:D A.25400 B.2540 C.29411 D.2941 E.3505 11.构成多核苷酸链骨架的关键是:E A.2′3′-磷酸二酯键 B.2′4′-磷酸二酯键 C.2′5′-磷酸二酯键 D.3′4′-磷酸二酯键 E.3′5′-磷酸二酯键 12.真核细胞mRNA帽子结构最多见的是:B A.m7APPPNmPNmP B. m7GPPPNmPNmP C.m7UPPPNmPNmP D.m7CPPPNmPNmP E. m7TPPPNmPNmP

11环境生化实验讲义

实验一蛋白质和氨基酸的呈色反应 一、目的要求 (1)学习几种常用的鉴定蛋白质和氨基酸的方法及其原理。 (2)学习几种鉴定特定氨基酸的特殊颜色反应及其原理。 二、原理 ㈠蛋白质和氨基酸鉴定常用方法 蛋白质所含有的某些氨基酸及其特殊结构,可以与某些试剂反应、生成有色物质。 1.双缩眠反应 当脲(即尿素)加热至l80℃时.两分子脲缩合,放出一分子氨而形成双缩脲(biuret)。 然后在碱性溶液中与铜离子(cu2+)结合生成复杂的紫红色化合物。这一呈色反应称为双缩脲反应。 紫红色铜双缩服复合物分子结构见下页图。 蛋白质或二肽以上的多肽分子中,含有多个与双缩脲结构相似的肽键,因此也有双缩脲反应。应当指出,含有—个CS—NH2、一CH2一NH2,一CRH—NH2,一CH2一NH2—CHNH2一CHOH-CH2NH2,-CHOH—CH2NH2等基团的物质,甚至过量的铵盐也干扰本实验。

2.Salkowski(1888)蛋白黄色反应 它是芳香族氨基酸,特别是有酪氨酸和色氨酸蛋白质所特有的呈色反应。苯丙氨酸和苯 反应很困难。皮肤、指甲和毛发等遇浓硝酸变黄,原因在此。 硝基苯衍生物呈黄色,在碱性溶液中,它进一步形成深橙色的硝醌酸钠。参考反应是: 3.茚三酮反应 蛋白质、多糖和各种氨基酸具有茚三酮反应。除无α—氨基的脯氨酸和羟脯氨酸呈黄色 外.其他氨基酸生成紫红色.最终为蓝色化合物。

三、器材与试剂 ㈠器材 ⒈试管及试管架⒉水浴锅⒊量筒⒋滴管⒌滤纸片⒍移液管 ㈡试剂和材料 ⒈10%NaOH溶液⒉1%CuSO4溶液⒊0.5%苯酚溶液⒋浓HNO3 ⒌卵清蛋白溶液(蛋清:水=1︰20)⒍尿素⒎0.1%茚三酮乙醇溶液 四、操作步骤 1.双缩脲反应 (1)取一支干燥的试管,加入少量尿素,用微火加热使尿素熔化,待融化的尿素重又开始硬化时停止加热,此时尿素已缩合成双缩脲并放出氨(可由其嗅味辨别或见红色石蕊试纸变色)。试管冷却后,加入约1毫升10%氢氧化钠溶液,振荡使双缩脲溶解,再加入2滴1%硫酸铜溶液,混匀后观察有无紫色出现。

生物化学基本内容

生物化学基本内容 学习方法 生物化学是是在分子水平上研究生物体的组成与结构、代谢及其调节的一门科学。其发展快、信息量丰富,有大量需要记忆的内容,因此学好它不是一件容易的事情。下面就如何学好生物化学这门课程谈一谈自己的浅见,希望能对学生们有所帮助。 1、选择好教材和参考书 目前市场上有各种各样的生物化学教材和一些参考书,如何选择适合自己的教材和参考书对于培养自己的学习兴趣,学好本学科十分重要。我个人认为应该准备三本教材和一本习题集:一本是简单的版本,便于理解和自学。如南京大学由郑集等编写的《普通生物化学》;一本是高级的版本,如北京大学王镜岩等编著的《生物化学》,阅读此类教科书便于对各章内容全面和深入的掌握;第三本应该是一本英文的原版教材,如DonaldVoet编著的《FundamentalsofBiochemistry》和ChristopheK.Mathews编写的《Biochemistry》。英文版教材的特点是新、印刷精美,图表多为彩图,通常还有配套的多媒体光盘,方便你自学。阅读一本好的英文生化教材,不仅对提高自己的专业英语水平,而且对理解各章节的内容,学好本学科是非常有帮助。 2、由表及里,循序渐进,课前预习,课后复习 根据研究内容,本课程可分为以下几部分:①重要生物分子的结构和功能:着重介绍蛋白质、核酸、酶、维生素等的组成、结构与功能。重点阐述生物分子具有哪些基本的结构?哪些重要的理化性质?以及结构与功能有什么关系等问题,同时要随时将它们进行比较。这样既便于理解,也有利于记忆。②物质代谢及其调节:主要介绍糖代谢、脂类代谢、能量代谢、氨基酸代谢、核昔酸代谢、以及各种物质代谢的联系和调节规律。此部分内容是传统生物化学的核心内容。学习这部分内容时,应注重学习各种物质代谢的基本途径,特别是糖代谢途径、三羧酸循环途径、糖异生途径和酮体代谢途径;各代谢途径的关键酶及生理意义;各代谢途径的主要调节环节及相互联系;代谢异常与临床疾病的关系等问题。③分子遗传学基础:重点介绍了DNA复制,DNA转录和翻译。学习这部分内容时,应重点学习复制、转录和翻译的基本过程,并从必要条件、所需酶蛋白和特点等方面对三个过程进行比较,在理顺本课程的基本框架后,就应全面、系统、准确地掌握教材的基本内容,并且找出共性,抓住规律。 3、学会做笔记 首先有一点必须强调,上课时学生的主要任务时是听老师讲课而不是做笔记,因此在课堂上要集中精力听讲,一些不清楚的内容和重要的内容可以笔录下来,以便课后复习和向老师求教。当然,条件好的同学可以买来录音设备,将老师的上课内容录下来,以供课后消化。另外,老师的讲稿大都做成了幻灯片,学生可从老师那里得到拷贝。 4、懂得记忆法 学习生物化学时,学生反映最多的问题是记不住学过的内容。关于此问题我的建议是:首先分清楚那些需要记忆,那些根本就不需要记忆。如氨基酸的三字母和单字母符号是需要记的,而许多生物分子的结构式并不需要记;其次明白理解是记忆之母,因此对各章内容,必须先对有关原理理解透,然后再去记忆;第三,记忆要讲究技巧,多想想方法。如关于必需氨基酸的记忆,可以将高等动物10种必需氨基酸的首写字母拼写成一句话:Tip MTV hall(需付小费的MTV厅)。 5、勤于动手,联系实际 这是由“学懂”通向“会做”的桥梁和提高考生在考试中的实践能力的重要保证。平时多做习题,多做实验,是你掌握本学科,取得比较理想的考试成绩的一个很重要的保证。 5、充分利用网络资源

相关文档
最新文档