红外线接收管

红外线接收管

红外线接收管

一、红外线接收管的工作原理

红外线接收管是将红外线光信号变成电信号的半导体器件,它的核心部件是一个特殊材料的PN结,和普通二极管相比,在结构上采取了大的改变,红外线接收管为了更多更大面积的接受入射光线,PN结面积尽量做的比较大,电极面积尽量减小,而且PN结的结深很浅,一般小于1微米。红外线接收二极管是在反向电压作用之下工作的。没有光照时,反向电流很小(一般小于0.1微安),称为暗电流。当有红外线光照时,携带能量的红外线光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对(简称:光生载流子)。它们在反向电压作用下参加漂移运动,使反向电流明显变大,光的强度越大,反向电流也越大。这种特性称为“光电导”。红外线接收二极管在一般照度的光线照射下,所产生的电流叫光电流。如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。

二、红外线接收管的分类

红外线接收管有两种,一种是光敏二极管,另一种是光敏三极管。光电二极管就是将光信号转化为电信号,光电三极管在将光信号转化为电信号的同时,也把电流放大了。因此,光电三极管也分为两种,分别是PNP型和NPN型。

三、红外线接收管的应用

红外接收管在红外线遥控、红外监控、普通家电、光探测、光纤通信、光电耦合等方面有广泛的应用。

四、红外线接收管的外形

1.直插:3mm、5mm

2.贴片:1206,0805,0603,3020,0402,3528,5050等

详情可联系超毅电子https://www.360docs.net/doc/5013953719.html,

38khz红外发射与接收解析

38khz红外发射与接收 38khz红外发射与接收 红外线遥控器在家用人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红,橙,黄,绿,青,蓝,紫,如图1所示. 由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线.红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的. 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境. 人们见到的红外遥控系统分为发射和接收两部分.发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示. 常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同.一般有透明,黑色和深蓝色等三种.判断红外发光二极管的好坏与判断普通二极管一样的方法.单只红外发光二极管的发射功率约100mW.红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定. 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度.红外接收二极管一般有圆形和方形两种.由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路.然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示.红外线一体化接收头是集红外接收,放大,滤波和比较器输出等的模块,性能稳定,可靠.所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高. 图3是常用两种红外接收头的外形,均有三只引脚,即红外接收头的主要参数如下: 工作电压:4.8~5.3V 工作电流:1.7~2.7mA 接收频率:38kHz 峰值波长:980nm 静态输出:高电平 输出低电平:≤0.4V 输出高电平:接近工作电压 3.红外线遥控发射电路 红外线遥控发射电路框图如图4所示. 框图4是目前所有红外遥控器发射电路的功能组成,其中的编码器即调制信号,按遥控器用途的编码方式可以很简单,也可以很复杂.例如用于电视机,VCD,DVD 和组合音响的遥控发射的编码器,因其控制功能多达50种以上,此时的编码器均采用专用的红外线编码协议进行严格的编程,然而对控制功能少的红外遥控器,其编码器是简单而灵活.前者编码器是由生产厂家的专业人员按红外遥控协议进行编码,而后者适用于一般图4中编码器的编码信号对38kHz的载波信号进行调制,再经红外发射管D向空间发送信号供遥控接收端一体化接收头接收,解调输出,再作处理.

红外接收头详解

红外接收电路通常由红外接收二极管与放大电路组成,放大电路通常又由一个集成块及若干电阻电容等元件组成,并且需要封装在一个金属屏蔽盒里,因而电路比较复杂,体积却很小,还不及一个7805体积大! SFH506-38与RPM-638是一种特殊的红外接收电路,它将红外接收管与放大电路集成在一体,体积小(大小与一只中功率三极管相当),密封性好,灵敏度高,并且价格低廉,市场售价只有几元钱。它仅有三条管脚,分别是电源正极、电源负极以及信号输出端,其工作电压在5V左右.只要给它接上电源即是一个完整的红外接收放大器,使用十分方便。 它的主要功能包括放大,选频,解调几大部分,要求输入信号需是已经被调制的信号。经过它的接收放大和解调会在输出端直接输出原始的信号。从而使电路达到最简化!灵敏度和抗干扰性都非常好,可以说是一个接收红外信号的理想装置。 HS0038信号电平: 38kHz红外发射接收到时:OUT低电平输出 38kHz红外发射接收不到时:OUT高电平输出 Hs0038的使用注意事项: 1: 38kHz红外发射信号在HS0038接收角度范围边沿区域时,接收信号不断振荡无法稳定,因此为保证信号质量,使用时发射接收尽力正对为好; 2: HS0038用于数据通讯时,在标准RS232下,波特率设置不要大于2400bps,否则HS0038无法区分到接收的信号(2400bps接近其带宽极限了)。 红外线一开始发送一段13.5ms的引导码,引导码由9ms的高电平和4.5ms 的低电平组成,跟着引导码是系统码,系统反码,按键码,按键反码,如果按着键不放,则遥控器则发送一段重复码,重复码由9ms的高电平,2.25ms的低电平,

红外发射、接收头(红外基础知识).

目前市售红外一体化接收头有两种:电平型和脉冲型,绝大部分的都是脉冲型的,电平型的很少。 电平型的,接收连续的38K信号,可以输出连续的低电平,时间可以无限长。其内部放大及脉冲整形是直接耦合的,所以能够 接收及输出连续的信号。 脉冲型的,只能接收间歇的38K信号,如果接收连续的38K信号,则几百ms后会一直保持高电平,除非距离非常近(二三十厘米以内。其内部放大及脉冲整形是电容耦合的,所以不能能够接收及输出连续的信号。一般遥控用脉冲型的,只有特殊场合,比如串口调制输出,由于串口可能连续输出数据0,所以要用电平型的。一般遥控器用455K经12分频后输出37917HZ,简称38K,10米接收带宽为38+-2K,3米为 35~42K。在没有环境反射的空旷空间,距离10米以上方向性会比较强。在室内, 如果墙是白色的,则在15米的空间基本没有方向性。 接收头要有滤光片,将白光滤除。在以下环境条件下会影响接收,甚至很严重: 1、强光直射接收头,导致光敏管饱和。白光中红外成分也很强。 2、有强的红外热源。 3、有频闪的光源,比如日光灯。 4、强的电磁干扰,比如日光灯启动、马达启动等。 38K信号最好用1/3占空比,这个是最常用的,据测试1/10占空比灵敏度更好。实际调制时间要少于50%。最好有间歇。 电平型的接收头只要接收到38K红外线就输出持续低电平,用起来非常爽,以前的老式接收头多半是这种类型,但其有个致命 弱点:抗干扰性太差,传输距离短(小于1m。

而脉冲型一体化红外线接收头必须接受一定频率38K的载波的基带信号才有正常输出,如发送500HZ的38K载波,脉冲型一体化红外线接收头输出500HZ方波,而如果发送连续的38K载波就会出项有瞬间低电平其后为高电平的现象。这种脉冲型一体化红外线接收头克服了传统电平型接收头的不足:传输距离相对更远,稳定性大大增加,抗干扰性更强。因此已经完全取代了老式的电平型接受头,在电子市场如不说明店主给你的绝对是脉冲性的。 手机拍照时可以查看红外发射管是否处于发射状态 红暴问题 有些厂家把能不能制造出无红暴红外灯当做一个技术问题来宣传,好像有红暴就是低技术,无红暴就是高技术。其实,有无红暴只是一个选择问题,并不是技术问题,波长超过700nm的光线叫做红外线,900nm以上的红外线基本无红暴,波长越短,红暴越强,红外线感应度也越高。现在市场上有两种主流红外灯,一种是有轻微红暴的,波长在850nm左右,一种是无红暴的,波长在940nm左右。同一款摄像机,在850nm波长的感应度,比在940nm波长的感应度好到10倍。所以850nm这种有轻微红暴的红外灯拥有更高的效率,应当做为红外夜视监控的首选项。 这说的有道理吗? 红暴是对红外灯工作状态的一个描述。工作灯在工作时,如果有红暴就会在管芯出现红色小点。如果没有红暴的话,工作和不 工作人眼看不出来。没有红点 850nm和940nm都有红爆,只不过940要比较弱一点 常见的红外发射管有940nm波长和850nm波长两种,940nm波长的红外发射管主要使用于调制编码及信号传输,而850nm 波长的主要用于安防等红外光源上,接收管则有850nm~950nm通用的型号。850的管和940的管区别在于他们的功率大

红外发射管IR204C-A-L

Technical Data Sheet 3mm Infrared LED, T-1
HIR204C/H0
Features
?High reliability ?High radiant intensity ?Peak wavelength λp=850nm ?2.54mm Lead spacing ?Low forward voltage ?Pb free ?The product itself will remain within RoHS compliant version.
Descriptions
?EVERLIGHT’s infrared emitting diode(HIR204C/H0) is a high intensity diode , molded in a water clear plastic package. ?The device is spectrally matched with phototransistor , photodiode and infrared receiver module.
Applications
?Free air transmission system ?Infrared remote control units with high power requirement ?Smoke detector ?Infrared applied system
Device Selection Guide LED Part No.
HIR
Chip Material
GaAlAs
Lens Color
Water clear
Everlight Electronics Co., Ltd. Device No:DIH-020-053
http:\\https://www.360docs.net/doc/5013953719.html, Prepared date:07-20-2005
Rev 3
Page: 1 of 7
Prepared by:JAINE TSAI

38kHz 红外发射与接收

38kHz 红外发射与接收 红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。 1.红外线的特点 人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。 由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。 2.红外线发射和接收 人们见到的红外遥控系统分为发射和接收两部分。发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。 常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5 mm发光二极管相同,只是颜色不同。一般有透明、黑色和深蓝色等三种。判断红外发光二极管的好坏与判断普通二极管一样的方法。单只红外发光二极管的发射功率约100mW。红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。红外线一体化接收头是集红外接收、

放大、滤波和比较器输出等的模块,性能稳定、可靠。所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。 图3是常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。 红外接收头的主要参数如下: 工作电压:4.8~5.3V 工作电流:1.7~2.7mA 接收频率:38kHz 峰值波长:980nm 静态输出:高电平 输出低电平:≤0.4V 输出高电平:接近工作电压 3.红外线遥控发射电路 红外线遥控发射电路框图如图4所示。 框图4是目前所有红外遥控器发射电路的功能组成,其中的编码器即调制信号,按遥控器用途的编码方式可以很简单、也可以很复杂。例如用于电视机、VCD、DVD和组合音响的遥控发射的编码器,因其控制功能多达50种以上,此时的编码器均采用专用的红外线编码协议进行严格的编程,然而对控制功能少的红外遥控器,其编码器是简单而灵活。前者编码器是由生产厂家的专业人员按红外遥控协议进行编码,而后者适用于一般电子技术人员和电子爱好者的编码。图4中的38kHz振荡器即载波信号比较简单,但专业用的和业余用的也有区别,专业用的振荡器采用了晶振,而后者一般是RC振荡器。例如彩电红外遥控器上的发射端用了455kHz的晶振,是经过整数分频的,分频系数为12,即455kHz÷12= 37.9kHz。当然也有一些工业用的遥控系统,采用36kHz、40kHz或56kHz等的载波信号。 因红外遥控器的控制距离约10米远,要达到这个指标,其发射的载波频率(38kHz)要求十分稳定,而非专业用的RC(38kHz)载波频率稳定性差,往往偏离38kHz甚至很远,这就大大缩短了遥控器的控制距离。因晶振频率十分稳定,所以专业厂家的遥控器全部采用晶振的38kHz作遥控器的载波发送信号。 图4中编码器的编码信号对38kHz的载波信号进行调制,再经红外发射管D向空间发送信号供遥控接收端一体化接收头接收、解调输出、再作处理。

红外线发射管具体资料

红外线发射管也称红外线发射二极管,属于二极管类。它是可以将电能直接转换成近红外 插件红外线发射管 光(不可见光)并能辐射出去的发光器件,主要应用于各种光电开关及遥控发射电路中。红外线发射管的结构、原理与普通发光二极管相近,只是使用的半导体材料不同。红外发光二极管通常使用砷化镓(GaAs)、砷铝化镓(GaAlAs)等材料,采用全透明或浅蓝色、 黑色的树脂封装。 广州市超毅电子有限公 司

红外线发射管的介绍 ?红外线发射管是由红外发光二级管矩组成发光体,用红外辐射效率高的材料(常用砷化镓)制成PN结,正向偏压向PN结注入电流激发红外光,其光谱功率分布为中心波长830~950nm。LED是英文Light Emitting Diode 的简称,表现是正温度系数,电流越大温度越高,温度越高电流越大,LED 红外灯的功率和电流大小有关,但正向电流超过最大额定值时,红外灯发射功率反而下降。 ?红外发射管中晶圆的厂家主要有:台湾有亿光(everlight),鼎元,国外的有韩国、日本多瓦晶圆,国内有深圳奥伦德等 ?红外发射管(红外线灯管)可广泛用于红外摄像机、音频输出等红外引用产品中,其里面晶片功率大小通常决定发射距离,但红外监控摄像机效果又与红外灯的角度,灯组多少,机板,镜头等有关。红外摄像机设计距离较近就用角度较大的IR发射管,并且还要跟镜头视角相配合;20米以上的必须用台湾正型12mil以上晶片,日本的也行。由于市场无序竞争,厂家标榜的照射距离和实际可视距离概念不清,大部分小的红外摄像机生产商为了降低生产成本大量采用国产及台湾10mil、8mil晶片,甚至散型晶圆封装的(包括封装厂IR 发射管不良品)做正型红外灯来装配摄像机。建议打长距离的用户还是用正型晶片封装的IR发射管,如台湾亿光相对衰减慢、夜视清晰)。

红外线接收控制制作

红外线接收控制制作

————————————————————————————————作者:————————————————————————————————日期:

红外线接收控制器的制作 在生活中,我们常用到红外线控制各类电器,如彩电、空调、电风扇等,为我们带来较多的方便,但有时我们仍感到不方便。如看完电视后,用遥控器只能关掉电视主电源,电视仍处于待机状态,使用者还得走到电视跟前,按下电视电源开关方能放心。若想看电视,还得动身开电视,显得很麻烦,尤其是冬天躺在床上看电视,上上下下,深感不便。本文以利用红外遥控器来遥控风扇的制作方法为例(可任选一只红外线遥控器,能调速,软件稍作改变,可增加定时功能等),来介绍红外线接收控制器的制作方法,如果制作电视交流电源的开、关控制器,可与电视共用一只遥控器,制作也较简单些。 制作思路 红外遥控发射器是利用红外线作载体传送信息的,发射周期不等的经过调制后串行码,该串行码一般由引导码、用户识别码、操作码组成。经红外接收头解码后得到一串周期不等的矩形波,如示意图1。 不同型号的遥控发射器的波形宽度不同,即周期T1、T2……不同,在不知手头遥控发射器的波形周期的情况下,首先要制作一个检测红外线周期的工具。根据测得的周期规律来制作红外线接收控制器。 制作方法 检测红外周期的器件制作,见图2。 当红外接收头没有接收到发射器发送来的红外线,其输出端输出高电平(约+5V)。当接收到红外线,输出端电平变低,送到单片机AT89C2051的外部中断1口即INT1,使其发生中断而进入中断服务:启动定时器1并开始计数,

相当于在图1的A点,1个周期后即C点,单片机第二次中断,关定时器1,记下周期T1(实际上只记下TH1的数值,TL1的值可以丢弃),然后清TH1、TL1,再启动定时器1重新计数,第二个周期完后,同样会引起单片机发生中断,再记下周期T2……,如此记下40-50个周期(一般红外编码为4字节,即32BIT,之前还有引导码,又因接收到的红外数据不一定是从引导码开始,要分析一次完整的串行码,应尽可能多记下红外矩形波周期数),接收完后,通过按轻触开关将各记下的各周期的TH1在数码管显示出来以作分析(每按一次轻触开关,显示下一个周期数)。 编程方法 #define CNT 50//预测50个红外线周期 DATA Byte value_h[CNT];//记录周期的变量(数组) DATA Byte count=0;//接收到的周期数 code Byte arr[][2]={0x90,0x6f, //0,尽可能按键0、键1……的先后顺序放,以符合习惯 0x00,0xff, //1 0x10,0xef, //9 0xd0,0x2f //power 13 }; /*在接收红外线的外部中断1函数中编写如下的键码转换语句:*/ DATA Byte arrtmp[4]; DATA Byte Keytmp; //转换后的键值寄存变量 DATA Byte Keyval=NOKEY; bit KeyOk;// 键值转换完成与否的标志 bit d_Ok;//接收到一个完整的键码标志 void int1(void) interrupt 2 { if(TH1==TL1&&TL1==0) //判断是否是第一次接收到红外数据 { TR1=1; } else { TR1=0; value_h[count]=TH1; TH1=TL1=0; TR1=1; count++; if(count==CNT) { EX1=0; count=0; }

红外接收头工作原理

红外接收头一般是接收、放大、解调一体头,一般红外信号经接收头解调后,数据“0”和“1”的区别通常体现在高低电平的时间长短或信号周期上,单片机解码时,通常将接收头输出脚连接到单片机的外部中断,结合定时器判断外部中断间隔的时间从而获取数据。重点是找到数据“0”与“1”间的波形差别。 3条腿的红外接收头一般是接收、放大、解调一体头,接收头输出的是解调后的数据信号(具体的信号格式,搜“红外信号格式”,一大把),单片机里面需要相应的读取程序。 红外通信是利用红外技术实现两点间的近距离保密通信和信息转发。它一般由红外发射和接收系统两部分组成。发射系统对一个红外辐射源进行调制后发射红外信号,而接收系统用光学装置和红外探测器进行接收,就构成红外通信系统。 先讲一讲什么是红外线。我们知道,人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。比紫光波长还短的光叫紫外线,比红光波长还长的光叫红外线。红外线遥控就是利用波长为0.76~1.5μm之间的近红外线来传送控制信号的。 常用的红外接收头有以下外形:更多… IRM38A系列???????? IRM138S系列????????? IRM38B系列?????????????? MN系列???????????????? IRM338系列 相关的规格书请到这里下载:红外接收头规格书 红外遥控系统 常用的红外遥控系统一般分发射和接收两个部分。发射部分的主要元件为红外发光二极管。它实际上是一只特殊的发光二极管,由于其内部材料不同于普通发光二极管,因而在其两端施加一定电压时,它便发出的是红外线而不是可见光。目前大量使用的红外发光二极管发出的红外线波长为940nm左右,外形与普通发光二极管相同,只是颜色不同。红外发光二极管一般有黑色、深蓝、透明三种颜色。判断红外发光二极管好坏的办法与判断普通二极管一样:用万用表电阻挡量一下红外发光二极管的正、反向电阻即可。红外发光二极管的发光效率要用专门的仪器才能精确测定,而业余条件下只能用拉距法来粗略判定。 接收部分的红外接收管是一种光敏二极管。在实际应用中要给红外接收二极管加反向偏压,它才能正常工作,亦即红外接收二极管在电路中应用时是反向运用,这样才能获得较高的灵敏度。红外接收二极管一般有圆形和方形两种。 由于红外发光二极管的发射功率一般都较小(100mW左右),所以红外接收二极管接收到的信号比较微弱,因此就要增加高增益放大电路。前些年常用μPC1373H、CX20106A等红外接收专用放大电路。最近几年不论是业余制作还是正式产品,大多都采用成品红外接收头。成品红外接收头的封装大致有两种:一种采用铁皮屏蔽;一种是塑料封装。均有三只引脚,即电源正(VDD)、电源(GND)和数据输出(VO或OUT)。红外接收头的引脚排列因型号不同而不尽相同,可参考厂家的使用说明。成品红外接收头的优点是不需要复杂的调试和外壳屏蔽,使用起来如同一只三极管,非常方便。但在使用时注意成品红外接收头的载波频率。红外遥控常用的载波频率为38kHz,这是由发射端所使用的455kHz晶振来决定的。在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9 kHz≈38kHz。也有一些遥控系统采用36kHz、40kHz、56kHz等,一般由发射端晶振的振荡频率来决定。 红外遥控的特点是不影响周边环境、不干扰其它电器设备。由于其无法穿透墙壁,故不同房

红外收发对管电路

红外收发对管 1、红外收发对管是一种利用红外线的开关管,接受管在接受和不接受红外线时电阻发生明显的变化,利用外围电路可以时输出产生明显的高低电平的变化,高低电平的变化输入单片机就可使之识别,从而实现智能控制。我们使用的单片机是凌阳61板,经过我们试验,在输入电压小于1.5伏时单片机识别为低电平,在输入电压大于1.85伏时单片机识别为高电平。 2、用途:蔽障、计数(记液体点滴的个数、记玻璃小球的个数、记小车轮子的转数)、寻迹 3、红外发射接收电路: 3.1输入信号采用38KHz的调制波 红外发射电路由电阻R2、三极管Q2、电阻R3与红外发射二极管D1构成,如图 接收电路由红外接收管和放大电路组成,如图 2.2。Q4接收到红外信号后,经过三极管Q1进行第一级放大,放大后的信号送入三极管Q3进行第二级放大,通过Rx就可以得到放大后的红外接收信号。 为了降低干扰,Tx一般采用调制方式,这里,其波形如图2.3。 图2.3 38KHz调制波 对应图2.3的调制波,如果VCC为5V,发射接收对管的有效距离(单片机可检测)大概为20cm;如果VCC为3V,发射接收对管的有效距离(单片机可检测)大概为10cm。3.2直接采用直流电源

本电路电路简单,性能稳定,安装方便,但距离比较近。当阻挡了接收管接收红外线的强度时,产生一个低电平的脉冲信号,由于对管的发射口径较小,单光束发射,小球相对红外装置正交落下时,很容易检测处理。 使用此电路寻迹实现小车跟黑色轨道行驶,在行驶过程中不超出该线。考虑到黑线和白纸组合,我们采用红外对管辨认路面的黑白两种不同状态。由于红外对管对黑白色的感应比较明显,又不需要很高的精度,适用于简单的寻迹。但外部影响比较大,所以须将接收头用黑皮套套上以提高信号的接受率。该小车采用三对红外对管,通过他们送入单片机信号的不同,将其逻辑组合后向小车的各个电机发送启动信号,从而,驱动小车实现寻迹功能。

亿光红外线发射管(IR)遥控原理

IR(红外)遥控原理 文章出处:广州市超毅电子有限公司 亿光代理商超毅电子给大家分享一篇关于IR(红外)遥控原理的文章,从红外光,调制,发射机这几个方面去了解,希望可以帮到大家对IR(红外)的原理有新的认识。 在可视范围内遥控设备最廉价的方式是通过红外线。目前几乎所有的视频和音频设备都可以通过这种方式遥控。由于该技术应用广泛,相应的应用器件都十分廉价,因此红外遥控是我们日常设备控制的理想方式。 这部分的知识将解释红外遥控的原理,以及一些我们日常使用到的消费类电器红外控制协议。 红外光 红外光实际上就是一种特殊颜色的普通光。我们不能看到这种特殊的颜色是因为它的波长大于950nm,位于可见光谱之下。这就是我们使用红外光遥控的目地之一:我们要利用它,但我们不希望能看到它。另一个原因就红外LED(发光二极管)十分容易制作,制作成本很低。 尽管我们看不到从遥控器上发射出来的红外光,但并不意味着我们不能使它可见。如图,通过摄影机和数码照相机,我们都能“看到”红外光。 对我们不利的是,红外光的发光源实在是太多了。太阳光是其中最强的一个光源,其它的有诸如:白炽灯、蜡烛、热系统中心(如散热器件),甚至我们的身体。实际上,只要有发热的物体,都会发出红外光。 因此,我们需要注意保证我们的红外遥控传送的信息准确无误的发射到接收器上。 调制

调制是我们使需要的信号区别于噪音方法。通过调制我们可以使红外光以特定的频率闪烁。红外接收器会适配这个频率,其它的噪音信号都将被忽略。 你可以认为这种闪烁是引起接收器“注意”方法,正如我们人类特别容易被黄色的灯光引起注意一样,甚至在白天。 上图左边,调制信号通过驱动放大由红外LED发射;上图右边,信号通过接收器检测输出。 在串行通讯里,我们经常谈及‘marks’和‘spaces’标记。‘spaces’是个默认信号,是指发射管关闭状态,在‘spaces’期间,红外光不被发射。反之在‘marks’状态期间,红外光以特定的频率脉冲形式发射。在消费类电子产品里,脉冲频率普遍采用30KHz到60KHz这个频段。 在接收端,一个‘space’信号以高电平的重现方式输出。反之一个‘mark’信号便是以低电平方式重现。 请注意,这里的‘marks’和‘spaces’不是我们需要发送的状态1和0。‘marks’和‘spaces’以及1和0之间的真正关系取决于被应用的协议。更多关于协议的信息,下面的协议部分将继续介绍。 发射机 发射机通常是一个带电池的手持装置。它设计成尽可能减少功耗,以及发射的信号尽可能强以致发射的距离更远。更甚之是,它可以经受震动。 已经有很多现成的红外发射芯片,较老版本的芯片仅支持单一的协议。现在很多低功耗芯片用于红外发射的一个根本原因是它们可以更灵活的运用在这方面。当没有遥控按钮按下时,它们处于几乎不消耗电能的低功耗待机模式,而当按钮按下时,它们会马上唤醒发射相应红外命令。 石英晶振很少使用在这些手持发射装置。它们极度脆弱以致在发射装置掉在地上时损坏。而陶瓷晶振更适合在这些设备上使用,因为它们可以承受很大机械震动,而它们较低的精确性应用在这里并不重要。 通过红外LED的电流范围在100mA到达1A!为了使遥控的距离更远,通过红外LED的电流尽可能高。而实际设计时应结合LED的参数、电池寿命和遥控距离适中选取。通过红外LED的电流可以达到这么高时因为驱动LED的脉冲时

红外对管的原理及应用

红外对光管的原理及应用 简介:红外线接收管是在LED行业中命名的,是专门用来接收和感应红外线发射管发出的红外线光线的。一般情况下都是与红外线发射管成套运用在产品设备当中。详细可参阅:广州市光汇电子有限公司的产品说明。特征与原理:红外线接收管是将红外线光信号变成电信号的半导体器件,它的核心部件是一个特殊材料的PN结,和普通二极管相比,在结构上采取了大的改变,红外线接收管为了更多更大面积的接受入射光线,PN结面积尽量做的比较大,电极面积尽量减小,而且PN结的结深很浅,一般小于1微米。红外线接收二极管是在反向电压作用之下工作的。没有光照时,反向电流很小(一般小于0.1微安),称为暗电流。当有红外线光照时,携带能量的红外线光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对(简称:光生载流子)。它们在反向电压作用下参加漂移运动,使反向电流明显变大,光的强度越大,反向电流也越大。这种特性称为“光电导”。红外线接收二极管在一般照度的光线照射下,所产生的电流叫光电流。如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。 分类:红外线接收管有两种,一种是光电二极管,另一种是光电三极管。光电二极管就是将光信号转化为电信号,光电三极管在将光信号转化为电信号的同时,也把电流放大了。因此,光电三极管也分为两种,分别别是NPN型和PNP 型。 作用:红外接收管的作用是进行光电转换,在光控、红外线遥控、光探测、光纤通信、光电耦合等方面有广泛的应用。如何选择红外线接收管:红外线最重要的参数就是光电信号的放大倍率,一般的有1000-1300 1300-1800 1800-2500,这些对灵敏度有决定作用。 红外对管是红外线发射管与光敏接收管,或者红外线接收管,或者红外线接收头配合在一起使用时候的总称。红外线在光谱中波长自0.76至400微米的一段称为红外线,红外线是不可见光线。所有高于绝对零度(-273.15℃)的物质都可以产生红外线。现代物理学称之为热射线。医用红外线可分为两类:近红外线与远红外线。

红外对管的简单运用

关于红外对管应用于车灯自动校正项目总结 目的:车灯就好比人的眼睛,对于车辆来说非常重要。正常的开启或关闭关乎到车主能否安全驾驶车辆到达目的地。为驾驶员提供照明,在天气不好或是夜间时候提供良好的视野。本项目在于运用水平仪器与红外对管相结合,针对车身相对对平面变动时进行自动校正车灯光强分布。 红外对管原理:红外对管是红外线发射管与光敏接收管,或者红外线接收管,或者红外线接收头配合在一起使用时候的总称。红外线发射管也称红外线发射二极管,属于二极管类。它是可以将电能直接转换成近红外光(不可见光)并能辐射出去的发光器件,主要应用于各种光电开关及遥控发射电路中。红外线接收管是将红外线光信号变成电信号的半导体器件,它的核心部件是一个特殊材料的PN结,和普通二极管相比,在结构上采取了大的改变,红外线接收管为了更多更大面积的接收入射光线,PN结面积尽量做的比较大,电极面积尽量减小,而且PN结的结深很浅,一般小于1微米。红外线接收二极管是在反向电压作用之下工作的。没有光照时,反向电流很小(一般小于0.1微安),称为暗电流。当有红外线光照时,携带能量的红外线光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对(简称:光生载流子)。它们在反向电压作用下参加漂移运动,使反向电流明显变大,光的强度越大,反向电流也越大。这种特性称为“光电导”。红外线接收二极管在一般照度的光线照射下,所产生的电流叫光电流。如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。红外线接收管有两种,一种是光电二极管,另一种是光电三极管。光电二极管就是将光信号转化为电信号,光电三极管在将光信号转化为电信号的同时,也把电流放大了。因此,光电三极管也分为两种,分别别是NPN型和PNP型。 红外发射管一般有以下几类: 按照峰值波长主要为:850nm,870nm,880nm,940nm,980nm 就功率而言:850nm>880nm>940nm 就价格而言:850nm>880nm>940nm 现在市场上使用较多的是850nm和940nm 850nm发射功率大,照射的距离较远,主要用于红外监控器材上;而940nm 主要用于家电类的红外遥控器上。

关于红外对管的原理及应用

简介与说明是专门用来接收和感应红外线发射行业中命名的,:红外线接收管是在LED详细 可一般情况下都是与红外线发射管成套运用在产品设备当中。管发出的红外线光线的。红外线接收管是将红特征与原理:参阅:广州市光汇电子有限公司的产品说明。 结,和普通二极PN外线光信号变成电信号的半导体器件,它的核心部件是一个特殊材料的PN 管相比,在结构上采取了大的改变,红外线接收管为了更多更大面积的接受入射光线,微米。红PN结的结深很浅,一般小于1结面积尽量做的比较大,电极面积尽量减小,而且0.1外线接收二极管是在反向电压作用之下工作的。没有光照时,反向电流很小(一般小于结后,把能量传给当有红外线光照时,PN携带能量的红外线光子进入微安),称为暗电流。共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对(简称:光生载流子)。它们在反向电压作用下参加漂移运动,使反向电流明显变大,光的强度越大,反向电流也越大。这种特性称为“光电导”。红外线接收二极管在一般照度的光线照射下,所产生的电流叫光电流。如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。分类:红外线接收管有两种,一种是光电二极管,另一种是光电三极管。光电二极管就是将光信号转化为电信号,光电三极管在将光信号转化为电信号的同时,也把电流放大了。因此,光电三极管也分为两种,分别别是NPN型和PNP型。作用:红外接收管的作用是进行光电转换,在光控、红外线遥控、光探测、光纤通信、光电耦合等方面有广泛的应用。如何选择红外线接收管:红外线最重要的参数就是光这些对灵敏度有决定作用。1800-25001300-1800 ,电信号的放大倍率,一般的有1000-1300 红外对管是红外线发射管与光敏接收管,或者红外线接收管,或者红外线接收头配合在一起使用时候的总称。 红外线 在光谱中波长自0.76至400微米的一段称为红外线,红外线是不可见光线。所有高于绝对零度(-273.15℃)的物质都可以产生红外线。现代物理学称之为热射线。医用红外线可分为两类:近红外线与远红外线。 红外线发射管. 、封装行业中主要有三个常用的波段,如下850NM、875NM红外线发射管在LED 波长的主要用850NM940NM。根据波长的特性运用的产品也有很大的差异,波段的主要用于红外于红外线监控设备、875NM主要用于医疗设备、940NM :红外 线遥控器、光电开关、光电记数设备等。EG线控制设备。功能说明编辑本段光

红外接收头生产过程

红外接收头生产过程 红外线接收模块,又叫红外线接收头,简称接收头,英文名称:Infrared receive module,缩写IRM。由IC 、PD、支架等主要原材料组成,而将各种原材料组装起来,形成接收头成品,类似于这种类型的工厂有个名称叫“封装厂”,如珠海市万州科技有限公司。 整体的生产工艺流程分为4个环节,分别是,固晶、邦定、封装(压模)、后处理(后工序)。各工序都有不同的功能,都是必不可少的。 固晶工序又叫DIE BOND,就是将芯片(IC、PD)固定到支架上面。本工序所使用的材料有IC、PD、支架、银胶,IC是接收头的处理元件,主要由硅晶和电路组成,是一个高度集成的器件、主要功能有滤波、整形、解码、放大等功能。PD是光敏二极管,主要功能是接收光信号。 支架是接收头的引脚部分,将IC功能脚外接,固定芯片等作用。银胶的组成主要是银粉和环氧树脂以及其他的原料,主要作用是导电和固定。 支架,我们公司主要用到的支架分两种,一种是带屏蔽的支架,另外是不带屏蔽的支架。 . 银胶,属于高温固化银胶,理论固化温度是170度1小时,因考虑支架的因素,现在执行150度2小时的固化条件。 焊线介绍 焊线工序又叫WIRE BOND,是将IC和PD各功能点用金线连起来,本工序涉及到的材料主要是金线。本工序的好坏直接关系到产品的成品质量,以及产品的稳定性。

封装介绍 封装工序是固定外形的,我们公司现有三种封装模式两种外形,一种是灌胶鼻梁型,二是模压球形,三是灌胶球形。三种模式各有利弊,主要以灌胶鼻梁进行生产。该工序是产品成形关键,一经封装,就不容许再进行返工,所以在封装之前应对固焊工序进行严格的检验。 主要用到的材料有液态环氧树脂、固态环氧树脂、04色素、08色素等。 颜料04的滤光范围是830-1050,08色素的滤光范围是750-1150,范围越宽,接收头的接收灵敏度越好,但抗干扰越差,滤光范围越窄,抗干扰越好,但接收效果会稍差,为了满足不同客户的需求,对该两种色素进行不同比例的搭配,以满足客户要求。 后处理 主要有装壳、焊壳、冲筋、测试、二切、包装等环节,除装壳是根据客户要求作业之外,其他都必须要完成。目前的测试只是单纯对接收距离进行测试,其他参数没有进行检测,有一定风险性,正在进行改善。高危工序是冲筋工序,切记要按照作业指导进行检查和作业。本工序涉及到的模具都是简单的冲筋模具,重点关注模具的公差范围。 涉及到的材料主要有铁壳,铁壳的原料是0.3mm马口铁,这种不需要电镀,但裸露的存放时间比较短,一般不超过1个月,另外还有普通0.3mm的铁材,需要进行镀锡,这种工艺的存放时间很长也不会生锈,考虑到成本的因素,普通的铁壳均用马口铁制成。 可靠性试验要求 可靠性试验主要有冷、热、冷热循环、电老化、镀锡等另外有的客户还要做电击试验。 冷冻试验的条件是-25度、-45度,一般存放1个小时左右再进行测试,或在试验温度下进行测试,批量测试时,不用在试验温度下测试,可以上机台测试。试验温度下测试适用于试样或抽检。 热试验,试验条件灌胶产品是140-150度,模压150-160度,一般采用整体测试,在高温箱内的带机器测试问题一般在75-80度,还要兼顾其他材料的耐温特性。 冷热循环,主要是对产品进行冷热冲击,骤冷骤热来检测产品胶体、焊接等对其耐荷性,这是判断产品优劣的关键试验项目。 电老化试验是对接收头进行超过48小时的通电,主要检测焊线工序的可靠性,通常有些虚焊、或其他的存在隐患的焊接不良品是经不住考验的。 镀锡实验,是对接收头进行模拟客户现场使用条件进行的实验,来验证产品对焊接条件的适应性。常规实验条件是280度10秒。

红外线接收头

VS1738

型号:VS1738 1.简介: VS1738 VS1738内含高速高灵敏度PIN光电二极管和低功耗、高增益 前置放大IC,采用环氧树脂塑封封装设计,该产品已经通过 REACH和SGS认证属于环保产品,在红外遥控系统中作为接收 器使用。 2.特性: ●环氧塑封封装; ●宽工作电压,2.7-5.5V; ●低功耗;宽角度及长距离接收; ●抗干挠能力强,能抵挡环境干挠; ●输出匹配TTL、CMOS电平,低电平有效。

型号:VS1738 5.应用电路图: 6.原理图: 7.光电参数(T=25℃ Vcc=3.0V/5.0V f0=38KHZ): 参 数 符号 测试条件 Min Type Max

型号:VS1738 8.测试波型: 10.极限参数:

型号:VS1738 11.可靠性测试: 测试项目 测试条件 测试时间测试数 合格数焊接耐热温度 温度260℃±5℃ (非受力状态下) 5秒以内 20 20 静电破坏实验 电容100PF,电阻1.5kΩ, 静电电压4KV,各引脚 20 20 振动实验 频率:10-50Hz/1min 振幅:1.5mm X、Y、Z/30min 30分钟 20 20 高温储存 温度85℃±2℃ 240小时 20 20 低温储存 温度-25℃±2℃ 240小时 20 20 高温高湿储存 温度85℃;湿度85% 240小时 20 20 低温-25℃(30秒), (焊点需离树脂胶体根部2MM以上) a.浸锡:请在260℃且5秒以内一次焊接完成,同时应避免树胶胶体浸入锡槽内。

型号:VS1738 190 15.包装方式: 1).防静电袋(如右图) 产品标签:正贴于防静电袋正中间 尺寸:150X190 数量:每包500PCS l a b e l 150 l a b e l

红外遥控的发射和接收

红外遥控的发射和接收Donna 发表于2006-5-12 10:08:00 光谱位于红色光之外,波长为0.76~1.5μm,比红色光的波长还长,这样的光被称为红外线。 红外遥控是利用红外线进行传递信息的一种控制系统,红外遥控具有抗干扰,电路简单,编码 及解码容易,功耗小,成本低的优点,目前几乎所有的视频和音频设备都支持这种控制方式。 一、红外遥控系统结构 红外遥控系统主要分为调制、发射和接收三部分,如图1 所示: 图1 红外遥控系统 1.调制 红外遥控发射数据时采用调制的方式,即把数据和一定频率的载波进行“与”操作,这样可以提高发射效率和降低电源 功耗。 调制载波频率一般在30khz到60khz之间,大多数使用的是38kHz,占空比1/3的方波,如图2所示,这是由发射端所使用的 455kHz晶振决定的。在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9 kHz≈38kHz。 图2 载波波形 1.发射系统 目前有很多种芯片可以实现红外发射,可以根据选择发出不同种类的编码。由于发射系统一般用电池供电,这就要求芯片 的功耗要很低,芯片大多都设计成可以处于休眠状态,当有按键按下时才工作,这样可以降低功耗芯片所用的晶振应该有 足够的耐物理撞击能力,不能选用普通的石英晶体,一般是选用陶瓷共鸣器,陶瓷共鸣器准确性没有石英晶体高,但通常 一点误差可以忽略不计。

红外线通过红外发光二极管(LED)发射出去,红外发光二极管内部材料和普通发光二极管不同,在其两端施加一定电压时, 它发出的是红外线而不是可见光。 图3a 简单驱动电路图3b 射击输出驱动电路 如图3a和图3b是LED的驱动电路,图3a是最简单电路,选用元件时要注意三极管的开关速度要快,还要考虑到LED的正向 电流和反向漏电流,一般流过LED的最大正向电流为100mA,电流越大,其发射的波形强度越大。 图3a电路有一点缺陷,当电池电压下降时,流过LED的电流会降低,发射波形强度降低,遥控距离就会变小。图3b所示的 射极输出电路可以解决这个问题,两个二极管把三级管基极电压钳位在1.2V左右,因此三级管发射极电压固定在0.6V左右, 发射极电流IE基本不变,根据IE≈IC,所以流过LED的电流也基本不变,这样保证了当电池电压降低时还可以保证一定的遥 控距离。 1.一体化红外接收头 红外信号收发系统的典型电路如图1所示,红外接收电路通常被厂家集成在一个元件中,成为一体化红外接收头。 内部电路包括红外监测二极管,放大器,限副器,带通滤波器,积分电路,比较器等。红外监测二极管监测到红外信号, 然后把信号送到放大器和限幅器,限幅器把脉冲幅度控制在一定的水平,而不论红外发射器和接收器的距离远近。交流 信号进入带通滤波器,带通滤波器可以通过30khz到60khz的负载波,通过解调电路和积分电路进入比较器,比较器输出 高低电平,还原出发射端的信号波形。注意输出的高低电平和发射端是反相的,这样的目的是为了提高接收的灵敏度。 一体化红外接收头,如图5所示:

相关文档
最新文档