风力发电外文文献翻译中英文

风力发电外文文献翻译中英文
风力发电外文文献翻译中英文

风力发电外文翻译中英文

英文

Wind power in China – Dream or reality?

Hubacek

Abstract

After tremendous growth of wind power generation capacity in recent years, China now has 44.7 GW of wind-derived power. Despite the recent growth rates and promises of a bright future, two important issues - the capability of the grid infrastructure and the availability of backup systems - must be critically discussed and tackled in the medium term.

The study shows that only a relatively small share of investment goes towards improving and extending the electricity infrastructure which is a precondition for transmitting clean wind energy to the end users. In addition, the backup systems are either geographically too remote from the potential wind power sites or currently financially infeasible. Finally, the introduction of wind power to the coal-dominated energy production system is not problem-free. Frequent ramp ups and downs of coal-fired plants lead to lower energy efficiency and higher emissions, which are likely to negate some of the emission savings from wind power.

The current power system is heavily reliant on independently acting but state-owned energy companies optimizing their part of the system, and this is partly incompatible with building a robust system supporting

renewable energy technologies. Hence, strategic, top-down co-ordination and incentives to improve the overall electricity infrastructure is recommended.

Keywords: Wind power, China, Power grids, Back-up systems

1. Introduction

China’s wind energy industry has exper ienced a rapid growth over the last decade. Since the promulgation of the first Renewable Energy Law in 2006, the cumulative installed capacity of wind energy amounted to 44.7 GW by the end of 2010 [1]. The newly installed capacity in 2010 reached 18.9 GW which accounted for about 49.5% of new windmills globally. The wind energy potential in China is considerable, though with differing estimates from different sources. According to He et al. [2], the exploitable wind energy potential is 600–1000 GW onshore and 100–200 GW offshore. Without considering the limitations of wind energy such as variable power outputs and seasonal variations, McElroy et al. [3] concluded that if the Chinese government commits to an aggressive low carbon energy future, wind energy is capable of generating 6.96 million GWh of electricity by 2030, which is sufficient to satisfy China’s electricity demand in 2030.

The existing literature of wind energy development in China focuses on several discussion themes. The majority of the studies emphasize the importance of government policy on the promotion of wind energy

industry in China [4], [5], [6], [7]. For instance, Lema and Ruby [8] compared the growth of wind generation capacity between 1986 and 2006, and addressed the importance of a coordinated government policy and corresponding incentives. Several studies assessed other issues such as the current status of wind energy development in China [9]; the potential of wind power [10]; the significance of wind turbine manufacturing [11]; wind resource assessment [5]; the application of small-scale wind power in rural areas [12]; clean development mechanism in the promotion of wind energy in China [4], social, economic and technical performance of wind turbines [13] etc.

There are few studies which assess the challenge of grid infrastructure in the integration of wind power. For instance, Wang [14] studied grid investment, grid security, long-distance transmission and the difficulties of wind power integration at present. Liao et al. [15] criticised the inadequacy of transmission lines in the wind energy development. However, we believe that there is a need to further investigate these issues since they are critical to the development of wind power in China. Furthermore, wind power is not a stand-alone energy source; it needs to be complemented by other energy sources when wind does not blow. Although the viability and feasibility of the combination of wind power with other power generation technologies have been discussed widely in other countries, none of the papers reviewed the

situation in the Chinese context. In this paper, we discuss and clarify two major issues in light of the Chinese wind energy distribution process: 1) the capability of the grid infrastructure to absorb and transmit large amounts of wind powered electricity, especially when these wind farms are built in remote areas; 2) the choices and viability of the backup systems to cope with the fluctuations of wind electricity output.

2. Is the existing power grid infrastructure sufficient?

Wind power has to be generated at specific locations with sufficient wind speed and other favourable conditions. In China, most of the wind energy potential is located in remote areas with sparse populations and less developed economies. It means that less wind powered electricity would be consumed close to the source. A large amount of electricity has to be transmitted between supply and demand centres leading to several problems associated with the integration with the national power grid system, including grid investment, grid safety and grid interconnection.

2.1. Power grid investment

Although the two state grid companies-(SGCC) State Grid Corporation of China and (CSG) China Southern Grid - have invested heavily in grid construction, China’s powe r grid is still insufficient to cope with increasing demand. For example, some coal-fired plants in Jiangsu, which is one of the largest electricity consumers in China, had to drop the load ratio to 60 percent against the international standard of 80

percent due to the limited transmission capacity [16]. This situation is a result of an imbalanced investment between power grid construction and power generation capacity. For example, during the Eighth Five-Year Plan, Ninth Five-Year Plan and Tenth Five-Year Plan,1 power grid investments accounted for 13.7%, 37.3% and 30% of total investment in the electricity sector, respectively. The ratio further increased from 31.1% in 2005 to 45.94% in 2008, the cumulative investment in the power grid is still significantly lower than the investments in power generation [17]. Fig. 1 gives a comparison of the ratios of accumulative investments in power grid and power generation in China, the US, Japan, the UK and France since 1978. In most of these countries, more than half of the electric power investment has been made on grid construction. By contrast, the ratio is less than 40% in China.

According to the Articles 14 and 21 of the Chinese Renewable Energy Law, the power grid operators are responsible for the grid connection of renewable energy projects. Subsidies are given subject to the length of the grid extension with standard rates. However, Mo [18] found that the subsidies were only sufficient to compensate for capital investment and corresponding interest but excluding operational and maintenance costs.

Again, similar to grid connection, grid reinforcement requires significant amounts of capital investment. The Three Gorges power plant

has provided an example of large-scale and long-distance electricity transmission in China. Similar to wind power, hydropower is usually situated in less developed areas. As a result, electricity transmission lines are necessary to deliver the electricity to the demand centres where the majority are located; these are the eastern coastal areas and the southern part of China. According to SGCC [19], the grid reinforcement investment of the Three Gorges power plants amounted to 34.4 billion yuan (about 5 billion US dollars). This could be a lot higher in the case of wind power due to a number of reasons. First, the total generating capacity of Three Gorges project is approximately 18.2 GW at this moment and will reach 22.4 GW when fully operating [20], whilst the total generating capacity of the massive wind farms amount to over 100 GW. Hence, more transmission capacities are absolutely necessary. Second, the Three Gorges hydropower plant is located in central China. A number of transmission paths are available, such as the 500 kV DC transmission lines to Shanghai (with a length of 1100 km), Guangzhou (located in Guangdong province, with a length of 1000 km) and Changzhou (located in Jiangsu province, with a length of 1000 km) with a transmission capacity of 3 GW each and the 500 kV AC transmission lines to central China with transmission capacity of 12 GW. By contrast, the majority of wind farm bases, which are located in the northern part of China, are far away from the load centres. For example, Jiuquan located

in Gansu has a planned generation capacity of 20 GW. The distances from Jiuquan to the demand centres of the Central China grid and the Eastern China grid are 1500 km and 2500 km, respectively. For Xinjiang, the distances are even longer at 2500 km and 4000 km, respectively. As a result, longer transmission lines are required. Fig. 2 depicts the demand centres and wind farms in detail.

2.2. Grid safety

The second problem is related to grid safety. The large-scale penetration of wind electricity leads to voltage instability, flickers and voltage asymmetry which are likely to cause severe damage to the stability of the power grid [21]. For example, voltage stability is a key issue in the grid impact studies of wind power integration. During the continuous operation of wind turbines, a large amount of reactive power is absorbed, which lead to voltage stability deterioration [22]. Furthermore, the significant changes in power supply from wind might damage the power quality [23]. Hence, additional regulation capacity would be needed. However, in a power system with the majority of its power from base load provider, the requirements cannot be met easily [24]. In addition, the possible expansion of existing transmission lines would be necessary since integration of large-scale wind would cause congestion and other grid safety problems in the existing transmission system. For example, Holttinen [23] summarized the major

impacts of wind power integration on the power grid at the temporal level (the impacts of power outputs at second, minute to year level on the power grid operation) and the spatial level (the impact on local, regional and national power grid). Besides the impacts mentioned above, the authors highlight other impacts such as distribution efficiency, voltage management and adequacy of power on the integration of wind power [23].

One of the grid safety problems caused by wind power is reported by the (SERC) State Electricity Regulatory Commission [25]. In February and April of 2011, three large-scale wind power drop-off accidents in Gansu (twice) and Hebei caused power losses of 840.43 MW, 1006.223 MW and 854 MW, respectively, which accounted for 54.4%, 54.17% and 48.5% of the total wind powered outputs. The massive shutdown of wind turbines resulted in serious operational difficulties as frequency dropped to 49.854 Hz, 49.815 Hz and 49.95 Hz in the corresponding regional power grids.

The Chinese Renewable Energy Law requires the power grid operators to coordinate the integration of windmills and accept all of the wind powered electricity. However, the power grid companies have been reluctant to do so due to the above mentioned problems as well as technical and economic reasons. For instance, more than one third of the wind turbines in China, amounting to 4 GW capacity, were not connected

to the power grid by the end of 2008 [17]. Given that the national grid in China is exclusively controlled by the power companies –SGCC and CSG - the willingness of these companies to integrate wind energy into the electricity generation systems is critical.

2.3. The interconnection of provincial and regional power grids

The interconnection of trans-regional power grids started at the end of 1980s. A (HVDC) high voltage direct current transmission line was established to link the Gezhouba2 dam with Shanghai which signifies the beginning of regional power grids interconnection. In 2001, two regional power grids, the North China Power Grid and Northeast China Power Grid were interconnected. This was followed by the interconnection of the Central China Power Grid and the North China Power Grid in 2003. In 2005, two other interconnection agreements were made between the South China Power Grid with North, Northeast and Central China Power Grid, and the Northwest China Power Grid and the Central China Power Grid. Finally, in 2009, the interconnection of Central China Power Grid and the East China Power Grid was made. In today’s China, the Chinese power transmission systems are composed of 330 kV and 500 kV transmission lines as the backbone and six interconnected regional power grids and one Tibet power grid [26].

It seems that the interconnectivity of regional power grids would help the delivery of wind powered outputs from wind-rich regions to

demand centres. However, administrative and technical barriers still exist. First, the interconnectivity among regions is always considered as a backup to contingencies, and could not support the large-scale, long-distance electricity transmission [27]. In addition, the construction of transmission systems is far behind the expansion of wind power. The delivery of large amounts of wind power would be difficult due to limited transmission capacity. Furthermore, the quantity of inter-regional electricity transmission is fixed [27]. Additional wind power in the inter-regional transmission might have to go through complex administrative procedures and may result in profit reductions of conventional power plants.

3. Are the backup systems geographically available and technically feasible?

Power system operators maintain the security of power supply by holding power reserve capacities in operation. Although terminologies used in the classification of power reserves vary among countries [28], power reserves are always used to keep the production and generation in balance under a range of circumstances, including power plant outages, uncertain variations in load and fluctuations in power generations (such as wind) [29]. As wind speed varies on all time scales (e.g. from seconds to minutes and from months to years), the integration of fluctuating wind power generation induces additional system balancing requirements on

the operational timescale [29].

A number of studies have examined the approaches to stabilize the electricity output from wind power plants. For example, Belanger and Gagnon [30] conducted a study on the compensation of wind power fluctuations by using hydropower in Canada. Nema et al. [31] discussed the application of wind combined solar PV power generation systems and concluded that the hybrid energy system was a viable alternative to current power supply systems in remote areas. In China, He et al. [2]investigated the choices of combined power generation systems. The combinations of wind-hydro, wind-diesel, wind-solar and wind-gas power were evaluated respectively. They found that, for instance, the wind-diesel hybrid systems were used at remote areas and isolated islands. This is because the wind-diesel hybrid systems have lower generation efficiency and higher generation costs compared to other generation systems. Currently, the wind-solar hybrid systems are not economically viable for large-scale application; thus, these systems have either been used at remote areas with limited electricity demand (e.g. Gansu Subei and Qinghai Tiansuo) or for lighting in some coastal cities [2]. Liu et al. [32] adopted the EnergyPLAN model to investigate the maximum wind power penetration level in the Chinese power system. The authors derived a conclusion that approximately 26% of national power demand could be supplied by wind power by the end of 2007. However, the

authors fail to explain the provision of power reserves at different time scales due to wind power integration.

Because of the smoothing effects of dispersing wind turbines at different locations (as exemplified by Drake and Hubacek [33] for the U.K., Roques [34] for the E.U. and Kempton et al. [35] for the U.S.), the integration of wind power has a very small impact on the primary reserves which are available from seconds to minutes [36]. However, the increased reserve requirements are considerable on secondary reserves (available within 10–15 min) which mainly consist of hydropower plants and gas turbine power plants [29]. Besides, the long-term reserves, which are used to restore secondary reserves after a major power deficit, will be in operation to keep power production and consumption in balance for a longer timescale (from several minutes to several hours). In the following subsection, we examine the availability of power plants providing secondary and long-term reserves and investigate the viability of energy storage system in China.

中文

中国的风力发电–梦想还是现实?

胡巴切克

摘要

经过近几年风力发电能力的巨大增长,中国现在拥有44.7吉瓦

的风力发电。尽管最近增长率很高,而且前景光明,但在中期必须认真讨论和解决两个重要问题-网格基础设施的能力和备用系统的可用性。

研究表明,只有相对较小的投资份额用于改善和扩展电力基础设施,这是向最终用户传输清洁风能的前提。此外,备用系统在地理上距离潜在的风力发电站太远,或者目前在财务上不可行。最后,将风力发电引入以煤炭为主的能源生产系统并非没有问题。燃煤电厂的频繁升降会导致能源效率降低和排放增加,这很可能抵消了部分风力发电所节省的排放量。

当前的电力系统严重依赖于独立运作但国有的能源公司优化其系统部分,这在一定程度上与构建支持可再生能源技术的强大系统不兼容。因此,建议采取战略,自上而下的协调和激励措施以改善整体电力基础设施。

关键词:风力,中国,电网,备用系统

1.引言

在过去的十年中,中国的风能产业经历了快速的增长。自2006年第一部《可再生能源法》颁布以来,到2010年底,风能的累计装机容量达到44.7吉瓦。2010年新装机容量达到18.9吉瓦,约占全球新风车的49.5%。尽管来自不同来源的估算不同,但中国的风能潜力巨大。根据贺等人的研究,可利用的风能潜力在陆上为600–1000 GW,海上为100–200 GW。在不考虑风能的局限性(如可变功率输出和季节变化)的情况下,McElroy等人得出的结论是,如果中国政

中英文文献翻译

毕业设计(论文)外文参考文献及译文 英文题目Component-based Safety Computer of Railway Signal Interlocking System 中文题目模块化安全铁路信号计算机联锁系统 学院自动化与电气工程学院 专业自动控制 姓名葛彦宁 学号 200808746 指导教师贺清 2012年5月30日

Component-based Safety Computer of Railway Signal Interlocking System 1 Introduction Signal Interlocking System is the critical equipment which can guarantee traffic safety and enhance operational efficiency in railway transportation. For a long time, the core control computer adopts in interlocking system is the special customized high-grade safety computer, for example, the SIMIS of Siemens, the EI32 of Nippon Signal, and so on. Along with the rapid development of electronic technology, the customized safety computer is facing severe challenges, for instance, the high development costs, poor usability, weak expansibility and slow technology update. To overcome the flaws of the high-grade special customized computer, the U.S. Department of Defense has put forward the concept:we should adopt commercial standards to replace military norms and standards for meeting consumers’demand [1]. In the meantime, there are several explorations and practices about adopting open system architecture in avionics. The United Stated and Europe have do much research about utilizing cost-effective fault-tolerant computer to replace the dedicated computer in aerospace and other safety-critical fields. In recent years, it is gradually becoming a new trend that the utilization of standardized components in aerospace, industry, transportation and other safety-critical fields. 2 Railways signal interlocking system 2.1 Functions of signal interlocking system The basic function of signal interlocking system is to protect train safety by controlling signal equipments, such as switch points, signals and track units in a station, and it handles routes via a certain interlocking regulation. Since the birth of the railway transportation, signal interlocking system has gone through manual signal, mechanical signal, relay-based interlocking, and the modern computer-based Interlocking System. 2.2 Architecture of signal interlocking system Generally, the Interlocking System has a hierarchical structure. According to the function of equipments, the system can be divided to the function of equipments; the system

风电专业术语英文对照及解释

风电专业术语中英对照及解释 经电气网小编整理,下面是有关风电的一些专业术语的英汉对照及解释,希望对各位有用哦。 1.风能 /wind energy 空气流动所具有的能量。 2.风能资源 /wind energy resources 大气沿地球表面流动而产生的动能资 源。 3.空气的标准状态 /standard atmospheric state 空气的标准状态是指空 气压力为101 325Pa,温度为15℃(或绝对288.15K),空气密度1.225kg/m 3 时的空气状态。 4.风速 /wind speed 空间特定点的风速为该点空气在单位时间内所流过的 距离。 5.平均风速 /average wind speed 给定时间内瞬时风速的平均值。 6.年平均风速 /annual average wind speed 时间间隔为一整年的瞬时风速 的平均值。 7.最大风速 /maximum wind speed 10分钟平均风速的最大值。 8.极大风速 /extreme wind speed 瞬时风速的最大值。 9.阵风 /gust 超过平均风速的突然和短暂的风速变化。 10.年际变化 /inter-annual variation 以30年为基数发生的变化。风速年 际变化是从第1年到第30年的年平均风速变化。 11.[风速或风功率密度]年变化 /annual variation 以年为基数发生的变化。 风速(或风功率变化)年变化是从1月到12月的月平均风速(或风功率密度)变化。 12.[风速或风功率密度]日变化 /diurnal variation 以日为基数发生的变 化。月或年的风速(或风功率密度)日变化是求出一个月或一年内,每日同一钟点风速(或风功率密度)的月平均值或年平均值,得到0点到23点的风速(或风功率密度)变化。 风切变 /wind shear 风速在垂直于风向平面内的变化。 13.风切变指数 /wind shear exponent 用于描述风速剖面线形状的幂定律指 数。 14.风速廓线 /wind speed profile, wind shear law 又称“风切变律”, 风速随离地面高度变化的数学表达式。 15.湍流强度 /turbulence intensity 标准风速偏差与平均风速的比率。用 同一组测量数据和规定的周期计算。 16.年风速频率分布 /annual wind speed frequency distribution 在观测 点一年时间内,相同的风速发生小时数之和占全年总小时数的百分比与对应风速的概率分布函数。 17.威布尔分布 /Weibull distribution 经常用于风速的概率分布函数,分 布函数取决于两个参数,控制分布宽度的形状参数和控制平均风速分布的尺度参数。 18.瑞利分布 /Rayleigh distribution 控制分布宽度的形状参数值为2的威 布尔分布,分布函数取决于一个调节参数——尺度参数,它控制平均风速的分布。 19.风功率密度 /wind power density 与风向垂直的单位面积中风所具有的

文献翻译英文原文

https://www.360docs.net/doc/4f18852081.html,/finance/company/consumer.html Consumer finance company The consumer finance division of the SG group of France has become highly active within India. They plan to offer finance for vehicles and two-wheelers to consumers, aiming to provide close to Rs. 400 billion in India in the next few years of its operations. The SG group is also dealing in stock broking, asset management, investment banking, private banking, information technology and business processing. SG group has ventured into the rapidly growing consumer credit market in India, and have plans to construct a headquarters at Kolkata. The AIG Group has been approved by the RBI to set up a non-banking finance company (NBFC). AIG seeks to introduce its consumer finance and asset management businesses in India. AIG Capital India plans to emphasize credit cards, mortgage financing, consumer durable financing and personal loans. Leading Indian and international concerns like the HSBC, Deutsche Bank, Goldman Sachs, Barclays and HDFC Bank are also waiting to be approved by the Reserve Bank of India to initiate similar operations. AIG is presently involved in insurance and financial services in more than one hundred countries. The affiliates of the AIG Group also provide retirement and asset management services all over the world. Many international companies have been looking at NBFC business because of the growing consumer finance market. Unlike foreign banks, there are no strictures on branch openings for the NBFCs. GE Consumer Finance is a section of General Electric. It is responsible for looking after the retail finance operations. GE Consumer Finance also governs the GE Capital Asia. Outside the United States, GE Consumer Finance performs its operations under the GE Money brand. GE Consumer Finance currently offers financial services in more than fifty countries. The company deals in credit cards, personal finance, mortgages and automobile solutions. It has a client base of more than 118 million customers throughout the world

风力发电外文翻译

毕业设计(论文)外文资料翻译 专业:电气工程及其自动化 姓名: 学号: 外文出处:Xu, G., Sankar, L. N., “Effects of Transition, Turbulence, and Yaw on the Performance of Horizontal Axis Wind Turbines”, AIAA-2000-0048, Prepared for the 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10-13, 2000, p. 259-265. (用外文写) 附件: 1.外文资料翻译译文;2.外文原文。

指导教师评语: 签名: 年月日

附件1 水平轴风力发电机性能过渡,湍流和偏航的影响 Guanpeng徐和Lakshmi N.桑卡尔 航空航天工程学院 摘要 最近出示的是改善的功能改善的混合动力车的的水平轴风力涡轮机(HAWT)配置Navier-Stokes势流建模方法。研究的重点在三个问题上:湍流模型和转换模型,预测转子规定性能唤醒状态以及非轴向流(偏航)发电的影响,比较转子在国家可再生能源实验室(NREL)的测试与测量数据. 简介 水平轴风力涡轮机空气动力学的计算研究工作是在佐治亚理工学院进行。本研究着重于了解影响风力涡轮机在非轴向和非均匀流入的流动机制的性能,也解决了高效的计算技术的发展,以补充现有的联合叶片元素动量理论方法。 这项工作是一个扩展的3-D的混合Navier-Stokes/potential流动求解,并已在佐治亚理工学院的水平轴风力发电机(HAWT)进行改善。在这种方法中的三维非定常可压缩Navier-Stokes方程的解决只能在周围的转子叶片上的贴体网格这片一个很小的区域,。远离叶片的和潜在的流动方程需要从叶片脱落的涡模拟涡细丝涡留下的Navier-Stokes地区的求解。这些细丝自由对流的地方流动。由于复杂的Navier-Stokes方程的计算只在附近的风力涡轮机叶片的地区,因此跟踪的涡利用拉格朗日方法,这是更有效的Navier-Stokes方程的方法级。 基本的Navier-Stokes方程混合势流的方法和其应用程序HAWT下轴流条件的记录在AIAA-99-0042(徐和Sankar,1999年) . 本研究范围 本文介绍了近期的流动求解的增强功能和应用程序配置的兴趣。增强集中在以下三个方面:过渡和湍流模型,物理一致唤醒建模,建模的偏航效果。下文简要讨论这三个领域。 过渡和湍流的建模问题: 研究两种湍流模型和两个过渡模型的预测性能影响的进行评估。一个显示Spalart-Allmaras湍流方程湍流模型(书珥等,1998),另一个对基线鲍德温 - 洛马克斯零方程湍流模型进行了研究。 HAWT系统中遇到低的相对速度和小和弦的长度的后果会使一个显着的部分可

英文文献翻译

中等分辨率制备分离的 快速色谱技术 W. Clark Still,* Michael K a h n , and Abhijit Mitra Departm(7nt o/ Chemistry, Columbia Uniuersity,1Veu York, Neu; York 10027 ReceiLied January 26, 1978 我们希望找到一种简单的吸附色谱技术用于有机化合物的常规净化。这种技术是适于传统的有机物大规模制备分离,该技术需使用长柱色谱法。尽管这种技术得到的效果非常好,但是其需要消耗大量的时间,并且由于频带拖尾经常出现低复原率。当分离的样本剂量大于1或者2g时,这些问题显得更加突出。近年来,几种制备系统已经进行了改进,能将分离时间减少到1-3h,并允许各成分的分辨率ΔR f≥(使用薄层色谱分析进行分析)。在这些方法中,在我们的实验室中,媒介压力色谱法1和短柱色谱法2是最成功的。最近,我们发现一种可以将分离速度大幅度提升的技术,可用于反应产物的常规提纯,我们将这种技术称为急骤色谱法。虽然这种技术的分辨率只是中等(ΔR f≥),而且构建这个系统花费非常低,并且能在10-15min内分离重量在的样本。4 急骤色谱法是以空气压力驱动的混合介质压力以及短柱色谱法为基础,专门针对快速分离,介质压力以及短柱色谱已经进行了优化。优化实验是在一组标准条件5下进行的,优化实验使用苯甲醇作为样本,放在一个20mm*5in.的硅胶柱60内,使用Tracor 970紫外检测器监测圆柱的输出。分辨率通过持续时间(r)和峰宽(w,w/2)的比率进行测定的(Figure 1),结果如图2-4所示,图2-4分别放映分辨率随着硅胶颗粒大小、洗脱液流速和样本大小的变化。

风力发电专业英语

风力发电机wind turbine 风电场wind power station wind farm 风力发电机组wind turbine generator system WTGS 水平轴风力发电机horizontal axis wind turbine 垂直轴风力发电机vertical axis wind turbine 轮毂(风力发电机)hub (for wind turbine) 机舱nacelle 支撑结构support structure for wind turbine 关机shutdown for wind turbine 正常关机normal shutdown for wind turbine 紧急关机emergency shutdown for wind turbine 空转idling 锁定blocking 停机parking 静止standstill 制动器brake 停机制动parking brake 风轮转速rotor speed 控制系统control system 保护系统protection system 偏航yawing 设计和安全参数design situation 设计工况design situation 载荷状况load case 外部条件external conditions 设计极限design limits 极限状态limit state 使用极限状态serviceability limit states 极限限制状态ultimate limit state 最大极限状态ultimate limit state 安全寿命safe life 严重故障catastrophic failure 潜伏故障latent fault dormant failure 风特性wind characteristic 风速wind speed 风矢量wind velocity 旋转采样风矢量rotationally sampled wind velocity 额定风速rated wind speed 切入风速cut-in speed 切出风速cut-out speed 年平均annual average 年平均风速annual average wind speed 平均风速mean wind speed 极端风速extreme wind speed 安全风速survival wind speed 参考风速reference wind speed 风速分布wind speed distribution 瑞利分布RayLeigh distribution 威布尔分布Weibull distribution 风切变wind shear 风廓线风切变律wind profile wind shear law 风切变指数wind shear exponent 对数风切变律logarithmic wind shear law 风切变幂律power law for wind shear 下风向down wind 上风向up wind 阵风gust 粗糙长度roughness length 湍流强度turbulence intensity 湍流尺度参数turbulence scale parameter 湍流惯性负区inertial sub-range 风场wind site 测量参数measurement parameters 测量位置measurement seat 最大风速maximum wind speed 风功率密度wind power density 风能密度wind energy density 日变化diurnal variation 年变化annual variation 轮毂高度hub height 风能wind energy 标准大气状态standard atmospheric state 风切变影响influence by the wind shear 阵风影响gust influence 风速频率frequency of wind speed 环境environment 工作环境operational environment 气候climate 海洋性气候ocean climate 大陆性气候continental climate 露天气候open-air climate 室内气候indoor climate 极端extreme 日平均值daily mean 极端最高extreme maximum 年最高annual maximum 年最高日平均温度annual extreme daily mean of temperature 月平均温度mean monthly temperature 空气湿度air humidity 绝对湿度absolute humidity 相对湿度relative humidity 降水precipitation 雨rain 冻雨freezing rain 霜淞rime 雨淞glaze 冰雹hail 露dew

英文文献及中文翻译

毕业设计说明书 英文文献及中文翻译 学院:专 2011年6月 电子与计算机科学技术软件工程

https://www.360docs.net/doc/4f18852081.html, Overview https://www.360docs.net/doc/4f18852081.html, is a unified Web development model that includes the services necessary for you to build enterprise-class Web applications with a minimum of https://www.360docs.net/doc/4f18852081.html, is part of https://www.360docs.net/doc/4f18852081.html, Framework,and when coding https://www.360docs.net/doc/4f18852081.html, applications you have access to classes in https://www.360docs.net/doc/4f18852081.html, Framework.You can code your applications in any language compatible with the common language runtime(CLR), including Microsoft Visual Basic and C#.These languages enable you to develop https://www.360docs.net/doc/4f18852081.html, applications that benefit from the common language runtime,type safety, inheritance,and so on. If you want to try https://www.360docs.net/doc/4f18852081.html,,you can install Visual Web Developer Express using the Microsoft Web Platform Installer,which is a free tool that makes it simple to download,install,and service components of the Microsoft Web Platform.These components include Visual Web Developer Express,Internet Information Services (IIS),SQL Server Express,and https://www.360docs.net/doc/4f18852081.html, Framework.All of these are tools that you use to create https://www.360docs.net/doc/4f18852081.html, Web applications.You can also use the Microsoft Web Platform Installer to install open-source https://www.360docs.net/doc/4f18852081.html, and PHP Web applications. Visual Web Developer Visual Web Developer is a full-featured development environment for creating https://www.360docs.net/doc/4f18852081.html, Web applications.Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.360docs.net/doc/4f18852081.html,ing the development tools in Visual Web Developer,you can develop https://www.360docs.net/doc/4f18852081.html, Web pages on your own computer.Visual Web Developer includes a local Web server that provides all the features you need to test and debug https://www.360docs.net/doc/4f18852081.html, Web pages,without requiring Internet Information Services(IIS)to be installed. Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.360docs.net/doc/4f18852081.html,ing the development tools in Visual Web Developer,you can develop https://www.360docs.net/doc/4f18852081.html, Web pages on your own computer.

风力发电机用专业英语中文对照

风力机 wind turbine 风电场 wind power station wind farm 风力发电机组 wind turbine generator system WTGS 水平轴风力机 horizontal axis wind turbine 垂直轴风力机 vertical axis wind turbine 轮毂(风力机) hub (for wind turbine) 机舱 nacelle 支撑结构 support structure for wind turbine 关机 shutdown for wind turbine 正常关机 normal shutdown for wind turbine 紧急关机 emergency shutdown for wind turbine 空转 idling 绝对湿度 absolute humidity 加速试验 accelerated test 加速 accelerating 加速度幅值 acceleration amplitude 验收试验 acceptance test

精度(风力发电机组) accuracy(for WTGS) 确认 acknowledgement 声的基准风速 acoustic reference wind speed 临界功率 activation power(for wind turbines) 临界转速 activation rotational speed 有功电流 active current 有功功率 active power 主动偏航 active yawing 齿轮的变位 addendum modification on gears 地址 address 可调钳 adjustable pliers 调整板 adjusting plate 风轮空气动力特性 aerodynamic characteristics of rotor 气动弦线 aerodynamic chord of airfoil 老化试验 ageing tests 空气制动系 air braking system 空气湿度 air humidity 透气性 air permeability 翼型 airfoil 接闪器 air-termination system 告警 alarm 交流电流 alternating current 交流电机 alternating current machine 交流电压 alternating voltage 海拔 altitude 环境温度 ambient temperature 放大器 amplifier 幅值 amplitude

仪表板外文文献翻译、中英文翻译、外文翻译

Dashboard From Wikipedia, the free encyclopedia This article is about a control panel placed in the front of the car. For other uses, see Dashboard (disambiguation). The dashboard of a Bentley Continental GTC car A dashboard (also called dash, instrument panel (IP), or fascia) is a control panel located directly ahead of a vehicle's driver, displaying instrumentation and controls for the vehicle's operation. Contents 1.Etymology 2.Dashboard features 3.Padding and safety 4.Fashion in instrumentation 5.See also 6.References Etymology Horse-drawn carriage dashboard Originally, the word dashboard applied to a barrier of wood or leather fixed at the front of a horse-drawn carriage or sleigh to protect the driver from mud or other debris "dashed up" (thrown up) by the horses' hooves.[1] Commonly these boards did not perform any additional function other than providing a convenient handhold for ascending into the driver's seat, or a small clip with which to secure the reins when not in use. When the first "horseless carriages" were constructed in the late 19th century, with engines mounted beneath the driver such as the Daimler Stahlradwagen, the simple dashboard was retained to protect occupants from debris thrown up by the cars' front wheels. However, as car design evolved to position the motor in front of the driver, the dashboard became a panel that protected vehicle occupants from the heat and oil of the engine. With gradually increasing mechanical complexity, this panel formed a convenient location for the placement of gauges and minor controls, and from this evolved the modern instrument panel,

风力发电机专题英文翻译

本科生毕业设计(论文)外文翻译毕业设计(论文)题目:10KW水平轴风力发电机 外文题目:Criterion of aerodynamic performance of large-scale offshore horizontal axis wind turbines 译文题目:海上大型水平轴风力机的气动性能标准 学生姓名:董云盼 专业:机自1103班 指导教师姓名:金映丽 评阅日期:2015年3月日

海上大型水平轴风力机的气动性能标准 程兆雪,李仁年,杨从新,胡文瑞 (1.兰州理工大学 2.力学研究所,中国科学院,北京100080,PR中国) (供稿胡文瑞) 摘要:以海上风电项目为背景,本文研究大容量风力机转子的气动性、几何特性(1至10兆瓦),和主要的特征参数,如额定风速度,叶尖速度,和转子的牢固性。研究表明,一个高性能风力发电机组的基本标准是一个可能的最高年度可用能量模式因素和以最小可能的尺寸,捕获最大风能生产的年最大功率。我们研究影响其模式因素和在中国的海洋气象环境作用下影响风力涡轮机转子的几何形状的上述三个参数。获得气动和几何的变化模式,分析参数,并作比较,最后形成评价大型海上风力涡轮机转子的空气动力性能的基础。 关键词:海上风电项目水平轴风力发电机转子的空气动力学设计年均的可用能源格局因素功率系数风力涡轮转子风力涡轮叶片 1 引言 海上风力发电是全世界风能开发的前沿技术。西欧国家在20世纪90年代,为了探讨技术问题,开始安装大型海上风力发电机。因为丰富的风资源,风速和风向的稳定性,和没有严格的环境保护的要求,这些国家在本世纪初制定了一系列的大型海上风能项目开发方案。到2020年,大型海上风力发电机的整体输出将达到 150 000兆瓦。和欧洲国家相比,美国和加拿大的内陆风能发展潜能很巨大,但是,在这两个国家也建立了总产出达1 000兆瓦的离岸风力农场。在中国,在技术进口,吸收,自主制作的政策下,中国大陆成功地建设了许多安装有1.5兆瓦单机组风力涡轮机的风力农场(内蒙古、新疆、甘肃和宁夏的沙漠中)。也许是因为中国仍有足够的沙漠能够继续开发风能源,制造兆瓦级风电机组技术和内陆风力发电厂的装备技术已经基本上掌握,因此海上风电项目尚不算作一项紧迫的任务。然而,在中国一些有远见的人,已经开始着手海上风电发展的项目。对海上风能资源已做了初步调研和分析,并且对发展海上风能项目存在的潜在挑战也已经在经济和技术上做了进一步的探讨。其中特别指出,发展海上风电项目应该成为中国的一项迫切任务,并且海洋风电场也应

英文文献及翻译

Research Article Mechanical Properties of Fiber Reinforced Lightweight Concrete Containing Surfactant Y oo-Jae Kim, Jiong Hu, Soon-Jae Lee, and Byung-Hee Y ou Department of Engineering Technology, Texas State University, San Marcos, TX 78666, USA Correspondence should be addressed to Y oo-Jae Kim, yk10@https://www.360docs.net/doc/4f18852081.html, Received 21 June 2010; Accepted 24 November 2010 Academic Editor: Tarun Kant Copyright ? 2010 Y oo-Jae Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Fiber reinforced aerated lightweight concrete (FALC) was developed to reduce concrete’s density and to improve its fire resistance, thermal conductivity, and energy absorption. Compression tests were performed to determine basic properties of FALC. The primary independent variables were the types and volume fraction of fibers, and the amount of air in the concrete. Polypropylene and carbon fibers were investigated at 0, 1, 2, 3, and 4% volume ratios. The lightweight aggregate used was made of expanded clay. A self-compaction agent was used to reduce the water-cement ratio and keep good workability. A surfactant was also added to introduce air into the concrete. This study provides basic information regarding the mechanical properties of FALC and compares FALC with fiber reinforced lightweight concrete. The properties investigated include the unit weight, uniaxial compressive strength, modulus of elasticity, and toughness index. Based on the properties, a stress-strain prediction model was proposed. It was demonstrated that the proposed model accurately predicts the stress-strain behavior of FALC. 1. Introduction In the last three decades, prefabrication has been applied to small housing and tall building construction, and precast concrete panels have become one of the widely used materials in construction system. Recently, much attention has been directed toward the use of lightweight concrete for precast concrete to improve the performances, such as dead load reduction, fire resistance, and thermal conductivity, of the buildings. Additionally, the structure of a precast building should be able to resist impact loading cases, particularly earthquakes, since resisting earthquakes of these buildings under the performances is becoming an important consideration [1, 2].Many efforts have been applied toward developing high performance concrete for building structures with enhanced performance and safety. V arious types of precast concrete products, such as autoclaved aerated lightweight concrete (AALC), fiber reinforced concrete (FRC), and lightweight concrete, have been developed and experimentally verified. A number of them have been applied in full-scale build-ing structures. AALC is well known and widely accepted, but its small size and weak strength limit its use instructural elements [3]. Lightweight aggregate concretes offer strength, deadload reduction, and thermal conductivity,

相关文档
最新文档