专题:几何证明选讲

专题:几何证明选讲
专题:几何证明选讲

专题:几何证明选讲

【知识梳理】

1.相似三角形的判定定理:

判定定理1.两角对应相等的三角形相似。

判定定理2.三边对应成比例的两个三角形相似。

判定定理3.两边对应成比例,并且夹角相等的两个三角形相似。

2.相似三角形的性质

性质定理1.相似三角形对应边上的高、中线和它们的周长的比都等于相似比。

性质定理2.相似三角形的面积比等于相似比的平方。

3.平行截割定理

三条平行线截任意两条直线,所截出的对应线成比例。

4.射影定理

直角三角形中,每一条直角边是这条直线边在斜边上的射影和斜边的比例中项;斜边上的高是两条直角边在斜边上的射影的比例中项。

5.圆周角与弦切角

圆的切线判定定理:经过圆的半径的外端切垂直于这条半径的直线,是圆的切线。

圆的切线的性质定理:圆的切线垂直过圆的半径。

推论1.从圆外的一个已知点所引的两条切线长相等。

推论2.经过圆外的一个已知点和圆心的直线,平分从这个点向圆所做的两条切线所夹的角。

6.圆周角定理

圆周角的度数等于它所对弧的度数的一半。

推论1.直径所对的圆周角都是直角

推论2.同弧或等弧所对的圆周角相等。

推论3.等于直角的圆周角所对的弦是圆的直径。

7.弦切角定理

弦切角的度数等于它所夹的弧的度数的一半。

推论:弦切角等于它所夹弧所对的圆周角。

8.圆幂定理

相交弦定理:圆内的两条相交弦,被交点分成的两条线短长的积相等。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。圆幂定理:(不用掌握)

9.圆内接四边形的性质

定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

10.圆内接四边形的判定

定理:如果一个四边形的一组对角互补,那么这个四边形内接于圆。

【知识梳理】

平行线等分线段定理

平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。

推理2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。平分线分线段成比例定理

平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。

推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。相似三角形的判定及性质

相似三角形的判定:

定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似三角形对应边的比值叫做相似比(或相似系数)。

由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给出过如下几个判定两个三角形相似的简单方法:(1)两角对应相等,两三角形相似;

(2)两边对应成比例且夹角相等,两三角形相似;

(3)三边对应成比例,两三角形相似。

预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。

定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;

(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似。

定理:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和直角边对应成比例,那么这两个直角三角形相似。

相似三角形的性质:

(1)相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比;

(2)相似三角形周长的比等于相似比;

(3)相似三角形面积的比等于相似比的平方。

相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方。直角三角形的射影定理

射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项。

圆周定理

圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半。

圆心角定理:圆心角的度数等于它所对弧的度数。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等。

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

圆内接四边形的性质与判定定理

定理1:圆的内接四边形的对角互补。

定理2:圆内接四边形的外角等于它的内角的对角。

圆内接四边形判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。

推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆。圆的切线的性质及判定定理

切线的性质定理:圆的切线垂直于经过切点的半径。

推论1:经过圆心且垂直于切线的直线必经过切点。

推论2:经过切点且垂直于切线的直线必经过圆心。

切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

弦切角的性质

弦切角定理:弦切角等于它所夹的弧所对的圆周角。

与圆有关的比例线段

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

割线定理:从园外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

图3

N O C B

A 【典型例题】

几何证明选讲

1.在梯形ABCD 中,AD//BC ,2AD =,5BC =,点E 、F 分别在AB 、CD 上,

且EF//AD ,若3

4

AE EB =,则EF 的长为

23

7

. 解析:方法一:在梯形ABCD 中,AD//BC ,点E 、F 分别在AB 、CD 上,且EF//AD ,若n

m

EB AE =,则(m+n)EF =mBC+nAD

方法二:延长BA 与CD 相交于点P,设PA=x, 利用两对三角形相似来求X ,和EF.

2. 已知圆的直径10AB =,C 为圆上一点,过C 作CD AB ⊥于D (AD BD <),若4CD =,则AC 的长为

3.如图3,四边形ABCD 内接于⊙O ,

BC 是直径,MN 与⊙O 相切, 切点为A ,M AB

∠35?

=

则D ∠= 125?

.

4.若BE 、CF 是ABC ?的高,且ABC

BCEF S S ?=四边形,则A ∠= 090 .

5.如图,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相交于点P. 若PB=2,PD=6,则

BC AD 的值为 1

3

。 解析:由平几知识可得:PAD PCB ?? ,则

26BC PB AD PD ==1

3

=

6、如图,已知⊙O 的割线PAB 交⊙O 于A ,B 两点,割线PCD 经过圆心,若

PA=3,AB=4,PO=5,则⊙O 的半径为__ 2__.

7.(几何证明选讲选做题) 如右图,A 、B 是两圆的交点,AC 是小圆的直径,

D 和

E 分别是CA 和CB 的延长线与大圆的交点,已知10,4==BE AC ,

且AD BC =,则DE =

8.(几何证明选讲选做题)如图,已知,45OA OB OC

ACB ==∠=?,

D B

E

A

C

第7题图

则OBA ∠的大小为 45? .

9.(几何证明选讲选做题)如图4,过圆O 外一点P 分别作圆 的切线和割线交圆于

,A B ,且7PB =,C 是圆上一点使得

5BC =,则AB = .

2:,,,

,,7535,PA BAP BCA BAC APB AB PB

BAP BCA CB AB

AB PB CB AB ∴∠=∠∠=∠∴??=∴=?=?=∴=解析是圆的切线又与相似从而

10.如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一

点,且::4:2:1.DF

CF AF FB BE ==若CE 与圆相切,则

线段CE 的长为_

2

14_. 解析:⊿AD F ≌⊿CBF 则

AF FC DF EB = 设BE=x, FB=2x, AF=4x 则x

x 422= x=22

由切割线定理得:CE 2

=BE ×AE

11. 如图,⊙O 和⊙'O 都经过A 、B 两点,AC 是⊙'O

的切线,交⊙O 于点C ,AD 是⊙O 的切线,交⊙'O 于 点D ,若BC= 2,BD=6,则AB 的长为

解析:弦切角定理:弦切角等于它所夹的弧所对的圆周角 则∠CAB=∠ADB ∠DAB=∠ACB 则⊿ACB ~⊿DAB 则

BD

AB

AB BC = 12.(几何证明题选讲选做题)

如图P 是圆O 的直径AB 延长线上一点,PC 与圆O 相切于点C ,∠APC 的角平分线交AC 于点Q ,则∠AQP 的大小为_135

°_。

解析:连接OC ∵PC 为圆O 的切线 ∴∠OCP=90°∴∠COP+∠APC=90° ∵PQ 为∠APC 的角平分线 ∴∠APQ=21∠APC 在圆O 中∠BAC=2

1

∠COP ∴∠APQ+∠BAC=45° ∴∠AQP=135°

1.(2011年高考天津卷文科13)如图,已知圆中两条弦AB 与CD 相交于点F,E 是AB 延长线上一点,且

若CE 与圆相切,则线段CE 的长为 .

【答案】2

【解析】设AF=4x,BF==2x,BE=x,则由相交弦定理得:2DF AF FB =?,即2

82x

=,即21

4

x =,由切割线定

理得:2

CE

EB EA =?=2774x =,

所以2

CE =

2.(2011年高考广东卷文科15)(几何证明选讲选做题)如图4,在梯形ABCD 中,AB ∥CD ,AB =4,

CD =2,E 、F 分别为AD 、BC 上点,且EF =3,EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为 . 【答案】

.7

5 【解析】由题得EF 是梯形的中位线,7

5)43(2

1)32(21

=?+?+=∴

h h S S EFCD ABFE 梯形梯形 3.(2011年高考陕西卷文科15) B.(几何证明选做题)如图,,

B D AE ∠=∠ 且6AB =,4A

C =,12,A

D =则A

E =_______. 【答案】2

【解析】:Rt ABE Rt ADC ? 所以AB AE

AD AC

=, 即64

212AB AC AE AD ??=

==

【巩固练习】

一、填空题(每小题6分,共计54分)

1.如图1,点A ,B ,C 是圆O 上的点,且AB =4,∠ACB =45°,则圆O 的半径R =________.

图1 图2

解析:如图2所示,连接OA 、OB ,

则∠AOB =90°, ∵AB =4,OA =OB ,

∴OA =22,即R =2 2. 答案:2 2

图3

2.如图3,AB 、CD 是圆O 内的两条平行弦,BF ∥AC ,BF 交CD 于点E ,交圆O 于点F ,过A 点的切线交DC 的延长线于点P ,若PC =ED =1,PA =2,则AC 的长为________.

解析:∵PA 是⊙O 的切线,∴由切割线定理得:PA 2

=PC ·PD ,∵PA =2,PC =1,∴PD =4,

又∵PC =ED =1,∴CE =2,由题意知四边形ABEC 为平行四边形,∴AB =CE =2.连接BC ,∵PA 是⊙O 的切线,

∴∠PAC =∠CBA ,∵AB 、CD 是圆的两条平行弦, ∴∠PCA =∠CAB ,∴△PAC ∽△CBA , ∴

PC CA =CA AB

,∴AC 2

=PC ·AB =2,∴AC = 2. 答案: 2

3.如图4,已知圆O 的半径为3,PAB 和PCD 为圆O 的两条割线,且O 在线段AB 上,若PB =10,PD =8,则线段CD =________;∠CBD =________.

图4

解析:因为PA =10-2OA =4,PC ·PD =PA ·PB =40,所以PC =5,CD =PD -PC =3,连接OC ,OD ,则△OCD 为正三角形,所以∠COD =60°,则∠CBD =30°. 答案:3 30°

图5

4.如图5,△ABC 的外角∠EAC 的平分线AD 交BC 的延长线于点D ,若AB 是△ABC 外接圆的直径,且∠EAC =120°,BC =6,则线段AD 的长为________.

解析:因为AB 为直径,所以∠ACB =90°,又∠EAC =120°,所以∠BAC =60°,又BC =6,得AC =23,又∠ACD =90°,∠CAD =60°,则在Rt△ACD 中可得AD =4 3. 答案:4 3

图6

5.如图6,已知点C 在⊙O 的直径BE 的延长线上,CA 切⊙O 于点A ,若AB =AC ,则AC BC

=________.

解析:因为∠B =∠EAC ,∠ACB =∠ACB ,所以△ACE ∽△BCA ,则AC BC =AE

AB

,在△ABC 中,又因为AB =AC ,

所以∠B =∠ACB =30°,在Rt△ABE 中,AE AB =tan B =tan30°=33.故AC BC =3

3

.

答案:

3

3

图7

6.如图7,⊙O 与⊙P 相交于A 、B 两点,圆心P 在⊙O 上,⊙O 的弦BC 切⊙P 于点B ,CP 及其延长线交⊙P 于D ,E 两点,过点E 作EF ⊥CE ,交CB 的延长线于点F .若CD =2,CB =22,则由B 、P 、E 、F 四点所确定的圆的直径为________. 解析:连接PB .∵BC 切⊙P 于点B ,∴PB ⊥BC .又∵EF ⊥CE ,∴B 、P 、E 、F 四点共圆,连接PF ,又∵EF ⊥CE ,PB ⊥BC ,∴B 、P 、E 、F 四点所确定的圆的直径就是PF .∵BC 切⊙P 于点B ,且CD =2,CB =22,∴由切

割线定理得CB 2

=CD ·CE ,∴CE =4,∴DE =2,∴BP =1.又易知Rt△CBP ∽△Rt△CEF ,∴EF BP =CE CB

,得EF =2,则在Rt△FEP 中,PF =PE 2

+EF 2

=3,即由B 、P 、E 、F 四点确定的圆的直径为 3. 答案: 3

图8

7.如图8,圆O 上一点C 在直径AB 上的射影为D ,AD =2,AC =25,则AB =________. 解析:由射影定理可知, AC 2=AD ·AB ,

所以AB =252

2

=10.

答案:10

图9

8.如图9所示,圆的内接三角形ABC 的角平分线BD 与AC 交于点D ,与圆交于点E ,连接AE ,已知ED =3,BD =6,则线段AE 的长=________.

解析:∵∠E =∠E ,∠EAD =∠EBA ,∴△EDA ∽△EAB ,得AE BE =ED AE

,即AE 2

=ED ·BE =3×9,AE =3 3. 答案:3 3

图10

9.如图10,正△ABC 的边长为2,点M ,N 分别是边AB ,AC 的中点,直线MN 与△ABC 的外接圆的交点为P ,Q ,则线段PM =________.

解析:设PM =x ,则QN =x ,由相交弦定理可得PM ·MQ =BM ·MA ,即x ·(x +1)=1,解得x =5-1

2.

答案:5-1

2

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面的所有直线都_____于另一个平面. 二.知识点梳理 要点诠释:定义中“平面的任意一条直线”就是指“平面的所有直线”,这与“无数条直线”不同(线 线垂直线面垂直) Ⅰ.二面角:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle ). 这条直线叫做二 面角的棱,这两个半平面叫做二面角的面. 记作二面角AB αβ--. (简记P AB Q --)

二面角的平面角的三个特征: ⅰ. 点在棱上 ⅱ. 线在面 ⅲ. 与棱垂直 Ⅱ.二面角的平面角:在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 作用:衡量二面角的大小;围:000180θ<<. 知识点四、平面和平面垂直的定义和判定 (垂直问题中要注意题目中的文字表述,特别是“任何”“ 随意”“无数”等字眼) 三.常用证明垂直的方法 立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用直径所对的圆周角是直角 (1) 通过“平移”,根据若则a //b,且b⊥平面α,a⊥平面α 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=2 1 DC ,中点为PD E . 求证:AE ⊥平面PDC. 2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD , ∠PDA=45°,点E 为棱AB 的中点.求证:平面PCE ⊥平面PCD ; (第2题

专题三 几何证明

专题三 几何证明 【专题分析】 几何证明题重在训练学生运用数学语言合情推理的能力,在数学学习中占有非常 重要的地位。此类题目经常出现在解答题的第二题,属于中低难度的题,比较基础;最后两题中也有涉及,属于中高难度的综合题. 【考点解析】 考点一:证明线段相等 例1.如图,E 、F 是□ABCD 对角线AC 上的两点,BE ∥DF . 求证:BE =DF . 考点二:证明线段平行或垂直 例2. 如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB=DE , ∠A=∠D ,AF=DC . 求证:BC ∥EF . 例3. 如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC . 求证:CA 是圆的切线. A B C D E F

A E B C F D 考点三:证明角相等 例4.如图,在梯形ABCD 中,AD ∥BC ,AD =AB ,过点A 作AE ∥DB 交CB 的延长线于点E . (1)求证:∠ABD =∠CBD ; (2)若∠C =2∠E ,求证:AB =DC . 考点四:证明三角形全等或特殊四边形 例5.在□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE . (1)求证:△BEC ≌△DF A ; (2)连接AC ,当CA =CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论. 【基础演练】 1.如图,Rt △ABC 中,∠ACB=-90°,CD ⊥AB ,垂足为D .AF 平分∠CAB ,交CD 于点E ,交CB 于点F 求证:CE=CF . 2.如图,一张矩形纸片ABCD ,其中AD =8cm ,AB =6cm ,先沿对角线BD 对折, 点C 落在点C ′的位置,BC ′交AD 于点G 。 求证:AG =C ′G . (第21题)C

几何证明选讲(教师版)

B C D O A P 1.如图,点P 在圆O 直径AB 的延长线上, 且PB=OB=2,PC 切圆O 于C 点,CD ⊥AB 于D 点,则PC= , CD= . 2.如图,AB 是⊙O 的直径,P 是AB 延长线上的一点,过P 作⊙O 的切线,切点为C , ,32=PC 若∠CAP =30°,则⊙O 的直径AB =___________ 答案4 3.已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC ,圆心O 到AC 的距离为22,3AB =,则切线AD 的长为 _____。 解:依题意,BC =,∴AC =5,2 AD =.AB AC =15, ∴AD =15 4.如图,PA 切O 于点A ,割线PBC 经过圆心O ,OB=PB=1, OA 绕点O 逆时针旋转60°到OD ,则PD 的长为 . 解:∵PA 切O 于点A ,B 为PO 中点,∴AB=OB=OA, ∴60AOB ∠= ,∴120POD ∠= , 在 △ POD 中 由 余 弦 定 理 , 得 2222cos PD PO DO PO DO POD =+-?∠=1 414()72 +-? -= ∴PD 5.如图,在⊙O 中,AB 为直径,AD 为弦,过B 点的切线与AD AD=DC ,则 sin ∠ACO=_________ 解:由条件不难得ABC ?为等腰直角三角形,设圆的半径为1,则1OB =,2BC =, OC =

sin BCO ∠= = ,s co BCO ∠= ∴ sin ∠ACO=0sin(45BCO -∠)=1010 6.如图,PT 是O 的切线,切点为T ,直线PA 与O 交于A 、B 两点,TPA ∠的平分线分别交直线TA 、 TB 于D 、E 两点,已知2PT =,PB =,则PA = , TE AD = . ; 7.已知AB 是圆O 的直径,EF 切圆O 于C ,AD ⊥EF 于D ,AD =2,AB =6,则AC 长为_______. 、23; 8.已知AB 是半圆O 的直径,点C 在半圆上,CD AB ⊥于点D ,且4AD DB =,设 COD θ∠=,则cos 2θ= . 解:()44,AD DB OC OD OC OD =∴+=- 即35OC OD =, 22 2 37cos 22cos 12121525OD OC θθ???? =-=?-=?-=- ? ? ???? 9.如图,圆O 是 ABC ?的外接圆,过点C 的切线交AB 的延长线于点D ,CD =3AB BC ==。则BD 的长______________ , AC 的长______________. 4,; 10.如图,⊙O 的直径AB =6cm ,P 是AB 延 长线上的一点,过P 点作⊙O 的切线,切点为C ,连接AC , 若CPA ∠=30°,PC = 。 解:连接OC ,PC 是⊙O 的切线,∴∠OCP=Rt ∠. ∵CPA ∠=30°,OC= 2AB =3, ∴0 3tan 30PC =,即PC= 11.如右图所示,AB 是圆O 的直径, AD DE =,10AB =,8BD =,则cos BCE ∠= . 35 12.如图:PA 与圆O 相切于A ,PCB 为圆O 的割线, P

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

(完整版)必修二立体几何11道经典证明题

1.如图,三棱柱 ABC — A i B i C i 中,侧棱垂直底面, 1 / ACB=90 , AC=BC= gAA i , D 是棱 AA i 的中点 (I )证明:平面 BDC i 丄平面BDC (n)平面BDC i 分此棱柱为两部分,求这两部分体积的 比? 2?如图5所示,在四棱锥 P ABCD 中, AB 平面 PAD , AB//CD , PD AD , E 是 1 PB 的中点,F 是CD 上的点且 DF —AB , 2 PH PAD 中AD 边上的高? (1) 证明:PH 平面ABCD ; (2) 若 PH i , AD 2, FC i ,求三 (3)证明:EF 平面PAB . 3.如图,在直三棱柱ABC ABG 中,AB i AC i , D ,E 分 别是棱 BC , CC i 上的点(点D 不同于点C ),且AD DE , F 为B,G 的 中点. 求证:(i )平面ADE 平面BCGB,; (2)直线AF 〃平面ADE . 棱锥E BCF 的体积 ; 妥5小

4. 如图,四棱锥P—ABCD中,ABCD为矩形,△ PAD为等腰直角三角 形,/ APD=90 面PAD丄面ABCD,且AB=1 , AD=2 , E、F分别为 PC和BD的中点. (1) 证明:EF//面PAD ; (2) 证明:面PDC丄面PAD ; (3) 求四棱锥P—ABCD的体积. 5. 在如图所示的几何体中,四边形ABCD是正方形, MA 平面ABCD , PD//MA , E、G、F 分别为MB、PB、 PC 的中点,且AD PD 2MA. (I)求证:平面EFG 平面PDC ; (II )求三棱锥P MAB与四棱锥P ABCD的体积之比. B

年重庆中考数学几何证明题--(专题练习+答案详解)

2015年重庆中考数学24题专题练习 1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE (1)求证:BE=CE; (2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD. 2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点. (1)若HE=HG,求证:△EBH≌△GFC; (2)若CD=4,BH=1,求AD的长.

3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF. (1)当CE=1时,求△BCE的面积; (2)求证:BD=EF+CE. 4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E EF∥ CA,交CD于点F,连接OF. (1)求证:OF∥BC; (2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.

5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6. (1)求线段CD的长; (2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC. 6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°. (1)若AB=6cm,,求梯形ABCD的面积; (2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.

高中数学选修 几何证明选讲相关知识点

高中数学选修4-4,几何证明选讲相关 知识点 相似三角形的判定及有关性质 知识点1:比例线段的有关定理 平行线等分线段定理: 推论1: 推论2: 平行线等分线段成比例定理: 推论:(1) (2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边. 知识点2:相似图形 1、相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形. 叫做相似比(或相似系数) 2、相似三角形的判定方法 预备定理:平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理的基本图形语言:

数学符号语言表述是:BC DE // ∴ADE ∽ABC . 判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似. 判定定理2:如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 判定定理3:如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两个三角形相似. 判定定理4:直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似. 三角形相似的判定方法与全等的判定方法的联系列表如下: 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法. 3、相似三角形的性质定理: (1)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于 ; (2)相似三角形的周长比等于 ; (3)相似三角形的面积比等于 ; (4)相似三角形内切圆与外接圆的直径比、周长比等于相似比,面积比等于相似比的平方. 4、直角三角形的射影定理 从一点向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影;一条线段在直线上的正射影,是指线段的两个端点在这条直线上的正射影间的线段. 点和线段的正射影简称为射影 直角三角形的射影定理:

必修二立体几何常考证明题

必修二立体几何常考证明题 一.证明线线平行,线面平行,面面平行 1.利用三角形中位线 2. 利用平行四边形 考点1:线面平行的判定(利用三角形中位线) 例1:如图,在正方体1111ABCD A BC D -中,E 是1AA 的中点, 求证: 1//AC 平面 BDE 。 考点2:线面平行的判定(利用平行四边形) 例2:已知正方体111 1 ABCD A BC D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ; 练习: 1、如图,在底面是矩形的四棱锥ABCD P -中,⊥PA 面ABCD ,E 、F 为别为PD 、 AB 的中点,求证:直线AE ∥平面PFC A E D 1 C B 1 D C B A D 1O D B A C 1 B 1 A 1 C

2正三棱柱ABC -A 1B 1C 1的底面边长为8,侧棱长为6,D 为AC 中点。 (1)求证:直线AB 1∥平面C 1DB ; 3、 如图,已知ABCD PA 矩形 所在平面,N M 、分别为PC AB 、的中点; (Ⅰ)求证:PAD MN 平面//; 4、如图,在三棱锥D-ABC 中,已知△BCD 是正三角形,AB ⊥平面BCD ,AB=BC=a ,E 为 BC 的中点,F 在棱AC 上,且AF=3FC . (1)求三棱锥D-ABC 的表面积;(2)求证AC ⊥平面DEF ; (3)若M 为BD 的中点,问AC 上是否存在一点N ,使MN ∥平面DEF ?若存在,说明点N 的位置;若不存在,试说明理由. A 1 C 1 C B A B 1

考点3:面面平行的判定 例7:如图,在正方体111 1 ABCD A BC D 中,E 、F 、G 分别是AB 、AD 、1 1 C D 的中点. 求证:平面1D EF ∥平面BDG . 5、棱长为a 的正方体AC 1中,设M 、N 、E 、F 分别为棱A 1B 1、A 1D 1、C 1D 1、B 1C 1的中点. (1)求证:E 、F 、B 、D 四点共面; (2)求证:面AMN ∥面EFBD .

天津高中数学必修+选修全部知识点精华归纳总结

高三第一轮复习资料(个人汇编请注意保密) 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等 函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线 与方程、导数及其应用。选修1—2:统计案例、推理与证明、 数系的扩充与复数、框图系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。选修2—2:导数及其应用,推理与证 明、数系的扩充与复数选修2—3:计数原理、随机变量及其 分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。选修3—6:三等分角与数域扩充。系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平 面向量,圆锥曲线,立体几 何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运 算、简易逻辑、充 要条件 ⑵函数:映射与函数、函数解析式与 定义域、值域与最值、反函 数、三大性质、函数图象、 指数与指数函数、对数与对 数函数、函数的应用

初一几何证明典型例题

初一几何证明典型例题 1、已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC 在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=2ADBC 2、已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2ABCDEF21证明:连接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴△BCF≌△EDF (S、 A、S)∴ BF=EF,∠CBF=∠DEF连接BE在△BEF中,BF=EF∴ ∠EBF=∠BEF。∵ ∠ABC=∠AED。∴ ∠ABE=∠AEB。∴ AB=AE。在△ABF和△AEF中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴△ABF≌△AEF。∴ ∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=DE,EF//AB,求证:EF=ACBACDF21E 过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD= ∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC=CG又 EF=CG∴EF=ACA 4、已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD =∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=

几何证明选讲知识点总结

相似三角形的判定及有关性质一一备课人:李发 知识点1比例线段的相关概念 比例线段:对于四条线段a b c、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即- - b d (或a:b=cd )那么这四条线段叫做成比例线段,简称比例线段. 注意:⑴在求线段比时,线段单位要统一,单位不统一应先化成同一单位. ⑵当两个比例式的每一项都对应相同,两个比例式才是同一比例式. ⑶比例线段是有顺序的,如果说a是b,c,d的第四比例项,那么应得比例式为:b d c a 知识点2:比例的性质 基本性质:(1) a: b c: d ad bc;(2) a : c c: b c a b . 反比性质(把比的前项、后项交换): a c b d b d a c b a d c a c a b cd 合比性质:?.发生同样和差变化比例仍成立.如: a c a c等等. b d b d a b c d a b c d o p p m八,,小、a c e m a 等比性质:如果一(b d f n 0),那么 b d f n b d f n b 注意:实际上,由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如ad be,除 了可化为a:b c:d,还可化为a:c b:d , c: d a : b , b:d a : c , b:a d:c, c:a d:b, d : c b: a , d:b c:a. 知识点3:比例线段的有关定理 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等?推论1:经过三角形一边的中点与另一边平行的直线必平分第三边?(三角形中位线定理的逆定理) 推论2 :经过梯形一腰的中点,且与底边平行的直线平分另一腰?(梯形中位线定理的逆定理) 平行线等分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 推论:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. (2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边. 知识点:4 :黄金分割 把线段AB分成两条线段AC,BC(AC BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线 段AB的黄金分割点,其中AC AB 0.618AB . 2 知识点5:相似图形 1、相似图形的定义:把形状相同的图形叫做相似图形(即对应角相等、对应边的比也相等的图形) 相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形.相似三角形对应边的比值叫 做相似比(或相似系数) (1 )相似三角形是相似多边形中的一种;

高中数学立体几何常考证明题汇总97186

立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成 的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =? ?⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?=∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC ,∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证:1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线∴1//EO AC A E D 1 C B 1 D C B A A H G F E D C B A E D B C

又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?= AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 又1111 A C B D ⊥∵, 1111B D A C C ∴⊥面1 11AC B D ⊥即 同理可证 11A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 6、正方体''''ABCD A B C D -中,求证: (1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. 考点:线面垂直的判定 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 证明:(1)由B 1B ∥DD 1,得四边形BB 1D 1D 是平行四边形,∴B 1D 1∥BD , S D C B A D 1O D B A C 1 B 1 A 1 C A 1 B 1 C 1 D 1 F

几何证明专题1

几何证明专题 1、如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连结BD并延长至点C,使BD =DC,连结AC,AE,DE . 2、如图,O和e O'相交于A, B两点,过A作两圆的切线分别交两圆于点,连结DB并延长交eO于点E. 证明:(I)ACeBD二ADUB ; (II)AC=AE C,D两 B

3、选修4 —1几何证明选讲 如图,MBC的角平分线AD的延长线交它的外接圆于点E. (I)证明:MBE sA ADC ; ")若MBC的面积S^AD^AE,求Z BAC的大小. 4、如图,D, E分别为MBC的边AB , AC上的点,且不与心ABC的顶点重合.已 知AE的长为m, AC的长为n, AD , AB的长是关于x的方程Mx + mn-o的 两个根. (I)证明:C, B, D , E四点共圆; (II )若N A=9O。,且m=4, n=6,求C B , D , 所在圆的半径. B

全国名校高中数学优质学案、专题汇编(附详解) 参考答案 1 .【答案】证明:连接AD。 ??? AB是圆O的直径,??? NADB=9O0(直径所对的圆周角是直角)。 ? ?? AD丄BD (垂直的定义)。 又??? BD =DC,二AD是线段BC的中垂线(线段 的中垂线定义)。 AB =AC (线段中垂线上的点到线段两端的距 离相等)。 ? Z B=N C (等腰三角形等边对等角的性质)。 又??? D,E为圆上位于AB异侧的两点, ? ?? N B=N E (同弧所对圆周角相等)。 ? ?? N E =N C (等量代换)。 2.【命题意图】本题主要考查几何选讲的基础知识,是简单题. 证明:(1)由AC与eO相切于A,得N CAB二NADB,同理土ACB^DAB ,

高考数学几何证明选讲

几何证明选讲 沙市五中高三数学组 一、填空题(每小题6分,共48分) 1.如图所示,l1∥l2∥l3,下列比例式正确的有________(填序号). (1)AD DF = CE BC ;(2) AD BE = BC AF ;(3) CE DF = AD BC ;(4) AF DF = BE CE . 2.如图所示,D是△ABC的边AB上的一点,过D点作DE∥BC交AC于E.已 知AD DB = 2 3 ,则 S △ADE S 四边形BCED = __________________________________________________________________. 3.如图,在四边形ABCD中,EF∥BC,FG∥AD,则EF BC + FG AD =________.

4.在直角三角形中,斜边上的高为6,斜边上的高把斜边分成两部分,这两部分的比为3∶2,则斜边上的中线的长为________. 5.(2010·苏州模拟)如图,在梯形ABCD中,AD∥BC,BD与AC相交于点O,过点O的直线分别交AB,CD于E,F,且EF∥BC,若AD=12,BC=20,则EF=________. 6.如图所示,在△ABC中,AD⊥BC,CE是中线,DC=BE,DG⊥CE于G,EC 的长为4,则EG=________. 7.(2010·天津武清一模)如图,在△ABC中,AD平分∠BAC,DE∥AC,EF ∥BC,AB=15,AF=4,则DE=________. 8.如图所示,BD、CE是△ABC的中线,P、Q分别是BD、CE的中点,则PQ BC = ________. 二、解答题(共42分) 9.(14分)如图所示,在△ABC中,∠CAB=90°,AD⊥BC于D,BE是∠ABC 的平分线,交AD于F,求证:DF AF = AE EC .

高中数学立体几何常考证明题汇总

新课标立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1//,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?=∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC ,∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证:1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 A E D 1 C B 1 D C B A A H G F E D C B A E D B C

如何做几何证明题(方法总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的 系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两

的角平分线AD、CE相交于O。 (补

AE=BD,连结CE、DE。

求证:BC=AC+AD B、C作此射线的垂线BP和CQ。 设M为BC的中点。求证:MP=MQ

高中数学-几何证明选讲知识点汇总与练习(内含答案)

高中数学-《几何证明选讲》知识点归纳与练习(含答案) 一、相似三角形的判定及有关性质 平行线等分线段定理 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。 推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。 推理2 :经过梯形一腰的中点,且与底边平行的直线平分另一腰。 平分线分线段成比例定理 平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 相似三角形的判定及性质 相似三角形的判定: 定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似三角形对应边的比值叫做相似比(或相似 系数)。 由于从定义岀发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给岀过如下几个判定两个三角形相似的简单方法: (1 )两角对应相等,两三角形相似; (2 )两边对应成比例且夹角相等,两三角形相似; (3 )三边对应成比例,两三角形相似。 预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。 判定定理1 :对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三 角形相似。简述为:两角对应相等,两三角形相似。 判定定理2 :对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等, 那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 判定定理3 :对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个 三角形相似。简述为:三边对应成比例,两三角形相似。 引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;

初一几何典型例题

初一几何典型例题 1、如图,∠AOB=90°,OM平分∠AOB,将直角三角尺的顶点P在射线OM上移动,两直角分别与OA,OB相较于C,D两点,则PC与PD相等吗?试说明理由。 PC=PD 证明:作PE⊥OA于点E,PF⊥OB于点F ∵OM是角平分线 ∴PE=PF ∠EPF=90° ∵∠CPD=90° ∴∠CPE=∠DPF ∵∠PEC=∠PFD=90° ∴△PCE≌△PDF ∴PC=PD 2、如图,把两个含有45°角的三角尺按图所示的方式放置,D在BC上,连接AD、BE,AD的延长线交BE于点F。试判断AF与BE的位置关系。并说明理由。 AF⊥BE 证明: ∵CD=CE,CA=CB,∠ACD=∠BCE=90° ∴△ACD≌△BCE

∵∠CBE+∠BEC=90° ∴∠EAF+∠AEF=90° ∴∠AFE=90° ∴AF⊥BE 3、如图,已知直线l1‖l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上。 (1)如果点P在A、B两点之间运动,试求出∠1、∠2、∠3之间的关系,并说明理由; (2)如果点P在A、B两点外侧运动时(点P与A、B不重合),试探究∠1、∠2、∠3之间的关系,请画出图形,并说明理由。解:(1)∠1+∠2=∠3; 理由:过点P作l1的平行线PQ, ∵l1∥l2,∴l1∥l2∥PQ, ∴∠1=∠4,∠2=∠5. ∵∠4+∠5=∠3,∴∠1+∠2=∠3; (2)同理:∠1-∠2=∠3或∠2-∠1=∠3. 理由:当点P在下侧时,过点P作l1的平行线PQ, ∵l1∥l2 ∴l1∥l2∥PQ, ∴∠2=∠4,∠1=∠3+∠4,

当点P在上侧时,同理可得∠2-∠1=∠3. 4、D、E是三角形△ABC内的两点,连接BD、DE、EC,求证AB+AC>BD+DE+EC 解答:延长DE分别交AB、AC于F、G。 由于FB+FD>BD AF+AG>FG EG+GC>EC 所以 FB+FD+FA+AG+EG+GC>BD+FG+EC 即AB+AC+FD+EG>BD+FD+EG+DE+EC 所以AB+AC>BD+DE+EC 5、D为等边△ABC的边BC上任意一点,延长BC至G。作∠ADE=60°(E.C在AD同侧)与∠ACG的角平分线相交于E,连AE。求证:ADE为等边三角形。 解:如图,作DF‖AC交AB于F. ∵DF‖AC.等边△ABC. ∴等边△BFD.

高考中的几何证明选讲

高考中的几何证明选讲 几何证明选讲是新课标新增内容,在我省高考中是选考内容,常以填空题的形式出现,难度不大,在备考中应从考纲入手,掌握考试要求,在平时训练中,熟练掌握多种题型,以不变应万变。 几何证明选讲常考内容有:平行线分线段成比例定理、相似三角形、射影定理、圆周角定理、圆的切线的判定定理及性质定理、相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理等.考题多数是以求角度,线段长度,面积,比值等。 类型一.求比值 例1.(2007湛江一模理)如图1,在△ABC 中,D 是AC 的中点, E 是BD 的中点,AE 交BC 于 F ,则=FC BF . 【解析】作DH//BC 交AF 于H ,则由D 为AC 中点知 1 2 DH FC =, 又DH//BF, E 为BD 中点,易知BF=DH, 所以,BF DH =所以:1 2 BF FC = 【命题意图】本题考查平行线分线段成比例定理。 例2.(2010天津理科)如图2,四边形ABCD 是圆O 的内接四边形,延长A B 和DC 相交于点P 。若 1 2 PB PA =,13PC PD =,则 BC AD 的值为 。 【解析】因为ABCD 四点共圆,所以∠DAB =∠PCB , ∠CDA=∠PBC ,因为∠P 为公共角,所以PBC ?∽PDA ?,所以 PB PD = PC PA =BC AD ,设PB=x ,PC=y ,则有32x y y x =,即62y x =, 所以 BC AD =3x y =66。 【命题意图】本题考查四点共圆与相似三角形的性质。 类型二. 求长度 例3. (2010湖南理科)如图3,过O 外一点P 作一条直线与O 交于A ,B 两点,已知PA =2,点P 到O 的切线长PT =4,则弦AB 的长为________. 【解析】根据切线长定理2 2 16 ,82 PT PT PA PB PB PA == == 所以826AB PB PA =-=-= 【命题意图】本题考察切线长定理。 例4.(2010广东理科)如图4,AB ,CD 是半径为a 的圆O 的两条弦,它们相交于AB 的中点P ,PD=23 a ,∠OAP=30°,则CP =______. 【解析】因为点P 是AB 的中点,由垂径定理知,OP AB ⊥. 在Rt OPA ?中,3cos30BP AP a a ===. A B C D E F H 图1 图2 .O B T A 图3 O A P D C 图4

相关文档
最新文档