Bosch拧紧技术基础,螺栓紧固,扭矩转角法

Bosch拧紧技术基础,螺栓紧固,扭矩转角法
Bosch拧紧技术基础,螺栓紧固,扭矩转角法

扭矩 -转角法拧紧工艺条件下的装配质量评价

扭矩 -转角法拧紧工艺条件下的装配质量评价 林湖 (上海大众汽车有限公司 201805 ) 摘要:扭矩 - 转角拧紧方法在现代螺纹副装配作业中占有重要地位,客观已是关键螺栓紧固所采用的一种主要的方法。但如何在这种工艺条件下对螺纹副的联接质量进行评定,则是一个需要解决的实际问题,本文就此进行了一些探讨。 关键词:螺栓联接扭矩转角法装配质量评定方法 1、扭矩 - 转角拧紧工艺的技术特点所引起的评定问题 螺纹副联接是汽车、内燃机、压缩机等众多机械行业装配作业所广泛采用的一种方法,为确保装配的质量,必须对螺纹副的拧紧状态予以控制。现今用于控制螺纹拧紧的方法主要有扭矩法,扭矩 - 转角法,屈服点法,螺栓伸长法等 4 种。其中,螺栓伸长法虽然最为准确、可靠,然而,由于难以在实际的装配机械上实现,故至今尚未用于生产。相比之下,扭矩法因简单易行,长期来一直是螺纹副装配中最常用的方法。但随着对装配质量要求的不断提高,扭矩法的不足也越来越多地暴露出来。因此,近十年来,重要场合下螺栓联接所采用的拧紧工艺基本由扭矩 - 转角法所取代,大大提高了产品的装配质量。以轿车发动机为例,在现代汽车厂的发动机装配线上,关键螺栓联接,如主轴承盖、缸盖、机油滤清器支架、曲轴轴头等的拧紧工艺都为扭矩 - 转角法,一些分装线上的重要螺栓联接,象连杆,采用的也是这种方法。 装配拧紧的实质是通过螺栓的轴向预紧力将两个工件(如缸盖与缸体)可靠地联接在一起,因此,对轴向预紧力的准确控制是保证装配质量的基础。通过控制拧紧扭矩间接地实施预紧力控制的扭矩法由于受到摩擦系数等多种不确定因素的影响,导致对轴向预紧力控制精度低。此外,出于安全考虑,最大轴向力在设计时一般设在其屈服强度的 70% 以下,实际值往往只有 30~50% 。轴向预紧力小而分散,必然造成材料利用率低、结构笨拙和可靠性差。而扭矩 - 转角法的实质是控制螺栓的伸长量,在螺栓贴合以后的整个拧紧范围,伸长量始终与转角成正比。在弹性范围内,轴向预紧力与伸长量成正比,控制伸长量就是控制轴向力,螺栓开始塑性变形后,虽然两者已不再成正比关系,但杆件受拉伸时的力学性能表明,只有保持在一定范围以内,轴向预紧力就能稳定在屈服载荷附近。事实上,扭矩 - 转角法主要通过将螺栓拉长在超弹性极限,达到屈服点,以实现既充分利用材料强度,又完成了高精度拧紧控制的目的。 众所周知,扭矩是一种易测量又易显示的工作参数,而对轴向预紧力的测量则很困难。在评定装配质量,即产品的螺栓联接质量时,若采用扭矩法进行拧紧,则装配工艺的要求表达为M A =M A0±10%,其中M A0为额定扭矩值。据此,很容易确定上、下限控制,但若采用扭矩 - 转角法,工艺要求的表达形式就完全不同,成为:M A=M s±10%+a10%。其中M s称为起始扭矩,a 是达到起始扭矩后螺栓转过的角度,取值一般为60o、90o、120o等,至于±10o只是转角公差的一种表达形式,也有定为±10%的,或以单边公差表示,如180o +20 o。而对扭矩 - 转角拧紧工艺条件,该如何评定螺栓联接质量呢?这是企业必须解决的一个实际问题。 2 .评定装配质量的技术依据 现实情况是尽管扭矩 - 转角法的拧紧原理与常用的扭矩法有着本质的区别,可在评定产品的装配质量时,还是只能利用扭矩这一参数,采用对最终扭矩进行检查的形式,与执行扭矩法拧紧工艺时一样。但必须指出,采用扭矩 - 转角法拧紧时,最终扭矩的大小与螺栓联接的摩擦状况、材料强度等因素有关,其最终扭矩的分布比较分散,然而,扭矩的分散正是为了减小轴向预紧力的分散。螺栓联接组件的扭矩系数越大,其最终扭矩就越大;当扭矩系数较小时,其最终扭矩就小。正常情

扭矩 -转角法拧紧工艺条件下的装配质量评价

扭矩-转角法拧紧工艺条件下的装配质量评价 林湖 (上海大众汽车有限公司201805 ) 摘要:扭矩- 转角拧紧方法在现代螺纹副装配作业中占有重要地位,客观已是关键螺栓紧固所采用的一种主要的方法。但如何在这种工艺条件下对螺纹副的联接质量进行评定,则是一个需要解决的实际问题,本文就此进行了一些探讨。 关键词:螺栓联接扭矩转角法装配质量评定方法 1、扭矩- 转角拧紧工艺的技术特点所引起的评定问题 螺纹副联接是汽车、内燃机、压缩机等众多机械行业装配作业所广泛采用的一种方法,为确保装配的质量,必须对螺纹副的拧紧状态予以控制。现今用于控制螺纹拧紧的方法主要有扭矩法,扭矩- 转角法,屈服点法,螺栓伸长法等4 种。其中,螺栓伸长法虽然最为准确、可靠,然而,由于难以在实际的装配机械上实现,故至今尚未用于生产。相比之下,扭矩法因简单易行,长期来一直是螺纹副装配中最常用的方法。但随着对装配质量要求的不断提高,扭矩法的不足也越来越多地暴露出来。因此,近十年来,重要场合下螺栓联接所采用的拧紧工艺基本由扭矩- 转角法所取代,大大提高了产品的装配质量。以轿车发动机为例,在现代汽车厂的发动机装配线上,关键螺栓联接,如主轴承盖、缸盖、机油滤清器支架、曲轴轴头等的拧紧工艺都为扭矩- 转角法,一些分装线上的重要螺栓联接,象连杆,采用的也是这种方法。 装配拧紧的实质是通过螺栓的轴向预紧力将两个工件(如缸盖与缸体)可靠地联接在一起,因此,对轴向预紧力的准确控制是保证装配质量的基础。通过控制拧紧扭矩间接地实施预紧力控制的扭矩法由于受到摩擦系数等多种不确定因素的影响,导致对轴向预紧力控制精度低。此外,出于安全考虑,最大轴向力在设计时一般设在其屈服强度的70% 以下,实际值往往只有30~50% 。轴向预紧力小而分散,必然造成材料利用率低、结构笨拙和可靠性差。而扭矩- 转角法的实质是控制螺栓的伸长量,在螺栓贴合以后的整个拧紧范围,伸长量始终与转角成正比。在弹性范围内,轴向预紧力与伸长量成正比,控制伸长量就是控制轴向力,螺栓开始塑性变形后,虽然两者已不再成正比关系,但杆件受拉伸时的力学性能表明,只有保持在一定范围以内,轴向预紧力就能稳定在屈服载荷附近。事实上,扭矩- 转角法主要通过将螺栓拉长在超弹性极限,达到屈服点,以实现既充分利用材料强度,又完成了高精度拧紧控制的目的。 众所周知,扭矩是一种易测量又易显示的工作参数,而对轴向预紧力的测量则很困难。在评定装配质量,即产品的螺栓联接质量时,若采用扭矩法进行拧紧,则装配工艺的要求表达为M A =M A0±10%,其中M A0为额定扭矩值。据此,很容易确定上、下限控制,但若采用扭矩- 转角法,工艺要求的表达形式就完全不同,成为:M A=M s±10%+a10%。其中M s称为起始扭矩,a 是达到起始扭矩后螺栓转过的角度,取值一般为60o、90o、120o等,至于±10o只是转角公差的一种表达形式,也有定为±10%的,或以单边公差表示,如180o +20 o。而对扭矩- 转角拧紧工艺条件,该如何评定螺栓联接质量呢?这是企业必须解决的一个实际问题。 2 .评定装配质量的技术依据

螺栓拧紧力矩标准

M6~M24螺钉或螺母的拧紧力矩(操作者参考) 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩) 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩)

公制螺栓扭紧力矩Q/STB 12.521.5-2000 范围:本标准适用于机械性能10.9级,规格从M6-M39的螺栓的扭紧力矩,对于使用尼龙垫圈、密封垫圈、其它非金属垫圈的螺栓,本标准不适用。 ★对于设计图纸有明确力矩要求的,应按图纸要求执行。

套管螺母紧固力矩Q/STB B07833-1998 材料HPb63-3Y2 直通式压注油杯Q/STB B07020-1998(螺纹M6、M8*1、M10*1)紧固力矩:0.3-0.5Kg.m。 安全阀Q/STB B07029-1998(螺纹R1/8) 紧固力矩:2.9-4.9Nm。 通气塞Q/STB B07030-1998 (螺纹R1/4) 紧固力矩:2.94-5.88Nm。 螺塞Q/STB B07040-1998(公称直径08-10螺距1.25,12-36螺距1.5) 螺栓(排气)Q/STB B07060-1998(M12*1.5) 紧固力矩:58.8-78.4N.m。 软管(锥形密封)Q/STB B07100-1998

软管(锥形密封)Q/STB B07123-1998 (接头部螺母拧紧力矩) 螺母(球头式管接头用)Q/STB B07201-1998 拧紧力矩:N.m 材料:(Q235) 管接头螺母Q/STB B07202-1998 拧紧力矩(Q235 / HPb 59-1)

铰接螺栓Q/STB B07206-1998 拧紧力矩(Q235) 球头式端直通接头Q/STB B07211-1998 拧紧力矩(Q235 HPb 60-1 ) 表中拧紧力矩适用于钢制接头 管接头Q/STB B07212-1998 紧固力矩(区分代号为5、7的件材料Q235)

法兰螺栓扭矩计算

法兰螺栓扭矩计算 关键词:法兰螺栓拉力扭矩计算法兰螺栓紧固力矩法兰螺栓的紧固螺栓紧固力矩 法兰紧固时如何确定螺栓的载荷及其扭矩,对于大家来说,可能都是一个比较感兴趣的话题。本人就此抛砖引玉,希望大家分享更多的经验和知识。首先提出两个问题: * 对于M36以下的螺栓,知道螺栓荷载,如何求对应的扭矩值? * 对于可以进行液压拉伸的螺栓,不进行法兰计算,如何查取对应的螺栓荷载? 大家在进行法兰设计时或查阅法兰的计算报告,都能找到法兰预紧和操作时的螺栓拉力。对于M36以下的螺栓,一般可以采用扭矩扳手。现在知道螺栓荷载,如何求对应的扭矩值呢?大家可以查阅GB/T16823.2-1997《螺纹紧固件紧固通则》或者相关的资料就能够找到相应的扭矩值。对于可以进行液压拉伸的螺栓,大家可以查阅相应的垫片生产厂家的数据,即可以知道螺栓的荷载。更简单的可以直接取螺栓材料45%的屈服强度来计算每个螺栓的载荷。 这是我计算出来的螺栓加载扭矩:采用力矩扳手、垫片为缠绕垫片(用钢圈垫可以类推),仅供参考。 根据GB150-1998《钢制压力容器》P94中‘9 法兰’的规定,求得垫片压紧力,再根据力与力矩的关系,算出每条螺栓的力矩。高压法兰尺寸为:DN6’ PN1500class(缠绕垫片密封),其法兰预紧力具体验算如下: 1、查HG20592~20635-97《钢制管法兰、垫片、紧固件》中HG20631-97法兰密封面外径d=216mm; 2、查HG20631-97中DN6’ PN1500class D型缠绕垫片缠绕垫内径D2=171.5mm,缠绕垫外径D3=209.6mm,垫片密封宽度N=19.05mm ,D3<d。 3、按照GB150-98 P91表9-1中1a垫片基本密封宽度b0=N/2=19.05/2= 9.525mm>6.4mm。 4、按照GB150—98 P94中9.5.1.1垫片有效密封宽度b=2.53 =2.53 =7.81mm。 5、按照GB150-98 P94中9.5.1.2垫片压紧力作用中心圆直径DG=D3-2b=209.6-2*7.81=193.98mm。 6、查GB150-98 P93表9-2中缠绕垫片的垫片系数m=3.00,比压力y=69MPa。管线的设计压力为15.85MPa,操作压力为14.4MPa。 7、按照GB150-98 P94中9.5.1.3中预紧状态下需要的最小垫片压紧力FG=Fa =3.14DGby=3.14*193.98*7.81*69=328236.4N。 8、按照GB150-98 P94中9.5.1.3操作状态下需要的最小垫片压紧力FG=Fb=6.28DGbmpc=6.28*193.98*7.81*3.00*14.4=411009N。 9、按照力与力矩的关系式N=0.2Fd,该法兰用紧固件螺栓为M36*3,用紧固件螺栓12对,螺纹实际作用力直径为d=33。 10、预紧状态下每条螺栓加载扭矩Na=0.2(FG/12)d=0.2*(328236.4/12)*(33/1000)=180N.m。 11、操作状态下每条螺栓加载扭矩Np=0.2(FG/12)d=0.2*(411009/12)*(33/1000)=226N.m

螺栓拧紧力矩表

螺栓拧紧力矩标准 M6~M24螺钉或螺母的拧紧力矩(操作者参考) 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩) 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩)

公制螺栓扭紧力矩Q/STB 12.521.5-2000 范围:本标准适用于机械性能10.9级,规格从M6-M39的螺栓的扭紧力矩,对于使用尼龙垫圈、密封垫圈、其它非金属垫圈的螺栓,本标准不适用。 ★对于设计图纸有明确力矩要求的,应按图纸要求执行。

套管螺母紧固力矩Q/STB B07833-1998 材料HPb63-3Y2 直通式压注油杯Q/STB B07020-1998(螺纹M6、M8*1、M10*1)紧固力矩:0.3-0.5Kg.m。 安全阀Q/STB B07029-1998(螺纹R1/8) 紧固力矩:2.9-4.9Nm。 通气塞Q/STB B07030-1998 (螺纹R1/4) 紧固力矩:2.94-5.88Nm。 螺塞Q/STB B07040-1998(公称直径08-10螺距1.25,12-36螺距1.5) 螺栓(排气)Q/STB B07060-1998(M12*1.5) 紧固力矩:58.8-78.4N.m。 软管(锥形密封)Q/STB B07100-1998

软管(锥形密封)Q/STB B07123-1998 (接头部螺母拧紧力矩) 螺母(球头式管接头用)Q/STB B07201-1998 拧紧力矩:N.m 材料:(Q235)

管接头螺母Q/STB B07202-1998 拧紧力矩(Q235 / HPb 59-1) 铰接螺栓Q/STB B07206-1998 拧紧力矩(Q235) 球头式端直通接头Q/STB B07211-1998 拧紧力矩(Q235 HPb 60-1 ) 表中拧紧力矩适用于钢制接头

法兰螺栓拉力扭矩计算

法兰螺栓拉力扭矩计算 1 先说载荷和力矩的换算,力矩扳手制造商有着对应表可以查,从理论力学教科书上也有公式,公式中一个系数是一个范围,需要根据实际情况来确定 2. 做过实验,对螺栓帖上应力片来验证载荷的变化,结论是:系数在推荐的范围内,但变化比较大。这与螺栓螺纹加工精度、润滑程度、螺母表面与法兰表面的光洁度、螺母与螺栓啮合的匹配状态等有着紧密的联系。 3 因此从理论计算和实际结果是有着大的差别的。 4 当然,采用力矩扳手比传统方法还是进了一大步。 二关于螺栓上紧过程相邻螺栓受力变化效应 1 规律:螺栓上紧过程各螺栓受力影响分析无论采用何种垫片,为了保证密封效果均需有相应的密封比压,在螺栓上进过程中,由于螺栓受力是渐紧上升,因此密封比压产生的轴向力不均匀分配在各螺栓中,在紧固某个螺栓时其相邻螺栓的受力将减小 2. 实践例子:在螺栓按照规定的力矩旋紧过程中,对某一个螺栓加载,则其相邻螺栓的载荷立即下降 3 当载荷达到规定值仍因为某种原因再要加载,则加载的动力必须要远超过阻力,我们的试验结果平均在120%以上 4. 比较有效的方法:在旋了数圈后,对相隔螺栓加大载荷(超过理论载荷)进行旋紧,而后对相邻螺栓按照理论载荷旋紧,这样对于一个法兰来说,各螺栓的载荷形成一条相对均匀的载荷曲线。 根据GB150-1998《钢制压力容器》P94中‘9法兰’的规定,求得垫片压紧力,再根据力与力矩的关系,算出每条螺栓的力矩。高压法兰尺寸为:DN6’ PN1500class(缠绕垫片密封),其法兰预紧力具体验算如下: 1、查HG20592~20635-97《钢制管法兰、垫片、紧固件》中HG20631-97法兰密封面外径d=216mm; 2、查HG20631-97中DN6’ PN1500class D型缠绕垫片缠绕垫内径D2=171.5mm,缠绕垫外径D3=209.6mm,垫片密封宽度N=19.05mm ,D3<d。 3、按照GB150-98 P91表9-1中1a垫片基本密封宽度b0=N/2=19.05/2=9.525mm>6.4mm。 4、按照GB150—98 P94中9.5.1.1垫片有效密封宽度b=2.53 =2.53 =7.81mm。 5、按照GB150-98 P94中9.5.1.2垫片压紧力作用中心圆直径DG=D3-2b=209.6-2*7.81=193.98mm。 6、查GB150-98 P93表9-2中缠绕垫片的垫片系数m=3.00,比压力y=69MPa。

螺纹紧固扭矩-拉关系实验方法

作者:张德利 文章来源:网络 6-3-139:33:51 螺纹紧固件扭-拉关系试验方法标准 在螺纹紧固件的使用中应用的较广泛的是螺栓-螺母连接副的形式,应用的较多的是有预紧力的连接方式,预紧力的连接可以提高螺栓连接的可靠性、防松能力及螺栓的疲劳强度,并且能增强螺纹连接体的紧密性和刚度。在螺纹紧固件的连接使用中,没有预紧力或预紧力不够时,起不到真正的连接作用,一般称之为欠拧;但过高的预紧力或者不可避免的超拧也会导致螺纹连接的失败。众所周知,螺纹连接的可靠性是由预紧力来设计和判断的,但是,除在实验室可以测量外,在装配现场一般是不易直观的测量。螺纹紧固件的预紧力则多是采用力矩或转角的手段来达到的。因此,当设计确定了预紧力之后,安装时采用何种控制方法?如何规定拧紧力矩的指标?则成为关键重要问题,这就提出来了螺纹紧固件扭(矩)-拉(力)关系的研究课题。 螺纹紧固件扭-拉关系,不仅涉及到扭矩系数、摩擦系数(含螺纹摩擦系数和支撑面摩擦系数)、屈服紧固轴力、屈服紧固扭矩和极限紧固轴力等以一系列螺纹连接副的紧固特性的测试及计算方法,还涉及到螺纹紧固件的应力截面积和承载面积的计算方法等基础的术语、符号的规定。并且也还必须给出螺纹紧固件紧固的基本规则、主要关系式以及典型的拧紧方法。目前,这些内容 ISO/TC2尚无相应的标准,德国工程师协会早在七十年代就发表了DVI2230《高强度螺栓连接的系统计算》技术准则。日本也于1987和1990年发布了三项国家标准,尚未查到其他国家的标准。国内尚未发现相应的行业标准,仅少数企业制定了企业标准。尤其是随着引进技术的国产化不断的拓展和螺纹紧固件技术发展的需要,这一需求日趋迫切。这也就是制定此项标准的初衷。 日本国家标准JISB1082-1987《螺纹紧固件应力截面积和承载面积》、JISB1083-1990《螺纹紧固件紧固通则》及JISB1084-1990《螺纹紧固件拧紧试验方法》三个标准,概括了国际上有关螺纹紧固件扭-拉关系的研究成果和应用经验,根据标准验证,对我国也是适用的。因此,在制定标准时,在充分消化、分析日本标准的基础上,提出了等效采用的意见。 因此,本系列标准也包括了下列三个国家标准: 1、GB/T16823.1-1997《螺纹紧固件应力截面积和承载面积》; 2、GB/T16823.2-1997《螺纹紧固件紧固通则》; 3、GB/T16823.3-1997《螺纹紧固件拧紧试验方法》 一、GB/T16823.1-1997《螺纹紧固件应力截面积和承载面积》

联接螺栓强度计算方法

联接螺栓的强度计算方法

一.连接螺栓的选用及预紧力: 1、已知条件: 螺栓的s=730MPa 螺栓的拧紧力矩T= 2、拧紧力矩: 为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。 其拧紧扳手力矩T用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩 擦力矩T2。装配时可用力矩扳手法控制力矩。 公式:T=T1+T2=K* F* d 拧紧扳手力矩T= 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 摩擦表面状态K值 有润滑无润滑 精加工表面 一般工表面 表面氧化 镀锌 粗加工表面- 取K=,则预紧力 F=T/*10*10-3=17500N 3、承受预紧力螺栓的强度计算: 螺栓公称应力截面面积As(mm)=58mm2 外螺纹小径d1=8.38mm 外螺纹中径d2=9.03mm

计算直径d3=8.16mm 螺纹原始三角形高度h=1.29mm 螺纹原始三角形根部厚度b=1.12mm 紧螺栓连接装配时,螺母需要拧紧,在拧紧力矩的作用下,螺栓除受预紧力F0的拉伸而产生拉伸应力外,还受螺纹摩擦力矩T1的扭转而产生扭切应力,使螺栓处于拉伸和扭转的复合应力状态下。 螺栓的最大拉伸应力σ1(MPa)。 1s F A σ= =17500N/58*10-6m 2=302MPa 剪切应力: =1σ=151 MPa 根据第四强度理论,螺栓在预紧状态下的计算应力: =*302= MPa 强度条件: =≤*=584 预紧力的确定原则: 拧紧后螺纹连接件的预紧应力不得超过其材料的屈服极限s σ的80%。 4、 倾覆力矩 倾覆力矩 M 作用在连接接合面的一个对称面内,底板在承受倾覆力矩之前,螺栓已拧紧并承受预紧力F 0。作用在底板两侧的合力矩与倾覆力矩M 平衡。 已知条件:电机及支架总重W1=190Kg ,叶轮组总重W2=36Kg ,假定机壳固定, () 2031 tan 2 16 v T d F T W d ?ρτπ += = 1.31ca σσ≈[] 02 11.34F ca d σσ π =≤

紧固扭矩的检测方法

紧固扭矩的检测方法 2011-12-16 对紧固扭矩的检测是整机或部件组装后可靠性检查的极为重要的一道工序。检测的目的是为了避免螺纹连接件在紧固过程和紧固后发生超拧、漏拧和拧不足的现象,确保每个螺栓紧固后能正常工作对紧固扭矩的检测工序可分为二大类:即在拧紧过程中的控制法和拧紧后的检测。 拧紧后的检测方法—简称事后法:大致可分为四种: 拧紧法—也称增拧法。适用于重要紧固后的栓验。 检验方法:用扭力扳手平稳用力逐渐增加力矩(切忌冲击),当螺母或螺栓刚开始产生微小转动时它的瞬时扭矩值最大(因要克服静摩擦力),继续转动,扭矩值就会回落到短暂的稳定状态,这时的扭矩值即为检查所得的扭矩。 特点:操作简单,但必须熟练有经验。 b) 标记法—也称复位法、划线法、转角法。 检查方法:检验前先在被检螺栓或螺母头部与被连接体上划一道线,确认相互的原始位置。然后将螺栓或螺母松开些,在用扭矩扳手将螺栓或螺母拧紧到原始位置(划线处要线对准),这时的最大扭矩值再乘以0.9-1.1所得的值即为检查所得的扭矩。 特点:技术水平不高,操作较繁琐,不适宜有防松功能的紧固件。 c) 直觉法—拧紧后凭直觉判断 检验方法:对有弹性垫圈类则观察是否压平来判断;对无弹性垫圈类或有弹性垫圈但观察困难,则可采用扭力扳手进行拧紧凭直觉来判断拧紧程度:若到扭矩值,扳手不转动或微小转动,判为已拧紧;若转动超过半圈为没有拧紧、不合格。 特点:适宜于一般紧固检查。 d)松开法—也称拧松法 检查方法:用扭矩扳手慢慢地向被检螺栓或螺母施加扭矩,便其松开,读取开始转动时的瞬时扭矩值,并根据试验和经验乘以一个系数:1.1-1.2即为检验扭矩值。

高强度螺栓的扭矩系数

查标准,我国的高强度螺栓的扭矩系数是一个从~的范围,标准同时规定,扭矩系数的标准差不得大于。 查国外资料,发现扭矩系数与我国的规定很不一样,通常比我们大,这是为何?想来应该是与表面处理有关,如果我们的标准限制了新技术或者先进技术的应用吗 提问者:老陈发布时间:2007-4-28 20:10:00以下是回复内容: 第1页,共1页 扭矩系数与螺纹精度、表面粗糙度、尺寸精度、表面处理等方面都有关系,但是表面处理是影响扭矩系数的比较大的因素之一。国家标准大六角头螺栓、螺母连接副的表面处理主要是磷化。由于磷化的配方不同,扭矩系数也不同。扭矩系数的大小范围是考核内容,但是扭矩系数的标准差是关键。不能说国外的扭矩系数与我国规定的不同,就限制了新技术或者先进技术的应用。 答复者:张德利 发布时间:2007-4-29 21:56:00 本答案得分:5 扭矩系数~,标准偏差小于,仅仅是钢结构连接副的要求,并不是其他的高强度有要求。注意'连接副"这一条件。它是指一个螺栓,螺母,两个垫圈配套使用,并且表面处理也有严格控制。一般的连接均没有垫圈,如果你用钢结构螺栓和螺母,用一般的垫圈或不用垫圈做扭矩系数试验,肯定不能达到~和的要求。 扭矩系数主要与表面处理和被紧固件的表面状态有关。

答复者:吴明然 发布时间:2007-5-11 21:50:00 本答案得分:3 磷化有什么重大意义吗,能得到相对稳定的扭矩系数吗——要满足“螺栓副”这个条件不难,但要施工中完全满足保管条件等,困难就大些? 而且,扭矩系数~,这个范围太大,最好定在~之间,这样就可以大致定出螺栓的扭矩值来。 答复者:老陈发布时间:2007-5-19 21:29:00 本答案得分:3 看起来这个问题太复杂,没法回答。 答复者:老陈发布时间:2007-7-4 10:54:00 本答案得分:3 正如上几位的回答,影响扭矩系数的因素众多,不过,最主要的是表面状态,特别是润滑。任何因素的参数必定存在波动,其综合结果也必然存在波动,这就是标准要规定一个范围的原因。如果某企业采用新技术,可使扭矩系数的波动变小,对使用者而言,是再好不过了,你可以制定自己的企业标准,比国家或别人的标准更严,也是你的一个卖点啊。

扭矩法与扭矩转角法比较与分析

扭矩法与扭矩转角法比较与分析 摘要:文章首先对扭矩控制的基本内涵及其主要目标进行了分析,然后对扭矩法以及扭矩转角法在实际工作中的应用优势进行了综合对比,认为在变形区间一定的条件下,由于螺栓与被连接体的刚度基本稳定,故而应用扭矩转角控制法的控制精度明显高于扭矩控制法控制精度。 关键词:扭矩法;扭矩转角法;比较 螺纹连接是内燃机装配中至关重要的技术手段之一。内燃机中大量关键部件的连接需要通过螺纹连接方式实现。因此,对螺栓拧紧过程的控制质量直观重大。结合以往的实践工作经验来看,认为:为了使螺纹连接达到满意的刚性效果,密封性效果,同时具有防松动的优势,其关键在于向连接螺栓施加一个合理的预紧力。而在对预紧力进行控制与监测的过程当中,最常采取的技术手段有两种类型:第一是扭矩法控制,第二是扭矩转角法控制。为了能够在实际工作中选择精度水平更高,能够满足实际运行需求的控制方法,本文尝试对扭矩法与扭矩转角法做比较,具体研究如下: 1 扭矩控制分析 螺纹,特别是对于需要承受动载荷作用力的重要螺纹而言,进行螺纹连接的根本在于:通过利用螺纹紧固件的方式,实现螺纹与连接体的可靠连接。装配拧紧的根本则在于:将螺栓的轴向预紧力控制在合理区间内。 在对轴向预紧力进行控制的过程当中,其上限与下限都应当有一定的控制标准:以上限控制标准为例,该取值会受到螺栓以及被连接件强度水平的影响,避免在预紧中出现拉长、脱扣、疲劳断裂、以及压缩破坏等方面的问题;以下限控制标准为例,该取值则会受到连接结构的影响,确保在整个拧紧过程当中螺纹与连接件能够始终保持紧密贴合的关系。 结合以往的工作经验来看认为螺栓轴向预紧力取值越高越有利。主要依据是,预紧力的提升会使螺栓的抗疲劳性能以及抗松动性能得到改善。因此,实际工作中,应当通过对扭矩法或扭矩转角法的应用,在对材料强度进行充分利用的基础之上,尽可能的将螺栓拧紧至屈服极限,以保障连接可靠,控制零件尺寸。 2 扭矩法与扭矩转角法精度对比 下图(见图1)即为扭矩法与扭矩转角法的控制示意图。结合图1来看,以图中①、②分别表示2条规格一致的螺纹连接件所对应特性曲线。两条曲线存在差异的主要因素是:材料因素,热处理因素,表面粗糙度因素,尺寸精度因素,表面清洁度因素,表面润滑程度因素,以及垫圈连接因素。两条特性曲线在统一外加扭矩作用力的影响下产生与之相对应的预紧力,分别对应为F①、F②。因此,可以计算所对应的预紧力误差取值为△F(△F=F①-F②)。

拧紧技术及拧紧机

螺栓拧紧技术及拧紧机 螺栓拧紧在机械制造业中的应用非常广泛,机械制造中零部件的连接与装配,机械整体的装配等等,可以说几乎是都离不开螺栓拧紧。 第一节螺栓拧紧的基本概念及拧紧的方法 任何机体均是由多种零件连接(即组装)起来的,而零件的连接有多种,采用螺栓连接就是其中最常用的一种,而欲采用螺栓连接就必须应用拧紧,因而这“拧紧”也就成了装配工作中应用得极为广泛的概念。 零件采用螺栓连接的目的就是要使两被连接体紧密贴合,并为承受一定的动载荷,还需要两被连接体间具备足够的压紧力,以确保被连接零件的可靠连接和正常工作。这样就要求作为连接用的螺栓,在拧紧后要具有足够的轴向预紧力(即轴向拉应力)。然而这些力的施加,也都是依靠“拧紧”来实现的。因而,我们很有必要了解一些有关拧紧的基本概念。 一.螺栓拧紧的基本概念 1.拧紧过程中各量的变化 在螺栓拧紧时,总体的受力情况是,螺栓受拉,连接件受压;但在拧紧的整个过程中,受力的大小是不同的(见图1),大体上分为下述几个阶段: ⑴在开始拧紧时,由于螺栓未靠座,故压紧力F为零;但由于存在摩擦力,故扭矩T保持在一个较小的数值。 ⑵当靠座后(Z点),真正的拧紧才开始,压紧力F和拧矩T随转角A 的增加而迅速上升。 图 1

⑶达到屈服点,螺栓开始朔性变形,转角增加较大而压紧力和扭 矩却增加较小,甚至不变。 ⑷再继续拧紧,力矩T 和压紧力F 下降,直至螺栓产生断裂。 2.力矩率 力矩率R 所表示的是力矩增量△T 对转角△A 的比值(见图2),即: R =△T /△A (1) 硬性连接的R 值高,软性连接的R 值低。R 值与螺栓的长度、连 接中各件之间的摩擦以及连接件垫圈的弹性有关。摩擦系数的变化, 是影响力矩率的主要因素。此外,再加上垫圈、密封垫片等引起的弹 性变化,装配线上同样螺纹连接之间的力矩率变化可能超过百分之百, 这样,力矩/转角的曲线就可能落在图3斜线中的任何位置。 3.摩擦与力矩对压紧力的影响 从图4中可见,同一力矩T 值, 而由于摩擦系数μ值的不同,压紧力 F 可能相差很大。所以,摩擦系数μ 对压紧力F 的影响是非常大的。这里 的摩擦系数主要是指螺纹接触面、螺 栓与被连接件支撑面间的摩擦系数。 二. 螺栓拧紧的方法 拧紧,实际上就是要使两被连接体间具备足够的压紧力,反映到被 拧紧的螺栓上就是它的轴向预紧力(即轴向拉应力)。而不论是两被连 图 4 T =0.4 =0.5 图 3 图 2

拧紧技术题库50

拧紧技术 1.以下不属于拧紧技术中常用连接方式的是(B ) A.螺纹连接 B.线束插接 C.焊接 D.铆接 2.以下不属于根据连接重要性划分的拧紧等级的是(A ) A.Kat.S B.Kat.A C.Kat.B D.Kat.C 3.如右图所示,螺钉的力矩值为( D ) A. F·(L1+L2) B.F·L2 C.F·L3 D.F·L1 4.以下哪个不属于影响夹紧力的因素?(C) A .摩擦; B. 内部应力释放; C.空气阻力; D. 温度 5.下列拧紧工具中,力矩值最准确的是( B ) A. 数显扳手 B. 带转角的EC扳手 C. 电抢 D. 风枪 6.关于公差换算,下列说法正确的是( D ) A. AD15代表力矩控制,工艺公差为该点工艺值的15%。 B. AW11代表力矩控制,工艺公差为该点工艺值的7.5%。 C. AD18代表转角控制,工艺公差为该点工艺值的15%,转角公差为15°。 D. AW10代表转角控制,工艺公差为该点工艺值的7.5%,转角公差为5°。 7.以下哪个不属于4M对拧紧质量的影响。( A ) A. 管理(Management) B.操作者(Man人) C.螺栓和螺母(Material材料) D.拧紧工具(Machine机器) 8.关于连接方式下列说法错误的是( B ) A. 精密螺栓连接:装配后无间隙,主要承受横向载荷,也可作定位用。 B. 普通螺栓连接:装配后孔与杆间有间隙,但在工作中间隙可以消除。 C. 双头螺栓连接:螺杆两端无钉头,但均有螺纹,装配时一端旋入被连接件,另一端 配以螺母;适于常拆卸而被连接件之一较厚时。 D. 螺钉连接:适于被连接件之一较厚、不需经常装拆,一端有螺钉头,不需螺母,适 于受载较小情况. 9.属于拧紧测试参数的是(A ) A. 静态力矩 B.温度 C.零件硬度 D.摩擦力

高强度螺栓预紧力及拧紧扭矩(全)

常用高强度螺栓预紧力和拧紧扭矩 (参考件) 李毅民 By liyimin 2004-7-18 预紧力Fv(kN)及扭紧力矩MA(N·m) 螺 纹 直 径 螺 栓 的 性 能 等 级 直 径 d mm螺 距p mm 8.8 10.9 Fv(kN) MA(N·m) Fv(kN) MA (N·m) M12 1.75 45 100 55 110 M16 2 70 230 100 320 M20 2.5 110 455 155 590 M24 3 155 775 225 1000 M30 3.5 250 1570 335 2100 此表为参考建议,计算方式决定扭紧力矩见下面公式。请注意国产10.9s高强度螺栓部分扭矩此表数据会偏高一些。 Tightening torques and prestressing force for HV and HVP 10.9s 国际标准 Thread diameter d M12M16M20M22M24M27M30 Hold diameter13172123252831 Required Prestressing force Pv [kN] 50100160190220290350 Ma1) [N.m]MoS2 lubricated10025045065080012501650 slightly oiled120350600900110016502200 Prestressing force Pv 2)[kN] 60110175210240320390 1)Torque to be applied with torque spanners 2).Prestressing force to be applied with impact wrenches 计算方式决定施工高强度螺栓扭矩: Ma=1.1 k Pv d 式中: k---扭矩系数 ,此数据由高强度螺栓制造商提供或在安装前实验 得到。通常k=0.11-0.15,详细数据见 供货商的质量报告。 Pv---高强度螺栓预拉力, [kN]; d---高强度螺栓直径,mm。 如何确定机螺丝的紧固力矩 关于如何紧固螺栓和螺母的文章已经有很多,但如何恰当地紧固机螺丝(Machine Screws)的文章较少。与如何确保螺栓和螺母的安全连接一样,在紧固机螺丝时,恰当地选择合适的拧紧力矩十分重要。恰当的、安全的连接直接关系到装配后产品的质量好坏。因此在紧固机螺丝时,我

浅析底盘扭矩设计及分析

浅析底盘扭矩设计及分析 发表时间:2019-01-08T17:12:20.937Z 来源:《电力设备》2018年第24期作者:李朋辉[导读] 摘要:扭矩控制是汽车底盘装配工艺的关键控制点,装配质量的最常用方法是通过控制紧固件的扭矩来实现预紧力的控制。 (北京长城华冠汽车技术开发有限公司北京市 100000)摘要:扭矩控制是汽车底盘装配工艺的关键控制点,装配质量的最常用方法是通过控制紧固件的扭矩来实现预紧力的控制。本文主要对汽车底盘螺纹副连接状态、拧紧扭矩等级、拧紧扭矩精度、拧紧方法、静/动态扭矩关系、扭矩开发流程等方面进行归纳总结。 关键词:紧固件;扭矩;连接;拧紧为了提高拧紧力矩的设定正确性及拧紧质量,通过制定拧紧力矩分析标准流程,采用螺栓拧紧工艺分析系统,根据紧固件-扭矩/预紧力试验结果得出影响拧紧质量的各种参数值,给出拧紧扭矩的设计值以及拧紧策略的参考方案,为完善螺纹紧固件的拧紧扭矩开发提供参考。 1螺纹副连接状态 1.1软连接。指连接件本身比较软或者连接件中间存在橡胶件等弹性元件,存在较大扭矩衰减;软连接螺纹副到达贴合点后,旋转720°以上才能达到目标扭矩。适合选择直接驱动式扳手进行装配,对连接件来讲,连续的旋转和冲击将会使螺栓产生变形,而同样的工作方式会使气动冲击扳手的双锤式打击机构提前磨损。 1.2硬连接。指连接件硬度比较大或刚性连接,一般扭矩衰减很少,可能还存在扭矩反冲;硬连接螺纹副到达贴合点后,一般旋转30°以内就可以达到目标扭矩。选择气动冲击扳手,一般所说的硬连接方式指螺纹没有涂胶,螺纹部分短,连接时不加垫片等,这种连接方式在汽车底盘装配中应用较多。 1.3联合连接。指介于软连接和硬连接之间的连接,也称为中性连接。转角介于30°~720°之间的连接方式。汽车制造过程中这种连接方式最多,这种状况下的连接适合选择油压脉冲工具进行装配,不适合选择气动冲击扳手进行装配。 2拧紧扭矩等级 依据对汽车的安全性、法规性、功能重要性的影响程度,参考(德)DIN2862汽车工业中拧紧设备的应用标准要求将汽车总装的装配扭矩分为三个等级,其中拧紧等级B类通常用于底盘件。 3拧紧扭矩精度 依据当前汽车的法规性、生产工艺性,汽车装配的拧紧扭矩精度分为三级,如下表所示: 分析拧紧精度过程中,拧紧精度须与拧紧等级匹配。拧紧扭矩等级A 级与拧紧扭矩精度Ⅰ级、Ⅱ级匹配;拧紧扭矩等级B级与拧紧扭矩精度Ⅱ级、Ⅲ级匹配;拧紧扭矩等级C级与拧紧扭矩精度Ⅲ级匹配;指导制造部门根据拧紧精度要求合理选择拧紧工具。 3.1拧紧扭矩精度为Ⅰ级时,扭矩精度标准偏差值设定为名义扭矩的±5%,偏差区间控制在0~±7.5%区间。 3.2拧紧扭矩精度为Ⅱ级时,扭矩精度标准偏差值设定为名义扭矩的±10% ,偏差区间控制在±7.5%~±15%区间。 3.3拧紧扭矩精度为Ⅲ级时,扭矩精度标准偏差值设定为名义扭矩的±20% ,偏差区间控制在±15%~±30%区间。 4拧紧方法 生产企业拧紧的方法通常有扭矩法、扭矩-转角法、屈服点法三种,实际应用主要以扭矩法及扭矩-转角法的拧紧扭矩为主。 5静/动态扭矩关系 在汽车底盘装配过程中,往往将动态扭矩与静态扭矩混淆,静态扭矩是在螺栓处于静止状态下测量的扭矩值,动态扭矩是螺栓与被连接件之间处于相对滑动状态下测得的扭矩值。在生产过程与检验矛盾,实际上生产过程得到的是动态扭矩,保证了螺栓的动态扭矩不低于规定值,而表盘式扭矩扳手重新检测时,表盘上呈现的值为静态扭矩,两数据之间存在一个数学关系:T静=T动×(1+λ),T静与T动呈线性关系(T静:静态扭矩;T动:动态扭矩;λ:扭矩系数),λ取值与螺栓、连接方式、装配工具等方面有直接关系,需在实际试验中总结积累。 6扭矩开发流程 一般汽车底盘扭矩开发遵循以下开发流程: 6.1预紧力计算。根据产品紧固场合、设计要求、工作载荷及连接要求等综合因素(或CAE仿真分析)计算出理论预紧力值。 6.2标准件选型。合理选择标准件规格,尽量选择国标件,减少非标件的使用。 6.3拧紧空间校核。校核连接场合是否满足标准件的装配性。 6.4拧紧扭矩计算。根据预紧力、紧固件规格、螺纹副连接状态等参数计算拧紧扭矩。分析摩擦系数、强度、拧紧精度、拧紧等级、连接刚度等相关因素与扭矩的匹配性。 6.5试验验证。一方面通过实验室试验项目,通过各相关参数的试验数据验证拧紧扭矩的设定合理性。另一方面通过室外的道路试验、耐久试验验证扭矩的合格性及可靠性。

螺丝破坏扭力的计算

在螺纹紧固件的使用中应用的较广泛的是螺栓-螺母连接副的形式,应用的较多的是有预紧力的连接方式,预紧力的连接可以提高螺栓连接的可靠性、防松能力及螺栓的疲劳强度,并且能增强螺纹连接体的紧密性和刚度。在螺纹紧固件的连接使用中,没有预紧力或预紧力不够时,起不到真正的连接作用,一般称之为欠拧;但过高的预紧力或者不可避免的超拧也会导致螺纹连接的失败。众所周知,螺纹连接的可靠性是由预紧力来设计和判断的,但是,除在实验室可以测量外,在装配现场一般是不易直观的测量。螺纹紧固件的预紧力则多是采用力矩或转角的手段来达到的。因此,当设计确定了预紧力之后,安装时采用何种控制方法?如何规定拧紧力矩的指标?则成为关键重要问题,这就提出来了螺纹紧固件扭(矩)-拉(力)关系的研究课题。 螺纹紧固件扭-拉关系,不仅涉及到扭矩系数、摩擦系数(含螺纹摩擦系数和支撑面摩擦系数)、屈服紧固轴力、屈服紧固扭矩和极限紧固轴力等以一系列螺纹连接副的紧固特性的测试及计算方法,还涉及到螺纹紧固件的应力截面积和承载面积的计算方法等基础的术语、符号的规定。并且也还必须给出螺纹紧固件紧固的基本规则、主要关系式以及典型的拧紧方法。目前,这些内容ISO/TC2尚无相应的标准,德国工程师协会早在七十年代就发表了DVI2230《高强度螺栓连接的系统计算》技术准则。日本也于1987和1990年发布了三项国家标准,尚未查到其他国家的标准。国内尚未发现相应的行业标准,仅少数企业制定了企业标准。尤其是随着引进技术的国产化不断的拓展和螺纹紧固件技术发展的需要,这一需求日趋迫切。这也就是制定此项标准的初衷。 日本国家标准JIS B 1082-1987《螺纹紧固件应力截面积和承载面积》、JIS B 1083-1990《螺纹紧固件紧固通则》及JIS B 1084-1990《螺纹紧固件拧紧试验方法》三个标准,概括了国际上有关螺纹紧固件扭-拉关系的研究成果和应用经验,根据标准验证,对我国也是适用的。因此,在制定标准时,在充分消化、分析日本标准的基础上,提出了等效采用的意见。 因此,本系列标准也包括了下列三个国家标准: 1、GB/T16823.1-1997《螺纹紧固件应力截面积和承载面积》; 2、GB/T16823.2-1997《螺纹紧固件紧固通则》; 3、GB/T16823.3-1997《螺纹紧固件拧紧试验方法》 一、GB/T16823.1-1997《螺纹紧固件应力截面积和承载面积》 本标准等效采用JIS B 1082-1987《螺纹紧固件应力截面积和承载截面积》标准,本标准是设计螺纹紧固件扭-拉关系系列标准之一。 1、范围 本标准规定的螺纹紧固件的应力截面积(As)适用于计算外螺纹紧固件的最小拉力载荷、保证载荷以及内螺纹紧固件的保证载荷。外螺纹紧固件包括螺栓、螺钉和螺柱等标准件和专用件;内螺纹紧固件包括螺母标准件、专用件及机体中的螺孔。其螺纹尺寸及公差均应符合GB/T193、GB/T196和GB/T197的规定。本标准不适用于寸制螺纹、统一螺纹、惠氏螺纹等其他螺纹紧固件。 2、螺纹紧固件应力截面积计算公式 本标准规定的螺纹紧固件应力截面积计算公式有两个,即公式(1)和公式(2)。 螺纹紧固件应力截面积计算公式(1)与已发布的国家标准,即 GB/T3098.1《紧固件机械性能螺栓、螺钉和螺柱》、GB/T3098.2《紧固件机械性能螺母》、GB/T3098.4《紧固件机械性能细牙螺母》和GB/T3098.6《紧固

钢结构扭矩规范

高强度螺栓连接副终拧扭矩检验作业 指导书 BJSJ-3-A-JC-02 编制: 审核: 批准: 高强度螺栓连接副终拧扭矩检验作业指导书

1 主题内容及适用范围 本作业指导用于高强度螺栓连接副施工扭矩检验作业指导。 2 引用标准 GB50205 钢结构工程施工质量验收规范 3 检验时机 3.1高强度螺栓连接副施工终拧扭矩检验应在施拧1h后,48h内完成。 4 检验数量 4.1施工过程检查数量按节点数抽查10%,且不应少于10个节点;每个被抽查节点按螺栓数抽查10%,且不应少于2个。 4.2见证检测检查数量按GB50205附录G要求进行,按节点数抽查3%,且不应少于3个节点。 5 检验方法 5.1检验所用的扭矩扳手其扭矩精度误差应在3%以内。 5.2高强度螺栓连接副施工扭矩检验分初拧、复拧、终拧检验;检验方法分为扭矩法检验和转角法检验两种,原则上采用检验法与施工法应相同。 5.3扭矩法检验: 5.3.1在螺尾端头和螺母相对位置划线,将螺母退回60°左右; 5.3.2用扭矩扳手测定拧回至原来位置时扭矩值,并做好记录。 5.3.3比较测定扭矩值与施工扭矩值的偏差,其偏差在10%以内为合格。 5.4转角法检验: 5.4.1检查施工方初拧后在螺母与相对位置所画的终拧起始线和终止线所夹的角度是否达到规定值。 5.4.2在螺尾端头和螺母相对位置画一条线,然后全部卸松螺母,在按规定的初拧扭矩和终拧角度重新拧紧螺栓,观察与原画线是否重合。终拧转角偏差在10°以内为合格。终拧转角与螺栓的直径、长度等因素有关,应由试验确定。 5.5扭剪型高强度螺栓施工扭矩检验,观察尾部梅花头被拧掉者视同终拧扭矩达到达到合格标准,未被拧掉者应按上述扭矩法或转角法检验。 6 计算 高强度螺栓连接副施工终拧扭矩值按下式计算:

相关文档
最新文档