流体力学期末复习资料教学提纲

流体力学期末复习资料教学提纲
流体力学期末复习资料教学提纲

流体力学期末复习资

1、流体运动粘度的国际单位为 m^2/s 。

2、流体流动中的机械能损失分为沿程损失和局部损失两大类。

3、当压力体与液体在曲面的同侧时,为实压力体。

4、静水压力的压力中心总是在受压平面形心的下方。

5、圆管层流流动中,其断面上切应力分布与管子半径

的关系为线性关系。

6、当流动处于紊流光滑区时,其沿程水头损失与断面

平均流速的 1.75 次方成正比。

7、当流动处于湍流粗糙区时,其沿程水头损失

与断面平均流速的 2 次方成正比。

8、圆管层流流动中,其断面平均流速与最大流速的比值为 1/2 。

9、水击压强与管道内流动速度成正比关系。

10、减轻有压管路中水击危害的措施一般有:延长阀门关闭时间, 采用过载保护,可能时减低馆内流速。

11、圆管层流流动中,其断面上流速分布与管子半径的关系为二次抛物

线。

12、采用欧拉法描述流体流动时,流体质点的加速度由当地加速度和

迁移加速度组成。

13流体微团的运动可以分解为:

平移运动、线变形运动、角变形运动、旋转运动。

14、教材中介绍的基本平面势流分别为:点源、点汇、点涡、

均匀直线流。

15、螺旋流是由点涡和点汇两种基本势流

所组成。

16、绕圆柱体无环量流动是由偶极流和

平面均匀流两种势流所组成。

17、流动阻力分为压差阻力和摩擦阻力。

18、层流底层的厚度与雷诺数成反比。

19、水击波分为直接水击波和间接水击波。

20、描述流体运动的两种方法为

欧拉法和拉格朗日法。

21、尼古拉兹试验曲线在对数坐标中的图像分为5个区域,它们依次为:

层流层、层流到紊流过渡区、紊流区、

紊流水力粗糙管过渡区、紊流水力粗糙管平方阻力区。

22、绕流物体的阻力由和两

部分组成。

二、名词解释

1、流体:在任何微小剪力的持续作用下能够连续不断变形的物质

2、牛顿流体:把在作剪切运动时满足牛顿内摩擦定律的流体称为牛顿流体。

3、等压面:在流体中,压强相等的各点所组成的面称为等压面。

4、流线:流线是某一瞬时在流场中所作的一条曲线,在这条曲线上的各流体的速度方向都与该曲线相切。

5、流管:过流管横截面上各点作流线,则得到充满流管的医术流线簇

6、迹线:流场中某一质点的运动轨迹。

7、控制体:假定平面边界内流动是定常的,并忽略质量力,在边界层的任一处,取单位宽度,沿边界层长度为dx的微元断。

8、压力管路:在一定压差下,流体充满全管的流动管路。

9、有旋流动:在流体流动中,如果流场中有若干处微元团具有绕过其自身轴线的旋转运动,则称为有旋流动。

10、层流底层:粘性流体在管道中做紊流流动时,管壁上的流速为零,从管壁起的流速将从零迅速增大,在紧贴管壁的一极薄层内,速度梯度很大,黏性摩擦很大,黏性摩擦切应力其主要作用,处于层流状态,称为层流底层

11、紊流核心:距管壁稍远出有一黏性摩擦切应力和紊流附加切应力同时起作用的薄层,称之为过渡区,之后发展称为完全紊流。

,称之为紊流核心。

12、光滑管:管壁粗糙度对流动不起任何影响,流体好像在完全光滑的管道中流动一样。这种情况下的管道称为光滑管。

13、粗糙管:当流体流过凸出部分是,在凸出部分后面将引起漩涡,增加了能量损失,管壁粗糙度对紊流流动发生影响。

14、边界层:边界层是高雷诺数绕流中紧贴物面的粘性力补课忽略的流动薄层。

15、定常流动:流体中任一点的流体质点的流动参数均不随时间变化,而只最空间点位置不同而变化的流动。水和空气等粘度很小的流体,在大雷诺数下绕物体流动时,黏性对流动的影响仅限于紧贴物体壁面的薄层中,而这一薄层外黏性影响很小,完成可以忽略不计。

16、沿程压强损失:

17、沿程水头损失:

18、入口段

:19、充分发展段

三、单项选择题(选择正确答案的字母填入括号)1、流体的密度与( D )有关。

A、流体种类、温度、体积等

B、温度、压力、体积等

C、流体种类、压力、体积等

D、流体种类、温度、压力等

2、流体的动力黏度与( A )有关。

A、流体种类、温度、压力等

B、流体种类、温度、体积等

C、流体种类、压力、体积等

D、温度、压力、体积等

3、理想流体是指 ( C )。

A、平衡流体

B、运动流体

C、忽略粘性的流体

D、忽略密度变化的流体

4、流体静压强的作用方向为( D)。

A、垂直受压面

B、平行受压面

C、指向受压面

D、垂直指向受压面

5、在流体力学中,单位质量力是指作用在单位(D )流体上的质量力。A、重量B、体积C、面积D、质量

6、相对压强的计量基准为( C )。

A、绝对真空B、标准大气压

C、当地大气压D、液面压强

7、在平衡液体中,质量力恒与等压面( B )。

A、重合B、正交C、相交D、平行

8、已知不可压缩流体的速度场为

则该流动为 ( B )。

A、一维流动B、三维流动

C、二维流动D、均匀流

9、过流断面是指与( C )的横断面。

A、迹线正交B、流线斜交

C、流线正交D、迹线斜交

10、在恒定流中,流线与迹线 ( D )。

A、相交B、正交C、平行D、重合

11、非恒定流动中,流线和迹线:( C )。

A、一定重合 B、一定不重合

C、特殊情况下可以重合D、一定正交

12、一维流动的连续方程

成立的条件是:( A )

A、不可压缩流体B、粘性流体

C、可压缩流体D、理想流体

13、伯努利方程中表示:( B )。A、单位质量流体所具有的机械能

B、单位重量流体所具有的机械能

C、单位体积流体所具有的机械能

D、通过过流断面流体的总机械能

14、关于水流流向的正确说法是( B )。

A、水一定是从高处往低处流

B、水一定是从机械能大处往机械能小处流

C、水一定是从测压管水头高处往测压管水头低处流D、水一定是从流速大处往流速小处流

15、毕托管是一种测量( D )的仪器。

A、压强B、断面平均流速

C、流量D、点流速

16、均匀流过流断面上各点的( B )等于常数。

17、文丘利管是一种测量( A )的仪器。

A、流量B、压强C、密度D、点流速

18、若在同一等径长直管道中用不同流体进行实验,当流速相等时,其沿程水头损失在( D )是相同的。

A、层流区B、紊流光滑区

C、紊流过渡区D、紊流粗糙区

19、雷诺数的物理意义在于它反映了( D )的比值。

A、重力与粘滞力B、惯性力与粘滞力C、惯性力与重力D、重力与压力

20、若圆管内水流为层流运动,则有( C )。

21、已知某圆管流动的雷诺数,

则该管的沿程阻力系数( A )。

A、0.032B、0.064

C、0.128D、0.256

22、圆管层流流动,断面流速为 ( B ) 分布。

A、线性B、抛物线

C、双曲线D、对数

23、圆管紊流流动,断面流速为 ( D ) 分布。

A、线性B、抛物线

C、双曲线D、对数

24、根据尼古拉兹实验成果知,紊流过渡区的沿程阻力系数与( C )有关。

25、有压管道的管径d与相应的水力半径d/R

之比 ( D )。

A、1B、2C、3D、4

26、同一管道的粘性底层厚度随雷诺数的增加而( B )。

A、增加B、减小C、不变D、难以确定

27、长管水力计算的特点是 ( B )。

28、短管水力计算的特点是 ( D )。

29、当流动处于紊流水力光滑管区时,沿程损失与平均流速的( C )次方成正比。

A、1 B、2C、1.75D、0.5

30、圆管紊流流动过流断面上的切应力分布为:(C )。A、管壁处为零,向管轴线线性增大

B、在过流断面上为常量

C、管轴线处为零,且与半径成正比

D、按抛物线分布

31、若圆管内水流为紊流运动,则有( C )。

32突然扩大管段的局部水头损失( B)。

33、沿程压强损失是 ( C )。

A、单位质量流体的沿程损失

B、单位重量流体的沿程损失

C、单位体积流体的沿程损失

D、以平均流速计算的沿程损失

34、下列关于长管水力计算的说法中,不正确的有( B )。A、串联管路的总水头损失等于各支路的水头损失之和B、串联管路的总流量等于各支路的流量之和

C、并联管路各支路的水头损失相等

D、并联管路两节点间的总水头损失等于各支路的水头损失

35、在恒定流的动量方程

中,不应包括 ( D )。

A、压力B、重力C、惯性力D、粘滞力

36、从本质上讲,紊流应属于( B )。

A、恒定流B、非恒定流

C、均匀流D、渐变流

? D

四、问答题

1、写出理想流体微元流束伯努利方程式,指出其中各项的物理意义,并给出该方程式的适用条件。

答:Z+P/

各项物理意义:第一项Z表示单位质量流体所具有的位势能;第二项表示单位质量流体的压强势能;第三项V^2/2g表示单位质量流体具有的动能。适用范围:理想的不可压缩均质流体在质量力作用下做定常流动,并沿同一流线(或微元流束)

2、写出两过流断面间无分流或汇流,但有能量输入或输出的实际流体总流伯努利方程,并简述其应用条件

答:

适用范围:重力作用下不可压缩粘性流体定常流动的任意两个缓变流的有效截面,至于两个有效截面之间是否有缓变流则无关系。

3、何为水击(水锤)现象,减小水击危害的措施。

答:工业水管中流动着有一定压强的水,当管道中的阀门迅速关闭时,水受阻而流苏突然变小,水的惯性是局部压强突然升高。这种突然升高的压强首先出现在紧贴阀门上游的一层流体中,而后迅速的向上游传播,并在一定条件下发射回来,产生往复波动,这种现象为水击现象。

减小水击的措施

(1)延长阀门关闭时间,可避免产生直接水击,也可减小间接水击、

(2)采用过载保护,在可能产生水击的管道中设置蓄能器,调压塔或安全阀等以减缓冲水压强

(3)可能时减低管内流速,缩短管长,使用弹性好的管道。

4、边界层有哪些基本特征?

边界层内沿厚度,存在很到的流速梯度

5、简述产生局部水头损失的原因,并写出用于计算管路突然扩大的局部水头损失的公式

6、一般情况下,流体微团的运动可分解为哪几种运动 ?

7、管道水力计算采用的基本公式有哪几个?

8、简述曲面边界层的分离现象。

9、尼古拉兹试验曲线将流动分为几个区?各区的沿程阻力系数与什么有关?

10、管道水力计算的任务是什么? 答:

4、写出不可压缩均质实际流体的运动微分方程(即纳维——斯托克斯方程),为什么说此方程是不可压缩均质流体的普遍方程。

五、计算、分析题(每题8分)

1、在盛有汽油的容器的底上有一直径mm d 152=的圆阀,该阀用绳系于直径

mm d 1201=的圆柱形浮子上(如图1所示)。设浮子及圆阀的总质量

g

m110

=,汽油相对密度75

.0,绳长mm

Z120

=,问圆阀将在油面高度H为多少时开启?

(图1)

解:0

4

)

(

4

2

2

2

1≥

-

-

-gH

d

mg

Z

H

g

d

ρ

π

ρ

π

4

)

(2

1

2

2

2

1

-

-

-Z

d

m

H

d

π

ρ

π

π

)

(

135

)

(

135

.0

12

.0

015

.0

12

.0

12

.0

750

)

015

.0

12

.0(

10

110

4

)

(

4

2

2

2

2

2

3

2

2

2

1

2

1

2

2

2

1

mm

m

Z

d

d

d

d

d

m

H

=

=

?

-

+

?

-

?

?

=

-

+

-

-

π

ρ

π

π

2、图2所示为绕铰链O转动的倾斜角ο

60

=

α的自动开启式水闸,当水闸一侧的水位II=2m,另一

侧的水位m

h4.0

=时,闸门自动开启,试求铰链至水闸下端的距离x。

(图2)

解: 2

H H c =

,2h h c =

αsin /1bH A =,αsin /2bh A =

αραρρρsin 2sin /22211b gH bH H

g bl H g A gH P C H ====

α

ραρρρsin 2sin /22222b gh bh h

g bl h g A gh P C h ====

h H P P P -==

)(sin 222h H gb

ρ 压力中心坐标:

l l bl bl l Ay J y y C C C D 3

2

)2/(12/2/3=+=+=

故, α

sin 323211H l y D ==

,αsin 323222h l y D ==

α

αsin 31sin 31h

P H P Px h H -=

)(7955.0sin )(3sin )(sin 23)

(sin 2sin 3222233m h H h Hh H h H gb h H gb

P h P H P x h H =+++=--=-=ααα

ραρα

3、如图3所示,已知离心泵的提水高度m Z 20=,抽水体积流量s L Q /35=,效率82.01=η。若吸水管路和压水管路总水头损失O mH h w 25.1=,电动机的效率95.02=η,试求:电动机的功率P 。

(图3)

解: w h g

v g p Z H g v g p Z +++=+++222

2

222111ρρ

01=Z ,Z Z =2;0,021≈≈v v ;021==p p ,则:

)(5.215.120m h Z H w =+=+=

)(467.9)(6.946695

.082.05

.218.91000103532

1kW W gH

Q P ==?????==-ηηρ

4、图4所示离心泵以h m /253的流量将相对密度82.0的油品从地下罐送到山上洞库油罐。地下罐油面压力MPa 02.0,洞库油罐油面压力MPa 03.0。设泵的效率81.0,电动机效率91.0.两罐液面差m H 40=,全管路水头损失设为m 5。求泵及电动机的额定功率(即输入功率)应为多少?

(图4)

解: w h g v g p Z H g v g p Z +++=+++222

2

222111ρρ

w h g

v g v g p g p Z Z H +-+-+-=222

12

21212ρρ

01=Z ,)(402m Z =;0,021≈≈v v ;Pa p Pa p 62611003.0,1002.0?=?=,

),(5m h W =则:

)(24.4658

.982.010001002.01003.0406

6m H =+???-?+=

)(5.3)(350091

.081.024

.468.982.010003600/252

1kW W gH

Q P ==?????=

=

ηηρ

5、内径m d 2.0=的钢管输送水流量s m Q /04.03=(0.01),水的运动粘度

s m /10007.126-?=ν,钢管内壁的绝对粗糙度mm e 04.0=。求l 000m 管道上的

沿程水头损失f h 。

解:首先确定流态,即计算雷诺数Re s m s m A

Q

v /27.1/)1.0/(04.02=?==

π(0.3175) 25223410007.12

.027.1Re 6

=??=

=

vd

(63059)

2320Re >,流动非层流。进一步计算知,7/8)/(98.26Re 4000e d <<,流动在紊

流光滑区,故 0148.0Re 221.00032.0237.0=+

=λ (02.0Re

3164

.025

.0==λ) m m g v d l h f 09.68.9227.12.010000148.022

2=???==λ

(m m g v d l h f 513.08

.923175.02.0100002.022

2=???==λ)

6、今要以长m L 800=,内径mm d 50=的水平光滑管道输油,若输油流量

min /135L Q =,用以输油的油泵扬程为多大?(设油的密度3/920m kg =ρ,粘度

s Pa ?=056.0μ)

解: 首先确定流态,即计算雷诺数Re

s m s m A Q v /146.1/05.04

601013523

=??==-π

2320941056

.0920

05.0146.1Re <=??=

=

μ

ρ

vd

流动为层流。

068.0941/64Re /64===λ

m m g v d l h f 92.728.92146.105.0800068.022

2=???==λ

m h H f M 92.72==(油柱)

7、一水射流以速度v 对弯曲对称叶片的冲击如图6所示,试求下面两种情况下射流对叶片的作用力:(1)喷嘴和叶片都固定;(2)喷嘴固定,叶片以速度u 后退。

( 图6 )解:(1)射流四周均为大气压,且不计重力。由伯努利方程,各断面上的流速均相同。取封闭控制面如图所示,并建立xoy 坐标。当叶片喷嘴均固定时,设流体受到叶片的作用力为F 。 根据动量定理可知:

x 方向:

vdA v F

A

n X

?∑=ρ

即 ()[]()1cos cos 2

2)(-=--+-=-αραπρρQv v Q

v Q F 得 ()απ

ρ

cos 14

22-=v d F

射流对叶片的作用力大小为()απ

ρcos 14

22-v d ,方向与F 的方向相反。

(2)当控制体在作匀速运动时,由于固结在控制体上的坐标系仍是惯性系,在动量定理中只要将相对速度代替绝对速度即可。

现当叶片以u 速度后退,此时射流相对于固结在叶片上控制面的相对速度为u v v r

-=,因此叶片受到的力大小为

()()απ

ρ

cos 14

2

2--='u v d F

如当 ο135,100,/12,/8.19====αmm d s m u s m v

时,则

()()

N F 3.815135cos 1128.191.04

10002

2=-?-???='οπ

8\将一平板伸到水柱内,板面垂直于水柱的轴线,水柱被截后的流动如图所示。已知水柱的流量,/036.03s m Q =水柱的来流速度,/30s m V =若被截取的流量s m Q /012.031=,试确定水柱作用在板上的合力F 和水流的偏转角α(略去水的重量及黏性)。 解:

设水柱的周围均为大气压。由于不计重力,因此由伯努利方程可知:

s m V V V /3021===

由连续方程:s m Q Q Q /024.0012.0036.0312=-=-=

取封闭的控制面如图所示,并建立xoy 坐标。设平板对射流柱的作用力为F(由于不考虑

黏性,仅为压力)。 由动量方程: X 方向:

ααρρcos 30024.0100030)036.0(1000cos )(22??+?-=+-=-V Q V Q F Y 方向:30012.01000sin 30024.01000sin 001122??-??=-+=αραρV Q V Q

流体力学例题

第一章 流体的性质 例1:两平行平板间充满液体,平板移动速度0.25m/s ,单位面积上所受的作用力2Pa(N/m2>,试确定平板间液体的粘性系数μ。 例2 :一木板,重量为G ,底面积为 S 。此木板沿一个倾角为,表面涂有润滑油的斜壁下滑,如图所示。已测得润滑油的厚度为,木板匀速下滑的速度为u 。试求润滑油的动力粘度μ。 b5E2RGbCAP 例3:两圆筒,外筒固定,内筒旋转。已知:r1=0.1m ,r2=0.103m ,L=1m 。 。 求:施加在外筒的力矩M 。 例4:求旋转圆盘的力矩。如图,已知ω, r1,δ,μ。求阻力矩M 。 第二章 流体静力学

例1:用复式水银压差计测量密封容器内水面的相对压强,如图所示。已知:水面高程z0=3m, 压差计各水银面的高程分别为z1 = 0.03m, z2 = 0.18m, z3 = 0.04m, z4 = 0.20m,水银密度p1EanqFDPw ρ′=13600kg/m3,水的密度ρ=1000kg/m3 。试求水面的相对压强p0。 例2:用如图所示的倾斜微压计测量两条同高程水管的压差。该微压计是一个水平倾角为θ的Π形管。已知测压 计两侧斜液柱读数的差值为L=30mm ,倾角 θ=30°,试求压强差p1 –p2 。DXDiTa9E3d 例 3:用复式压差计测量两条气体管道的压差<如图所 示)。两个U 形管的工作液体为水银,密度为ρ2 ,其连接管充以酒精,密度为ρ1 。如果水银面的高度读数为z1 、 z2 、 z3、 z4 ,试求压强差pA –pB 。RTCrpUDGiT 例4:用离心铸造机铸造车轮。求A-A 面上的液体 总压力。 例5:已知:一块平板宽为 B ,长为L,倾角 ,顶端与水面平齐。求:总压力及作用点。 例7:坝的园形泄水孔,装一直径d = 1m 的 平板闸门,中心水深h = 3m ,闸门所在斜面与水平面成,闸门A 端设有铰链,B 端钢索

教学大纲-流体力学

《流体力学》教学大纲 课程编号:081082A 课程类型:专业基础课 总学时:32 讲课学时:32 实验(上机)学时:0 学分:2 适用对象:安全工程 先修课程:高等数学、大学物理、工程力学 一、课程的教学目标 通过本课程的教学与实践,使学生具备下列能力: 目标1:掌握流体运动的一般规律和有关的概念,基本理论、分析方法、计算方法,并能在工程应用中熟练适用。 目标2:掌握流体静力学、流体动力学的基本原理和基本方程,能在解决复杂工程问题时熟练运用,注重学生分析问题和解决问题能力的培养,注重学生探索精神和创新意识的培养。 二、课程教学与毕业要求的对应关系 2、课程教学过程与毕业要求的对应关系

四、教学内容 第一章绪论(1.2、2.1) 1.1 概述 流体力学定义、任务、研究方法;学习流体力学的意义;流体力学的发展简史 1.2 流体的连续介质模型 1.3 流体的主要物理性质 惯性、重力特性、粘性、压缩性。 液体表面张力;表面张力系数,量纲,单位;毛细现象 1.4作用在液体上的力 课程的考核要求:了解流体力学研究任务、研究方法,理解连续介质假设,熟悉流体的主要物理属性,掌握流体力学对力的分类方法。 教学重点、难点:教学重点内容包括连续介质假设的内容,引入假设的优点;流体的粘性及牛顿内摩擦定律;作用于流体上的力。

第二章流体静力学(1.2、2.1) 2.1 静止流体的应力特征 压强定义;静止流体压强特性 2.2静止流体的平衡微分方程 欧拉平衡微分方程;欧拉平衡微分方程综合表达式;等压面 2.3重力作用下的液体的压强分布 水静力学基本方程;有关压强的基本概念 2.4作用于平面上的静水总压力 大小;方向;压力中心 2.5作用于曲面上的静水总压力 水平分力;铅垂分力,压力体;总压力;压力中心 课程的考核要求:熟悉静水压强的两个特征;熟悉相对压强、绝对压强、真空压强的定义与相互关系;熟悉等压面的概念及等压面的特性;灵活运用水静力学基本方程及等压面概念求解静止流体中任一点的压强;会画静水压强分布图及压力体图;掌握平面及曲面静水总压力的计算方法 教学重点、难点:静水压强分布图的绘制;平面上静水总压力的计算;曲面静水总压力的水平分力的压强分布图画法及其计算;曲面静水总压力的铅垂分力的压力体图画法及其计算。 第三章流体动力学基础(1.2、2.1) 3.1描述液体运动的两种方法 拉格朗日法;欧拉法;欧拉变数;时变加速度;位变加速度 3.2研究流体运动的若干基本概念 恒定流与非恒定流;迹线;流线:定义、微分方程、流线性质;质点与控制体概念;元流;总流;过水断面;流量与断面平均流速;均匀流与非均匀流,均匀流定义;均匀流过水断面动水压强特征 3.3流体的连续方程 元流连续方程;总流连续方程 3.4流体的运动微分方程 欧拉运动方程;欧拉运动方程与欧拉平衡方程比较;粘性流体运动微分方程 3.5元流的伯诺里方程 理想流体元流的伯诺里方程;实际流体元流的伯诺里方程;方程表示式的物理意义和几何意义; 3.6实际流体恒定总流的能量方程: 渐变流及其性质;总流的能量方程一般表示式;应用条件;几何意义和物理意义;

流体力学教学大纲

《流体力学》教学大纲 一、基本信息 二、教学目标及任务 “流体力学”作为环境工程专业的专业基础课,是连接前期基础课程和后续专业课程的桥梁。学生通过该课程的学习,掌握流体的基本性质,流体静止与运动的规律及流体与边界的相互作用、明渠流、管流、堰流等知识,具备流体计算(水力计算)的基本技能,为解决环境工程专业中的相关流体力学问题奠定基础。 本课程支撑环境工程专业毕业要求1、2、3、4、5和6。 三、学时分配 教学课时分配

四、教学内容及教学要求 绪论 第一节流体力学的任务和发展简史 第二节连续介质假定与流体的主要物理性质 1. 连续介质假设 2. 流体的主要物理性质 习题要点:牛顿内摩擦定律的理解与应用 第三节作用在流体上的力 习题要点:质量力与表面力的概念 第四节流体力学的研究方法 本章重点、难点:黏性、牛顿内摩擦定律、质量力、表面力、连续介质概念。 本章教学要求:了解流体力学的发展简史,了解本课程在专业及工程中的应用;掌握流体主要物理性质,特别是黏性和牛顿内摩擦定律;理解作用在流体上的力;掌握连续介质、不可压缩流体及理想流体的概念;了解研究流体运动规律的一般方法。 第一章流体静力学 第一节流体静压强特性 第二节流体平衡微分方程 1. 流体平衡微分方程 2. 流体平衡微分方程的积分 3. 等压面 习题要点:流体平衡微分方程的推导 第三节流体静力学基本方程 1. 流体静力学基本方程

2. 压强的表示方法 3.测压计 习题要点:流体静力学基本方程的应用,压强表示与计算 第四节液体的相对平衡 1. 液体的相对平衡 2. 液体的相对平衡在生产中的应用 习题要点:等压面方程,压强分布规律 第五节作用在平面上的液体总压力 1. 图解法 2. 解析法 习题要点:平面静水总压力的计算 第六节作用在曲面上的液体总压力 习题要点:曲面静水总压力的计算 本章重点、难点:静压强及其特性,点压强的计算,静压强分布图,压力体图,作用于平面壁和曲面壁上的液体总压力,流体平衡微分方程的建立与应用。 本章教学要求:理解流体静压强的概念;掌握静水压强的特性,压强的表示方法及计量单位;掌握流体微分方程及其物理意义;掌握液柱式测压仪的基本原理;熟练掌握平衡流体静压强的分布规律及点压强的计算方法;掌握作用于平面壁和曲面壁上的液体总压力的计算。 第二章流体动力学基础 第一节描述流体运动的二种方法 1. 拉格朗日法 2. 欧拉法 3. 流线迹线脉线 习题要点:流线与迹线方程求解 第二节描述流体运动的概念 习题要点:掌握流体运动的概念 第三节流体运动的类型 习题要点:掌握流体运动类型及其特性 第四节流体运动的连续性方程

流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论 1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。 2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。 3 流体力学的研究方法:理论、数值、实验。 4 作用于流体上面的力 (1)表面力:通过直接接触,作用于所取流体表面的力。 作用于A 上的平均压应力 作用于A 上的平均剪应力 应力 法向应力 切向应力 (2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。(常见的质量力: 重力、惯性力、非惯性力、离心力) 单位为 5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。质量越大,惯性越大,运动状态越难改变。 常见的密度(在一个标准大气压下): 4℃时的水 20℃时的空气 (2) 粘性 ΔF ΔP ΔT A ΔA V τ 法向应力周围流体作用 的表面力 切向应力 A P p ??=A T ??=τA F A ??=→?lim 0δA P p A A ??=→?lim 0为A 点压应力,即A 点的压强 A T A ??=→?lim 0τ 为A 点的剪应力 应力的单位是帕斯卡(pa ) ,1pa=1N/㎡,表面力具有传递性。 B F f m =u u v v 2m s 3 /1000m kg =ρ3 /2.1m kg =ρ

牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。即 以应力表示 τ—粘性切应力,是单位面积上的内摩擦力。由图可知 —— 速度梯度,剪切应变率(剪切变形速度) 粘度 μ是比例系数,称为动力黏度,单位“pa ·s ”。动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。 运动粘度 单位:m2/s 同加速度的单位 说明: 1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。 2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体 无粘性流体,是指无粘性即μ=0的液体。无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。 (3) 压缩性和膨胀性 压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。 T 一定,dp 增大,dv 减小 膨胀性:流体受热,体积膨胀,密度减小,温度下降后能恢复原状的性质。 P 一定,dT 增大,dV 增大 A 液体的压缩性和膨胀性 液体的压缩性用压缩系数表示 压缩系数:在一定的温度下,压强增加单位P ,液体体积的相对减小值。 由于液体受压体积减小,dP 与dV 异号,加负号,以使к为正值;其值愈大,愈容易压缩。к的单位是“1/Pa ”。(平方米每牛) 体积弹性模量K 是压缩系数的倒数,用K 表示,单位是“Pa ” 液体的热膨胀系数:它表示在一定的压强下,温度增加1度,体积的相对增加率。 du T A dy μ =? dt dr dy du ? =?=μ μτdu u dy h =ρ μν= dP dV V dP V dV ? -=-=1/κρ ρ κ d dP dV dP V K =-==1

流体力学典型例题及答案

1.若流体的密度仅随( )变化而变化,则该流体称为正压性流体。 A.质量 B.体积 C.温度 D.压强 2.亚声速流动,是指马赫数( )时的流动。 A.等于1 B.等于临界马赫数 C.大于1 D.小于1 3.气体温度增加,气体粘度( ) A.增加 B.减小 C.不变 D.增加或减小 4.混合气体的密度可按各种气体( )的百分数来计算。 A.总体积 B.总质量 C.总比容 D.总压强 7.流体流动时,流场各空间点的参数不随时间变化,仅随空间位置而变,这种流动称为( ) A.定常流 B.非定常流 C.非均匀流 D.均匀流 8.流体在流动时,根据流体微团( )来判断流动是有旋流动还是无旋流动。 A.运动轨迹是水平的 B.运动轨迹是曲线 C.运动轨迹是直线 D.是否绕自身轴旋转 9.在同一瞬时,流线上各个流体质点的速度方向总是在该点与此线( ) A.重合 B.相交 C.相切 D.平行 10.图示三个油动机的油缸的内径D相等,油压P也相等,而三缸所配的活塞结构不同,三个油动机的出力F1,F2,F3的大小关系是(忽略活塞重量)( ) A.F 1=F2=F3 B.F1>F2>F3 C.F1F2 12.下列说法中,正确的说法是( ) A.理想不可压均质重力流体作定常或非定常流动时,沿流线总机械能守恒 B.理想不可压均质重力流体作定常流动时,沿流线总机械能守恒 C.理想不可压均质重力流体作非定常流动时,沿流线总机械能守恒 D.理想可压缩重力流体作非定常流动时,沿流线总机械能守恒 13.在缓变流的同一有效截面中,流体的压强分布满足( ) A.p gρ +Z=C B.p=C C. p gρ + v g C 2 2 = D. p gρ +Z+ v g C 2 2 = 14.当圆管中流体作层流流动时,动能修正系数α等于( )

流体力学教学大纲

《流体力学》教学大纲 课程编号:081073A 课程类型:□通识教育必修课□通识教育选修课 □专业必修课□专业选修课 □√学科基础课 总学时:48讲课学时:40实验(上机)学时:8 学分:3 适用对象:环境工程 先修课程:高等数学、大学物理、理论力学 一、教学目标(黑体,小四号字) 流体力学是环境工程专业的一门主要技术基础课,其任务是使学生掌握流体运动的一般规律和有关的概念,基本理论、分析方法、计算方法和一定的实验技能;培养学生分析问题和解决问题的能力。为学习专业课,从事专业工作和进行科学研究打基础。 目标1:掌握流体力学的基本概念、基本理论、基本方法,并具有一定的流体力学实验技能(具有测量水位、压强、流量的操作技能和编写报告能力)。 目标2:掌握掌握流体力学的分析方法、计算方法,能在解决复杂工程问题时熟练运用,注重学生分析问题和解决问题能力的培养,注重学生探索精神和创新意识的培养。 目标3:为该课程在《水污染控制工程》、《大气污染控制I(防尘)》、《大气污染控制II(防毒)》、《排水管道系统》等课程中的应用奠定良好的基础。 二、教学内容及其与毕业要求的对应关系 本课程的重点内容包括平面上静水总压力的计算、曲面上静水总压力的计算、连续性方程、伯努利方程、动量方程的联合应用与计算,这些内容将细讲、精讲。对这部分内容,除了理论讲授课外,专门拿出一定时间作为习题课,带领学生精

讲精练。粗讲的内容包括:液体的相对静止、潜体和浮体的平衡及稳定、流体微团运动分析、理想流体无旋流动、相似理论等。 为实现上述教学目标,教学过程将采用多媒体教学手段,课堂讲授为主、实验课、自习、练习为辅的教学方式。习题课讲解流体力学的解题思路、方法、步骤、注意的问题;分析习题中的错误、问题,在授课老师的引导下进行课堂讨论,并解决有关疑难问题。 实践教学环节主要是流体力学实验技能的训练,要求学生具有测量水位、压强、流量的操作技能和编写报告能力。 为巩固和加深学生对所学的基本概念、理论的理解,培养学生用流体力学的理论分析和解决问题的能力、培养计算技能,课后将布置作业30道左右题目,由学生独立完成,并针对性的进行作业题目讲解。通过课后作业提高学生对于重点、难点内容的掌握。 该课程可支撑一下两方面毕业要求的实现: (1)掌握环境工程通识教育类、学科基础类、专业基础类、专业类知识及相关学科知识,并能将所学知识用于解释本专业领域及相关领域的现象和问题,了解本学科发展前沿,具有国际视野; (2)能够应用环境工程基本原理、方法对本专业领域及相关领域问题进行判断、分析和研究,提出相应对策和建议,并形成解决方案; 考核方式 闭卷。平时成绩占30%,期末考试成绩占70% 三、各教学环节学时分配(黑体,小四号字) 教学课时分配

流体力学例题

第一章 流体及其主要物理性质 例1: 已知油品的相对密度为0.85,求其重度。 解: 例2: 当压强增加5×104Pa 时,某种液体的密度增长0.02%,求该液体的弹性系数。 解: 例3: 已知:A =1200cm 2,V =0.5m/s μ1=0.142Pa.s ,h 1=1.0mm μ2=0.235Pa.s ,h 2=1.4mm 求:平板上所受的内摩擦力F 绘制:平板间流体的流速分布图 及应力分布图 解:(前提条件:牛顿流体、层流运 动) 因为 τ1=τ2 所以 3 /980085.085.0m N ?=?=γδ0=+=?=dV Vd dM V M ρρρρρ d dV V -=Pa dp d dp V dV E p 84105.2105% 02.01111?=??==-==ρρβdy du μ τ=??????? -=-=?2221110 h u h u V μτμτs m h h V h u h u h u V /23.02 112212 2 11 =+= ?=-μμμμμN h u V A F 6.41 1=-==μ τ

第二章 流体静力学 例1: 如图,汽车上有一长方形水箱,高H =1.2m ,长L =4m ,水箱顶盖中心有一供加水用的通大气压孔,试计算当汽车以加速度为3m/s 2向前行驶时,水箱底面上前后两点A 、B 的静压强(装满水)。 解: 分析:水箱处于顶盖封闭状态,当加速时,液面不变化,但由于惯性力而引起的液体内部压力分布规律不变,等压面仍为一倾斜平面,符合 等压面与x 轴方向之间的夹角 例2: (1)装满液体容器在顶盖中心处开口的相对平衡 分析:容器内液体虽然借离心惯性力向外甩,但由于受容器顶限制,液面并不能形成旋转抛物面,但内部压强分布规律不变: 利用边界条件:r =0,z =0时,p =0 作用于顶盖上的压强: (表压) (2)装满液体容器在顶盖边缘处开口的相对平衡 压强分布规律: =+s gz ax g a tg = θPa L tg H h p A A 177552=??? ?? ?+==θγγPa L tg H h p B B 57602=??? ?? ?-==θγγC z g r p +-?=)2( 2 2ωγg r p 22 2ωγ =C z g r p +-?=)2( 2 2ω γ

流体力学教学大纲

《流体力学》教学大纲 一、课程名称 1. 中文名:流体力学 2. 英文名:Fluid Mechanics 二、课程管理院(系) 三、大纲说明 1.适用专业、层次 环境工程专业,本科。 2.学时与学分数 总学时为64学时,总学分为3学分。 3.课程的性质、目的与任务 流体力学是环境工程专业及其相近专业的一门学科基础课程,属工程科学,是用自然科学的原理考察、解释和处理工程实际问题。研究方法主要是因次论指导下的实验研究法、数学模型法、参数归并和过程分解与组合。本课程强调工程观点、定量运算、实验技能、设计能力和模拟优化能力的训练,强调在理论和实际的结合中,提高分析问题、解决问题的能力。 本课程理论教学主要研究连续性方程、能量方程和动量方程的基础理论及具体的工程应用。通过本课程的学习,使学生熟悉流体力学的基本概念和基本方程,掌握在环境工程和科学领域中的应用途径和处理方法,具备解决环境工程中流体力学问题的能力。 4. 先行、后续课程 本课程是学生在具备了必要的高等数学、物理、理论力学等基础知识之后必修的技术基础课,是水污染控制工程、大气污染控制工程、给排水工程、水控课程设计、毕业设计的基础。 5.考试方式与成绩评定 考试方式:笔试(闭卷)。 成绩评定:笔试70%,平时成绩30%。 四、纲目 (上册) 1绪论(3学时) [教学目的] 了解流体力学的研究内容及发展简史,掌握流体的主要物理性质和流体的连续介质模型,掌握流体的主要物理性质和作用在流体上的力。 [教学重点与难点] 流体的物理性质;流体的连续介质模型。 [教学时数] 3学时 [教学方法与手段] 在多媒体教室采用电子课件进行课堂讲授。本章内容是学生学习流体力学这门课的基础,是流体力学的“门槛”。因此,必须联系生产及生活实际,使学生首先在思想上明确认识,对这门课产生兴趣,使学生认识到流体力学理论在生产和生活实际中的应用是无所不在的。[教学内容] 1.1工程流体力学的任务及其发展简史 1.2连续介质假设,流体的主要物理性质 连续介质假设;流体的主要物理性质 1.3作用在流体上的力

《流体力学》典型例题

《例题力学》典型例题 例题1:如图所示,质量为m =5 kg 、底面积为S =40 cm ×60 cm 的矩形平板,以U =1 m/s 的速度沿着与水平面成倾角θ=30的斜面作等速下滑运动。已知平板与斜面之间的油层厚度 δ=1 mm ,假设由平板所带动的油层的运动速度呈线性分布。求油的动力粘性系数。 解:由牛顿摩擦定律,平板所受的剪切应力du U dy τμ μδ == 又因等速运动,惯性力为零。根据牛顿第二定律:0m ==∑F a ,即: gsin 0m S θτ-?= ()3 24 gsin 59.8sin 301100.1021N s m 1406010 m U S θδμ--?????==≈????? 例题2:如图所示,转轴的直径d =0.36 m 、轴承的长度l =1 m ,轴与轴承的缝隙宽度δ=0.23 mm ,缝隙中充满动力粘性系数0.73Pa s μ=?的油,若轴的转速200rpm n =。求克服油的粘性阻力所消耗的功率。 解:由牛顿摩擦定律,轴与轴承之间的剪切应力 ()60d d n d u y πτμ μδ == 粘性阻力(摩擦力):F S dl ττπ=?= 克服油的粘性阻力所消耗的功率: ()()3 223 22 3 230230603.140.360.732001600.231050938.83(W) d d n d n n l P M F dl πππμωτπδ -==??=??= ???= ? ?= 例题3:如图所示,直径为d 的两个圆盘相互平行,间隙中的液体动力黏度系数为μ,若下

盘固定不动,上盘以恒定角速度ω旋转,此时所需力矩为T ,求间隙厚度δ的表达式。 解:根据牛顿黏性定律 d d 2d r r F A r r ω ωμ μ πδ δ== 2d d 2d r T F r r r ω μπδ =?= 4 2 420 d d 232d d d T T r r πμωπμωδδ===? 4 32d T πμωδ= 例题4:如图所示的双U 型管,用来测定比水小的液体的密度,试用液柱高差来确定未知液体的密度ρ(取管中水的密度ρ水=1000 kg/m 3)。 水 解:根据等压面的性质,采用相对压强可得: ()()()123243g g g h h h h h h ρρρ---=-水水 1234 32 h h h h h h ρρ-+-= -水

流体力学例题

如图,横截面为椭圆形的长圆柱体置于风洞中,来流稳定、风速风压均匀并垂直绕过柱体流动。住体对流体的总阻力可通过测力天平测试柱体受力获得,也可通过测试流场速度分布获得。现通过后一种方法,确定单位长度的柱体对流体的总阻力F x 。 解:由于柱体很长且来流均匀,可认为流动参数沿z 方向(柱体长度方向)无变化,将绕柱体的流动视为x-y 平面的二维问题。 ⒈ 控制体:取表面A 1、A 2、 A 3、 A 4并对应柱体单位长度的流场空间。 ⒉ 控制面A 1:柱体上游未受干扰,故有: 0p p =,0u v x =,0=y v ,于是控制面上x 方向受力、质量流量和动量流量分别为: 01bp F x =,()b u dA A 01 ρρ-=???n v ,()b u dA v A x 2 01 ρρ-=???n v 控制面A 2:设在柱体下游一定距离处,与面A 1相距l ,此处压力基本恢复均匀分布,故有 0p p ≈。()y v v x x =是需要测量的物理量;()y v v y y =通常比x v 小得多,其精确测量较困 难,在计算x 方向受力时用不到,控制面上x 方向受力、质量流量和动量流量分别为: 02bp F x -=,()? ? ??==?-2 /0 2 /2 /22 b x b b x A dy v dy v dA ρρρn v ,()? ??=?2 /0 2 21 b x A x dy v dA v ρρn v 控制面A 3:b 应取得足够大,以使得面A 3上的流动受柱体影响较小,故有0p p ≈,0u v x ≈。控制面上的质量流量由y v 确定,该量精确测定较为困难,计算结果最终不会用到该量,暂设()x v v y y =为已知量。 03≈x F ,()???≈?l y A dx v dA 0 223 ρρn v ,()???=?l y A x dx v u dA v 0 0223 ρρn v 控制面A 4:为柱体横截面包络面,该面上流体所受表面力有正压力和摩擦力。由于流场相 对于x 轴对称,所以表面力在y 轴方向的合力为零,在x 轴方向的合力F x 即为流体受到的总阻力(形体阻力与摩擦阻力),控制面上无流体输入和输出。 p p ≈0 p p ≈0 p p ≈0u v x ≈0 u v x ≈

工程流体力学教学大纲

本教学大纲详细说明了在学习中的重点,以及从课时可以看出其的认知程度 《工程流体力学》教学大纲 一、课程基本信息 1、课程英文名称:Engineering Hydrodynamics 2、课程类别:专业基础课程 3、课程学时:总学时88,实验学时12 4、学分:5.5 5、先修课程:《高等数学》、《大学物理》、《工程力学》 6、适用专业:油气储运工程 7、大纲执笔:油气储运教研室云萍 8、大纲审批:石油工程学院学术委员会 9、制定(修订)时间:2006.11 二、课程的目的与任务 工程流体力学是油气储运工程专业的一门主要专业基础课程。它的主要任务是通过各个教学环节,使学生掌握流体运动的基本概念、基本理论、基本计算方法和基本实验技能,提高学生分析和解决实际问题的能力,为以后学习专业知识,从事专业技术工作和科研打下必要的流体力学基础。 三、课程的基本要求 通过本课程的学习,了解流体的物理性质,掌握流体的平衡规律、流体的运动规律、流体与其接触的固体壁面间的受力特点、压力管路中的水力计算、气体动力学基础知识及非牛顿流体运动规律等容。 四、教学容要求及学时分配 1. 流体及其主要物理性质(4学时) 1)具体容 工程流体力学的研究对象 流体的特性、连续介质的假说 流体的密度和重度 流体的压缩性、膨胀性和粘性 作用在流体上的力 2)重点:流体的物性及作用在流体上的力 3)难点:粘性 4)基本要求 正确理解流体的主要物理性质,特别是粘性和牛顿摩擦定律

正确理解流体连续介质、理想流体和实际流体、不可压缩流体和可压缩流体的概念2.流体静力学(10学时) 1)具体容流体静压强及特性 流体平衡微分方程式 流体静力学基本方程式 压力的基准和计量 流体相对平衡 静止流体作用在平面上的力 静止流体作用在曲面上的力 2)重点:流体静压强的特性,流体静力学基本方程式的应用,静止流体作用在平面、曲面上的力 3)难点:静止流体作用在平面、曲面上的力 4)基本要求 掌握流体静压强的概念及其性质 掌握流体平衡微分方程式及应用,能够熟练地进行点压强和总压力的计算 3. 流体运动学与动力学基础(14学时) 1)具体容 研究流体运动的拉格朗日法及欧拉法 流体运动的基本概念 恒定流动的连续性方程 理想流体运动微分方程式 理想流体伯努利方程式 实际流体伯努利方程式及其意义 伯努利方程式的应用 泵对液体能量的增加 系统与控制体 动量定理及其应用 2)重点:流体运动的基本概念,伯努利方程式的应用,泵对流体能量的增加,动量定理的应用 3)难点:实际流体伯努利方程式的推导,输运公式的推导,能量方程、动量方程的灵活应用 4)基本要求 了解描述流体运动的两种方法,建立以流场为对象描述流体运动的概念 掌握连续性方程式,流体微团运动的基本形式和理想流体运动微分方程式(欧拉运动方程式) 牢固掌握流体运动的总流分析法,能够比较灵活地综合运用连续方程式,能量方程式(伯

流体力学教学大纲G

《流体力学》 适用专业:飞行器动力工程 参考学时:32学时 参考书目: 1.流体力学,贾月梅,国防工业出版社 2.工程流体力学,李玉柱等,清华大学出版社 3.工程流体力学,袁恩熙主编,石油工业出版社 4.工程流体力学,孙文策等,大连理工大学出版社 5.工程流体力学,周云龙,中国电力出版社 6工程流体力学,李文科,中国科学技术大学出版社 一、说明 (一)本课程的教学目的与任务 本课程是为飞行器动力工程专业设置的专业选修课程,是继高等数学、理论力学、材料力学等基础课程后的一门专业基础课程,要求学生具有较好的数学和力学知识。 本课程的目的和任务是使学生通过本课程的学习获得流体力学的基本概念、基本原理和基本方法,掌握解决流体力学工程实际问题的基本方法和分析手段,为从事飞行器动力工程与流体动力学应用奠定必要的基础。 本课程的内容主要是以低速不压缩流体动力学为主,主要包括了流体静力学、流体动力学基础、量纲分析与相似理论、管中流动损失及计算、粘性边界层理论等内容。 (二)本课程的基本要求 1.了解流体力学的研究对象和分类,掌握流体力学的研究方法和应用范围。 2.掌握欧拉平衡方程、重力作用下流体的内压强分布,掌握静流体对平壁和曲壁的作用力计算。 3.掌握流体运动的连续方程、动量方程、动量矩方程,掌握理想流体的柏努利方程及其应用。 4.掌握量纲分析方法,相似理论和相似准则。 5.掌握圆管内流动损失计算,长管和短管水力计算,掌握孔口和管嘴泄流特性。 6.掌握理想不可压缩流体平面位流基本方程,平面势流叠加原理及其应用。 7.掌握层流、紊流特点及边界层特性和分离控制,平面不可压流体层流边界层的求解。 8.掌握可压缩理想气体流动基本方程,一维定常绝热流参数基本关系公式,气动函数及其应用。 (三)编写原则 1.本大纲根据高等教育对教学大纲总体要求编写。 2.本大纲严格按专业培养目标和教学计划编写制订。

《流体力学》教学大纲

《流体力学》教学大纲 一、课程基本信息 二、课程概述 中文: 本课程是工程力学专业的学类核心课程,以高等数学、理论力学、材料力学为前导课程,着重培养学生分析解决实际工程中流体力学问题的能力。 本课程主要包括流体的平衡、流体力学的基本方程、不可压缩无粘流动、涡旋运动、平面势流等,强调应用这些基本概念及定律分析与流体力学相关的工程问题,学生需了解流体力学的发展现状和趋势,理解流体力学中的基本概念、基本理论及基本定律,掌握流体力学的实验、分析与数值计算的基本技能与基本方法,并能灵活运用这些基本概念及定律分析与流体力学相关的工程问题。通过学习本课程,让学生学会流体力学基本理论,获得解决流体工程问题的基本技能,锻炼和提升对复杂的流体工程问题进行简化,从而建立数学模型并进行求解的能力。 英文: This is a bas ic course for majors of engineering mechanics, aiming at students’ physical concepts and basic principles commonly used to analyze engineering problems related to fluid mechanics, thus laying a solid foundation for their research and design in aerospace, mechanical, civil, chemical, environmental and ocean. The

applications of the dimensional and order analysis method in engineering are emphasized in this course. The study of this course develops the students’ ability to simplify the complex problems, prese nt and solve the mathematic model of related engineering problems. The main contents of this course are the basic equations of fluid mechanics, incompressible in-viscid flow, the motion of vortex, dimensional analysis, incompressible viscid flow. Prerequisites: Advanced Mathematics, Mathematics Physics Equation, Field Theory,Theoretical Mechanics,Mechanics of Materials. 三、课程内容 (一)课程教学目标 设置本课程是为了让工程力学专业的学生对工程力学专业知识体系的重要组成板块之一的流体力学进行较为系统的学习,并深度掌握与理解,具备应用流体力学的基本知识和基本理论分析解决生产实际工程问题的能力。本课程对学生达到毕业要求有如下贡献: 1.知晓流体力学的发展现状和趋势,应用流体力学及其软件在机械、土木、航空航天和材料 等工程领域解决与流体相关的技术问题; 2.具备对复杂的流体工程问题进行简化、建立数学模型并进行求解的能力; 3.具有针对复杂工程问题中的流体系统进行流体力学计算和技术设计的能力; 4.具有针对复杂流体工程问题开展实验研究的能力; 5.了解和初步掌握流体力学现代计算技术,进行流体力学问题的仿真计算。 (二)基本教学内容 绪论 教学目的与要求:掌握流体力学的研究方法、流体力学中常用的数学基础知识。 教学重点:流体的三大研究方法:实验方法、分析方法、数值计算;数学基础知识。 教学难点:三大研究方法之间的关系、数学基础知识。 教学内容:三大研究方法的主要特点、流体力学的研究对象、特点及学习方法、流体力学常用的数学知识。学时分配:2课时。 第一章、流体的物理性质和物理运动物理量的描述

流体力学习题说课材料

流体力学习题

第一章习题 1-1.一8kg的平铁块自覆盖着2mm厚的润滑油(20℃)的20°斜面滑下,接触面积为0.2m,试求铁块最终的速度。( 20℃时,润滑油μ=0.29Pa·s ) 1-2.底面积为1.5m2薄板在液面上水平移动速度为16m/s,液层厚度为4mm,假定垂直于油层的水平速度为直线分布规律,如果 (1)液体为20℃的水(μ水=0.001pa·s ); (2)液体为20℃,比重为0.921的原油(μ油=0.07pa·s)。 试分别求出移动平板的力多大? 1-3.在δ=40mm的两平壁面之间充满动力粘度为μ=0.7pa·s的液体,在液体中有一边长为a=6mm的薄板以U=15m/s的速度沿薄板所在平面内运动,假定沿铅直方向的速度分布是直线规律。 ①、当h=10mm时,求薄板运动的液体阻力。 ②、如果h可变,求h为多大时,薄板运动阻力最小?为多大? 1-4.一直径为8cm轴被推进一直径为8.02cm, 30cm长的轴承里,假设余隙均匀且充满粘度μ=4.5pa·s的油脂,密度为900kg/m3。若此轴以0.5m/s的速度运动,估计油脂对轴所产生的阻力大小。 1-5.如上题的轴在套管内以1800r/min的转速转动。试求(a)油所造成的转矩,以N·m为单位;(b)转动轴所需供给的功率,以kw为单位。 1-6.当温度为60℃时,水和水银的表面张力系数分别为0.0662N/m、0.47N/m,则当它们在0.5mm直径的玻璃管中与空气相接触时,其毛细管高度变化各为多少? 已知:60℃时ρ水=998kg/m3、ρ水银=13572.8kg/m3

1-7.已知30℃时,水的密度ρ=996kg/m3,σ=0.0712N/m。问直径多少的玻璃管,会使水产生毛细现象的高度小于1mm? 1-8.以喷雾器形成水滴,其直径为50μm,或5×10-5m,问在30℃时(σ =0.0712N/m),其内部压力超出外部多少? 1-9.设一平壁浸入体积很大的水中,由于存在表面张力,在靠近壁面的地方要形成一个曲面,如图,假定曲率半径可表示成1/r=d2y/dx2,接触角和表面张力系数σ已知,试确定平壁附近水面最大高度及形状。 x 第二章习题 1.二元不可压缩流场中,vx=5x^3,vy=-15x^2y。试求(x=1m,y=2m)点上的速度和加速度。 2.给定速度场:v=(6+2xy+t^2)i-(xy^2+10t)j+25k试求流体质点在位置(3,0,2)处的加速度。 3.已知流场的速度: vx=1+At, vy=2x。试确定t = t。时,通过(x。,y。)点流线方程,A为常数。

《流体力学》教学大纲

《工程流体力学》课程教学大纲 适用专业层次 理论课 学时实践课 学时 总学时学分课程性质 环境工程方向本科48 48 3 专业基础课 先修课程高等数学 一、课程性质、目的与任务 1. 性质:《流体力学》学科的渗透性很强,几乎与所有的基础和技术学科形成交叉学科,环境方向当然也包括在内的,该课程是环境工程专业的一门专业基础核心课程,是从事环境实验与理论研究、环境工程设计与管理、环境应用与开发等专业的一门重要的基础课。 2. 目的与任务:通过对该课程的学习,要求学生掌握有关流体力学的基本概念、基本定律、基础理论、重要应用等,同时注意培养学生正确逻辑思维的能力,从而为学生学习后继相关专业课程提供必要的基础理论知识和有关流体和传热计算的基本方法。 二、课程的总体安排和各部分的课时分配 总学时:48学时,其中理论教学40学时,课堂讨论与习题讲解8学时 理论课教学的内容及学时分配 课程目录教学内容学时数 第一章绪论 2 第二章流体静力学 6 第三章流体运动学8 第四章理想流体动力学8 第七章粘性流体动力学8 第八章圆管中的流动8 第九章边界层理论 6 期末复习 2 三、课程教学内容和教学基本要求 第一章绪论 理论教学2学时 内容:流体力学发展简史;流体力学的研究内容、研究方法和应用;流体的定义和特征、

连续介质模型;作用在流体上的力;流体的主要物理性质。 重点:黏性、牛顿内摩擦定律、质量力、表面力、连续介质概念。 难点:牛顿内摩擦定律的具体应用。 第二章流体静力学 理论教学6学时 内容:流体静压强及其特性;流体平衡微分方程式;重力场中流体的绝对平衡和相对平衡;静止液体作用在固体壁面上的总压力。 重点:静压强及其特性,点压强的计算,静压强分布图,作用于平面壁和曲面壁上的液体总压力,压力体图。 难点:流体平衡微分方程的建立与应用。 第三章流体运动学 理论教学6学时,课堂讨论和习题2学时 内容:研究流体运动的两种方法及描述流体流动的一些基本概念;连续性方程;流动势函数和流函数的求解。 重点:流体流动中的几个基本概念,连续性方程、速度势函数和流函数的推导依据。 难点:连续性方程、流线方程和迹线方程的求解和二者的关系。 本章是全书的重点章节。 第四章理想流体动力学 理论教学8学时 内容:运动微分方程及有关概念,伯努利方程及其应用,动量定理和动量矩定理。 本章是全书的重点章。 重点:运动微分方程及有关概念,总流的伯努利方程的推导。 难点:动量定理和动量矩定理。 第七章粘性流体动力学 理论教学:6学时,课堂讨论和习题2学时 本章是全书的难点章节。 内容:粘性流体运动微分方程,量纲分析和相似理论。 重点:动量方程及其应用。 难点:量纲分析和相似理论。 第八章圆管中的流动 理论教学:6学时,课堂讨论和习题2学时 本章是全书的重点章节。 内容:层流和湍流的概念,圆管层流流动,圆管湍流流动,管道沿程水头损失和局部阻力损失。 重点:层流和湍流的概念,圆管层流流动,水头损失的计算。 难点:圆管湍流流动,水头损失的计算。 第九章边界层理论基础 理论教学:6学时

《工程流体力学》课程教学大纲

《工程流体力学》课程教学大纲 英文名称:Engineering Fluid Mechanics 课程编号: 学时数:72 其中实验学时数:12 课程性质:必修课 先修课程:高等数学,理论力学等 适用专业:建筑环境与能源应用工程专业 一、课程的性质、目的和任务 本课程的性质:流体力学是建筑环境与设备工程专业的一门主要技术基础课。是该专业工程技术人员必须掌握的知识。它是研究流体平衡、运动及能量间内在联系与相互转换规律的一门学科,是一门以流体基础理论为主,结合一般工程技术的课程。学生通过本课程的学习后,能够获得流体力学方面基础理论的系统知识,实验技能和一定的分析、解决问题的能力。是后续专业课程学习的基础。 课程教学所要达到的目的是:1、使学生掌握流体静止及运动时的规律以及流体与固体之间的相互作用,并掌握这些规律在工程实际当中的应用,为后续专业课程的学习打下坚实的理论基础。2、通过课堂教学和实验课使学生对工程实践中有关的流体力学问题有较广泛而系统的理论知识、必要的实验技能和一定的分析和解决问题的实际能力。 本课程的任务:通过本课程的学习,学生应掌握流体力学的基本概念,基本理论,以及水力计算的基本方法。使学生具备必要的基础理论和一定的分析、解决实际工程中问题的能力,为学习后继专业课程及从事专业技术工作和进行科学研究奠定必要的基础。 二、课程教学内容及基本要求 第1章绪论 作用于流体上的力 流体的主要力学性质 牛顿内摩擦定律

流体的力学模型 基本要求: 了解本课程在专业及工程中的应用; 掌握流体主要物理性质,特别是粘性和牛顿内摩擦定律;作用在流体上的力;连续介质、不可压缩流体及理想流体的概念。 第2章流体静力学 流体静压强及其特性 流体静压强的分布规律 流体静压平衡微分方程及其积分形式 重力作用下流体静压分布规律 压强的测量、计算与应用 作用于平面的流体静压力 作用于曲面的流体静压力 重力与其它惯性力作用下的流体相对平衡 基本要求: 理解掌握流体静压强、等压面的概念及其性质;流体平衡微分方程及其在相对平衡中的应用; 掌握平面和曲面受压力的计算方法。 第3章一元流体动力学基础 流场,流动参数 描述流体运动的两种方法 流体微元和控制体 连续性方程 伯努利方程的建立及其意义 伯努利方程的应用 一元气流伯努利方程 动量方程及其应用 一元流动模型 流线与迹线,流线方程,流线性质 基本要求: 了解描述流体运动的两种方法; 理解建立以流场为对象的描述流体运动的概念;掌握流体微团运动的基本形式;流

流体力学例题总汇09-10

Chap 9 9-1 有一梯形渠道,在土层中开挖,边坡系数m=1.5,粗糙系数n=0.025 ,底坡i=0.0005,设计流量Q=1.5m 3/s 。按水力最优条件设计渠道断面尺寸。解:水 力最优深宽比 则 b=0.606h A=(b+mh)h=(0.606h+1.5h)h=2.106h 2 又水力最优断面的水力半径 R=0. 5h 将A 、R 代入基本公式 b=0.606 ′1.092=0.66m 9-2 有一梯形断面中壤土渠道,已知:渠中通过的流量Q=5m 3/s ,边坡系数m=1.0,粗糙系数n=0.020 ,底坡i=0.0002。试求: (1)按水力最优条件设计断面;(2)若宽深比b=2来设计断面,检查渠中流速是否满足不冲条件。 解: (1)水力最优 m m b ()m)1)0.83h β====A=(b+mh)h =(0.83h+h )h=1.83h 2 又水力最优R=h/2 即h m =1.98m ; b m =1.98 ′0.83m=1.64m (2) ∵b=2=b/h ∴b=2h A=(b+mh)h =(2h+h )h=3h 2 ∴ h=1.55m 此时 又中壤土渠道不冲流速为0.64~0.84m/s ∴渠道满足不冲条件。 9-3 有一梯形断面顺直小河,每公里落差0.5m ,渠底宽3m ,水 深0.8m ,边坡系数1.5,河床n=0.032,求K 、Q 。解:i=0.5/1000=0.0005 A=(b+mh)h=(3+1.5×0.8) ×0.8=3.36m 2 11 6 633P b 32 5.88m A R 0.57m P 11C R 0.5728.46 n 0.032K 3.3628.4672.2m /s Q 72.2 1.614m /s =++?== ======?==== 9-4 某梯形断面土渠中发生均匀流动,已知:底宽b=2m ,m=ctgq=1.5,水深h=1.5m ,底坡i=0.0004,粗糙系数n=0.0225,试求渠中流速V ,流量Q 。解:一 般渠道中流动均为紊流,总是应用谢才公式: ∵ A=(b+mh)h =(2+ 1.5 ′1.5)′ 1.5=6.38m 2 ∴ Q=v A=0.80 ′ 6.38=5.10m 3 /s

相关文档
最新文档