拉曼光谱

拉曼光谱
拉曼光谱

拉曼光谱

引言

在瑞利和布里渊光散射现象的基础上,斯梅卡尔研究了两个能级系统对光的散射,并预言散射谱中除了入射光频率的谱线外,将在两侧出现新的谱线。1928年印度物理学家拉曼(C.V.Raman)实验发现了这个效应,即在频率不变的瑞利散射线两侧对称地排列着数条拉曼散射偏振线,它们的频移量与红外振动频率相等而与所用光的频率无关。几乎与此同时,前苏联的物理学家曼杰斯塔姆和兰茨别尔格也观察到类似的现象。拉曼由于这项成就,荣获1930年诺贝尔物理奖。

拉曼散射是单色光对分子或晶体极化作用产生的一种非弹性散射,其散射线的数目,频移量的大小,谱线强度及偏振特性反映了散射分子的结构、其中原子的空间排列和相互作用的强弱,因此拉曼散射光谱揭示了分子和晶体的结构、组分、排列对称性及相互作用的信息。被广泛用于物质鉴定和分子结构有关的学科领域,为此现已发展了各种激光拉曼技术并已被用于相关的技术之中。

实验目的

1、掌握拉曼散射的基本原理,初步学会根据拉曼散射光谱来确定分子结构及其简正振动类型。

2、掌握拉曼散射光谱的实验技术。

实验原理

当受光照射时,介质对光除反射、吸收和透射之外,总有一部分向四周散射。相对于入射光的频率或波数改变可分为三类散射。第一类是散射光的频率与入射光的基本相同,频率变化小于3×105Hz,相应的波数变化小于10-5cm-1,通常称它为瑞利(Raylei gh)散射;第二类是频率变化约为3×109Hz,波数变化约为0.1cm-1,称为布里渊(Brillouin)散射,第三类的频率或波数变化比较大,频率变化大于3×1010Hz,波数变化大于1cm-1,这就是拉曼(Raman)散射。拉曼散射对应于分子的转动、振动能级之间的跃迁范围,它是由印度科学家拉曼(C.V.Raman)于1928年发现的。

从散射光的强度来看,瑞利散射最强,是入射光的10-3左右,拉曼散射最弱,通常小于入射光的10-6,因此当强度、单色性和方向性极好的激光的诞生,以及高质量、低杂散光的单色仪和高灵敏度的微弱信号检测系统出现以后,拉曼散射光谱技术才得以迅速发展。除了传统的线性拉曼光谱技术外,还发展了许多新的线性和非线性激光拉曼光谱技术,目前它已成为科研和应用技术强有力的工具,被广泛地应用于物质鉴定、分子结构等物理、化学、地学、生命科学以及环境科学等领域。

实验得到的拉曼散射光谱图,在外观上有三个明显的特征:第一,拉曼散射谱线的波数随入射光的波数0而变化,但对同一样品,同一拉曼线的波数差△=-0则保持

不变。第二,在以波数为单位的拉曼光谱图上,以入射光波数为中心点,两侧对称分列着拉曼谱线,△<0的称斯托克斯(stokes)线,△>0的称反期托克斯(anti-stokes)

线。第三,一般情况下斯托克斯线的强度都大于反斯托克斯线。

下面,对拉曼散射的原理,并以CCl4分子为例,说明拉曼散射光谱与其分子的结构、简正振动模式的对称性之间的关系作一简要介绍。

1、拉曼散射的经典解释。

在入射光场作用下,介质分子将被极化产生感应电偶极矩。当入射光场不太强时,感应电偶极矩P与入射光电场E呈线性关系

P=α·E(1)

式中α称为极化率张量,通常情况P和E不在同一方向,因此是一个3×3矩阵的二阶张量

=(2)

它通常是一个实对称矩阵,即有αij=αji,αij的取值是由具体介质的性质决定的,通常称不为零的αij为拉曼活性的。

分子极化率张量α是分子内部坐标的函数,如果分子中的原子在平衡位置附近振动,则振动分子的极化率将与平衡状态时的极化率不同。当振动幅度不大,即为简谐振动时,分子第k个振动的简正坐标可表示为

Qk=Qk0cos(ωk+φk)(3)

此时αij将受到分子振动的微扰,它可用对简正坐标作泰勒级数展开表示

αij=(αij)0+Qk+QkQl+ (4)

式中右方第一项(αij)0为零级项,它对应于分子处于平衡状态时的值,因而将对应不存

在频移的瑞利散射。第二项中的是极化率对振动频率为ωk的简正坐标的一级导数,表示在频率为ωk的简正振动中分子电极化率因微扰发生的变化,它将产生通常的(线性)拉曼散射。因此,拉曼散射,即拉曼活性,是同分子的某个振动模式中电极化率是否发生变化相关联的,通常就称分子振动时导致电极化率变化的物质为“拉曼活性”的,与之相比,分子的红外光谱则是分子振动或转动中电偶极矩发生变化产生的,此时该物质称为“红外活性”的,拉曼散射光谱与红外光谱的实验技术和方法不相同,不同分子或同一分子的振动和转动模式或者是拉曼活性,或者是红外活性的,因此两者结合互补,可以得到分子结构的完整资料。

下面具体解释拉曼散射光谱。频率为ω0的入射光场可表示为

E=E0cosω0t(5)

它对分子产生的感应电偶极矩为

P=αij·E=(αij)0E0cosω0t+Qk0E0cosω0tcos(ωkt+φk)

=α0E0cosω0t+Q0E0cos[(ω0-ωk)t+φk]+Q0E0cos[(ω0+ωk)t+φk]

=P0(ω0)+Pk(ω0-ωk)+Pk(ω0+ωk)(6)

最后一等式中各项与前一等式中各项一一对应。它表明,入射光场对介质分子的极化作用将

产生三个感应偶极矩,其频率ω0、 ω0-ωk 和ω0+ωk 分别对应瑞利、斯托克斯拉曼和反斯托克斯拉曼散射。同时我们看到,具有简正振动的散射体的散射光场,可以视为入射光波被该散射体调制的结果。因此散射光波除仍以入射光频ω0辐射外,还产生与散射体振动频率ωk 有关的差频ω0-ωk 及和频ω0+ωk 的光。

2、拉曼散射的量子解释。

在量子力学中,频率为ω0的入射单色光视作具有能量ω0的光子,与振动分子相互作用可视为碰撞过程。有两种碰撞:弹性碰撞和非弹性碰撞。在弹性碰撞中,不发生能量交换,光子只改变运动方向,这就是瑞利散射。非弹性碰撞则不仅改变光子的运动方向,而且发生能量交换,这就是拉曼散射。

发生碰撞时,能量交换过程可用能级跃迁图来说明图(1)。在基态和激发态均有大量分子,当它们受能量ω0的入射光子碰撞后,激发到各自的激发虚态。由于激发虚态不稳定,故迅即自发向下跃迁,辐射一个光子。若光子能量仍为ω0,则分子仍回到初始能级,这即对应弹性碰撞的瑞利散射,若基态的分子通过碰撞后跃迁到激发态上,

则辐射光的频率为(ω0-ωk ),这种非弹性碰撞所产生的散射光为散托克斯线;若激发态的分子通过碰撞跃迁到基态,则辐射光的频率为(ω0+ωk ),这种非弹性碰撞所产生的散射光为反射托克斯线。

量子力学解释还可很好地说明斯托克斯线光强大于反斯托克斯线的问题。因为在热平衡时各能级的分子数遵守玻尔兹曼分布律,该分子体系产生的斯托克斯线和反斯托克斯线的强度应分别对应各自能级上的分子数,因此两者的强度比是

Iks /Ikas ∝ex p(ωk /k T) (7)

通常ex p(ωk /k T)》1,因而量子理论正确地说明了斯托克斯线比反斯托克斯线强度大得多的问题。

3、拉曼散射的偏振态和退偏度。

许多物质的分子通常有确定的空间取向,因此对某一分子而言,不论入射光是否偏振光,该分子的拉曼散射也将呈某种偏振状态,而且即使入射线偏振光,

其散射光的偏振方向也通

常不一定与其一致,它们之间的关系是由微商极化率张量的具体形式确定的,因此对拉曼散射偏振状态的测量,可确定分子结构的类型及其相应的振动方式。

然而在产生光散射的入射光照射区域中有大量的分子。每个分子虽然有确定的空间取向,但由于各个分子的空间取向不同,在宏观上则呈现无规分布,因此即使入射平面偏振光,整体散射光则是非完全偏振的,这一现象称为散射光的“退偏”,“退偏度”便是定量描述退偏程度的物理量。

Ez=0,Ex=Ey≠0

分子产生的感应偶极矩为

Px=αxxEx+αxyEy

Py=αyxEx+αyyEy

Pz=αzxEx+αzyEy

若只探测沿x方向传播的散射光,则Px=0,只有Py和Pz产生的散射光,它们的强度可分别用Iy和Iz表示,因为分子有某一空间取向,故通常Iy与Iz不相等,因此定义

ρn =(8)

为自然光入射时散射光的退偏振度。当入射光为线偏振光则用符号ρp=表示之。若入射光沿y方向偏振,Ex=0,Ey≠0,由于Ey与x方向散射光垂直,故用符号ρ⊥表示,同理若入射光沿x方向偏振,即Ey=0,Ex≠0,由于Ex平行于散射光的方向,故用符号ρ∥表示。

理论计算已得各退偏度有如下结果:

ρn=(9)

ρ⊥=ρ∥=(10)

式中称平均电极化率,γ称各向异性率,为极化率各向异性的量度。

实验测得的退偏度可判断分子振动的对称性。例如对某振动,当ρn=ρ⊥=ρ∥=0时,即Iy=0,表明此时散射是完全偏振的,因此分子的各向异性率γ必为零;当ρn=,

ρ⊥=ρ∥=时,则散射光是完全退偏的,

而当0<ρn<,0<

ρ⊥=ρ∥<之间时,散射光就是部分偏振的。散射光这种偏振特性反映了分子振动模式的对称性质。例如某个振动模式拉曼线的退偏度ρ=0,则说明不管入射光是否为偏振光,它只激发感应偶极矩的Pz分量,而Pz的散射光在xy平面2π角度内具有相同的最大强度,说明该振动必是对称振动。

4、CCl4(四氯化碳)分子的对称结构及振动模式。

本实验主要通过CCl4分子的振动拉曼光谱,对其散射线的波数、数目及其偏振特性的研究,来分析该分子的对称结构及振动模式。

(1)CCl4分子结构及其对称性

该分子由一个碳原子和四个氯原子构成。它们构成正四面体结构图(3),碳原子位于正四面体中心,四个氯原子位于四面体的四个顶点。

分子的对称性是指分子对应于某一几何元素(点、线、面)进行某种操作后,所有原子在空间中的构型与操作前的构型是不可区分或者处于等价构型时,则称此分子具有该种对称性。CCl4分子的构型属于Td群,即它有13根对称轴,24个对称操作。这24个对称操作又可归属于5种对称素,对称素是分子对称性质的更简洁的表述。CCl4分子的5种对称素是

E,3Cm2,8Cj±3,6iCp2,6iCm±4

这些对称素的含义是

E:不动操作。

Cn:旋转轴,下标n表示转角θ=。

图(3)

i:中心反演。

m:旋转轴方位是x,y,z轴。

j:旋转轴方位在原点的体对角线方向,j=1,2,3,4。

p:旋转轴方位在过原点O,立方体相对棱边中点联线方向,p=a,b,c,d,e,f。

+或-:顺时针或逆时针旋转方向。

每个对称素前的数字表示该对称素包含的对称操作数。

(2)CCl4分子的振动模式及其拉曼谱

由N个原子构成的分子有3N个自由度,除去3个平动自由度和3个转动自由度外,分子具有3N-6个振动自由度。因此CCl4分子具有9个简正振动方式。根据分子的对称性,这9个简正振动可归成下列四类,在同一类中的各振动方式具有相同的能量,即它们是简并的。

(i)1或记为A1 C原子不动,Cl原子沿与C原子联线方向作伸缩振动,故此类振动只有一种振动方式(见图4(a))。

(ii)2或记为EC原子不动,一种是相邻两对Cl原子在与C原子联线方向上作相反振动,另一种是在该联线垂直方向上作相反振动,故此类振动是二重简并的(图4(b))。

(iii)3或记为T1四个Cl原子均作与C原子反向运动,由于是三维空间,故它是有三种振动方式的三重简并(图4(c))。

(iv)4或记为T2 C原子不动,任意两对Cl原子组合,作伸张与压缩运动,由于是四个Cl原子,故它是有三种组合方式的三重简并振动(图4(d))。

每一类简并对应同一条谱线,故CCl4分子振动拉曼光谱有四条基频谱线。考虑到振动之间可能相互耦合引起的微扰,有的谱线可分裂成两条,这即是CCl4拉曼谱中最弱线分裂成两条的原因。根据实验,测得它们的强度依次为1>4> 2 >3。

图(4)

与CCl4分子结构类似的AB4类分子,由于它们具有相同的空间结构与对称性,故拉曼光谱的基本面貌与特征,包括拉曼光谱线数目,强度、退偏度等都具有类似性。因而可以运用这种类似性,将一个结构未知的分子的拉曼光谱与结构已知的分子拉曼光谱进行比对,以确定该分子的结构及其对称性。然而应该指出的是,虽然它们的分子结构可能相同,但在不同分子中其原子、原子间距以及原子间的相互作用必然存在某些差异,因而它们的拉曼光谱在细节上是有差异的。此外,外界条件的变化也会对分子结构和运动产生影响,进而使其拉曼光谱产生相应的变化,因此拉曼光谱也可用来研究物质的浓度、温度和压力等的效应。

实验仪器

实验内容

1、掌握各仪器的原理和技术,调节各仪器至最佳状态。

2、记录CCl4分子的振动拉曼光谱和偏振光谱,分析和辨认各谱线所对应的简正振动类型和对称性质。

3、记录未知样品的拉曼光谱并进行分析。

4、对本实验进行深入分析、思考、讨论。

显5峰,所以序号5、6、7、8对应的峰是斯托克斯线;瑞利散射左侧存在较明显3个峰,即序号1、2、3对应的峰是反斯托克斯线。

又CCl4分子振动拉曼光谱应有4个基本谱线,根据实验中测得各谱线的相对强度依次为v1>v4>v2>v3。考虑到振动之间可能相互耦合引起的微扰,有的谱线可分裂成两条,这即是CCl4拉曼谱中最弱线分裂成两条的原因。

所以可以确定序号3、7对应的峰振动模式为v1;序号2、6对应的峰振动模式为v4;序号1、5对应的峰振动模式为v2;序号8对应的峰振动模式为v3。

思考题

1、为什么随着温度的升高,反斯托克斯线的强度会增大?

答:由热力学中的玻尔兹曼分布律可知,该分子体系产生的斯托克斯线和反斯托克斯线

的强度应分别对应各自能级上的分子数,因此两者的强度比是

)

/

exp(

/

I kT

I

k

kas

ks

ω

温度T升高时,该比值变小,即反斯托克斯线的强度会增大。

2、拉曼效应和荧光过程有哪些相同点和不同点?

答:相同点:拉曼效应和荧光过程都是光致发光的一种,一旦停止入射光,发光现象也随之立即消失。

不同点:拉曼效应的机制和荧光过程,并不是吸收激发光。

拉曼效应源于光子与振动分子的非弹性碰撞,在瑞利散射两侧对称的排列着数条拉曼散射线;而荧光过程则有多种机制,且只能退激发并发出比入射光的的波长长的出射光。

3、如何判断激光束照射CCl4样品处于最佳位置?

答:调节外光路使入射激光束垂直地通过放置样品的中心,并平行于双单色仪入射狭缝;调节会聚透镜L1的上下左右位置,使激光束的焦柱垂直地与集光镜L2光轴延长相交,即焦柱正好处于待测样品中心处;转动偏振旋转器P1,调节样品架位置,使激光束从各方向观察都处于样品中央,并使样品处于最佳照明状态。

4、为什么气体拉曼图上可以看到转动能级造成的拉曼线,而液体的拉曼图上一般看不到?

答:气体由于不存在平衡位置而不存在振动能级,而液体这存在;同时转动能级要比振动能级的能级差要小很多,拉曼图中又存在着背景散射,这样,气体拉曼图上可以看到转动能级造成的拉曼线,而液体的拉曼图上一般看不到。

参考文献:

[1]D.A.朗,顾本源等译,拉曼光谱学,科学出版社,1983年。

[2]辛厚文,分子对称性与振动光谱选律,安徽科学技术出版社,1982年。

拉曼光谱的原理、应用以及发展

拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外,由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器。拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。因为激光束的直径在它的聚焦部位通常只有

拉曼光谱技术

拉曼光谱 OVERVIEW 1. Raman spectra give information on molecular vibrations and are obtained from changes in the frequency of light observed in a scattering experiment (inelastic scattering). 2. The physical picture arises from considering changes in polarizability (induced dipole moment) that arise if a vibration occurs during the time the electrons are oscillating in response to the applied radiation. 3. The gross selection rule is that the vibrational motion must produce a change in the polarizability of the molecule. 4. The anisotropy of the polarization of the scattering can be measured. Comparison of the spectra polarized perpendicular and parallel to the incident radiation gives information on the symmetry of the vibrational motions. 5. Raman spectra can be obtained in water. This is a major advantage over infrared spectra. 6. Resonance Raman spectra result when the wavelength of the exciting light falls within an electronic absorption band of a chromophore in the molecule. Some vibrations associated with such a chromophore may be enhanced by factors of 1000 or more. 7. The experimental parameters of a band in a spectrum are its position ( ) (which is independent of the frequency of the exciting light), its intensity (which is directly proportional to concentration), and its polarization. 8. The main biological applications of conventional Raman are very similar to those for infrared. Resonance Raman affords a means of probing selective sites in molecules. For example, in metalloproteins, Raman can give information on the nature of the ligand directly attached to the metal. 6.1 引言 拉曼光谱和红外光谱都反映了分子振动的信息,但其原理却有很大差别:红外光谱是吸收光谱,而拉曼光谱是散射光谱。红外光谱的信息是从分子对入射电磁波的吸收得到的,而拉曼光谱的信息是从入射光与散射光频率的差别得到的。拉曼光谱的突出优点是可以很容易地测量含水的样品,而且拉曼散射光可以在紫外和可见光波段量测。由于紫外光和可见光能量很强,因此其量测比红外波段要容易和优越得多。 拉曼光谱得名于印度物理学家拉曼(Raman)。1928年,拉曼首先从实验观察到单色的入射光投射到物质中后产生的散射,通过对散射光进行谱分析,首先发现散射光除了含有与入射光相同频率的光外,还包含有与入射光频率不同的光。以后人们将这种散射光与入射光频率不同的现象称为拉曼散射。拉曼因此获得诺贝尔奖。

拉曼光谱

附件二 东北师范大学研究生课程论文 论文题目拉曼光谱实验报告 课程名称固体光学性质 姓名刘楠楠学号 10200201021774 专业凝聚态物理年级 2010 院、所物理学院年月日 2011. 06.25 研究生课程论文评价标准 东北师范大学研究生院制

拉曼光谱 一、实验目的 1、掌握拉曼光谱仪的原理和使用方法;了解拉曼散射的基本原理 2、学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 3、测四氯化碳的拉曼光谱,计算拉曼频移。 二、实验仪器 RBD型激光拉曼光谱仪 三、实验原理 1.拉曼散射光谱 拉曼散射光谱(拉曼散射)指的是光子发生的一种非弹性散射现象。一束光照射在物质上,光子会被构成该物质的原子或分子散射,其中绝大部分的散射光子会以原有的频率(能量)散射出去,这部分散射属于弹性散射(瑞利散射)因为光子散射前后没有发生能量改变;但是会有小部分散射光子的能量或变大或变小发生了改变(约占总散射光子数的l/108),这种散射属于非弹性散射。拉曼散射就属于非弹性散射。拉曼散射反映的是分子的振动、转动或电子态能量的变化,在大多数实际应用中主要考虑的是振动态的拉曼散射。 拉曼散射光谱根据光子散射前后能量变化不同分属为斯托克斯散射(Stokes)和反斯托克斯散射 (a11ti-Stokes)部分。光子能量在散射后变小的为斯托克斯散射;光子能量在散射后变大的为反斯托克斯散射。区分参见图1. 图1 瑞利散射、斯托克斯散射和反斯托克斯散射

拉曼散射中的斯托克斯部分:分子与光子互作用时分子吸收了一部分光子能量,体系能量到达一个虚态后发射出的光子能量小于入射光子能量。拉曼散射光谱中斯托克斯部分的谱线在入射光谱位置的红光端外。 拉曼散射中的反斯托克斯部分:分子在与光子互作用时分子损失了一部分能量,体系能量到达一个虚态后发射出的光子能量大于入射光子能量。拉曼散射光谱中反斯托克斯部分的谱线在入射光谱位置的蓝光端外。 由于拉曼散射关注的是入射光子与散射光子之间的能量差,这个能量的差值对应着相应的振动能级,所以拉曼散射中分属于斯托克斯和反斯托克斯散射对称分布在入射光谱的两端,区别仅在于强度不同。拉曼散射的强弱完全取决于占据不同振动态的分子数目的多少,如果一个系统处于热平衡,那么处于不同态的分子的相对数量可由玻尔兹曼分布得到: 其中N0:低振动态原子数 N l:高振动态原子数 g o:低振动态简并度 g1:高振动态简并度 △E v:不同振动态之间的能量差 k:玻尔兹曼常数 T:温度(开尔文) 由上可见低能态分子数目远高于高能态的数目,所以斯托克斯散中占主导地位。 在实验中荧光信号和拉曼散射信号经常是相互伴随着的。荧光和拉同的过程,对荧光来说入射光被吸收,整个系统跃迁到某个激发态,经迁到不同的低能态。由于荧光是个共振吸收发射过程,因此荧光的强度且荧光光谱多是连续背景的形状与拉曼散射光谱是分立谱线多为不同。

拉曼光谱原理及应用简介

拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。(一)含义 光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相 同的成分.非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的 能量。

c.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器3拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。4因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。5共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术

拉曼光谱原理及应用简介

拉曼光谱原理及应用简介 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究。 应用激光光源的拉曼光谱法。应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有机、生物大分子、离子乃至活体组成的测定和研究。激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段。

1. 激光拉曼光谱法的原理是拉曼散射效应 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不光改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 2. 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 3. 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学:拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是判断化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物:拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中

拉曼光谱技术综述

拉曼光谱技术综述 摘要:本文从拉曼散射原理出发,介绍了拉曼技术的特征,以及拉曼技术的优势和不足,从激光技术和纳米技术出发介绍了当前拉曼技术的广泛发展和应用。综述了近年来了曼技术的主要的分析技术。涉及拉曼光谱技术的发展简史,发展现状和最新研究进展等方面。 关键字:光谱分析、拉曼散射、激光、光子 1、拉曼光谱的发展简史 印度物理学家拉曼于1928年用水银灯照射苯液体,发现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。与此同时,前苏联兰茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象,即由光学声子引起的拉曼散射,称之谓并合散射。然而到1940年,拉曼光谱的地位一落千丈。主要是因为拉曼效应太弱(约为入射光强的),人们难以观测研究较弱的拉曼散射信号,更谈不上测量研究二级以上的高阶拉曼散射效应。并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。所以到40年代中期,红外技术的进步和商品化更使拉曼光谱的应用一度衰落。1960年以后,红宝石激光器的出现,使得拉曼散射的研究进入了一个全新的时期。由于激光器的单色性好,方向性强,功率密度高,用它作为激发光源,大大提高了激发效率。成为拉曼光谱的理想光源。随探测技术的改进和对被测样品要求的降低,目前在物理、化学、医药、工业等各个领域拉曼光谱得到了广泛的应用,越来越受研究者的重视。 70年代中期,激光拉曼探针的出现,给微区分析注人活力。80年代以来,美国Spex公司和英国Rrin show公司相继推出,拉曼探针共焦激光拉曼光谱仪,由于采用了凹陷滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,这样入射光的功率可以很低,灵敏度得到很大的提高。Di l o公司推出了多测点在线工业用拉曼系统,采用的光纤可达200m,从而使拉曼光谱的应用范围更加广阔。 2、拉曼光谱简介:

拉曼光谱及其生物学应用

拉曼光谱及其生物学应用 朱加旺 20105450 一、拉曼光谱 1、拉曼光谱基本原理:拉曼散射属于光的散射,单色光子与分子发 生相互作用且发生非弹性碰撞时,二者之间有能量交换,此时, 光子不仅要改变运动方向,而且频率也会发生改变,这种散射称 为拉曼散射。在这种散射中,光子一部分能量转移到分子中,或 者分子的振动和转动能量传递给了光子,从而改变光子频率。 2、拉曼光谱的解释及研究意义 2.1 以经典理论解释拉曼散射时,认为分子以固有频率vi振动,极化率(见电极化率)也以vi为频率作周期性变化,在频率为v0的入射光作用下,v0与vi两种频率的耦合产生了v0、v0+vi和v0-vi3种频率。频率为v0的光即瑞利散射光,后两种频率对应拉曼散射谱线。拉曼散射的完善解释需用量子力学理论,不仅可解释散射光的频率差,还可解决强度和偏振等一类问题。 2.1.1特征拉曼频率:拉曼光谱中的振动频率是由原子团和化学键确定的,我们称之为特征拉曼频率。分子振动时,键长和键角要同时发生双变,当分子中的某个集团与分子中与其邻近的基团无耦合作用时,其振动的

频率和强度所反映的就是该基团独有的特征。由于分子是一个整体,其内部任何基团的振动都不可能完全独立的,手工同化学环境的影响,任意基团的振动频率都会发生微小的位移,这种频率位移的大小和方向就是基团化学环境变化的证据。因此,我们根据特征频率及其位移即可判定各种基团的存在与否及其化学环境的变化情况。特征拉曼频率在拉曼光谱分析中非常有用,现已总结出各类化学物的特征拉曼频率表,以供我们需要是比对和查找。 2.1.2共振拉曼散射:当一个化合物被入射光激发且及发现的频率处于该化合物的电子吸收谱带以内时,由于电子跃迁和分子振动的耦合,会使得某些拉曼普线的强度陡然增加,这个现象被称为共振拉曼散射。 2.1.3表面增强拉曼散射:当物质分子吸附在一些特定的金属表面时,分子的拉曼散射强度得到大大提升。表面增强拉曼散射有如下特点:SERS 具有很强的增强因子;SERS具有金属选择性,出现SERS现象的金属材料只有少数几种,分别是币族金属金,银,铜;碱性金属锂,钠,钾;部分过度金属铁,钴,镍;SERS要求金属表面有一定粗糙度,不同金属出现最大SERS效应的粗糙度不一样。关于SERS的增强机理目前提出了两大类理论模型:物理增强模型和化学增强模型。物理增强模型认为SERS 效应起源于金属表面局域电场的增强(又成为电磁增强)金属基底和被吸附分子之间的相互作用相对较弱。表面等离子模型,天线共振子模型和镜像场模型等均属于物理增强机制,但他们对于导致居于电磁场增强的原因的解释是不用的。化学增强模型认为,拉曼散射信号的增强是由于吸附在粗糙金属表面的物质分子极化率改变而引起的。主要的理论模

Raman 拉曼光谱原理及应用

拉曼光谱学 ——原理及应用HORIBA Jobin Yvon北京办事处

报告内容 ?1-什么是拉曼光谱? –简单介绍 ?2-拉曼光谱仪工作原理介绍 ?3-拉曼光谱在材料研究中的应用介绍?4-HORIBA Jobin Yvon拉曼光谱仪简介

1928年,印度科学家C.V Raman in首先在CCL 4光谱 中发现了当光与分子相互作用后,一部分光的波长 会发生改变(颜色发生变化),通过对于这些颜色 发生变化的散射光的研究,可以得到分子结构的信 息,因此这种效应命名为Raman效应。 时间 和发现人? Provided by Prof. D. Mukherjee, Director of Indian Association for the Cultivation of Science

λlaser λscatter >λlaser 瑞利散射λscatter = λlaser 拉曼散射 光散射的过程:激光入射到样品,产生散射光。 散射光弹性散射(频率不发生改变-瑞利散射) 非弹性散射(频率发生改变-拉曼散射)

2 0004 000 6 0008 00010 000I n t e n s i t y (c n t )400600Raman Shift (cm -1) 520不同材料的拉曼光 谱有各自的不同于其它材料的特征的光谱-特征谱 z 为表征和鉴别材料提 供了指纹谱 z 深入开展光谱学和材 料物性研究打下基础 1332 1580 20000 15000 10000 5000 100012001400160018002000 Wavenumber (cm-1)?组分信息?结构信息

拉曼光谱

拉曼光谱 引言 在瑞利和布里渊光散射现象的基础上,斯梅卡尔研究了两个能级系统对光的散射,并预言散射谱中除了入射光频率的谱线外,将在两侧出现新的谱线。1928年印度物理学家拉曼(C.V.Raman)实验发现了这个效应,即在频率不变的瑞利散射线两侧对称地排列着数条拉曼散射偏振线,它们的频移量与红外振动频率相等而与所用光的频率无关。几乎与此同时,前苏联的物理学家曼杰斯塔姆和兰茨别尔格也观察到类似的现象。拉曼由于这项成就,荣获1930年诺贝尔物理奖。 拉曼散射是单色光对分子或晶体极化作用产生的一种非弹性散射,其散射线的数目,频移量的大小,谱线强度及偏振特性反映了散射分子的结构、其中原子的空间排列和相互作用的强弱,因此拉曼散射光谱揭示了分子和晶体的结构、组分、排列对称性及相互作用的信息。被广泛用于物质鉴定和分子结构有关的学科领域,为此现已发展了各种激光拉曼技术并已被用于相关的技术之中。 实验目的 1、掌握拉曼散射的基本原理,初步学会根据拉曼散射光谱来确定分子结构及其简正振动类型。 2、掌握拉曼散射光谱的实验技术。 实验原理 当受光照射时,介质对光除反射、吸收和透射之外,总有一部分向四周散射。相对于入射光的频率或波数改变可分为三类散射。第一类是散射光的频率与入射光的基本相同,频率变化小于3×105Hz,相应的波数变化小于10-5cm-1,通常称它为瑞利(Raylei gh)散射;第二类是频率变化约为3×109Hz,波数变化约为0.1cm-1,称为布里渊(Brillouin)散射,第三类的频率或波数变化比较大,频率变化大于3×1010Hz,波数变化大于1cm-1,这就是拉曼(Raman)散射。拉曼散射对应于分子的转动、振动能级之间的跃迁范围,它是由印度科学家拉曼(C.V.Raman)于1928年发现的。 从散射光的强度来看,瑞利散射最强,是入射光的10-3左右,拉曼散射最弱,通常小于入射光的10-6,因此当强度、单色性和方向性极好的激光的诞生,以及高质量、低杂散光的单色仪和高灵敏度的微弱信号检测系统出现以后,拉曼散射光谱技术才得以迅速发展。除了传统的线性拉曼光谱技术外,还发展了许多新的线性和非线性激光拉曼光谱技术,目前它已成为科研和应用技术强有力的工具,被广泛地应用于物质鉴定、分子结构等物理、化学、地学、生命科学以及环境科学等领域。 实验得到的拉曼散射光谱图,在外观上有三个明显的特征:第一,拉曼散射谱线的波数随入射光的波数0而变化,但对同一样品,同一拉曼线的波数差△=-0则保持 不变。第二,在以波数为单位的拉曼光谱图上,以入射光波数为中心点,两侧对称分列着拉曼谱线,△<0的称斯托克斯(stokes)线,△>0的称反期托克斯(anti-stokes) 线。第三,一般情况下斯托克斯线的强度都大于反斯托克斯线。 下面,对拉曼散射的原理,并以CCl4分子为例,说明拉曼散射光谱与其分子的结构、简正振动模式的对称性之间的关系作一简要介绍。

拉曼光谱实验方法及谱分析方法的研究

物理与工程 Vol.17 No.2  2007 拉曼光谱实验方法及谱分析方法的研究 师振宇1 黄 山2 方 堃3 霍剑青4(指导教师) (1中国科学技术大学近代物理系;2中国科学技术大学少年班; 3 中国科学技术大学物理系;4中国科学技术大学理学院) (收稿日期2006211230) 摘 要 本文提出了振动拉曼光谱的实验方法和谱图数据处理方法,并应用于四氯化碳、苯等样品的拉曼光谱的获得和谱分析中.实验结果与通过Gaussian 计算软件计算的理论 结果相吻合.结果表明,本文提出的方法能有效地获得信号较弱和在较窄的谱段上谱线强度比相差悬殊的拉曼振动散射谱,并对其进行谱分析. 关键词 拉曼光谱;实验方法;数据处理;去噪处理  引言 拉曼光谱是分子或凝聚态物质的散射光谱,入射光是强单色光,散射光除含有频率未变的光(称瑞利散射)外,还含有相当弱的有频率增减的光,其中带有散射体结构和状态的信息. 在凝聚态物理学中,拉曼光谱是取得结构和状态信息的重要手段,因此拉曼光谱在科学研究和国民经济各领域得到广泛的应用. 拉曼光谱[1]也是大学物理实验中的重要实验.实验中由于拉曼散射光强弱和噪声干扰等原因,往往无法获得完整的谱图,因此无法对其进行分析.本文以大学物理实验中常用的四氯化碳、苯等样品为例,运用L RS 2III 激光拉曼光谱仪研究了拉曼光谱实验方法和对谱图数据变换后的谱分析方法,并应用Gaussian 软件[3]对四氯化碳、苯等样品的谱图进行了理论分析.结果表明,实验数据与理论值吻合. 实验原理和实验方法 拉曼散射[1]是光和物质相互作用引起的,在光子和散射物质分子的碰撞过程中,散射物质会从入射光子吸收部分能量,或把自身的能量加到入射光子身上去,再发射的光子便与原光子不相 干,从而形成新的谱结构.当光子与分子发生弹性 碰撞时,光子与分子之间没有能量交换,此时,散射光与入射光频率相同,这种频率未变的谱线叫做瑞利线.当光子与分子发生非弹性碰撞时,光子改变了能量和运动方向,使散射光频率ν与入射 光频率ν0不同,ν<ν0的谱线称斯托克斯线;ν>ν0的谱线称为反斯托克斯线.三种谱线的频率各为 ν0、ν0+Δν、ν0-Δν,而有用的信息就包含在Δν的数值及其强度、偏振等参量中.瑞利线的强度约为入射光强的10-3量级,较强的斯托克斯线的强度则不到入射光的10-6量级;反斯托克斯线起因于样品中较高能态的作用,按玻耳兹曼分布率,其数甚少,故相应强度也大减,不到斯托克斯线的1/10.在较窄的谱段上有强度比如此悬殊的谱线同时出现,因此,如何获得清晰的信号较弱的拉曼散射谱是拉曼光谱技术和实验方法的关键. 为获得信号较弱的拉曼散射谱,通常拉曼光谱仪的基本结构如图1所示 . 图1 拉曼光谱基本结构示意图 本文采用天津港东的L RS —Ⅲ激光拉曼光谱仪,以倍频YVO 3:Nd 激光为光源,光源波长为

拉曼光谱现状研究

拉曼光谱现状研究 拉曼光谱(Raman spectra),是一种散射光谱。它是1928年印度物理学家C.V. Raman发现的。对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。拉曼光谱作为一种物质结构的分析测试手段而被广泛应用,尤其是60年代以后,激光光源的引入、微弱信号检测技术的提高和计算机的应用, 拉曼光谱得到了迅速的发展,出现了很多新的拉曼光谱技术,使拉曼光谱分析在许多应用领域取得很大的发展。目前,拉曼光谱已广泛应用于材料、化工、石油、高分子、生物、环保、地质等领域。 一拉曼光谱的发展 拉曼光谱又称拉曼效应,是起用发现者印度人C.V.Raman命名的。德文文献中常称之为迈克尔-拉曼(Smekal-Raman)效应,而苏联前若干年的文献中则称之为联合散射,是拉曼于1919年从水分子散射现象中发现的。拉曼光谱最初用的光源是聚焦的日光,后来使用汞弧灯由于它强度不太高和单色性差,限制了拉曼光谱的发展。60年代激光技术的兴起,以及光电讯号转换器件的发展才给拉曼光谱带来新的转机。70年代中期,激光拉曼探针的出现,给微区分析注入活力。80年代以来,一些公司相继推出了拉曼探针共焦激光拉曼光谱仪,入射光的功率可以很低,灵敏度得到很大的提高。这些性质使拉曼光谱的应用无论在广度和特异性等方面都得到了空前发展。 二拉曼光谱特点 拉曼光谱产生的原理和机制都与红外光谱不同,但它提供的结构信息却是类似的,都是关于分子内部各种简正振动频率及有关振动能级的情况,从而可以用来鉴定分子中存在的官能团。分子偶极矩变化是红外光谱产生的原因,而拉曼光谱是分子极化率变化诱导产生的,它的谱线强度取决于相应的简正振动过程中极化率的变化的大小。在分子结构分析中,拉曼光谱与红外光谱是相互补充的。因此,一些在红外光谱仪无法检测的信息在拉曼光谱能很好地表现出来。拉曼效应普遍存在于一切分子中,无论是气态,液态和固态,拉曼散射光谱对于样品制备没有特殊要求;对于样品数量要求比较少,可以是毫克甚至微克的数量级。拉曼散射最突出的优点是采用光子探针,对于样品是无损伤探测,尤其适合对那些稀有或珍贵的样品进行分析,甚至可以用拉曼光谱检测活体中的生物物质。 拉曼光谱的缺点之一是会产生荧光干扰,样品一旦产生荧光,拉曼光谱会被荧光所湮灭检测不到样品的拉曼信号。二是检测灵敏度低。 三几种常见的拉曼光谱技术 3?1共焦显微拉曼光谱技术 显微拉曼光谱技术是将拉曼光谱分析技术与显微分析技术结合起来的一种

ADF教程:计算表面增强拉曼光谱SERS

ADF软件教程:计算表面增强拉曼光谱SERS 表面增强拉曼(Surface-Enhanced Raman Scattering,简称SERS),用通常的拉曼光谱法测定吸附在胶质金属颗粒如银、金或铜表面的样品,或吸附在这些金属片的粗糙表面上的样品。人们发现被吸附的样品其拉曼光谱的强度可提高103-106倍。 参数设置 将体系分为两个区,其中一个区是我们关心的分子,另一个区是材料表面: 基本参数设置,注意任务类型选择Frequencies:

ADFinput > Model > DIM/QM,设置DIM/QM参数: 其中Method中: §DRF:用于溶液-溶质的情况 §CPIM:用于小的金属纳米颗粒表面的情况 §PIM:用于大金属颗粒表面的情况 Region:分别将金属和分子勾选未DIM、QM part Dim Parameters:软件对一些金属元素已经内置了参数,因此本例中已经自动显示出来,如下图所示。如果某些金属材料没有参数,就需要用户自己设定。 Options: §Local field:当分子与表面相互作用时,包括两种相互作用:image field、local field。 前者默认包括,这里勾选是否包括后者。 §Frequency:开启依赖于频率的参数。但这对某些Method不支持。 §Forefield:使用Lenard-Jones势。 具体参数设置如下: ADFinput > Properties > Raman, VROA,选择拉曼光谱的参数:Calculate选择Raman Full AORESPONSE,Frequency value设置入射激光的频率,本例为3.55eV;Damping 设置lifetimes。本例为0.0036749

拉曼光谱

拉曼光谱 【引言】 在瑞利和布里渊光散射现象的基础上,斯梅卡尔研究了两个能级系统对光的散射,并 预言散射谱中除了入射光频率的谱线外,将在两侧出现新的谱线。1928年印度物理学家拉 曼(C.V.Raman)实验发现了这个效应,即在频率不变的瑞利散射线两侧对称地排列着数 条拉曼散射偏振线,它们的频移量与红外振动频率相等而与所用光的频率无关。几乎与此同 时,前苏联的物理学家曼杰斯塔姆和兰茨别尔格也观察到类似的现象。拉曼由于这项成就, 荣获1930年诺贝尔物理奖。 拉曼散射是单色光对分子或晶体极化作用产生的一种非弹性散射,其散射线的数目,频 移量的大小,谱线强度及偏振特性反映了散射分子的结构、其中原子的空间排列和相互作用 的强弱,因此拉曼散射光谱揭示了分子和晶体的结构、组分、排列对称性及相互作用的信息。 被广泛用于物质鉴定和分子结构有关的学科领域,为此现已发展了各种激光拉曼技术并已被 用于相关的技术之中。 【实验目的】 1.掌握拉曼散射的基本原理,初步学会根据拉曼散射光谱来确定分子结构及其简正振动类型。2.掌握拉曼散射光谱的实验技术。 【实验原理】 当受光照射时,介质对光除反射、吸收和透射之外,总有一部分向四周散射。相对于入 射光的频率或波数改变可分为三类散射。第一类是散射光的频率与入射光的基本相同,频率 变化小于3×105Hz,相应的波数变化小于10-5cm-1,通常称它为瑞利(Rayleigh) 散射;第二类是频率变化约为3×109Hz,波数变化约为0.1cm-1,称为布里渊(Bri llouin)散射,第三类的频率或波数变化比较大,频率变化大于3×1010Hz,波数变 化大于1cm-1,这就是拉曼(Raman)散射。拉曼散射对应于分子的转动、振动能级 之间的跃迁范围,它是由印度科学家拉曼(C.V.Raman)于1928年发现的。从散 射光的强度来看,瑞利散射最强,是入射光的10-3左右,拉曼散射最弱,通常小于入射光 的10-6,因此当强度、单色性和方向性极好的激光的诞生,以及高质量、低杂散光的单色仪 和高灵敏度的微弱信号检测系统出现以后,拉曼散射光谱技术才得以迅速发展。除了传统的 线性拉曼光谱技术外,还发展了许多新的线性和非线性激光拉曼光谱技术,目前它已成为科 研和应用技术强有力的工具,被广泛地应用于物质鉴定、分子结构等物理、化学、地学、生 命科学以及环境科学等领域。 实验得到的拉曼散射光谱图,在外观上有三个明显的特征:第一,拉曼散射谱线的波数 随入射光的波数0而变化,但对同一样品,同一拉曼线的波数差△=-0则保持 不变。第二,在以波数为单位的拉曼光谱图上,以入射光波数为中心点,两侧对称分列着拉 曼谱线,△<0的称斯托克斯(stokes)线,△>0的称反期托克斯(anti-stokes)线。第三,一般情况下斯托克斯线的强度都大于反斯托克斯线。 下面,对拉曼散射的原理,并以CCl4分子为例,说明拉曼散射光谱与其分子的结构、 简正振动模式的对称性之间的关系作一简要介绍。 1.拉曼散射的经典解释 在入射光场作用下,介质分子将被极化产生感应电偶极矩。当入射光场不太强时,感应 电偶极矩P与入射光电场E呈线性关系 P=α·E(3.3-1) 式中α称为极化率张量,通常情况P和E不在同一方向,因此是一个3×3矩阵的二 阶张量

拉曼光谱常见问题汇总

拉曼光谱问题汇总 问题目录 一、测试了一些样品,得到的是Ramanshift,但是文献是wavenumber,不知道它们之间的转换公式是怎么样的?激光波长632.8nm。 二、如何用拉曼光谱仪测透明的有机物液体,测试时放到了玻璃片上测出来的结果是玻璃的光谱。 三、我们这里有做生物样品的拉曼光谱的,在获得的图里面有很强的荧光,有的说,如果拉曼得不到就用其荧光谱。可我想问一下,在拉曼谱里面得到的荧光背景,是真正的荧光特征谱吗?这和荧光光谱仪里面的荧光图有什么区别? 四、什么是共焦显微拉曼光谱仪? 五、请问,测固体粉末的拉曼图谱时,对于荧光很强的物质,应该如何处理?特别是当荧光将拉曼峰湮灭时,应该怎么办?增加照射时间的方法,我试过,连续照射了4小时,结果还是有很强的荧光。我只有一台532nm的激光器,所以更换激光波长的方法目前我不能用。想问问各位,还有别的方法吗? 六、请问用激光拉曼仪能测量薄膜的厚度、折射率及应力吗?它能对薄膜进行那些方面的测量呢? 七、拉曼做金属氧化物含量的下限是多少? 我有一几种氧化物的混合物,其中MoO3含量只有5%,XRD检测不到,拉曼可以吗? 八、小弟是刚涉足拉曼这个领域,主打生物医学方面。实验中,发现温度不同时,拉曼好像也不一样。不知到哪位能帮忙解释一下这个现象 九、文献上说,拉曼的峰强与物质的浓度是成正比关系,那么比如我配置1mol/L的某溶液,和0.5mol/L的溶液,其峰强度是正好一半的关系吗?应用拉曼,是否能采用峰积分,或者用近红外那样的多元统计的办法来定量吗?准确度怎么样? 十、拉曼峰1640对应的是什么东西啊?无机的 十一、1 红外分析气体需要多高的分辨率? 2 拉曼光谱仪是否可分析纯金属? 3 红外与拉曼联用,BRUKER和NICOLET哪个好些? 十二、我想请问一下这里的高手测定过渡金属络合物水溶液中金属与有机物中的某个原子是否成键可以用拉曼光谱分析吗? 十三、金红石和锐钛矿对紫外Raman的响应差别大不大?同样条件下的金红石和锐钛矿的Raman峰会不会差很多? 十四、什么是3CCD? 十五、请教我所作的实验是用柠檬酸金属盐溶胶拉制成纤维,想做一下拉曼光谱来证明是否有线性分子的存在,可以吗 十六、在测量拉曼光谱仪的灵敏度参数时,有人提出,单晶硅的三阶拉曼峰的强度跟硅分子的取向(什么111,100之类)的有关,使用不同取向的硅使用与其相匹配的激光照射时,其强度严重不一样,是这样吗?不知道大家测量激光拉曼光谱仪的灵敏度时都是怎么测量的 十七、请问如何进行拉曼光谱数据处理? 十八、拉曼系统自检具体是检测哪些硬件?是个什么过程? 十九、请教作激光拉曼测试,样品如何预处理? 二十、请问激光拉曼光谱是什么意思? 二十一、请教喇曼谱实验时,如何选择激发波长,1064nm?还是785nm或633nm? 二十二、拉曼信号对入射角和出射角的响应又是什么样?我的样品是有衬底支持的薄膜样品(膜厚几百纳米--几微米),怎样扣除衬底的影响? 二十三、微区拉曼和普通拉曼有区别吗,尤其在图谱上?多晶,单晶和非晶拉曼有何区别? 二十四、我是做复合材料的研究的,主要是想研究纤维增强复合材料的界面性能? 二十五、学校有一套天津港东的拉曼光谱仪,计划给学生开一个测量固体(或粉末)拉曼光谱的实验。试了几种材料都不明显,各位高人能推荐几种容易找到的象四氯化碳拉曼光谱那么明显的固体,晶体,或者粉末吗? 二十六、我们研究小组新近涉及碳纳米管的领域。由于纳米管的Raman信号很弱,就是要重复不断的测试才能在1600cm-1的附近得到峰。请问具体操作条件应该怎么选。如laser的功率,解析度,扫描数scannumber等等,我们用的Raman仪器是(Brucker, RFS-100/S)。 二十七、激光拉曼光谱仪应该可以实现快速的定量分析,但经过前段时间一些咨询,使我对其是否可进行快速分析颇存疑问,尤其是气体分析。请问,一般来说分析一次样品(气体或固体)的时间是多长

拉曼光谱实验报告

拉曼光谱实验 姓名学号 何婷 李玉环 宋丹 [实验目的] 1、了解Raman光谱的原理和特点; 2、掌握Raman光谱的定性和定量分析方法; 3、了解Raman光谱的谱带指认。 4、了解显微成像Raman光谱。 [仪器和装置] 1、显光谱系统一套,拉曼光谱仪的型号为SPL-RAMAN-785 USB2000+的拉曼光谱仪,自带785nm激光; 2、带二维步进电机平移台一台(有控制器一台); 3、PT纳米线样品; 4、光谱仪软件SpectraSuite; 5、步进电机驱动软件; 6、摄像头(已与显微镜集成在一起)。 [实验内容] 1、使用显系统及海洋光谱软件对单根或多根纳米线进行显光谱测量,对测量的图和标准图 进行比较,并通过文献阅读对PT纳米线Raman(测量和标准)的谱峰进行指认。 2、使用显微拉曼扫描系统进行二维样品表面拉曼信号收集,并生成样品表面特定波长处的 拉曼信号强度三维图,模拟样品表面拉曼表征。选择多个拉曼波长对样品形状进行观察。[实验结果及分析]

观察PbTiO3的拉曼散射谱并比对具体的拉曼散射光谱数据进行分析,可以找到以上10个拉曼散射峰,分别位于, nm, nm, nm, nm, nm, nm, nm, nm,附近,对应的Raman Shift分别是 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1。(通过Raman Shift=1/λ入射-1/λ散射计算得到) PT纳米线Raman测量的谱峰指认: 分析可知, cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1附近的9个振动模,分别对应于PbTiO3的A1(1TO),E(1LO),E(2TO),B1+E, A1(2TO), E(2LO)+A1(2LO),E(3TO) A1(3TO), A1(3LO)声子模。 位于 cm-1附近的模对应PbTiO3纳米线表面的TiO6八面体相对于Pb的振动;位于 cm-1附近的模分别对应于表面Ti-O或Pb-O键的振动;位于 cm-1附近的模对应于TiO6八面体中Ti-O键的振动。而位于 cm-1的振动模为静模。此外,在 cm-1处PbTiO3还具有额外的Raman 振动模,可能与该相中含有大量且复杂的晶胞结构有关。据报道,复杂钙钛矿结构中氧八面体的畸变或八面体内 B位离子的移动在某种程度上会破坏平移对称性,引起相邻晶胞不再具有相似的局部电场和极化率。 位于 cm-1处的拉曼峰强度增强,相比标准PbTiO3纳米线,其余拉曼峰强度均减弱。798nm处样品表面拉曼信号三维强度图:

拉曼光谱技术概述及应用

拉曼光谱技术概述及应用 姓名:杨海源学号:2011201373 摘要 随着人们对拉曼光谱技术研究的深入,拉曼光谱在许多领域中得到越来越多的应用。本文介绍了拉曼光谱检测技术的基本原理及特点,介绍了傅立叶变换拉曼光谱、共焦显微拉曼光谱、表面增强激光拉曼光谱、固体光声拉曼光谱的原理及其应用。综述了拉曼光谱在食品检测中的应用。主要介绍了拉曼光谱在生物、医药、材料化学、食品领域的应用。在许多领域快速检测、质量控制、无损检测等方面,拉曼光谱必将发挥越来越大的作用。 关键词: 拉曼光谱,检测, 应用 ABSTRACT With the development of research of Raman scattering technology, Raman spectroscopy are increasingly employed in Many Fields.This paper introduces the basic principle and characteristics of raman spectroscopy analytical technology, The research development and application of Raman spectroscopy in many yeilds were discussed. The principle and application of FT-Raman,confocal microprobe Raman, surface-Enhance laser-Raman,photoacoustic Raman spectroscopy in solid were summarized. Reviewe the application of Raman spectroscopy in biology,food,medicine and chemical materials. It will provide a great step forward in many fields assay on rapid detection, quality control and non-destruction detection. Keywords:Raman spectroscopy, detection, application

相关文档
最新文档