破解动力电池模组和PACK线自动化组装

破解动力电池模组和PACK线自动化组装
破解动力电池模组和PACK线自动化组装

在政策和市场的双轮驱动下,2015年电动汽车将延续去年的火爆行情,对动力电池的需求也越来越旺盛。但需注意的是,动力电池生产企业订单增幅明显,可是产能的提升却相当有限。这主要因为当前的工艺流程和人工操作制约了企业的生产节拍和效率,从而无法有效提升产品质量和产能。提高动力电池模组组装的自动化水平迫在眉睫。

动力电池的自动化集成业务一般包含模组和PACK的全自动/ 半自动组装线、自动化设备集成、信息采集与传输(MES)、无人化车间软硬件管理系统。当前此市场的高端设备一般由德国美国和韩日提供,当然随着经验的增加和自动化集成能力的提升,国内的众多新型企业也有望在动力电池的自动化设备集成行业大展拳脚并占据一席之地。

一般而言,不管是软包电池、硬壳电池还是我们常见的18650圆柱电池。模组的自动化组装工艺流程都是从电芯上料开始的,这个来料可以是原供应商提供的包装,也可以是厂家经过检测后统一整理好的专用托盘;上料可以是人工操作,也可以通过传送带自动上料,然后通过机器人经由抓手抓取。

上料的同时会进行电芯的读码(采集单个电芯的身份数据信息)、电芯极性检测(有无放反方向)、电芯分选和电阻值(DCIR)检测,并将不良品剔除。来料通过初检和分选之后,根据模组和工艺要求的不同会分别进行诸如等离子清洁-涂胶-电芯堆叠-电池盒组装-极耳裁切整形-模组壳焊接-模组打码-打螺丝-模组检测-连接片焊接-BMS系统连接-模组终检测-模组下料等工序。

由于目前市场上各家汽车厂商的要求不同,所以几乎没有一家的模组和生产工艺是一样的,这也对自动化产线提出了更多的要求。好的自动化生产线除了满足以上硬件配置和工艺要求以外还需要重点关注兼容性和“整线节拍”。由于模组的不固定,所以来料的电芯、壳体、PCB板、连接片等都可能发生变化。生产线的兼容性就显得尤其重要。

目前比较常见的方式是采用机器人作业,因为6轴机器人的灵活性,更大的工作覆盖面除了提升工作节拍、减少空间以外最大的优势是可以灵活定制的机器人抓手,抓手采用中心定位方式,不管是抓取、真空吸、夹持等方式都比定制的工装板和夹具有了广泛的兼容性。

所谓“整线节拍”是指整条自动线平均到每个工作站的工作时间节拍而非传统意义上见到的流水线。上个工作站完成后传送到下个工作站,总有工作站是在等待的,这样就浪费了节拍和效率。

所以当前完善的模组自动化组装线针对每个工作站节拍的衔接,厂房空间的利用、布线的美观度、减少对物流通道的干涉等都是需要注重的细节,好的自动化生产线最核心的部分就在于整线的逻辑语言。毕竟所有的检测设备都是外购的标准品,很多专用设备也能在市场上买到。而将这些所有不同厂家不同品牌的专用设备集成在一条生产线上并统一做好信号传输和管理就体现了集成商的能力。

至于软硬件的搭配,MES系统的集成可以直接将生产线打造成准无人化的生产车间,人工只需要在线外进行物料的补充即可。提高了安全不说,也减少了人为因素对于产品和生产的干涉。从PACK的构成到模组的构成再到每一道工序的参数、电芯的数据、其他来料的信息等,都可以通过MES系统快速查询并得到信息,从而有效提成生产管理水平。

对于当前的动力电池行业来说,模组的自动化程度要求一般都比较高。因为工艺的复杂程度、工作环境的要求等,应用机器人和专用设备的优势显而易见。而PACK线一般指需要承担两个功能:传送和检测。目前各厂家普遍应用了半自动的PACK组装产线,主要用于PACK 的上线、下线、检测、厂内传输和包装。

在这里面AGV小车、助力机械臂、滚筒线、吊臂等都是简单而有效的工具。而柔性的线路串接等工作确实离不开人工的协助,所以半自动的PACK成为了各厂家的主流配置。当然越来越多的客户会要求将PACK和模组的MES系统集成在一起,以便更好的管理和快速的查询,这对于系统集成商来说又是一个小小的挑战。

总之,随着动力电池自动化组装工艺的不断提升和专用设备的普及,动力电池企业对它的认知度也越来越高。去年国内多家企业已经配置了全自动的模组生产线,产能得到了明显的扩充且对生产品质非常满意,笔者相信越来越多的企业已经关注并期待着这样自动化的动力电池生产线。

锂离子动力电池PACK部BMS系统

先给初学者一个简单的科普,因为几年前我和人家说起BMS,大部分是不知道是什么东西。BMS就是Battery Management System,中文就是电池管理系统,一般针对动力电池组,很多电芯串并的情况来说的。 BMS的作用是保护电池安全,延长电池的使用寿命,实时监测电池的状态并把电池的情况告诉给上位机系统。 为什么说BMS才是动力电池PACK厂的核心竞争力,两个方面的原因,第一个原因是电芯最终要成为一个标准品,第二个原因是BMS很复杂,且非常重要。 针对第一个原因,电芯最终要成为一个没有科技含量的标准品,一起来分析一下。 动力电池的电芯最后的发展会像手机电池一样,用不了几年的时间就会达到这种状态。最后能够在动力电池领域活的很好的电芯厂不会很多的,一大批电芯厂会慢慢出局的。 现在这个状态是因为动力电池的需求还没有完全起来,加之电芯的工艺还没有成熟和稳定,且电芯的尺寸和材料体系各式各样。 其实统一到几种电芯用不了多长时间。这是市场决定的,一旦动力电池放量,竞争就会加剧,成本的要求就会苛刻,市场就会趋于同质化竞争,慢慢把需求不大的类型淘汰掉,因为没有量的支撑就不会有竞争力(一些高性能或特殊领域的小众应用另当别论),这是自然竞争的结果。 不得不说另外一个事,所有的电芯厂,全球任何一家电芯厂,都是研究电化学和材料相关的,绝大部分的人才都是集中在这个领域的,他们对BMS这种对电子和系统要求极高的东西很难有好的理解,也不会有好的建树,更不可能做出有竞争力的BMS产品和电池PACK了。 因此最后电芯厂和PACK厂一定会分化,一定会专业分工,这是自然规律,市场竞争的规律。 针对第二个原因,BMS的复杂和系统要求较高,是PACK竞争的基础。 为什么说BMS比较复杂,因为BMS涉及到的东西很多,不但要求懂电池知识很多,还要对整个系统(电动汽车或储能等)很懂,不但要懂电子,还要懂结构,不仅要会硬件,还要会软件,要做好BMS,要对电子技术、电工技术、微电子及功率器件技术、散热技术、高压技术、通信技术、抗干扰及可靠性技术等很多东西都要专业才行,它是一个负责的系统工程。 BMS一般会涉及到几个功能: 1、电池保护及安全管理功能; 2、数据采集与分析; 3、SOC/SOH等功能; 4、电量均衡及控制; 5、充放电管理与控制; 6、数据通信与传输; 7、热管理与控制; 8、高压绝缘等检测; 9、异常诊断与分析等。 所有这些功能最终都围绕一个主题,电池与系统的安全。BMS的核心就是电池状态的检测与系统安全的控制。 BMS是整车或其他整个系统的核心部件,甚至是中央控制单元,设计之初就要结合整个系统去考虑结构,布线,散热,通信等很多问题。如果对BMS的认识还停留在消费电池的过充过放过温及过流保护的粗浅认识,那就不要去碰动力电池,也别想做好动力电池。 动力电池的PACK除了要考虑成组时电芯的分容配对等问题,更多的还要设计好BMS系

电动汽车动力电池PACK组件结构以及市场情况分析

电动汽车动力电池PACK组件结构以及市场情况分析 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 自1990年问世以来,锂电池因其能量密度高、电压高、环保、寿命长以及可快速充电等优点,深受3C数码、动力工具等行业的追捧,特别是对新能源汽车行业的贡献尤为突出。 作为提供新能源汽车动力来源的锂电池产业市场潜力巨大,不仅仅是国家战略发展的重要一环,预计未来5到10年,其产业链将实现行业生态的自我完善和发展,产业规模有望突破1600亿元。

众所周知,从锂电池单体电芯到自动化模组再到PACK生产线的整个过程中,组装线的自动化程度是决定产品质量与生产效率的重要因素。 PACK是包装、封装、装配的意思,其工序分为加工、组装、包装三大部分。 在讲动力电池PACK制造技术之前,我们可以简单了解下,动力电池PACK总成由哪些系统组成,每个系统又由哪些零件组成? 目前,汽车用动力电池基本上由以下5个系统组成: 1)动力电池模块 2)结构系统 3)电气系统 4)热管理系统 5)BMS 为了让大家更直观的了解电池PACK,以奥迪A3 Sportback-etron混合动力车的PACK为例。

一般来说,电动汽车动力电池PACK由以下几个部分构成: 1)动力电池模块系统 这个不用多说,如果把电池PACK比作一个人体,那么模块就是“心脏”,负责储存和释放能量,为汽车提供动力。锂电池模组是由几颗到数百颗电池芯经由并联及串联所组成的多个模组,除了机构设计部分,再加上电池管理系统和热管理系统就可组成一个较完整的锂电池包系统。 2)结构系统

纯电动汽车动力电池包结构静力分析及优化设计

纯电动汽车动力电池包结构静力分析及优化设计 摘要:动力电池包作为纯电动汽车的唯一动力源,承受着电池组等模块的质量,因此其强度、刚度必须满足使用要求才可以保证行驶的安全性。在建立其有限元模型的基础上,分析了电池包结构在弯曲工况、紧急制动工况、高速转弯工况、垂直极限工况以及扭转工况下的强度、刚度。分析结果显示,在垂直极限工况下,电池包底板的受力情况最为恶劣,因此对原有模型做出了改进,改变底板加强筋的布置形式。经过相同工况的模拟,发现在力学性能提升的基础上,整体质量得以减轻,实现了轻量化的目标。 关键词:动力电池包有限元法静力分析优化设计 Abstract:As the only power source of pure electrical vehicle,the power battery pack bears the weight of several models such as the battery model. To ensure the safety,the pack’s strength and stiffness must meet the fundamental requirements. This paper mainly analyzed the strength and stiffness under different working conditons on the base of a finite element model. The rsult shows that and the corresponding stress and deformation graphs are obtained.The structure of the battery pack is improved after analyzing the causes of the stress concentration.Also, the performance of the new model is compared with the original one.The results show that the weight of the structure is reduced while the performance of the structure is improved, and the lightweight of the vehicle is realized. Keywords:power battery pack finite element method static structural analysis optimal design

动力电池pack生产工艺流程

动力电池pack生产工艺流程_动力电池PACK四大工艺介绍 2018-04-17 17:13 ? 885次阅读 动力电池PACK四大工艺 1、装配工艺 动力电池PACK一般都由五大系统构成。 那这五大系统是如何组装到一起,构成一个完整的且机械强度可靠的电池PACK呢?靠的就是装配工艺。 PACK的装配工艺其实是有点类似传统燃油汽车的发动机装配工艺。 通过螺栓、螺帽、扎带、卡箍、线束抛钉等连接件将五大系统连接到一起,构成一个总成。

2、气密性检测工艺 动力电池PACK一般安装在新能源汽车座椅下方或者后备箱下方,直接是与外界接触的。当高压电一旦与水接触,通过常识你就可以想象事情的后果。因此当新能源汽车涉水时,就需要电池PACK有很好的密封性。 动力电池PACK制造过程中的气密性检测分为两个环节: 1)热管理系统级的气密性检测; 2)PACK级的气密性检测; 国际电工委员会(IEC)起草的防护等级系统中规定,动力电池PACK 必须要达到IP67等级。

2017年4月份的上海车展,上汽乘用车就秀出了自己牛逼的高等级气密性防护技术。将充电状态下的整个PACK放到金鱼缸中浸泡7天,金鱼完好无损,且PACK内未进水。 3、软件刷写工艺 没有软件的动力电池PACK,是没有灵魂的。 软件刷写也叫软件烧录,或者软件灌装。 软件刷写工艺就是将BMS控制策略以代码的形式刷入到BMS中的CMU和BMU中,以在电池测试和使用过程中将采集的电池状态信息数据,由电子控制单元进行数据处理和分析,然后根据分析结果对系统内的相关功能模块发出控制指令,最终向外界传递信息。

4、电性能检测工艺 电性能检测工艺是在上述三个工艺完成后,即产品下线之前必做的检测工艺。 电性能检测分三个环节: 1)静态测试: 绝缘检测、充电状态检测、快慢充测试等; 2)动态测试; 通过恒定的大电流实现动力电池容量、能量、电池组一致性等参数的评价。 3)SOC调整; 将电池PACK的SOC调整到出厂的SOC SOC:StateOfCharge,通俗的将就是电池的剩余电量。 关于电池PACK的电性能检测参数,每个公司其实都有自己定义的标准,都不一样。但是国家对于新能源汽车动力的电性能要求是有规定的,国标如下: 《GB/T31484-2015电动汽车用动力蓄电池循环寿命要求及试验方法》《GB/T31486-2015电动汽车用动力蓄电池电性能要求及试验方法》

动力电池Pack电芯选型(经典完全篇)

动力电池PACK电芯选型(完全篇) 【上篇】 设计一款动力电池包,电芯放电能力怎么选?作为一个动力电池包设计者,你可能属于电池厂家的工程技术部门,也可能是独立的第三方电池包设计公司,还可能是主机厂的员工。如果是后两种情形,你就很有可能遇到题目中的问题,面对一个特定车型的需求,需要选取怎样的电芯加以排列,才能恰到好处的满足车辆的全部工况需求呢?我们先来选 对于工作表现最重要的电芯放电性能。放电特性可以主要的拆分成3个要点来看:放电曲线趋势,放电倍率和脉冲特性。 1. 放电曲线趋势放电特性曲线的趋势,主要关注电芯放电曲线的斜率。不同类型的电芯,基本的放电趋势是不同的。磷酸铁锂,在放电初期电压快速下降以后,电压在相当长的一段时间处于一个平台内,荷电量降低,电压变化很小;三元锂电池,则相对来说,放电期间电压下降速率较高,显示出明显的斜率。如下面三幅图所示。 磷酸铁锂放电曲线

三元锂电放电曲线 各种电池常温放电曲线 具有倾斜放电曲线的电池所输送的功率在整个放电周期中逐渐下降。这可能会导致高功率应用在放电后期结束时出现问题。对于需要稳定电源电压的低功率应用,如果斜率太陡,可能需要安装稳压器。这通常不适用于高功率应用,因为稳压器的损耗会消耗电池太多功率。

*温度因素影响 电池的放电特性,受到环境温度的影响极为明显。如果车辆的目标销售地区最低温度在0℃以下,在某些含水电解液的电池中,电解液本身可能会冻结;即使有机电解液不会冻结,电池性能下降也非常明显,就需要考虑低温对电池的影响问题。如果是在环境温度极高的环境使用动力电池,电极活性材料在高温下容易与电解液发生反应,可能带来容量上的损失,还可能造成安全风险。 在电池能够承受的温度范围内,电池性能通常随温度的提高而提高,比如容量增大,内阻减小。每种电芯都有一个最适宜的工作温度,最理想情况是给电池创造出这个适宜的工作温度,偏高或者偏低的温度都会影响循环寿命,是已经被很多实验证明了的。从图中可以看到,不同温度下的放电曲线会发生整体偏移,趋势基本平行或者斜率略微发生变化。 上图显示了随着工作温度下降,锂离子电池的性能如何下降。

相关文档
最新文档