七年级下册数学二元一次方程组习题及答案

七年级下册数学二元一次方程组习题及答案
七年级下册数学二元一次方程组习题及答案

《二元一次方程组》

§8.1二元一次方程组

一、填空题

1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____

2、在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=

3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当

k=______时,方程为二元一次方程。

4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。

5、方程2x+y=5的正整数解是______。

6、若(4x-3)2+|2y+1|=0,则x+2= 。

7、方程组?

?

?==+b xy a y x 的一个解为???==32

y x ,那么这个方程组的另一个解是 。

8、若2

1

=

x 时,关于y x 、的二元一次方程组??

?=-=-2

1

2by x y ax 的解互为倒数,则=-b a 2 。

二、选择题

1、方程2x-3y=5,xy=3,33

=+y

x ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。

A、1 B、2 C、3 D、4 2、方程2x+y=9在正整数范围内的解有( )

A 、1个

B 、2个

C 、3个

D 、4个

3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )

A 、10x+2y=4

B 、4x-y=7

C 、20x-4y=3

D 、15x-3y=6 4、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )

A 、1

B 、-1

C 、-3

D 、以上答案都不对 5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( )

A 、2

B 、-2

C 、2或-2

D 、以上答案都不对. 6、若??

?-==1

2

y x 是二元一次方程组的解,则这个方程组是( )

A 、???=+=-5253y x y x

B 、???=--=523x y x y

C 、???=+=-152y x y x

D 、?

??+==132y x y x

7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )

A 、35-=x y

B 、3--=x y

C 、35+=x y

D 、35--=x y 8、已知x=3-k,y=k+2,则y与x的关系是( )

A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-1 9、下列说法正确的是( )

A、二元一次方程只有一个解 B、二元一次方程组有无数个解

C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成

10、若方程组?

??=+=+161566

53y x y x 的解也是方程3x+ky=10的解,则k的值是( =)

A、k=6 = B、k=10 C、k=9 D、k=10

1

三、解答题

1、解关于x 的方程)1(2)4)(1(+-=--x a x a a

2、已知方程组??

?=+=+c

y ax y x 27

,试确定c a 、的值,使方程组:

(1)有一个解;(2)有无数解;(3)没有解

3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。

§8.2消元——二元一次方程组的解法

一、用代入法解下列方程组

(1)?

??=+=-525

3y x y x (2)

?

?

?=--=523

x y x y (3)???=+=-152y x y x (4)???+==-1

30

2y x y x

(5)???-=+=-1

4329m n n m (6)???=+-=-q p q p 4513

32

二、用加减法解下列方程组 (1)???=+=-9

24523n m n m (2)???=+=-5247

53y x y x

(3)???=--=-7441156y x y x (4)?

??-=+-=-53412

911y x y x

(5)?????=-=

+2

.03.05.05

23151

y x y x (6)???=+=+a y x a y x 343525( 其中a 为常数)

三、解答题

1、代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求

5,7-==y x 时代数式by ax -的值。

2、求满足方程组??

?=-=--20

314042y x m y x 中的y 值是x 值的3倍的m 的值,并求y x xy

+ 的值。

3、列方程解应用题

一个长方形的长减少10㎝,同时宽增加4㎝,就成为一个正方形,并且这两个图形的面积相等,求员长方形的长、宽各是多少。

§8.3实际问题与二元一次方程组

列方程解下列问题

1、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,

问两种债券各有多少?

2、一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。3种包装的饮料每瓶各多少元?

3、某班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车、乙组步行。车行至A 处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。已知汽车速度是60千米/时,步行速度是4千米/时,求A 点距北山站的距离。

4、某校体操队和篮球队的人数是5:6,排球队的人数比体操队的人数2倍少5人,篮球

队的人数与体操队的人数的3倍的和等于42人,求三种队各有多少人?

5、甲乙两地相距60千米,A 、B 两人骑自行车分别从甲乙两地相向而行,如果A 比B

先出发半小时,B 每小时比A 多行2千米,那么相遇时他们所行的路程正好相等。求A 、B 两人骑自行车的速度。(只需列出方程即可)

6、已知甲、乙两种商品的原价和为200元。因市场变化,甲商品降价10%,乙商品提

高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%。求甲、乙两种商品的原单价各是多少元。

7、2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆小卡车工

作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡车各运多少吨垃圾。

8、12支球队进行单循环比赛,规定胜一场得3分,平一场得1分,负一场得0分。若

有一支球队最终的积分为18分,那么这个球队平几场?

9、现有A 、B 、C 三箱橘子,其中A 、B 两箱共100个橘子,A 、C 两箱共102个,B 、C 两箱共106个,求每箱各有多少个?

第八单元测试

一、选择题(每题3分,共24分) 1、表示二元一次方程组的是( ) A 、??

?=+=+;5,3x z y x B 、???==+;4,52y y x C 、???==+;2,3xy y x D 、???+=-+=2

22,11x

y x x y x 2、方程组?

?

?=-=+.134,

723y x y x 的解是( )

A 、???=-=;3,1y x

B 、???-==;1,3y x

C 、???-=-=;1,3y x

D 、?

??-=-=.3,

1y x

3、设??

?=+=.

04,

3z y y x ()0≠y 则=z x ( )

A 、12

B 、12

1- C 、12- D 、.121

4、设方程组()??

?=--=-.433,1by x a by ax 的解是???-==.

1,

1y x 那么b a ,的值分别为( )

A 、;3,2-

B 、;2,3-

C 、;3,2-

D 、.2,3- 5、方程82=+y x 的正整数解的个数是( )

A 、4

B 、3

C 、2

D 、1

6、在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时,

=

y

( )。

A 、23

B 、-13

C 、-5

D 、13 7、关于关于y x 、的方程组??

?-=+-=-5m

212y 3x 4m

113y 2x 的解也是二元一次方程

2073=++m y x 的解,则m 的值是( )

A 、0

B 、1

C 、2

D 、2

1 8、方程组?

?

?=-=-8235

2y x y x ,消去y 后得到的方程是( )

A 、01043=--x x

B 、8543=+-x x

C 、8)25(23=--x x

D 、81043=+-x x

二、填空题(每题3分,共24分) 1、2

1173+=

x y 中,若,21

3-=x 则=y _______。

2、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。

3、如果?

?

?=-=+.232,12y x y x 那么=-+-+3962242y

x y x _______。

4、如果1032162312=--+--b a b a y x 是一个二元一次方程,那么数a =___, b =__。

5、购面值各为20分,30分的邮票共27枚,用款6.6元。购20分邮票_____枚,30分

邮票_____枚。

6、已知??

?==???=-=3

1

0y 2x y x 和是方程022=--bx ay x 的两个解,那么a = ,b = 7、如果b a a b y x y x 4222542-+-与是同类项,那么 a = ,b = 。 8、如果63)2(1||=---a x a 是关于x 的一元一次方程,那么a

a 1

2--= 。 三、用适当的方法解下列方程(每题4分,共24分)

1、???=-=+-6430524m n n m

2、???????=--=-32

3

113

121y x y x

3、???=-=+110117.03.04.0y x y x

4、???

??=+=+-7

22013

152y x y x 5、???-=+=--c y x c y x 72963112(c 为常数) 6、???-=++=--c

d y x d

c y x 23434(

d c 、为常数)

四、列方程解应用题(每题7分,共28分)

1、初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。问一工多少名学生、多少辆汽车。

2、某校举办数学竞赛,有120人报名参加,竞赛结果:总平均成绩为66分,合格

生平均成绩为76分,不及格生平均成绩为52分,则这次数学竞赛中,及格的学生有多少人,不及格的学生有多少人。

3、有一个两位数,其数字和为14,若调换个位数字与十位数字,就比原数大18则这个

两位数是多少。(用两种方法求解)

4、甲乙两地相距20千米,A从甲地向乙地方向前进,同时B从乙地向甲地方向前进,

两小时后二人在途中相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2千米,求A、B二人的速度。

答案 第八章§8.1

一、1、-4,-0,34,38

-- 2、y x x

y 33,3

3-=-=

3、-1,1

4、2,3

5、???==???==12,31y x y x

6、2.75

7、,23?

??==y x 8、11.5

二、ADDBCCAADB

三、1、当32≠≠a a 且时,=x 32-a 2、略 3、??

?

??==232

y x

§8.2

一、1、???????-==75720y x 2、???-=-=118y x 3、???-==12y x 4、???-=-=21y x 5、??????

?

-==196

195y x

6、???

???

?=-=75673y x 二、1、?????==21

2n m 2、???????

-==2123y x 3、???????-==221163y x 4、?????==733y x 5、???

????==17121714y x 6、???==0y a x 三、1、???-==4

3b a 2、3 3、长3216、宽32

2

§8.3

1、???==250150y x

2、??

???===16

3050

z y x 3、2.25Km 4、体操队10人,排球队15人,篮球队12

人 5、设甲的速度是x 千米/小时,乙的速度是y 千米/小时, ??

?

??=-=+2130302y x y

x 6、7、??

?==24y x

8、平5场或3场或1场 9、??

?

??===545248C B A

第八单元测试

一、DBCABDCD 二、1、4 2、1169,

9611+-y x 3、2 4、718 5、15 6、2,3

1- 7、53

,115- 8、2-=a

三、1、?????=-=143y m 2、??????

?==11121130y x 3、???==11y x 4、???????==1136225y x 5???????

-==c y c x 2145 6、???

????

+-=+=1361113115d c y d c x

四 1、240名学生,5辆车 2、及格的70人,不及格的50人 3、原数是68 4、A 的速度5.5千米/时,B 的速度是4.5千米/时

初一下数学证明经典例题及答案

如图,已知D是△A B C内一点,试说明A B+A C>B D+C D 证明:延长BD交AC于E 在△ABC中,AB+AE>BE,即AB+AE>BD+DE……①在△DEC中,DE+EC>DC……② ①+②,得(AB+AE)+(DE+EC)>(BD+DE)+CD 即AB+(AE+EC)+DE>(BD+DE)+CD 即AB+AC+DE>BD+DE+CD ∴AB+AC>BD+CD 如图,△ABC中,D是BC的中点,求证: (1)AB+AC>2AD (2)若AB=5,AC=3,求AD的范围。 (1)延长AD到点G,使DG=AD.连接BG 在△CDA和△BDE中 AD=GD,∠ADC=∠GDB ∵D是BC的中点 D C B A E A B C D G

∴CD=BD ∴△CDA ≌△BDG. ∴BG=AC 在△ABG 中,AB+BG=AB+BC AG=2AD 因为三角形两边和大于第三边,所以AB+BE >AG ∴AB+BC >2AD (2)AB-AC <2AD <AB+AC 2<2AD <8 1<AD <4 如图,AB=AD,AC=AE,∠BAD=∠CAE=90°,点F 为DE 的中点,求证:BC=2AF. 延长AF 到点G,使AF=DF.连接GD 在△AFE 和△DFG 中 AF=GF,∠AFE=∠DFG ∵点F 为DE 的中点 ∴DF=EF B D C

所以△AFE≌△DFG.(SAS) GD=AE=AC;∠G=∠FAE. ∴DG∥AE.(内错角相等,两直线平行) 则∠GDA+∠DAE=180°.(两直线平行,同旁内角互补) 又∵∠BAC+∠DAE=180°. ∴∠GDA=∠BAC.(同角的补角相等). 又∵AD=AB. ∴⊿ADG≌⊿BAC(SAS) ∴AG=BC,即2AF=BC. ∴BC=2AF. 如图,AD是△ABC的中线,点E在BC的延长线上,CE=AB, ∠BAC=∠BCA 求证:AE=2AD 证明:在AD的延长线上取点F,使AD=FD,连接CF ∵AD是中线 ∴BD=CD,AD=FD,∠ADB=∠FDC ∴△ABD≌△FCD (SAS) F E C D B A

人教版七年级数学下册期末测试题及答案(共五套)

七年级下期末测评 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的... 是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( ) ±4 B. =-4 3.已知a >b >0,那么下列不等式组中无解.. 的是( ) A .?? ?->b x a x C .???-<>b x a x D .???<->b x a x 4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( ) (A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为1 2x y =?? =?的方程组是( ) A.135x y x y -=??+=? B.135x y x y -=-??+=-? C.331x y x y -=??-=? D.2335x y x y -=-??+=? 6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( ) A .1000 B .1100 C .1150 D .1200 P B A (1) (2) (3) 7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的 1 2 ,则这个多边形的边数是( ) A .5 B .6 C .7 D .8 9.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( ) A .10 cm 2 B .12 c m 2 C .15 cm 2 D .17 cm 2 10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(?0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( ) A.(5,4) B.(4,5) C.(3,4) D.(4,3) C 1 A 1

七年级数学下经典例题不含答案

七年级数学下册测试题 1、 如图(2)所示,1l ∥2l ,AB ⊥1l ,∠ABC=130°,那么∠α的度数为( ) A 、60° B 、50° C 、40° D 、30° 2、 适合C B A ∠=∠= ∠3 1 21的△ABC 就是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、不能确 3、 一个n 边形的内角与等于它外角与的5倍,则边数n 等于( ) A 、24 B 、12 C 、8 D 、6 4、如图(5)BC ⊥ED 于点M,∠A=27°,∠D=20°,则∠B= °,∠ACB= ° 5、已知如图(8),△ABC 中,AB >AC,AD 就是高,AE 就是角平分线,试说明 )(2 1 B C EAD ∠-∠= ∠ 6、如图(9),在四边形ABCD 中,∠A=∠C,BE 平分∠ABC,DF 平分∠ADC,试说明BE ∥DF 。 7、如图,每一个图形都就是由小三角形“△” 拼成的 : …… ⑴ ⑵ ⑶ ⑷ 观察发现,第10个图形中需要 个小三角形,第n 个图形需要 个小三角形。 8、如图(11),BE ∥AO,∠1=∠2,OE ⊥OA 于点O,EH ⊥CO 于点H,那么∠5=∠6,为什么? 9、 若n 为正整数,且72=n x ,则n n x x 2223)(4)3(-的值为( ) A 、833 B 、2891 C 、3283 D 、1225 10、若2=-b a ,1=-c a ,则2 2)()2(a c c b a -+--等于( ) A 、9 B 、10 C 、2 D 、1 11、计算m m 525÷的结果就是( ) A 、5 B 、20 C 、m 5 D 、m 20 ⑶20 10 225.0? ⑷()[]()()5 32 2 32 3 34b a b a b a -?-?- ⑸( )[]()()522 343 225 x x x x -÷-?-÷ 13、若3-=a ,25=b 。则20052005 b a +的末位数就是多少? 14、 多项式b x x ++2 与多项式22 --ax x 的乘积不含2 x 与3 x 项,则 2)3 (2b a --的值就是( ) A 、8- B 、4- C 、0 D 、9 4- 图(5) C D M B E A 图(8)D B C E A 图(9) E B F C D A 图(11) H O C E B A 6 5 4 3 21

人教版七年级下册数学试卷全集

2005年春季期七年级数学第九章复习测试题 一、填空题(每空2分,共28分) 1、不等式的负整数解是 2、若_______ ;不等式解集是,则取值范围是 3、一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答,一道题得-1分,在这次竞赛中,小明获得优秀(90或90分以上),则小明至少答对了道题。 4、不等式组的解集是。 5、如图数轴上表示的是一不等式组的解集,这个不等式组的整数解是 6、若代数式1-x-22 的值不大于1+3x3 的值,那么x的取值范围是_______________________。 7、若不等式组无解,则m的取值范围是. 8、已知三角形三边长分别为3、(1-2a)、8,则a的取值范围是____________。 9、若,则点在第象限。 10、已知点M(1-a,a+2)在第二象限,则a的取值范围是_______________。 11、在方程组的取值范围是____________________ 12、某书城开展学生优惠售书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算。某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元钱。则该学生第二次购书实际付款元。 12、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为。 二、选择题(每小题3分,共30分) 1、若∣-a∣=-a则有 (A) a≥0 (B) a≤0 (C) a≥-1 (D) -1≤a≤0 2、不等式组的最小整数解是() A.-1 B.0 C.2 D.3 3、不等式组的解集在数轴上的表示正确的是() A B C D 4、在ABC中,AB=14,BC=2x,AC=3x,则x的取值范围是() A、x>2.8 B、2.8<x<14 C、x<14 D、7<x<14 5、下列不等式组中,无解的是() (B) (C) (D) 6、如果0

七年级下册数学综合测试卷

七年级下数学 综合练习题 一、单项选择题(每小题3分,共24分) 1.已知点P (m +3,m +1)在x 轴上,则P 点的坐标为( ) A .(0,2) B .(2,0) C .(4,0) D .(0,-4) 2.在下图中,∠1,∠2是对顶角的图形是( ) 3.为了了解某校初二年级400名学生的体重情况,从中抽取50名学生的体重进行统计分析,这 个问题中,总体是指( ) A .400 B .被抽取的50名学生 C .400名学生的体重 D .被抽取50名学生的体重 4.以方程组2 34 x y x y +=?? -=?的解为坐标的点(,)x y 在平面直角坐标系中的位置是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5.下列各式中,正确的... 是( ) A.25=±5 B. 4=- 2 1 D.=6.不等式组211420x x ->??-? , ≤的解集在数轴上表示为( ) 7.在 22 7 , 3.1415926中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个 七年级数学试卷 第1页 (共8页) 8.有2元和5元两种纸币共21张,并且总钱数为72元.设2元纸币x 张,5元纸币y 张,根据题意列方程组为( ) A .21, 5272. x y x y +=?? +=? B .21, 2572. x y x y +=?? +=? C .2521,72.x y x y +=??+=? D .5221, 72.x y x y +=??+=? 二、填空题(每小题3分,共24分) 9.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标 . 10.已知样本容量是40,在样本的频数分布直方图中,各个小长方形的高之比为3:2:4:1,则第 二小组的频数为 ,第四小组的频数为 .11.如果163+x 的立方根是4,则42+x 的算术平方根是 . 12.不等式4x -6≥7x -12的正整数解为 . 13.若一个二元一次方程的解为2 1x y =??=-? ,则这个方程可以是________________(写出一个即可). 14. 如果二元一次方程组?? ?=+=-0432y x y x 的解是???==b y a x ,那么a+b= . 15.如图,已知AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分∠BEF ,若∠1=72°, 则∠2= °. 16.如图所示,在10×20(m 2)的长方形草地内修建宽为2m 的道路,则草地的面积为_________m 2 . 七年级数学试卷 第2页 (共8页) A 21 2 1B 2 1D 21 C (第15题) (第16题)

初一下册数学经典题型

1. 如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. 例如:方程260x =- 的解为3x= ,不等式组205x x ->????-??-+<-? , 的关联方程是 ;(填序号) (2)若不等式组1144275 x x x ? -?? ?++?<, >-的一个关联方程的根是整数,则这个关联方程可以是 ;(写 出一个即可) (3)若方程21+2x x -=, 1322x x ? ?+=+ ???都是关于x 的不等式组22x x m x m -?? -?<,≤的关联方程,求m 的取值范围.

2. 对于平面直角坐标系xOy中的点A,给出如下定义:若存在点B(不与点A重合,且直线AB不与坐标轴平行或重合),过点A作直线m∥x轴,过点B作直线n∥y轴,直线m,n相交于点C.当线段AC,BC的长度相等时,称点B为点A的等距点,称三角形ABC的面积为点A的 等距面积. 例如:如图,点A(2,1),点B(5,4),因为AC= BC=3,所以B 为点A的等距点,此时点A的等距面积为9 2. (1)点A的坐标是(0,1),在点B1(-1,0),B2(2,3),B3(-1,-1)中,点A的等距点为. (2)点A的坐标是(-3,1),点A的等距点B在第三象限, ①若点B的坐标是 ? ? ? ? ? 2 1 2 9 ,- - ,求此时点A的等距面积; ② ②若点A的等距面积不小于9 8,求此时点B的横坐标t的取值范围. 备用图

2017-2018年人教版七年级数学下册各单元测试题多套及答案

123 (第三题)A B C D E (第10题) A B C D 1 23 4 (第2题)1 2345 678(第4题)a b c A B C D (第7题) 七年级数学第五章《相交线与平行线》测试卷 班级 _______ 姓名 ________ 坐号 _______ 成绩 _______ 一、选择题(每小题3分,共 30 分) 1、如图所示,∠1和∠2是对顶角的是( ) A B C D 1 2 1 2 1 2 1 2 2、如图AB ∥CD 可以得到( ) A 、∠1=∠2 B、∠2=∠3 C 、∠1=∠4 D、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120° C 、180° D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( ) A 、①② B、①③ C、①④ D、③④ 5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( ) B D 7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 8、下列现象属于平移的是( ) ① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走 A 、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是( ) A 、有且只有一条直线与已知直线平行 B 、垂直于同一条直线的两条直线互相垂直 C 、从直线外一点到这条直线的垂线段,叫做这点到这 条直线的距离。 D 、在平面内过一点有且只有一条直线与已知直线垂直。 10、直线AB ∥CD ,∠B =23°,∠D =42°,则∠E =( )

七年级下册数学试卷全套

精品试卷,请参考使用,祝老师、同学们取得好成绩! 七年级下册数学试卷全套 第五章相交线与平行线测试题 一、选择:1、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是 ( )A 第一次右拐50°,第二次左拐130 °B 第一次左拐50 °,第二次右拐50 °C 第一次左拐50 °,第二次左拐130 °D 第一次右拐50 °,第二次右拐50 ° 2、下列句子中不是命题的是 ( ) A 、两直线平行,同位角相等。 B 、直线AB 垂直于CD 吗? C 、若︱a ︱=︱b ︱,则a 2 = b 2。 D 、同角的补角相等。 3、平面内有两两相交的4条直线,如果最多有m 个交点,最少有n 个交点,则m-n=( ) A 3 B 4 C 5 D 6 4、“两直线相交只有一个交点”题设是( ) A 两直线 B 相交 C 只有一个交点 D 两直线相交 5、如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D′,的位置.若∠EFB =65°,则∠AED′等于 ( ) A .70° B .65° C .50° D .25° 6、如图,直线AB CD 、相交于点E ,若°=∠100AEC ,则D ∠等于( ) A .70° B .80° C .90° D .100° 7、如图直线1l ∥2l ,则∠ 为( ). 8、如图,已知AB ∥CD,若∠A=20°,∠E=35°,则∠C 等于( ). A.20° B. 35° C. 45° D.55° 9、在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=30o 时,∠BOD 的度数是( ). A .60o B .120o C .60o 或 90o D .60o 或120o 10、30°角的余角是( ) A .30°角 B .60°角 C .90°角 D .150°角 二、填空:1、x 的补角是3y,x=30°,则|x-y|的值是( )。 2、图形平移后对应点所连的线段( )且( )。 3、若两个角互为邻补角且度数之比为2:3,这两个角的度数分别为( )。 4、∠A 的邻补角是∠A 的2倍,则∠A 的度数是( )。 E D B C′ F C D ′ A 5题 C A E B F D 6题

七年级年级数学经典例题

数学天地: 初一年级数学核心题目赏析 有理数及其运算篇 【核心提示】 有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方. 通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面. 【核心例题】 例1计算: 2007 20061 ......431321211?+ +?+?+? 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成 2 1 11211-=?,可利用通项 ()11111+-=+?n n n n ,把每一项都做如此变形,问题会迎刃而解. 解 原式= )20071 20061(......413131212111-++-+-+-)()()( =20071 20061......41313121211-++-+-+- =20071 1- =2007 2006

例2 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如右图).化简b c b a a -+-+. 分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0. 解 由数轴知,a<0,a-b<0,c-b>0 所以,b c b a a -+-+= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c 例3 计算:?? ? ??-??? ??-????? ??-??? ??-??? ??-211311 (9811991110011) 分析 本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,问题会变得很简便. 解 原式= 2132......9897999810099?????= 100 1 例4 计算:2-22-23-24-……-218-219+220. 分析 本题把每一项都算出来再相加,显然太麻烦.怎么让它们“相互抵消”呢?我们可先从最简单的情况考虑.2-22+23=2+22(-1+2)=2+22=6.再考虑2-22-23+24=2-22+23(-1+2)=2-22+23=2+22(-1+2)=2+22=6.这怎么又等于6了呢?是否可以把这种方法应用到原题呢?显然是可以的. 解 原式=2-22-23-24-……-218+219(-1+2) =2-22-23-24-……-218+219 =2-22-23-24-……-217+218(-1+2) =2-22-23-24-……-217+218 =…… =2-22+23 =6

人教版七年级数学下册知识点及各章节典型试题

2018年最新版人教版七年级数学下册知识点及练习 第五章 相交线与平行线 一、知识网络结构 二、知识要点 1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。 2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没 有公共点,称这两条直线平行。 3、两条直线相交所构成的四个角中,有公共顶点且有 一条公共边的两个角是 邻补角。邻补角的性质: 邻补角互补 。如图1所示,与互为邻补角, 与互为邻补角。+ =180°;+ =180°;+ =180°;+ =180°。 4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=;=。 5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。如图2所示,当= 90°时, ⊥ 。 垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 性质3:如图2所示,当a ⊥b 时,= = = = 90°。 点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。 6、同位角、内错角、同旁内角基本特征: ①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样 的两个角叫 同位角 。图3中,共有对同位角:与是同位角; 与是同位角;与是同位角;与是同位角。 ②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫 内错角 。图3中,共有对内错角:与是内错角;与是内错角。 ???? ? ?????? ??????????? ? ??? ?????? ??????????????????????????? ??平移 命题、定理 的两直线平行:平行于同一条直线性质角互补 :两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行  :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线 相交线相交线相交线与平行线 4321 4321____________________________:图2 1 3 4 2 a b 图3 a 5 7 8 6 1 3 4 2 b c

初中数学七年级下册 测试题(含答案)

七年级(下)期末数学试卷 一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给出的四个选项中恰一项是符合题目要求的) 1.下方的“月亮”图案可以由如图所示的图案平移得到的是() A.B.C.D. 2.某红外线遥控器发出的红外线波长为0.00000094m,将0.00000094用科学记数法表示为() A.9.4×10﹣7B.0.94×10﹣6C.9.4×10﹣6D.9.4×107 3.下列各式从左边到右边的变形,是因式分解的是() A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a﹣1) C.(a+b)2=a2+2ab+b2D.a2b=ab?a 4.二元一次方程2x+3y+10=35的一个解可以是() A.B.C.D. 5.已知a>b,则下列不等关系正确的是() A.﹣a>﹣b B.3a>3b C.a﹣1<b﹣1D.a+1<b+2 6.如图,在Rt△ABC中,∠A=90°,直线DE∥BC,分别交AB、AC于点D、E,若∠ADE =30°,则∠C的度数为() A.30°B.40°C.50°D.60° 7.命题“若a=b,则|a|=|b|”与其逆命题的真假性为() A.该命题与其逆命题都是真命题 B.该命题是真命题,其逆命题是假命题 C.该命题是假命题,其逆命题是真命题

D.该命题与其逆命题都是假命题 8.已知AB=3,BC=1,则AC的长度的取值范围是() A.2≤AC≤4B.2<AC<4C.1≤AC≤3D.1<AC<3 二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程) 9.计算:a5÷a2的结果是. 10.计算(x+1)(2x﹣1)的结果为. 11.因式分解:ab2﹣2ab+a=. 12.不等式2x﹣1<3的解集是. 13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为. 14.如图,将一张长方形纸片ABCD沿EF折叠后,点C、D分别落在C、D的位置,DE 与BC相交于点G.若∠1=40°,则∠2=°. 15.将不等式“﹣2x>﹣2”中未知数的系数化为“1”可得到“x<1”,该步的依据是.16.不等式组的整数解为. 17.如图,BE是△ABC的中线,D是AB的中点,连接DE.若△ABC的面积为1,则四边形DBCE的面积为. 18.二元一次方程组有可能无解.例如方程组无解,原因是:将①×2得2x+4y =2,它与②式存在矛盾,导致原方程组无解.若关于x、y的方程组无解,则a、b须满足的条件是. 三、解答题(本大题共9小题,共64分)

初一下册数学经典易错题

初一下册数学经典易错题 一、填空题 1.一个数的平方等于它本身,这个数是;一个数的平方根等于它本身,这个数是;一个数的算术平方根等于它本身,这个数是;一个数的立方等于它本身,这个数是;一个数的立方根等于它本身,这个数是;一个数的倒数是它本身,这个数是;一个数的绝对值等于它本身,这个数是。 2.16的平方根为,,的平方根等于. 3.已知; ,则。 4.已知一个正数的两个平方根分别为3x-5和x-7,则这个正数为. 5. -1的整数部分为;小数部分为;绝对值为;相反数为. 6. 如图,在数轴上,1,的对应点是A、B,A是 线段BC的中点,则点C所表示的数是。 7.已知,OAOC,且AOB:AOC=2:3,则BOC的度数为。 8.如果1=80,2的两边分别与1的两边平行,那么2= 。 9.已知点A(1+m,2m+1)在x轴上,则点A坐标为。 10.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为. 11.点P(a-2,2a+3)到两坐标轴距离相等,则a= . 12.将点A(1,-3)向右平移2个单位,再向下平移2个单位后得到点B(a, b),则ab= .新课标第一网 13.已知平面直角坐标系内点P的坐标为(-1,3),如果将平面直角坐标系向左平移3个单位,再向下平移2个单位,那么平移后点P的坐标为________. 14.在平面直角坐标系中,已知A(2,-2),在y轴上确定一点P,使△A OP为等腰三角形,则符合条件的点P共有个。 15.点P(a+5,a)不可能在第象限。 16.平面直角坐标系内有一点P(x,y),满足,则点P在 17.方程在正整数范围内的解是_____ 。 18.已知x=1,y=﹣8是方程mx+y-1=0的解,则m的平方根是。 19.关于x的不等式(a+1)xa+1的解集为x1,那么a的取值范围是。 20.如果不等式2x-m0的正整数解有3个,则m的取值范围是。

人教版七年级数学下册各单元测试题及答案很实用的

12 3 (第三题) A B C D E (第10题)A B C D E F G H 第13题 A B C D 1 23 4 (第2题) 1 234 5 67 8 (第4题) a b c A B C D (第7题) 七年级数学第五章《相交线与平行线》测试卷 班级 _______ 姓名 ________ 坐号 _______ 成绩 _______ 一、选择题(每小题3分,共 30 分) 1、如图所示,∠1和∠2是对顶角的是( ) A B C D 1 2 1 2 1 2 1 2 2、如图AB ∥CD 可以得到( ) A 、∠1=∠2 B 、∠2=∠3 C 、∠1=∠4 D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120° C 、180° D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( ) A 、①② B 、①③ C 、①④ D 、③④ 5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( ) B D 7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 8、下列现象属于平移的是( ) ① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走 A 、③ B 、②③ C 、①②④ D 、①②⑤ 9、下列说法正确的是( ) A 、有且只有一条直线与已知直线平行 B 、垂直于同一条直线的两条直线互相垂直 C 、从直线外一点到这条直线的垂线段,叫做这点到这 条直线的距离。 D 、在平面内过一点有且只有一条直线与已知直线垂直。 10、直线AB ∥CD ,∠B =23°,∠D =42°,则∠E =( ) A 、23° B 、42° C 、65° D 、19° 二、填空题(本大题共6小题,每小题3分,共18分) 11、直线AB 、CD 相交于点O ,若∠AOC =100°,则 ∠AOD =___________。 12、若AB ∥CD ,AB ∥EF ,则CD _______EF ,其理由

七年级数学《平方根》典型例题及练习

七年级数学《平方根》典型例题及练习 【知识要点】 1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式), 2、算术平方根: 3、平方根的性质: (1)一个正数有 个平方根,它们 ; (2)0 平方根,它是 ; (3) 没有平方根. 4、重要公式: (1)=2)(a (2){==a a 2 5、平方表: 【典型例题】 例1、判断下列说确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0; ④ 0.01是0.1的算术平方根; ⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、36的平方根是( ) A 、6 B 、6± C 、 6 D 、 6± 例3、下列各式中,哪些有意义? (1)5 (2)2- (3)4- (4)2)3(- (5)310- 例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .12+a D .12+±a 例5、求下列各式中的x : (1)0252=-x (2)4(x+1)2-169=0 【巩固练习】 一、选择题 1. 9的算术平方根是( ) A .-3 B .3 C .±3 D .81

2.下列计算正确的是( ) A ±2 B 636=± D.992-=- 3.下列说法中正确的是( ) A .9的平方根是3 B 2 4. 64的平方根是( ) A .±8 B .±4 C .±2 D 5. 4的平方的倒数的算术平方根是( ) A .4 B .18 C .-14 D .14 6.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=???? ??-- 7.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、7是2)7(-的平方根,即7)7(2=- C 、7±是49的平方根,即749=± D 、7±是49的平方根,即749±= 8.下列语句中正确的是( ) A 、9-的平方根是3- B 、9的平方根是3 C 、 9的算术平方根是3± D 、9的算术平方根是3 9.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有 ( ) A .3个 B .2个 C .1个 D .4个 10.下列语句中正确的是( ) A 、任意算术平方根是正数 B 、只有正数才有算术平方根 C 、∵3的平方是9,∴9的平方根是3 D 、1-是1的平方根 11.下列说确的是( ) A .任何数的平方根都有两个 B .只有正数才有平方根 C .一个正数的平方根的平方仍是这个数 D .2a 的平方根是a ± 12.下列叙述中正确的是( ) A .(-11)2的算术平方根是±11 B .大于零而小于1的数的算术平方根比原数大 C .大于零而小于1的数的平方根比原数大 D .任何一个非负数的平方根都是非负数 13.25的平方根是( ) A 、5 B 、5- C 、5± D 、5± 14.36的平方根是( ) A 、6 B 、6± C 、 6 D 、 6± 15.当≥m 0时,m 表示( ) A .m 的平方根 B .一个有理数 C .m 的算术平方根 D .一个正数 16.用数学式子表示“169的平方根是43±”应是( ) A .43169±= B .43169±=± C .43169= D .43169-=- 17.算术平方根等于它本身的数是( ) A 、 1和0 B 、0 C 、1 D 、 1±和0 18.0196.0的算术平方根是( )

七年级数学下册不等式与不等式组经典例题分析

精品文档 不等式与不等式组经典例题分析 足的x的值中,绝对值不超过11的那些整数之和【例1】满等于。 【分析】要求出那些整数之和,必须求出不等式的绝对值不超过11的整数解,因此我们应该先解不等式. 解:原不等式去分母,得 3(2+x)≥2(2x-1),解得:x≤8. 满足x≤8且绝对值不超过11的整数有0,±1,±2,±3,±4,±5,±6,±7,±8,-9,-10,-11. 这些整数的和为(-9)+(-10)+(-11)=-30. 【例2】如果关于x的一元一次方程3(x+4)=2a+5的解大于关于x的方程 的解,那么(). 【分析】分别解出关于x的两个方程的解(两个解都是关于a的式子),再令第一个方程的解大于第二个方程的解,就可以求出问题的答案. 的解为 2a+5(x+4)=解:关于x的方程3 的方程关于x的解为 D. 由题意得.,解得因此选 ,2+c>2,那么()【例3】 . 如果 A. a-c>a+c B. c-a>c+a C. ac>-ac D. 3a>2a 【分析】已知两个不等式分别是关于a和c的不等式,求得它们的解集后,便 可以找到正确的答案. 由解: 所以a<0. 由2+c>2,得c>0,答案:B 满足不等式S,这四个数中最大数与最小数四个连续整数的和为S,【例4】的平方差等于 . 【分析】由于四个数是连续整数,我们欲求最大值与最小值,故只须知四数之一就行了,由它们的和满足的不等式就可以求出. 解:设四个连续整数为m-1,m,m+1,m+2,它们的和为S=4m+2.

由, <19精品文档. 精品文档 解得7

初一下册数学试题

七年级下册数学试题 姓名:班级:(答题时间:90分钟) 一.选择题(每小题3分,共30分) 1.多项式3x2y+2y-1的次数是() A、1次 B、2次 C、3次 D、4次 2.棱长为a的正方形体积为a3,将其棱长扩大为原来的2倍,则体积为() A、2a3 B、8a3 C、16 a3 D、a3 3.2000年中国第五次人口普查资料表明,我国人口总数为1295330000人,精确到千万位为() A、1.30×109 B、1.259×109 C、1.29×109 D、1.3×109 4.下列四组数分别是三根木棒的长度,用它们不能拼成三角形的是() A、3cm,4cm,5cm B、12cm,12cm,1cm C、13cm,12cm,20cm D、8cm,7cm,16cm 5.已知△ABC三内角的度数分别为a,2a,3a。这个三角形是()三角形。 A、锐角三角形 B、直角三角形 C、钝角三角形 D、不能确定 6.国旗是一个国家的象征,下面四个国家的国旗不是轴对称图形的是() A、越南 B、澳大利亚

C、加拿大 D、柬埔寨 7.下面哪一幅图可大致反映短跑运动员在比赛中从起跑到终点的速度变化情况() A、 B、 C、 D、 8.如图,已知,△ABD≌△CBE,下列结论不正确的是() A、∠CBE=∠ABD B、BE=BD C、∠CEB=∠BDE D、AE=ED 9. 将一张矩形纸片对折,再对折,将所得矩形撕去一角,打开的图形一定有()条对称轴。 A、一条 B、二条 C、三条 D、四条

10.房间铺有两种颜色的地板,其中黑色地板面积是白色地板面积的二分之一,地板下藏有一宝物,藏在白色地板下的概率为() A、1 B、 C、 D、 二.我会填。(每小题3分,共15分) 11.22+22+22+22=____________。 12.三角形的两边长分别为5cm,8cm,则第三边长的范围为___________。 13.三角形的高是x,它的底边长是3,三角形面积s与高x的关系是____________。 14.如图,O是AB和CD的中点,则△OAC≌△OBD的理由是__________。 15.袋子里有2个红球,3个白球,5个黑球,从中任意摸出一个球,摸到红球的概率是________。 三.解答题(每小题6分,共24分) 16.(2mn+1)(2mn-1)-(2m2n2+2) 17.有这样一道题“计算(2x3-3x2y-2xy2)-(x3-2xy2+y2)+(-x3-3x2y-y2)的值,其中 x=,y=-1。”甲同学把x=错抄成x=-,但他计算的结果也是正确的,你说这是怎么回事呢? 18.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于点G,∠EFG=500,求∠BEG的度数。

新人教版七年级数学下册测试题及答案

123 (第三题) A B C D 1 23 4 (第2题) 1 2 34 567 8 (第4题) a b c 七年级数学第五章《相交线与平行线》测试卷 班级 _______ 姓名 ________ 坐号 _______ 成绩 _______ 一、单项选择题<每小题3分,共 30 分) 1、如图AB ∥CD 可以得到< ) A 、∠1=∠2 B、∠2=∠3 C 、∠1=∠4 D、∠3=∠4 2、直线A B 、CD 、EF 相交于O ,则∠1+∠2+∠3=< ) A 、90° B 、120° C 、180° D 、140° 3、如图所示,∠1和∠2是对顶角的是< ) 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是< ) A 、①② B、①③ C、①④ D、③④ 5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是< ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的< ) 7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是< ) A 、3:4 B 、5:8 C 、9:16 D 、1:2

A B C D E (第10题) (第14题) A B C D E F G H 第13题 8、下列现象属于平移的是< ) ① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是< ) A 、有且只有一条直线与已知直线平行 B 、垂直于同一条直线的两条直线互相垂直 C 、从直线外一点到这条直线的垂线段,叫做这点到这 条直线的距离。 D 、在平面内过一点有且只有一条直线与已知直线垂直。 10、直线AB ∥CD ,∠B =23°,∠D =42°,则∠ E =< ) A 、23° B、42° C、65° D、19° 二、填空题<本大题共6小题,每小题3分,共18分) 11、直线AB 、CD 相交于点O ,若∠AOC =100°,则 ∠AOD =___________。 12、若AB ∥CD ,AB ∥EF ,则CD _______EF ,其理由 是_______________________。 13、如图,在正方体中,与线段AB 平行的线段有______ ____________________。 14、奥运会上,跳水运动员入水时,形成的水花是评委

相关文档
最新文档