二次函数知识要点

二次函数知识要点
二次函数知识要点

二次函数要点姓名:

一.以下说明什么?

1.抛物线过原点2.抛物线对称轴为y轴3.抛物线顶点在x轴上4.抛物线顶点在原点5.抛物线顶点在y轴上

6。抛物线与x轴交点的横坐标为x1,x2,则对称轴为,抛物线过(4,6),(2,6)两点,则说明抛物线对称轴为。

7.当x为何值时函数y有最大值或最小值

8.说出y=ax2,y=ax2+c,y=a(x+m)2,y=a(x+m)2+k的顶点坐标,以上几种形式都可称为式9.求二次函数的最值就是求。

10。函数y=ax2+bx+c的最小值是-1,说明什么?

11.如何判断抛物线与x轴的交点的个数?如何求其坐标?

12.如何判断函数与函数的交点个数?如何求其坐标?

13.要使抛物线进行左、右平移必须在什么形式下进行?

例把y=x2+4x向左平移2个单位把抛物线进行上、下平移必须在什么形式下进行?

14.把抛物线的旋转1800,必须在式下,改变的值即可。

例把y=4x2+3和y=4x2+8x旋转1800得解析式为。

15.求抛物线的顶点坐标有几种方法,各为何法?

16.求抛物线顶点的公式为。

17.函数有最大值或最小值由谁决定,何时有最大值,最小值?

18.二次项系数a决定函数图象的,|a|越大,图象开口。

19.求抛物线与x轴两个交点间的距离如何求?

例。分别求二次函数(1)y=x2+4x-3 (2)y=x2+(a-2)x-2a

20.如何求抛物线与y轴的交点坐标?

21.二次函数对称轴只与哪些系数有关?

例求二次函数y=2x2-4x-c的对称轴

22.在二次函数中,何时出现一元二次方程,什么情况下提及△

例抛物线y=x2-2x-3与x轴的交点个数为。

23.函数y =ax2+bx+c y恒大于0,必须具备什么条件。y恒小于0必须具备什么条件。y恒大于等于0或恒小于等于0呢?

24.抛物线与y轴交于正半轴,则c 0,交于负半轴则c 0。

二、二次函数必须掌握的题型及步骤

(一)二次函数与坐标轴交点的求法

1.求二次函数与x轴的交点坐标

步骤:令y=0,求ax2+bx+c=0的两根x1、x2,则x1、x2即为二次函数与x轴的交点的横坐标

2.求二次函数与y轴的交点坐标

步骤:把x=0代入y=ax2+bx+c中,求得y 即为交点的纵坐标

例抛物线y=2(x-1)2与x轴的交点坐标,与y轴的交点坐标。

二.函数与函数的交点坐标的求法

步骤:(1)把两函数组成方程组

(2)方程组的解即为交点坐标

例求直线y=3x-3 与抛物线y=x2-x+1的交点坐标。

三.求函数解析式

步骤:(1)设函数解析式(2)求方程或方程组(3)求得系数代入解析式(4)化成一般式

类别:顶点式y=a(x+m)2+k

已知特点:(1)已知顶点坐标(2)已知对称轴(3)最值

例(1)抛物线的顶点坐标是(-1,-2)且经过点(1,10)

(2)抛物线当x=3时,y 最大值=4,且经过点(4,-3)

2.一般式y=ax 2+bx+c

已知特点:(1)三个一般点

例 已知抛物线通过三点:(1,0),(0,-2),(2,3)

(2)已知对称轴及两个一般点

例 已知抛物线对称轴为x=2的直线且通过(1,4)和(5,0)两点 四.四点作图法

五点:(1)顶点 (2)与x 轴交点(x 1,0),(x 2,0)(3)与y 轴的交点(0,c )

五.题目中出现y >0,y <0,y=0(或y=ax 2+bx+c >0)

步骤:(1)求抛物线与x 轴交点的横坐标

(2)画草图(只须与x 轴交点的横坐标及开口方向)

例 (1)已知二次函数y =3(x-2)(x+3),问x 为何值时y >0,y <0,y=0

(2)看图求解何时y >0,y <0,y=0

六.比较函数值y 的大小

步骤:(1)已知二次函数的对称轴

(2)画草图(草图只须对称轴及开口方向)

(3)点在对称轴的同侧:用函数增减性比较

异侧:用点与对称轴的距离来比较

例 (1)已知二次函数y=-x 2+2x+3,设自变量

x 1>x 2>x 3>1,试比较y 1,y 2,y 3的大小

(2)二次函数y=-2x 2+4x+k ,当x 分别取0,1.5,3时,相应的函数值为y 1,y 2,y 3,那么y 1,y 2,y 3的大小关系为 (用<号连接)

七、函数应用题

1、经济类:利润=(售价-成本价)乘以销售量

2、几何类:运用几何面积或周长

3、实际生活类:如桥、篮球、水流等要先建立适当的平面直角坐标系,把实际数据转化成点的坐标,再求出函数解析式。

1、已知抛物线 的对称轴为x =2,且经过点(3,0),则a +b +c 的值为 .

2、已知抛物线 经过点A (-2,7),B (6,7),C (3,-8),则该抛物线上纵坐标为-8的另一点坐标是___________.

1、求将二次函数 图像向右平移1个单位,再向上平移2个单位后得到图像的函数表达式.

2、请写出一个二次函数解析式,使其图像的对称轴为x =1,并且开口向下.

3、请写出一个二次函数解析式,使其图象与x 轴的交点坐标为(2, 0)、(-1,0).

4、请写出一个二次函数解析式,使其图象与y 轴的交点坐标为(0, 2),且图象的对称轴在y 轴的右侧.

2.二次函数c bx x y ++=2

的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( )

3.抛物线122+--=m mx x y 的图象过原点,则m 为( )

4.把二次函数122--=x x y 配方成顶点式为( )

5.直角坐标平面上将二次函数y =-2(x -1)2

-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( )

6.函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是( )

一、补全网络

1.二次函数的定义:一般地,形如c bx ax y ++=2的函数叫做x 的二次函数,a 具备的条件是 .

2.二次函数的图象是 ,它是具有 对称性质的图形。

3.c bx ax y ++=2图象的性质:

(1)开口方向:

(2)顶点及对称轴: (3)增减性: (4)最大值(或最小值): 二、巩固网络 1.当a 时,函数()()()33922---+-=a x a x a y 是二次函数,当a 时,是一次函数.

2.抛物线22x y =的对称轴是 ,开口 ,在对称轴的左侧,y 随x 的增大而 ,当x 时,y 随x 的增大而增大,当x 时,函数有 值,是 .

3.抛物线322--=x x y 的顶点坐标是 ,对称轴是 ,与y 轴的交点是 .

4.写出一个二次函数:(1)开口向下,对称轴在y 轴的右侧 ;(2)开口向上,且经过原点 . 回思:(1)这四道题都涉及那些知识点? (2)运用什么方法做题时比较直观?

5.二次函数2x y -=的图象向上平移2个单位,得到的函数解析式是 ,将得到的新图象再向左平移3个单位,得到的函数解析式是 .

6.二次函数4)3(21

2++-=x y 的图象向下平移3个单位,再向右平移4个单位,得到的函数解析式

是 ,再绕顶点旋转?180得到的函数解析式是 .

回思:(1)这两道题有什么共同特点? (2)你用什么方法作的?

8.二次函数()k x y +--=213的图象上有()1,2y A ,()2,2y B ,()3,5y C -三点,则y 1,y 2,y 3的大小关

系是 .

回思:你用什么方法做这道题?你有几种方法?哪种方法最简单?

9.用两种方法求25212-+-

=x x y 的顶点及对称轴. 方法一:公式法

方法二:配方法 回思:(1)这两种方法有什么内在联系?

(2)用哪种方法做题速度快?

三、尝试范例

例 若抛物线c x x y ++=62的顶点在x 轴上,求c 的值.

回思:(1)解题的关键是什么?

(2)易犯什么错误?

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳 一、二次函数概念 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: o o 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2y ax c =+的性质: 结论:上加下减。 a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.

总结: 3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质

二次函数基本知识点梳理及训练(最新)

① 二次函数 考点一 一般地,如果y =ax 2+bx +c(a 、b 、c 是常数,a ≠0),那么y 叫做x 的二次函数. 1.结构特征:①等号左边是函数,右边是关于自变量x 的二次式;②x 的最高次数是2;③二次项系数a ≠0. 2.二次函数的三种基本形式 一般形式:y =ax 2+bx +c(a 、b 、c 是常数,且a ≠0); 顶点式:y =a(x -h)2+k(a ≠0),它直接显示二次函数的顶点坐标是(h ,k); 交点式:y =a(x -x 1)(x -x 2)(a ≠0),其中x 1 、x 2 是图象与x 轴交点的横坐标. 考 点二 二次函数的图象和性质

考点三 二次函数y=ax2+bx+c的图象特征与a、b、c及b2-4ac的符号之间的关系 考点四 任意抛物线y=a(x-h)2+k可以由抛物线y=ax2经过平移得到,具体平移方法如下: 考点五 1.设一般式:y=ax2+bx+c(a≠0). 若已知条件是图象上三个点的坐标.则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a、b、c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0). 若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将解析式化为一般式. 3.设顶点式:y=a(x-h)2+k(a≠0). 若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数化为一般式 考点六 二次函数的应用包括两个方法 ①用二次函数表示实际问题变量之间关系. ②用二次函数解决最大化问题(即最值问题),用二次函数的性质求解,同时注意自变量的取值范围. (1)二次函数y=-3x2-6x+5的图象的顶点坐标是() A.(-1,8) B.(1,8) C.(-1,2)D.(1,-4) (2)将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为() A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2 (3)函数y=x2-2x-2的图象如下图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是() ②

二次函数知识点梳理

二次函数de 基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数de 概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)de 函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数de 定义域是全体实数. 2. 二次函数2 y ax bx c =++de 结构特征: ⑴ 等号左边是函数,右边是关于自变量x de 二次式,x de 最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数de 基本形式 1. 二次函数基本形式:2 y ax =de 性质: a de 绝对值越大,抛物线de 开口越小。 2. 2 y ax c =+de 性质:上加下减。 3. ()2 y a x h =-de 性质:左加右减。

4. ()2 y a x h k =-+de 性质: 三、二次函数图象de 平移 在原有函数de 基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++de 比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同de 表达形式,后者通过配方可以 得到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象de 画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取de 五点为:顶点、 与y 轴de 交点()0c , 、以及()0c ,关于对称轴对称de 点()2h c ,、与x 轴de 交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称de 点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴de 交点,与y 轴de 交点. 六、二次函数2 y ax bx c =++de 性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x de 增大而减小;当2b x a >-时,y 随x de 增大而增大;当2b x a =-时,y

二次函数知识点汇总(全)

二次函数知识点(第一讲) 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数() 2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有

二次函数知识点梳理

初三年级数学—二次函数的基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2 y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2 y ax c =+的性质:上加下减。 3. ()2 y a x h =-的性质:左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同的表达形式,后者通过配方可以得 到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、 与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2 y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -.

二次函数知识点总结59889

二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 3. ()2 y a x h =-的性质: 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移

1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成c m x b m x a y ++++=)()(2 (或 c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x , (若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而

全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

初中数学二次函数知识点汇总

1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

二次函数基础知识及练习

二次函数 【学习目标】: 知识点、考点: 1.二次函数的定义; 2.二次函数的图像和性质; 3.确定二次函数的解析式。 【学习内容】: 知识网络详解: 一、二次函数 1、二次函数的定义 一般地,形如_________(a,b,c是常数,a≠0)的函数叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为0,二次函数的定义域是全体实数。 2、二次函数的结构特征 (1)等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. (2)a,b,c是常数,a是二次项系数,b是一次项系数,c是常数项。 3、二次函数的三种常见形式 ①一般式:y=ax2+bx+c(a,b,c是常数,a≠0),对称轴______,顶点坐标______.该形式的优势是能直接根据解析式知道抛物线与y轴的交点坐标是(0,c); ②顶点式:(a,h,k是常数,a≠0),其中(h,k)为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为(h,k); ③交点式:(a,b,c是常数,a≠0),该形式的优势是能直接根据解析式得到抛物线与x轴的两个交点坐标(,0),(,0),对称轴为______. 4、二次函数y=ax2+bx+c(a≠0)的图像及性质

二次函数y=ax2+bx+c(a≠0)的图像有以下特征: (1)二次项系数a决定抛物线的开口方向和大小 ①当a>0时,开口向______,顶点坐标______,对称轴为______,当x>______时, y随x的增大而______;x<______时,y随x的增大而______;x=______时,y有 最小值为______。 ②当a<0时,开口向______,顶点坐标______,对称轴为______,当x>______时, y随x的增大而______;x<______时,y随x的增大而______;x=______时,y有 最大值为______。 ③∣a∣决定开口大小,∣a∣越大开口就越小。 (2)一次项系数b和二次项系数a共同决定对称轴的位置: 左同右异:当a,b同号时,对称轴在y轴左侧,当a,b异号时,对称轴在y轴右侧。 (3)常数项c决定抛物线与y轴的交点,抛物线与y轴交于(0,c), ①c>0,与y轴交于正半轴 ②c=0,过原点 ③c<0,与y轴交于负半轴 (4)抛物线与x轴的交点个数: △=>0时,抛物线与x轴有______个交点 △==0时,抛物线与x轴有______个交点 △=<0时,抛物线与x轴有______个交点 5、二次函数的平移 具体步骤:先把二次函数y=ax2+bx+c化成的形式,确定其顶点(h,k),然后做出二次函数的图像,将抛物线平移,使其顶点平移到(h,k). 平移规律:左加右减,上加下减.

二次函数知识点总结题型分类总结

二次函数知识点总结——题型分类总结 一、二次函数的定义 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①142 +-=x x y ; ②2 2x y =; ③x x y 422 +=; ④x y 3-=; ⑤12--=x y ; ⑥p nx mx y ++=2 ; ⑦()x y ,4=; ⑧x y 5-=。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为t t s 252 +=,则t =4秒时,该物体所经过的路程为 _________ 。 3、若函数( ) 54722 2 ++-+=x x m m y 是关于x 的二次函数,则m 的取值范围为 。 4、若函数()1522 ++-=-x x m y m 是关于x 的二次函数,则m 的值为 。 6、已知函数()35112 -+-=+x x m y m 是二次函数,求m 的值。 二、二次函数的对称轴、顶点、最值 记忆:如果解析式为顶点式:()k h x a y +-=2 ,则对称轴为: _ , 最值 为: ; 如果解析式为一般式:c bx ax y ++=2 ,则对称轴为: __ ,最值为: ; 如果解析式为交点式:()()21x x x x a y --=, 则对称轴为: ,最值为: 。 1.抛物线m m x x y -++=2 2 42经过坐标原点,则m 的值为 。 2.抛物线c bx x y ++=2的顶点坐标为(1,3),则b = ,c = . 3.抛物线x x y 32+=的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线x ax y 62-=经过点(2,0),则抛物线顶点到坐标原点的距离为( ) 5.若直线b ax y +=不经过二、四象限,则抛物线c bx ax y ++=2 ( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知抛物线()4 1 12- -+=x m x y 的顶点的横坐标是2,则m 的值是 . 7.抛物线322 -+=x x y 的对称轴是 。 8.若二次函数332 -+=mx x y 的对称轴是直线x =1,则m = 。 9.当n =______,m =______时,函数()()x n m x n m y n -++=的图象是抛物线,

二次函数各知识点考点典型例题及练习

二次函数各知识点、考点、典型例题及对应练习(超全) 【典型例题】 题型 1 二次函数的概念 例1(基础).二次函数2 365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式 例2.(拓展, 武汉市中考题,12) 下列命题中正确的是 ○ 1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○ 2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。 ○ 3当c=-5时,不论b 为何值,抛物线y=ax 2+bx+c 一定过y 轴上一定点。 ○ 4若抛物线y=ax 2+bx+c 与x 轴有唯一公共点,则方程ax 2+bx+c=0有两个相等的实数根。 ○ 5若抛物线y=ax 2+bx+c 与x 轴有两个交点A 、B ,与y 轴交于c 点,c=4,S △ABC =6,则抛物线解析式为 y=x 2-5x+4。 ○ 6若抛物线y=ax 2+bx+c (a ≠0)的顶点在x 轴下方,则一元二次方程ax 2+bx+c=0有两个不相等的实数根。 ○ 7若抛物线y=ax 2+bx+c (a ≠0)经过原点,则一元二次方程ax 2+bx+c=0必有一根为0。 ○ 8若a -b+c=2,则抛物线y=ax 2+bx+c (a ≠0)必过一定点。 ○ 9若b 2<3ac ,则抛物线y=ax 2+bx+c 与x 轴一定没有交点。 ○ 10若一元二次方程ax 2+bx+c=0有两个不相等的实数根,则函数y=cx 2+bx+a 的图象与x 轴必有两个交点。 ○ 11若b=0,则抛物线y=ax 2+bx+c 与x 轴的两个交点一个在原点左边,一个在原点右边。 点拨:本题主要考查二次函数图象及其性质,一元二次方程根与系数的关系,及二次函数和一元二次方程二者之间的联系。复习时,抓住系数a 、b 、c 对图形的影响的基本特点,提升学生的数形结合能力,抓住抛物线的四点一轴与方程的关系,训练学生对函数、方程的数学思想的运用。 题型2 二次函数的性质 例3 若二次函数2 4y ax bx =+-的图像开口向上,与x 轴的交点为(4,0),(-2,0)知,此抛物线的对称轴为直线x=1,此时121,2x x =-=时,对应的y 1 与y 2的大小关系是( ) A .y 1 y 2 D.不确定 点拨:本题可用两种解法 解法1:利用二次函数的对称性以及抛物线上函数值y 随x 的变化规律确定:a>0时,抛物线上越远离对称轴的点对应的函数值越大;a<0时,抛物线上越靠近对称轴的点对应的函数值越大

二次函数知识讲解基础(供参考)

《二次函数》全章复习与巩固—知识讲解(基础) 【学习目标】 1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义; 2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质; 3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题; 4.会利用二次函数的图象求一元二次方程的近似解. 【知识网络】 【要点梳理】 要点一、二次函数的定义 一般地,如果是常数,,那么叫做的二次函数. 要点诠释: 如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小. 要点二、二次函数的图象与性质 1.二次函数由特殊到一般,可分为以下几种形式: ①;②;③;④, 其中;⑤.(以上式子a≠0) 函数解析式开口方向对称轴顶点坐标 当时(轴) (0,0)

开口向上 当时 开口向下 (轴) (0,) (,0) (,) () 2.抛物线的三要素: 开口方向、对称轴、顶点. (1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线. 3.抛物线20 () y ax bx c a =++≠中,,, a b c的作用: (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧. (3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,): ①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则. 4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.) (3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式: (a≠0).(由此得根与系数的关系:). 要点诠释:

二次函数知识点总结大全一

二次函数知识点总结大全一 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数(R )。 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 结论:在Y 轴上,上加下减。

3. ()2 y a x h =-的性质: 结论:在X 左加右减。 4. ()2 y a x h k =-+的性质: 总结:

二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较

请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2 424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴 的交点. 五、二次函数2y ax bx c =++的性质: 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =- ,顶点坐标为2424b ac b a a ??-- ? ?? ,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -.

二次函数知识点总结及相关典型题目(教师用)

二 次 函 数 一、定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 例:已知关于x 的函数是常数c b a c bx ax y ,,(2 ++=)当a,b,c 满足什么条件时 (1)是一次函数 (2)是正比例函数 (3)是二次函数 二、二次函数c b a c bx ax y ,,(2 ++=是常数,)0≠a 的性质 (1)①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,在对称轴左边,y 随x 的增大而减小;在在对称轴右边,y 随x 的增大而增大; ②当00 B . b <0 C . c <0 D . a +b +c >0 练习:1、(2011山东威海,7,3分)二次函数2 23y x x =--的图象如图所示.当y <0时,自变量x 的 取值范围是( A ). A .-1<x <3 B .x <-1 C . x >3 D .x <-1或x >3 2、(2010湖北孝感,12,3分)如图,二次函数y=ax2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为1,12?? ??? ,下列结论:①ac <0;②a+b=0;③4ac -b 2 =4a ;④a+b+c <0.其中正确的个数是( C )A. 1 B. 2 C. 3 D. 4 y x O 山东威海题图 轴下方 轴的交点在,抛物线与轴上方,轴的交点在,抛物线与x y c x y c 00<>

二次函数知识点归纳总结

一元二次方程知识点一、知识清单梳理

二次函数知识点归纳 1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0a 时,开口向上;当0

初中二次函数知识点汇总(史上最全)

二次函数知识点 一、基本概念: 1.二次函数的概念:一般地,形如 ( 是常数, )的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数 ,而 可以为零.二次函数的定义域是全体实数. 2. 二次函数 的结构特征: ⑴ 等号左边是函数,右边是关于自变量 的二次式, 的最高次数是2. ⑵ 是常数, 是二次项系数, 是一次项系数, 是常数项. 二、基本形式

1. 二次函数基本形式: 的性质: a 的绝对值越大,抛物线的开口越小。 的符号开口方向顶点坐标对称轴性质 向上轴 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下轴 时, 随 的增大而减小; 时, 随 的增大而增大; 时,

有最大值 . 2. 的性质:(上加下减) 的符号开口方向顶点坐标对称轴性质 向上轴 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下轴 时, 随 的增大而减小; 时, 随

的增大而增大; 时, 有最大值 . 3. 的性质:(左加右减) 的符号开口方向顶点坐标对称轴性质 向上X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下X=h 时, 随 的增大而减小;

时, 随 的增大而增大; 时, 有最大值 . 4. 的性质: 的符号开口方向顶点坐标对称轴性质 向上X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下X=h 时,

随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 . 三、二次函数图象的平移 1. 平移步骤: 方法1:⑴ 将抛物线解析式转化成顶点式 ,确定其顶点坐标 ; ⑵ 保持抛物线 的形状不变,将其顶点平移到 处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“

一次函数、反比例函数、二次函数知识点归纳总结

二次函数知识点详解(最新原创助记口诀) 知识点一、平面直角坐标系 1,平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>?y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=?y ,x 为任意实数 点P(x,y)在y 轴上0=?x ,y 为任意实数 点P(x,y)既在x 轴上,又在y 轴上?x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。

相关文档
最新文档