数字光纤通信系统课程设计

数字光纤通信系统课程设计
数字光纤通信系统课程设计

~~~~~~学院课程设计报告

课程名称:通信系统课程设计

院部:电气与信息工程学院

专业班级:

学生姓名:

指导教师:

完成时间:2010 年12 月31日

报告成绩:

高速数字光纤通信系统的设计

目录 (3)

摘要 (4)

关键词 (4)

Abstract (5)

第一章数字光纤通信系统的整体设计 (6)

1.1数字光纤通信系统的简介 (6)

1.2 数字光纤通信系统的基本设计思想 (7)

1.3 数字光纤通信系统设计的方案分析 (7)

第二章数字光纤通信系统的具体设计 (8)

2.1 A—E的工程分站设计 (8)

2.2 系统部件的选择 (8)

2.2.1光源的选择 (8)

2.2.2光纤的选择 (8)

2.2.3光电检测器的选择 (9)

2.2.4光接口规范的选择 (9)

2.3 应用代码的选择 (9)

2.4 衰耗预算 (10)

2.4.1无光放大器系统的衰耗预算 (10)

2.4.2带光放大器系统的衰耗预算 (10)

2.5色散预算 (11)

2.5.1码间干扰与频率啁啾的功率代价 (11)

2.5.2色散相关参数的确定 (12)

2.5.3色散的具体计算 (12)

第三章数字光纤通信系统设计结果 (14)

总结 (16)

参考文献 (17)

当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和广波的变革极大的提高着信息的传输。进入1993年以后,我国光纤通信已处于持续大反战时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMAV)光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(solition)、掺铒光纤放大器(EDFA)、SDH产品等开发实用实用化开展大量、深入研究工作。同时,各种专用光纤系统组成及其系统参数测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。

20世纪70年代末,光纤通信开始进入实用化阶段,各种各样的光纤通信系统如雨后春笋在世界各地建立起来,逐渐成为电信传送网的主要传送手段。近几年来,光纤通信中的各种新技术,新系统也日新月异地发展着,在全球信息高速公路建设中扮演重要角色。

光纤通信是以光波为载波,光纤为传输媒介的通信方式。本次课程设计论文主要介绍光纤系统的基本组成,性能指标,还要对损耗和色散进行预算,用最坏值设计方法来设计高速数字光纤系统。

关键词:光纤通信系统、光纤、损耗、色散、光缆

Abstract

Today’s world, computer and communication technology is highly integrated optical communication has made great progress. In today's major telecommunications technology, fiber and wide wave changes greatly improve the information transmission. Entered after 1993, China's largest optical fiber communications have been in constant war period. Characterized by a large number of new technologies, especially network technology, high-speed media access network (HMAV) optical time division multiplexing access (OTMMA) and wavelength division multiplexing access (WDMA), optical soliton (solition), erbium-doped fiber amplifier ( EDFA), SDH products carry a lot of practical development of practical, in-depth research.At the same time, various special optical system components and their status system parameter measurement techniques, both for the owners of optical fiber communication, distributors, or customers of the fiber optic communications are important.

The late 20th century, 70, entered the practical optical fiber communication phase, a variety of fiber optic communication systems are springing up all over the world set up, has become a major telecommunications transmission network transmission means. In recent years, optical fiber communications in a variety of new technologies, new systems are developing rapidly with the global information highway construction plays an important role.

Optical fiber communication based on the carrier wave, optical fiber as the transmission medium of communication. This paper introduces the course design basic components of optical fiber systems, performance indicators, but also on the loss and dispersion for the budget, with the worst value of the design methods to design high-speed digital fiber-optic system

keywords: optical fiber communication systems, optical fiber, loss, dispersion, fiber optic cable

第一章数字光纤通信系统的整体设计

1.1数字光纤通信系统的简介

光纤通信技术和计算机技术是信息化的两大核心支柱,计算机负责把信息数字化,输入网络中去;光纤则是担负着信息传输的重任。当代社会和经济发展中,信息容量日益剧增,为提高信息的传输速度和容量,光纤通信被广泛的应用于信息化的发展,成为继微电子技术之后信息领域中的重要技术。

最基本的光纤通信系统由数据源、光发送端、光学信道和光接收机组成。下图为基本光纤通信系统框图。

图1 光纤通信系统的基本组成结构图

其中,光终端包括光发信机和光接信机;传输介质为光纤或光缆,其具体介绍如下:

a.光发信机:光发信机是实现电/光转换的光端机。它由光源、驱动器和调制器组成。其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。电端机就是常规的电子通信设备。

b.光收信机:光收信机是实现光/电转换的光端机。它由光检测器和光放大器组成。其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端汲去。

c.光缆或光纤:光纤或光缆构成光的传输通路。其功能是将发信端发出的已调光信号,经过光纤或光缆的远距离传输后,耦合到收信端的光检测器上去,完成传送信息任务。

d.中继器:中继器由光检测器、光源和判决再生电路组成。它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲近行政性。

光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。与模拟

通信相比较,数字通信有很多的优点,灵敏度高、传输质量好。因此,大容量长距离的光纤通信系统大多采用数字传输方式。

1.2 数字光纤通信系统的基本设计思想

对数字光纤通信系统而言,系统设计的主要任务是,根据用户对传输距离和传输容量(话路数或比特率)及其分布的要求,按照国家相关的技术标准和当前设备的技术水平,经过综合考虑和反复计算,选择最佳路由和局站设置、传输体制和传输速率以及光纤光缆和光端机的基本参数和性能指标,以使系统的实施达到最佳的性能价格比。

在技术上,系统设计的主要问题是确定中继距离,尤其对长途光纤通信系统,中继距离设计是否合理,对系统的性能和经济效益影响很大。

中继距离的设计有三种方法:最坏情况法(参数完全已知)、统计法(所有参数都是统计定义)和半统计法(只有某些参数是统计定义)。

本设计采用最坏情况法设计中继距离并结合光接口规范STM-16系统参数设计。

1.3 数字光纤通信系统设计的方案分析

方案一:敷设8芯G.655光缆,设备按16*2.5Gbit/s WDM系统配备,目前按实际容量需要只开通其中的一个波长通路。此方案的优点是技术上最先进,可以随时满足扩容的需求,最终容量可达到3*16*2.5=120Gbit/s;缺点是一次投资太大,而且设计上存在一个风险:如果该长途光纤干线系统几年内并无非常快的扩容要求,通信成本将居高不下。

方案二:敷设8芯G.653光缆,首期开通2.5Gbit/s单通路系统。待实际容量需求增大后,再配置8*2.5Gbit/sWDM系统,保留原2.5Gbit/s单通路系统,直到开通三个

8*2.5Gbit/sWDM系统后,将首期开通的2.5Gbit/s单通路系统作为保护通道。工程投资基本上能够与容量需求同步增加。最终容量可达到3*8*2.5+2.5=62.5Gbit/s.

以上两种方案比较,各有利弊。关键在于通信容量需求的增长程度有多快。在通信容量需求增长异常迅速的情况下,方案一的技术最合理。通信容量需求的增长速度难以预见的情况下,方案二最为合理。在本次设计中,对通信容量需求的增长速度未作具体要求,故这里选择方案二较为合理。

第二章数字光纤通信系统的具体设计

本次数字光纤通信系统的具体设计的条件有:工程全长大约为400km的两个具备设站条件的后选站设计一条2.5bit/s的长途光纤干线系统。通过查阅相关光纤通信系统的资料,结合所学理论知识,应用最坏值设计法,选择合适的光源、光缆、光检测器。并在确定好各部分元器件后进行损耗和色散的预算。

2.1 A—E的工程分站设计

该工程全长400km,将其分成4段,分别为A—B、B—C、C—D、D—E,它们的长度分别为118km、72km、155km、55km。其分站图如下所示。

图2 A-E工程分站距离

2.2 系统部件的选择

2.2.1光源的选择

LD的输出光功率高,谱线窄,应用单模光纤传输时色散小,故适用于长距离、高码速的光线通信系统。但是与LED相比,LD的寿命相对比较低,价格高,稳定性差,调制电路复杂。与LD相比,LED的寿命长,价格低,受温度影响小,工作稳定,调制电路简单;但发光功率低,谱线宽。因此,LED适用于工作距离短、码速低的光线通信系统。由于本系统的通信距离为400Km,传输速率为2.5Gbit/s,属于长距离、高码速的光线通信系统,因此我们选择半导体激光器SLM-LD作为光源。

2.2.2光纤的选择

单模光纤从理论上讲,由于其只传一种模式,无模式色散,故适用于工作在距离长、码速高的情况。但是芯径细,连接时较多模光纤困难。

多模光纤有模式色散,故色散较单模光纤大,不适用工作在距离长、码速高的情况;但芯径粗,便于连接。根据该设计的具体要求我们选择G.653单模光纤来传输。

2.2.3光电检测器的选择

PIN管的偏压电路简单,价格较低。但是使用PIN管时,光接收机的灵敏度较使用APD 管的灵敏度低。

对于APD管,由于偏压高,故偏压电路复杂,价格亦高。但是使用APD管的光接收灵敏度,因由雪崩倍增作用,比使用PIN管的接收机要高。比较两者我们最后选择

InGaAs/InP-APD光电检测器。

2.2.4光接口规范的选择

STM-16系统是目前传输速率较高,而设备成本较低,技术上难度不大,因而可靠性较高的一种最为成熟的高速光纤通信系统,无论是单通道使用还是WDM使用,STM-16都是目前最实用的系统。因此本设计选择STM-16作光接口规范。

2.3 应用代码的选择

A—E长途光纤干线系统全部中继段应用代码选择的结果列于下表中。其中A—B段全长118Km配V-16.3中继机。B—C段和D—E段长度分别为75Km和55Km,配L-16.3中继机。C—D段全长155Km配U-16.3中继机。其他各项参数详见表中。

表一A—E长途光纤干线系统中继段应用代码

2.4 衰耗预算

2.4.1无光放大器系统的衰耗预算

L-16.3的工作波长范围为1500~1580nm ,其下限波长比标准B 区稍有提高,目前是控制光纤衰耗系数为0.2dB/km 。这是因为80km 已接近2.5Gbit/s 系统的衰耗受限最大距离,如果简单地采用标准B 区工作波长,光纤的衰耗系数就可能大到0.25dB/km ,80km 的光纤衰耗以达到20dB ,将不能满足线路富余度的要求。

2.4.2带光放大器系统的衰耗预算

加有放大器后衰耗预算没有困难。对于2.5Gbit/s 速率80km 以上的传输主要受色散限制,因为80~120km 必须加光功率放大,以提高场强,激发SPM 效应来补偿光纤色散。120~160km 除了色散补偿外,接收机灵敏度也不够,因此光功放和前置放大器都要加上。加有放大器后衰耗预算没有困难。从传输距离的覆盖上考虑,超过80km 必须选用V-16.2而不能选用L-16.2。但稍微超过120km 还可用V-16.2以降低设备成本。

A-B 站站间距离为118km ,选用应用代码V-16.3。光纤损耗为

0.211823.6f A dB

=?=。

接头总损耗为118

0.08(1) 4.642s A dB

=?-=。按常规光通路计算

12(24)23.6 4.641 6.76l e S R f s p M M P P A A P +=----=-----=dB 取设备富余度为3dB ,

线路富余度则为3.76dB 。

A-C 选用应用代码L-16.3,站间距离为72m 。光纤损耗为

0.27214.4f A dB

=?=。

接头总损耗为

72

0.08(

1) 2.82s A dB =?-=。

3(27)14.4 2.8111.8l e S R f s p M M P P A A P dB +=----=-----=取设备富余度为5dB ,

线路富余度则为6.8B 。

A-D 同前上面的分析方法一样可得设备富余度为3dB ,线路富余度为5.88dB 。 A-E 同前上面的分析方法一样可得设备富余度为5dB ,线路富余度为5.88dB 。

2.5色散预算

2.5.1码间干扰与频率啁啾的功率代价

对于该高速系统STM-16,我们选用的半导体激光器为SLM-LD ,通路功率代价的核算将不考虑模分配噪声,而现有的光线产品的光纤不圆度引起的偏振色散功率代价可以忽视,所以通路功率代价的核算实际上就是码间干扰和频率啁啾功率代价的计算问题。 码间干扰功率代价的函数关系为:

25lg(12)ISI P πε=+ (1-1)

而频率啁啾功率代价的计算较为复杂:

210

lg(1)1shirp x

P x +=--?+

(1-2)

式中

222(4)32επ??=-±???,x 为雪崩电离得附加噪声指数,对于

InGaAs/InP-APD 取典型值x=0.8

式中方括号内的±号是因为啁啾效应具有驰豫振荡的性质,考虑最坏的情况,只取+号。

将式中常数部分算出具体值,并简化成

2

2.5740.5ε??=+???

(1-3)

在观察上式根号部分的后一项,工作波长为1550nm ;数据速率B 为2.5Gbit/s ;光速c 为

173.1410/nm s ?;光源均方根谱宽σ为0.1nm 。计算该项的结果仅为0.00407,远小于前一

项0.721。即后一项对计算结果对?值的计算结果不会造成明显的误差。上面的?可简化为

21.287 2.17εε?=+

(1-4)

这样就得出了简化的 功率代价的表达式,对于使用InGaAs/InP-APD 作光电检测器的系统

2

15.56lg(1 1.287 2.17)CA

P εε=--- (1-5)

通过上式就可得到光通路功率代价与相对展宽因子的关系。

2.5.2色散相关参数的确定

ε的计算公式为

D L B εσ=???

(1-6)

D 为色散系数、L 为传输距离、σ为光源均方根谱宽、B 为数据速率;采用实用单位的量值时,计算出的ε值在乘以因子6

10-。D 由所用光纤和工作波长范围共同确定。σ值由式(1-5)先确定相对展宽系数ε,再按式(1-6)算出,L 和B 通过STM-16系统光接口规范参数表可得出。

2.5.3色散的具体计算

本设计的长距离、甚长距离和超长距离中继采用G .653光缆,工作波长均定为1530 1565nm ,最大光纤色散系数取3.3ps/nmkm 。所有各段的色散预算都较为宽松,无需加色散补偿。这正是本方案的优点。

A-B 由于该段带光放大器,因此SPM 效应的色散补偿距离为

2(10)/2(1210)/0.220SPM L S km =?-=?-=点发送功率光纤衰耗系数相对展宽因子ε根据式取0.045,所以σ可根据式(1-6)得到即:

6

6

0.045

0.0552

()10 3.33(11820)250010SPM D L L B ε

σ--=

=

=?-???-??nm

STM-LD 的-20dB 谱宽可根据式20dB k λσ-?=? 得到,其中k 为常数,取其值为6.07,则可得到

20 6.070.05520.34dB k λσ-?=?=?=nm

B-C 由于该段带光放大器,因此SPM 效应的色散补偿距离为零。

6

60.045

0.075110 3.3372250010nm

D L B ε

σ--=

=

=??????

20 6.070.07510.50dB k λσ-?=?=?=nm

C-D 该段中亦带光放大器,SPM 效应的色散补偿距离为

2(10)/2(1310)/0.230SPM L S km =?-=?-=点发送功率光纤衰耗系数

6

6

0.045

0.0432()10 3.33(15530)250010SPM nm D L L B ε

σ--=

=

=?-???-??

20 6.070.04320.26dB k λσ-?=?=?=nm

D-E 该段中无光放大器,SPM 效应的色散补偿距离为零。

6

60.045

0.098310 3.3355250010nm

D L B ε

σ--=

=

=??????

20 6.070.09830.60dB k nm λσ-?=?=?=

将预算结果列于下表中

第三章数字光纤通信系统设计结果

至此本设计的系统已完成,光传输系统的全部技术参数均已确定,列于下表中。

系统设计遵循ITU-T规范,充分考虑了系统的总体成本和可行性。总的来说该系统的设计算是完整的。

总结

三周的通信系统课程设计已告一段落,这是我大学生涯中的最后一次课程设计了。回顾这三周的心历进程,学海中的点点滴滴无不记忆犹新!

本次高速数字光纤通信系统的设计,核心内容是相关器件的选择及损耗和色散的预算。这就要求我们对具体情况下的数字光纤通信系统能进行完整的分析。整个设计过程中没有电路设计和仿真,所以没有涉及太多软件应用方面的知识。主要是对理论方面要求掌握较深,需要查阅的先关资料较多。

总的来说,在王立老师的细心指导和其他同学的帮助下,通过本次设计我掌握了数字光纤通信系统的基本组成和光纤传输系统设计的方法,及设计中需要考虑解决的问题。基本达到了预期效果。

参考文献

[1] 张宝富等. 现代光纤通信与网络教程. 人民邮电出版社,2002年7月

[2] 孙强等. 光纤通信系统及其应用. 北方交通大学出版社,2003年10月

[3] 马声全. 高速光纤通信ITU-1规范与系统设计. 北京邮电大学出版社,2001年1月

[4] 顾畹仪等. 光纤通信系统. 北京邮电大学出版社,1999年

[5] 刘增基等. 光纤通信. 西安电子科技大学出版社,2001年

[6] 张引发等. 光缆线路工程设计\施工与维护. 电子工业出版社,2002年8月

[7] https://www.360docs.net/doc/5015103663.html,/netcom/26/n-2026.html

光纤通信课程设计

《光纤通信》课程设计 学院: 姓名: 班级: 学号: 指导老师: 高速光纤通信中的偏振模色散及其补偿技术 目录

1.引言 (03) 2.光纤中偏振模色散的定义 (03) 3.偏振模色散的测量方法 (05) 4.偏振模色散的补偿技术 (05) 4.1光补偿方案之一 (05) 4.2光补偿方案之二 (05) 4.3电补偿方案之一 (06) 4.4电补偿方案之二 (06) 5.偏振模色散的研究动态 (07) 6.结束语 (08) 摘要偏振模色散已成为当前发展下一代高速长距离光纤传输系统的主要限制因素。 介绍了偏振模色散的概念、描述方法以及测试和补偿技术。根据国外的研究情况和我国的具 体实情,指出研究偏振模色散的测试和补偿技术对提高高速光纤通信技术的水平具有重大意 义。最后在此基础上提出了开展相关研究的建议。 关键词高速光纤通信,偏振模色散,补偿技术 1.引言 当代社会是信息化的社会,用户对通信容量的需求日益增加。在这种需求的推动下, 作为现代长途干线通信主体的光纤通信一直在朝着高速率、大容量和长距离的方向发展。在 单信道速率不断提升的同时,密集波分复用技术(DWDM)也已日趋成熟并商用化。 从技术的角度来看,限制高速率信号长距离传输的因素主要包括光纤衰减、非线性和 色散。掺铒光纤放大器(EDFA)的研制成功,使光纤衰减对系统的传输距离不再起主要限制作 用。而非线性效应和色散对系统传输的影响随着非零色散位移光纤(NZDSF)的引入也逐渐 减小和消除。随着单信道传输速率的提高和模拟信号传输带宽的增加,原来在光纤通信系统 中不太被关注的偏振模色散(PMD)问题近来变得十分突出。与光纤非线性和色散一样,PMD 能损害系统的传输性能,限制系统的传输速率和距离,并被认为是限制高速光纤通信系统传 输容量和距离的最终因素。正是由于PMD对高速大容量光纤通信系统有着不可忽视的影响, 所以

外调制光纤通信系统设计

课程设计题目:外调制光纤通信系统设计 学院:信息科学与工程学院 年级专业:09级光电子1班 学号:xxxxxxxx 学生姓名:xxxxx 指导教师:xxx

一、设计要求 设计10Gpb速率的外调制光纤链路,保证链路能正常通信,误码率BER小于10-12,对应的品质因数Q大于7 二、设计技术参数 1)DFB-LD(SLM),光源中心波长λ0=1552.5nm(193.1Thz),谱线宽度Δλ=0.1 nm(12.5GHz) 2)光纤传输距离120km 3)光发射机发射光功率范围:10dBm~13dBm,可取10dBm 4)APD光接收机灵敏度范围:-25dBm~-9dBm ,可取-18dBm 5) G.652标准单模光纤,光纤的衰减系数α=0.2dB/km,色散系数D=17ps/nm/km 6) 色散补偿光纤衰减系数α=0.5dB/km, 色散系数D=-100ps/(nm.km) 7) 线路编码为NRZ 8) 连接器损耗α=1dB/个 二、设计要点 链路采用外调制的模式,系统通过电信号(NRZ码)控制光调制器产生光信号。产生的光信号通过光纤传输至信号接收端,经光电探测器转换为电信号,完成链路的传输。 衰减:在实际工作中,光纤有一个衰减系数,光信号会随着传输而衰减。为了使光信号传输到探测器时,信号的功率在光电探测器的灵敏度范围之内,链路设计放大模块将信号放大。 色散:不同频率的光波在光纤中传播的速度不同,频率较小的光传播速度快,频率较大的光传播速度慢。由于链路采用的光源激光器存在一定的带宽,因而光信号在传输过程中会产生色散,传输距离越长,色散现象越严重。针对色散问题,链路设计了色散补偿光纤来消除色散。 因此,设计链路所需要解决的主要问题是色散和衰减。通过改变色散光纤的长度和放大器的放大方法来消除传输中带来的色散问题和衰减问题。另外,在设计时,系统的噪声因素也应考虑在内。 三、链路设计 1.根据要求设计链路 通信链路由信号源、线路编码器、光源、连接器、光纤、必要补偿单元、连接器、光接收机组成。设计时,使用伪随机码发生器充当信号源,用连续波激光器和M-Z调制器组成外调制型光源,用1dB衰减器充当连接器,使用不同参数的光纤分别充当传输光纤和色散补偿光纤,使用7dB衰减器充当系统衰减富余量,使用眼图分析仪来观察链路传输的眼图、分析链路的误码率和品质因数。设计链路,初始时不添加色散光纤(色散光纤长度为0)和增益,检测系统的眼图和品质因数。如下图所示:

数字光纤通信系统及其设计教学文案

数字光纤通信系统及 其设计

数字光纤通信系统及其设计 摘要 当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。进入1993年以后,我国光纤通信已处于持续大发展时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMAV)、光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(soliton)、掺铒光纤放大器(EDFA)、SDH产品等开始实用化并开展大量、深入的研究工作。面对光纤通信技术的普遍应用,了解光纤通信系统组成及其系统参数的测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。 本论文主要介绍数字光纤通信系统基本组成,含义及其特点,阐述数字光信通信系统的设计方法。针对WDM+EPFA数字光纤链路系统进行具体设计。关键字; 数字光纤通信系统掺铒光纤放大器(EDFA) 波分复用(WDM)Digital optical communications system and its design Abstrac In today's world, the combination of computer and communication technology, the height of optical fiber communication with rapid development. In today's main technology of telecommunications, optical fiber and light changes greatly improves the information transmission capacity. Since 1993, China into a continuous fiber communication has great development period. Its characteristic is a new technology, in particular network technology, high-speed medium access (HMAV), light time multiplex access (OTMMA) and WDM access (WDMA), optical solitons (soliton), erbium doped fiber amplifier (EDFA), SDH products began to practical and large,

数字通信课程设计

吉林工程技术师范学院 信息工程学院 《数字通信系统》 课程设计报告 题目:基于MATLAB数字基带调制 专业:电子信息工程 班级:电子信息1041班 姓名:唐欢 学号: 25 号 指导教师:范珩王冬梅 时间: 2013/11/25----2013/12/13

目录 第一章绪论 (1) 1.1通信的发展史简介 (1) 1.2设计的目的及意义 (2) 第二章数字基带信号 (3) 2.1数字基带调制原理 (3) 2.2单极性不归零波形 (4) 2.3双极性不归零波形 (4) 2.4单极性归零波形 (5) 2.5双极性归零波形 (6) 第三章载波调制的数字传输 (7) 3.1载波调制的原理 (7) 3.2 二进制2ASK的调制与解调仿真 (8) 3.3二进制2FSK的调制与解调仿真 (15) 3.4二进制2PSK的调制与解调仿真 (20) 第四章总结 (25) 参考文献.............................................. I 附录:................................................ I

第一章绪论 1.1通信的发展史简介 随着数字通信技术和计算机技术的快速发展以及通信网与计算机网络的相互融合,信息科学技术已成为21世纪和世界的新的强大推动力。信息是一种资源,只有通过广泛的传播与交流,才能产生利用价值,而欣喜的传播与交流,是依靠各种通信方式与技术来实现的。学习和掌握现代通信原理与技术是信息社会每一位成员,尤其是未来通信工作者的迫切需求。 通信就是从一地向另一地传递消息。通信的目的是传递消息中所包含的信息。人们可以用语言、文字、数据、图片或活动图像等不同形式的消息来表达信息。信息是消息的内涵,即消息中所包含的人们原来不知而待知的内容于传输含有信息的消息,否则,就失去了通信的意义。实现通信的方式很多,如手势、语言、旌旗、消息树、烽火台、金鼓和译码传令,以及现代社会的电报、电话、广播、电视、遥控、遥测、因特网、数据和计算机通信等,这些都是消息传递方式和信息交流的手段。随着社会的进步和科学技术的发展,目前使用最广泛的通信方式是电通信。由于电通信迅速、准确、可靠且不受时间、地点、距离的限制,自然科学领域凡是涉及“通信”这一术语时,一般均值“电通信”。 通信系统就是传递信息所需要的一切技术设备和传输媒质的总和,包括信息源、发送设备、信道、接收设备和信宿(受信者) ,它的一般模型如图1-1所示。

光纤通信课程设计

湖南工业大学 课程设计 资料袋 计算机与通信学院(系、部)2013 ~ 2014 学年第 2 学期课程名称数字光纤通信指导教师刘丰年职称副教授学生姓名专业班级学号 题目图像、声音的光纤传输系统 成绩起止日期2014 年05月16 日~2014年05月22 日 目录清单

湖南工业大学 课程设计任务书 2013—2014学年第2学期 计算机与通信学院通信工程专业班级课程名称:数字光纤通信 设计题目:图像、声音的光纤传输系统 完成期限:自 2014 年 5 月 16日至 2014 年5月22 日共 1 周 指导教师(签字):年月日 系(教研室)主任(签字):年月日

数字光纤通信 设计说明书 声音、图像光纤传输系统 起止日期: 2014年 05 月 16 日至 2014年 05 月 22 日 学生姓名 班级 学号 成绩 指导教师(签字) 计算机与通信学院 2014年 05 月 22 日

指导教师(签字):年月日系(教研室)主任(签字):年月日

图像、声音光纤传输系统 一、设计原理 1、GT-RC-II 型光纤通信实验系统简介: (1)、电源模块:提供实验箱各模块电源。 (2)、1310nm光发送模块:实现模拟信号、数字信号在1310nm光发送机中的光传输及自动光功率控制功能(采用电路来实现)。 (3) 1550nm光发送模块:实现模拟信号、数字信号在1550nm光发送机中的光传输及自动光功率控制功能(采用专用芯片来实现)。 (4) 1310nm光接收模块:实现1310nm光纤传输信号的接收,实现接收信号光电转换,滤波及放大,将其恢复为标准的电脉冲数据信号。 (5)1550nm光接收模块:实现1550nm光纤传输信号的接收,实现接收信号光电转换,滤波及放大,将其恢复为标准的电脉冲数据信号。 实验系统主要由光发模块、光收模块、光无源器件和辅助通信模块等组成。光发端机完成将电信号直接调制至光载波上去,采用强度调制(IM);光接收机完成光信号的解调,采用直接检测(DD),属于非相干解调。光载波由半导体光源产生,由半导体光检测器将光信号转换成电信号从而达到传输信号的目的。 2、模拟光纤通信系统的结构 模拟基带直接光强调制(DIM)光纤传输系统由光发射机(光源通常为发光二极管)、光纤线路和光接收机(光检测器)组成,这种系统的方框图如图1所示。 图1 模拟光纤通信系统由以下五个部分组成: (1)光发送机:光发送机是实现电/光转换的光端机。它由光源、驱动器和调

光纤通信系统设计实例

光纤通信系统设计 1 概述 图 1.1 标准光纤通信系统架构 2 模拟系统设计 光纤系统中,各组件的累加损耗应足够低以符合探测器的阈值要求。模拟系统中,充足的功率意味着高SNR,另外,组件的组合应该提供足够的带宽以通过较高的调制频率,因此,应对单个器件的损耗和带宽进行分析,并计算整个系统的功率分配和带宽预算。 2.1 系统规格 2.1.1 初始方案 以设计简单的点对点视频系统为例,电视广播信号的带宽为6MHz,要求SNR为50dB。 表2.1 系统方案一:窄带宽和低功率 Carrier Source LED0.8-0.9um Information Channel MMF (SI or GRIN) Detector PIN-PD 表2.2 系统方案二:高带宽和高功率 Carrier Source LD 1.3um Information Channel SMF Detector APD 2.1.2 负载电阻计算 已知PIN-PD的电容和传输带宽,根据方程 求得负载电阻

取近似值,计算得为6.24MHz。 2.2 功率预算 2.2.1 平均光功率计算 标准的SNR方程是 由于使用PIN-PD作为光电探测器,假设系统是热噪声限系统,调制系数m为100%,SNR方程简化为 由于放大器噪声的存在,将实际温度T替换为等效噪声温度,假设环境温度T为300K,放大器噪声系数F为2,则,又已知PD响应率为,计算平均光功率P为 取P近似值为。 2.2.2 平均光电流计算 根据平均光功率P为,计算得PIN-PD的平均光电流,远大于暗电流(几个纳安),因此系统中暗电流的影响可以忽略,计算热噪声电流均方值 散粒噪声电流均方值 可以得到,热噪声功率是散粒噪声功率的近7倍,符合最开始采用热噪声限模型的假设。 预测平均光电流为时,并没有驱动探测器进入非线性区,最大饱和电流等于偏置电压与负载电阻的比值,使用5V偏压时,最大允许电流为(或),远远大于,系统不存在饱和问题。 2.2.3 详细方案 光源SE LED SI MMF

数字通信系统设计实验报告

实验1:用 Verilog HDL 程序实现乘法器 1实验要求: (1) 编写乘法器的 Veirlog HDL 程序. (2) 编写配套的测试基准. (3) 通过 QuartusII 编译下载到目标 FPGA器件中进行验证 (4) 注意乘法逻辑电路的设计. 2 试验程序: Module multiplier(input rst,input clk,input [3:0]multiplicand, input [3:0]multiplier,input start_sig,output done_sig,output [7:0]result); reg [3:0]i; reg [7:0]r_result; reg r_done_sig; reg [7:0]intermediate; always @ ( posedge clk or negedge rst ) if( !rst ) begin i<=4'b0; r_result<=8'b0; end else if(start_sig) begin case(i) 0: begin intermediate<={4'b0,multiplicand}; r_result<=8'b0; i<=i+1; end 1,2,3,4: begin if(multiplier[i-1]) begin r_result<=r_result+intermediate; end intermediate<={intermediate[6:0],1'b0}; i<=i+1; end 5: begin r_done_sig<=1'b1;

i<=i+1; end 6: begin r_done_sig<=1'b0; i<=1'b0; end endcase end assign result=r_done_sig?r_result:8'bz; assign done_sig=r_done_sig; endmodule3 测试基准: `timescale 1 ps/ 1 ps module multiplier_simulation(); reg clk; reg rst; reg [3:0]multiplicand; reg [3:0]multiplier; reg start_sig; wire done_sig; wire [7:0]result; /***********************************/ initial begin rst = 0; #10; rst = 1; clk = 1; forever #10 clk = ~clk; end /***********************************/ multiplier U1 ( .clk(clk), .rst(rst), .multiplicand(multiplicand), .multiplier(multiplier), .result(result), .done_sig(done_sig), .start_sig(start_sig) ); reg [3:0]i; always @ ( posedge clk or negedge rst ) if( !rst )

《光纤通信》课程设计

《光纤通信》课程设计报告 设计名称:光纤中光孤子传输特性 专业:08光信息科学与技术 成员姓名:张XX、胡X、 成员学号: 指导老师:李X

光纤中光孤子传输特性 光孤子理论的出现,对于现代通信技术的发展起到了里程碑的作用。因为现代通信技术的发展一直朝着两个方向的努力:一是大容量的传输,二是延长中继距离。光孤子传输不变形的特点决定了他在通信领域的应用前景。普通的光纤通信必须每隔几十千米设立一个中继站,经对信号的脉冲整形放大误码检查后再发射出去,而用光孤子通信则可不设中继站,只要对光纤损耗进行增益补偿,即可把光信号无畸变的传输到很远的地方。 光孤子形成的机理 光孤子是光纤中两种最基本的物理现象,即群速度色散和SPM 共同的作用形成的。光纤中的强度引起的折射率非线性SPM效应(光学柯尔效应),在反常区导致的光脉冲压缩可以抵消GVD效应形成的光脉冲展宽,从而保持光脉冲传输过程中的形状不变。光孤子的形成机理是光纤中群速度色散和自相位调制效应在反常区的精确平衡。二而光纤耗损造成的脉冲能量的损失,则用每一段传输距离后的光放大器来补偿,保持其非线性效应作用的存在。 光孤子传输 1.系统的构成 将光孤子作为信息的载波可实现光孤子通信,其传输系统如下图: 图 光纤孤子传输系统的基本构成 该系统由5个基本功能组成: 1.光孤子发送终端(TX ) 2.光孤子接受终端(RX ) 3.光孤子传输光纤(STF ) 4.光孤子能量补偿放大器(OA,OA1-OAn) 5.光孤子传输控制装置(TCS) 图中SS为光孤子源,MOD为光调制器,TS为测试设备。 系统中的TX由超短脉冲半导体或掺饵光纤激光器,光调制器,信息源和光纤功率放大器构成,用于产生光孤子脉冲信号;RX由宽带光接收机或频谱分析仪,误码仪与条纹相机构成,用于测试系统的传输特性或通信能力;STF由普通单模光纤或色散位移光纤DSF构成,OA1--OAn由EDFA或SOA组成,TCS由导频滤波器,强度或相位调制器,非线性元件和色散补偿光纤等组成,设置在沿传输系统不同的区域,用于克服或降低由放大器放大带来的放大自 ss mod OA OA1 STF OA2 STF STF TCS OAn STF TS TX RX

毕业设计100光纤通信+课程设计报告

课程设计报告 课程名称光纤通信 课题名称通信系统综合实验 一、设计内容与设计要求 1、设计内容 1)多路数据+多路电话光纤综合传输系统的实现 2)多路数据+多计算机+单路图像/语音全双工光纤综合传输系统的实现3)*多路计算机+双路图像/语音全双工光纤综合传输系统的实现 2、设计目的 掌握变速率时分复用的原理、实现方法; 学习并掌握计算机RS232通信技术; 掌握时分复用技术和波分复用技术的灵活搭配使用; 实现数字和语音同时通信。 3、实验仪器与设备 1.光纤通信实验系统2台。 2.示波器1台。 3.波分复用器2个。 4.电话2部。 I

5.FC/FC光纤跳线2根。 6.计算机若干台串口通信电缆若干根。 7.1310nm/1550nm波长波分复用器2个。 8.摄像头1个。 9.监视器1个(或用电话代替)。 4、设计原理 《多路数据+多路电话光纤综合传输系统》综合了固定速率时分复用、解固定速率时分复用、PCM编译码、波分复用等几个子系统,具体的实验原理可以参看《光纤通信原理教学系统实验指导书》中的实验二十一、实验二十四、实验二十五、实验二十的方法; 《多路数据+多计算机+单路图像图像/语音全双工光纤综合传输系统》拟实现模拟图像、数据在同一光纤中传输。即在光纤中同时传输数字数据和模拟信号。一种解决方案综合了《光纤通信原理教学系统实验指导书》中的实验二十六、实验二十七、实验十六的知识; 《多路计算机+双路图像/语音全双工光纤综合传输系统》综合了固定速率时分复用、解固定速率时分复用、变速率时分复用、解变速率时分复用、位时钟提取(数字锁相环DPLL)原理及实现五个实验,具体的实验原理可以参看《光纤通信原理教学系统实验指导书》中的实验二十一、实验二十三、实验二十四、实验二十五、实验二十六、实验二十七。 5、设计要求 掌握结构化系统设计的主体思想,以自下而上逐步完善的方法实现指定的通信系统功能,并按要求测试相关参数、波形等实验数据,以积累一些典型的通信子系统的功能、性能、参数等知识以及系统集成的知识。 (1)在规定的时间内以小组为单位完成相关的系统功能实现、数据测试和记录并进行适当的分析。 (2)按本任务书的要求,编写《课程设计报告》(Word文档格式)。并用A4纸打印并装订; II

数字光纤通信系统课程设计

~~~~~~学院课程设计报告 课程名称:通信系统课程设计 院部:电气与信息工程学院 专业班级: 学生姓名: 指导教师: 完成时间:2010 年12 月31日 报告成绩:

高速数字光纤通信系统的设计

目录 (3) 摘要 (4) 关键词 (4) Abstract (5) 第一章数字光纤通信系统的整体设计 (6) 1.1数字光纤通信系统的简介 (6) 1.2 数字光纤通信系统的基本设计思想 (7) 1.3 数字光纤通信系统设计的方案分析 (7) 第二章数字光纤通信系统的具体设计 (8) 2.1 A—E的工程分站设计 (8) 2.2 系统部件的选择 (8) 2.2.1光源的选择 (8) 2.2.2光纤的选择 (8) 2.2.3光电检测器的选择 (9) 2.2.4光接口规范的选择 (9) 2.3 应用代码的选择 (9) 2.4 衰耗预算 (10) 2.4.1无光放大器系统的衰耗预算 (10) 2.4.2带光放大器系统的衰耗预算 (10) 2.5色散预算 (11) 2.5.1码间干扰与频率啁啾的功率代价 (11) 2.5.2色散相关参数的确定 (12) 2.5.3色散的具体计算 (12) 第三章数字光纤通信系统设计结果 (14) 总结 (16) 参考文献 (17)

当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和广波的变革极大的提高着信息的传输。进入1993年以后,我国光纤通信已处于持续大反战时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMAV)光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(solition)、掺铒光纤放大器(EDFA)、SDH产品等开发实用实用化开展大量、深入研究工作。同时,各种专用光纤系统组成及其系统参数测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。 20世纪70年代末,光纤通信开始进入实用化阶段,各种各样的光纤通信系统如雨后春笋在世界各地建立起来,逐渐成为电信传送网的主要传送手段。近几年来,光纤通信中的各种新技术,新系统也日新月异地发展着,在全球信息高速公路建设中扮演重要角色。 光纤通信是以光波为载波,光纤为传输媒介的通信方式。本次课程设计论文主要介绍光纤系统的基本组成,性能指标,还要对损耗和色散进行预算,用最坏值设计方法来设计高速数字光纤系统。 关键词:光纤通信系统、光纤、损耗、色散、光缆

第五章数字光纤通信系统的设计

第五章数字光纤通信系统的设计 (2学时) 一、教学目的及要求: 使学生了解整个数字光纤通信系统在整体进行设计时应考虑的因素和设计时使用的主要方法。 二、教学重点及难点: 本章重点:掌握损耗限制系统和色散限制系统中再生中继距离的设计方法。 本章难点:中继距离与系统传输速率的关系。 三、教学手段: 板书与多媒体课件演示相结合 四、教学方法: 课堂讲解、提问 五、作业: 课外作业: 5-1 5-2 5-5 六、参考资料: 《光纤通信》刘增基第五章。 《光纤通信》杨祥林第八章 七、教学内容与教学设计:

第五章数字光纤通信系统的设计 对数字光纤通信系统而言,系统设计的主要任 务是,根据用户对传输距离和传输容量(话路数或 比特率)及其分布的要求,按照国家相关的技术标准 和当前设备的技术水平,经过综合考虑和反复计算, 选择最佳路由和局站设置、传输体制和传输速率以 及光纤光缆和光端机的基本参数和性能指标,以使 系统的实施达到最佳的性能价格比。 在技术上,系统设计的主要问题是确定中继距 离,尤其对长途光纤通信系统,中继距离设计是否 合理,对系统的性能和经济效益影响很大。 中继距离的设计有三种方法:最坏情况法(参数 完全已知)、统计法(所有参数都是统计定义)和半 统计法(只有某些参数是统计定义)。 5.1 中继距离受损耗的限制 下图示出了无中继器和中间有一个中继器的数 字光纤线路系统的示意图。 数字光纤线路系统 (a)无中继器; (b) 一个中继器 如果系统传输速率较低,光纤损耗系数较大, 中继距离主要受光纤线路损耗的限制。在这种情况 下,要求S和R两点之间光纤线路总损耗必须不超 过系统的总功率衰减,即 [板书] [板书] [板书] [多媒体课件] 96分钟

数字通信课程设计

目录 一、课程设计目的 (1) 二、设计任务书 (1) 三、进度安排 (1) 四、具体要求 (2) 五、课程设计内容 (2) 5.1数字频带传输系统 (2) 5.2二进制振幅键控(2ASK) (3) 5.2.1调制实验原理框图: (3) 5.2.2 调制实验步骤 (4) 5.2.3 解调的原理框图 (7) 5.3二进制频移键控(2FSK) (8) 5.3.1 2FSK调制原理 (8) 5.3.2 调制实验步骤 (8) 5.3.3 2FSK解调的原理框图: (12) 5.4二进制移相键控(2PSK) (12) 5.4.1 2PSK调制原理 (12) 5.4.2 2PSK调制的实验步骤 (13) 5.4.3 2PSK解调的原理框图 (16) 5.5二进制差分相位键控(2DPSK) (17) 5.5.1 2DPSK调制原理 (17) 5.5.2 2DPSK调制的实验步骤 (17) 5.5.3 2DPSK的解调原理框图 (21) 5.6 二进制数字信号的功率谱密度 (21) 5.6.1.2ASK 信号的功率谱密度 (21) 5.6.2 2FSK 信号的功率谱密度 (22) 5.6.3 2PSK 及 2DPSK信号的功率谱密度 (22) 六、运行程序过程中产生的问题及采取的措施 (23) 七、总结和展望 (23) 八、参考文献 (24)

一、课程设计目的 本课程是为通信工程专业本科生开设的专业必修课,结合学生的专业方向的理论课程,充分发挥学生的主动性,使学生掌握应用MATLAB或者SYSTEMVIEW 等仿真软件建立通信系统,巩固理论课程内容,规范文档的建立,培养学生的创新能力,并能够运用其所学知识进行综合的设计。 通信系统原理的课程设计是对通信系统仿真软件、课程学习的综合检验,配合理论课的教学,让学生亲自参加设计、仿真、验证通信系统的一般原理、调制解调原理、信号传输及受噪声影响等方面的知识点。 二、设计任务书 设计选题:数字频带传输系统的设计 a.利用所学的《通信原理及应用》的基础知识,分别设计2ASK、2FSK、2PSK、2DPSK数字调制器。完成对各种二进制数字已调信号的的调制器与解调器的电路设计与程序仿真,并对其仿真结果进行分析。要求理解2ASK信号的产生,掌握2ASK 信号的调制原理和实现方法并画出实现框图。 b.利用MATLAB、SystemView、C等语言进行,软件不限。要求给出2ASK、2FSK、2PSK、2DPSK 各种已调信号的调制、解调的原理框图、仿真电路图,给出信号的频谱图、调制前与解调后数据波形比较覆盖图,加噪前后相关波形。 三、进度安排

第6章 光纤通信系统的设计

第6章光纤通信系统的设计 在前面几章中,我们已经学习了光纤通信系统中基本元器件的功能,从光源、光检测器、光放大器等有源器件到连接器、隔离器等无源器件。在这章里我们将讨论如何将这些器件通过光纤组合形成具有完整通信功能的系统。光纤通信系统就其拓扑而言是多种多样的,有星形结构、环形结构、总线结构和树形结构等,其中最简单是点到点传输结构。从应用的技术来看,分光同步传输网、光纤用户网、复用技术、高速光纤通信系统、光孤子通信和光纤通信在计算机网络中的应用等等。从其地位来分,又有骨干网、城域网、局域网等。不同的应用环境和传输体系,对光纤通信系统设计的要求是不一样的,这里我们只研究简单系统的设计,即点到点传输的光纤通信系统。内容包括设计原则、数字和模拟通信系统的设计,最后给出了设计实例,以期读者对光纤通信方面的知识有一全面了解。 6.1 设计原则 6.1.1 工程设计与系统设计 光纤通信系统的设计包括两方面的内容:工程设计和系统设计。 工程设计的主要任务是工程建设中的详细经费概预算,设备、线路的具体工程安装细节。主要内容包括对近期及远期通信业务量的预测;光缆线路路由的选择及确定;光缆线路敷设方式的选择;光缆接续及接头保护措施;光缆线路的防护要求;中继站站址的选择以及建筑方式;光缆线路施工中的注意事项。设计过程大致可分为:项目的提出和可行性研究;设计任务书的下达;工程技术人员的现场勘察;初步设计;施工图设计;设计文件的会审;对施工现场的技术指导及对客户的回访等。 系统设计的任务遵循建议规范,采用较为先进成熟的技术,综合考虑系统经济成本,合理选用器件和设备,明确系统的全部技术参数,完成实用系统的合成。 6.1.2系统设计的内容 光纤通信系统的设计涉及到许多相互关联的变量,如光纤、光源和光检测器的工作特性、系统结构和传输体制等。 例如,目前在骨干网和城域网中普遍选择同步数字序列SDH(Synchronous Digital Hierarchy)作为系统制式,在设计SDH体制的光纤通信系统时,首先要掌握其标准和规范,SDH的传输速率分为STM-1(155.52Mb/s)、STM-4(622.08Mb/s)、STM-16(2.5Gb/s)和STM-64(10Gb/s)等四个级别。ITU-T对每个级别(STM-64正在研究中)所使用的工作波长范围、光纤通道特性、光发射机和接收机的特性都作了规定,并对其应用给出了分类代码,表6.1给出了STM-1标准光接口的主要指标,其中应用分类代码中的符号I表示距离不超过2km的局内应用,S表示距离在15km的局间短距离应用,L表示距离在40~80km的局间长距离应用,符号后的数字表示STM的速率等级和工作波长(1310nm)。 又例,对于局域网(LAN)的设计,IEEE、TIA/EIA等组织也有相关的标准,见表6.2,对数据速率、波长作了规定。表6.3表示了波长范围以及相应技术的要求。对于数据速率为10Mbit/s或100Mbit/s的LAN系统,其光缆的长度可以查阅IEEE802.3u和TIA/EIA568A标准。表6.4为其建议的最大光缆长度。 虽然光纤通信系统的形式多样,但在设计时,不管是否有有成熟的标准可循,以下几点是必须考虑的:①传输距离。②数据速率或信道带宽。③误码率(数字系统)或载噪比和非线性失真(模拟系统)。在作过相关的分析后,我们要决定:是采用多模光纤还是单模光纤,并涉及到纤芯尺寸、折射率剖面、带宽或色散、损耗、数值孔径或模场直径等参数的选取;是采用LED还是LD光源,涉及到波长、谱线宽度、输出功率、有效辐射区、发射方向图、发射模式数量等指标的确定;是采用PIN还是APD接收器,它涉及到响应度、工作波长、

数字光纤通信系统及其设计

` 数字光纤通信系统及其设计 摘要 当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。进入1993年以后,我国光纤通信已处于持续大发展时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMAV)、光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(soliton)、掺铒光纤放大器(EDFA)、 SDH产品等开始实用化并开展大量、深入的研究工作。面对光纤通信技术的普遍应用,了解光纤通信系统组成及其系统参数的测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。 本论文主要介绍数字光纤通信系统基本组成,含义及其特点,阐述数字光信通信系统的设计方法。针对WDM+EPFA数字光纤链路系统进行具体设计。 关键字; 数字光纤通信系统掺铒光纤放大器(EDFA) 波分复用(WDM) Digital optical communications system and its design ] Abstrac In today's world, the combination of computer and communication technology, the height of optical fiber communication with rapid development. In today's main technology of telecommunications, optical fiber and light changes greatly improves the information transmission capacity. Since 1993, China into a continuous fiber communication has great development period. Its characteristic is a new technology, in particular network technology, high-speed medium access (HMAV), light time multiplex access (OTMMA) and WDM access (WDMA), optical solitons (soliton), erbium doped fiber amplifier (EDFA), SDH products began to

通信系统课程设计

课程设计任务书 学生姓名:周全专业班级:信息sy0901 指导教师:刘新华工作单位:信息工程学院 题目:通信系统课群综合训练与设计 初始条件:MA TLAB 软件,电脑,通信原理知识 要求完成的主要任务: 1、利用仿真软件(如Matlab或SystemView),或硬件实验系统平台上设计 完成一个典型的通信系统 2、学生要完成整个系统各环节以及整个系统的仿真,最终在接收端或者精 确或者近似地再现输入(信源),计算失真度,并且分析原因。 时间安排: 指导教师签名: 2013 年 1 月 1 1日 系主任(或责任教师)签名: 2013 年 1 月 11 日

目录 摘要 (2) Abstract (3) 1设计任务 (4) 2实验原理分析 (5) 2.1 PCM原理介绍 (5) 2.1.1 抽样(Sampling) (5) 2.1.2 量化(quantizing) (5) 3. 基带传输HDB3码 (12) 4.信道传输码汉明码 (14) 5.PSK调制解调原理 (15) 6. AWGN(加性高斯白噪声) (18) 7.仿真结果 (19) 8.心得体会 (23) 9.参考文献 (24) 附录 (25)

摘要 通信系统是一个十分复杂的系统,在具体实现上有多种多样的方法,但总的过程却是具有共性的。对于一个模拟信号数字化传输,过程可分为数字化,信源编解码,信道编解码,调制解调,加扰等。本实验利用MATLAB实现了PCM编码,HDB3码,汉明码,psk调制,AWGN及对应的解调过程,完整实现了一个通信系统的全部过程。MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 关键字:通信系统,调制,解调,matlab

光通信课程设计

光通信技术课程设计 一、系统功能描述 此系统是一个通过红外通信进行简单信号传输的装置,分为发送和接收两部分。发送装置接有简易键盘,按下按键后,单片机采集信号处理后通过红外发送出去。接收装置收到信号后,进行解析,然后通过数码管显示出相应的码型。 二、系统所用元器件及设备 发送端: AT89C52×1、红外发射二极管×1、8050×1、按键开关×10、11.0592M晶振×1 电容:10μF×1、20pF×2 电阻:1k?×2、100?×1 接收端: 74LS273×1、AT89C52×1、按键开关×1、7段共阳极数码管×2、8550×2、11.0592M晶振×1、红外接收器SM0038×1 电容:10μF×2、20pF×2 电阻:100?×2、1k?×1、4.7k?×2 设备: 稳压电源5v 示波器 三、系统实现功能原理 发送端: 输入方式采用3×3阵列(9按键)键盘,一共6根信号线,接入单片机P1口。每个按键在单片机P1口上对应唯一8位2进制值。当按下键盘上的不同按键时,通过编码器产生与之相应的特定的二进制脉冲码信号。将此二进制脉冲码信号先调制在38KHz的载波上,经过放大后,激发红外发光二极管转发成波长940nm的红外线光传输出去。 接收端: 红外接收器采用一体化红外遥控接收器SM0038,红外线数字信号则经过红外接收器取出数字信号数据经单片机译码,最后送到显示电路。 主要芯片AT89C51: 引脚图: 功能介绍: AT89C51是一个低电压,高性能CMOS 8位单片机,片内含4K BYTES的可反复擦写的只

读程序存储器(PEROM)和128 BYTES的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和FLASH存储单元,内置功能强大的微型计算机的AT89C51提供了高性价比的解决方案。 AT89C51是一个低功耗高性能单片机,40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,2个16位可编程定时计数器,2个全双工串行通信口,AT89C51可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和FLASH存储器结合在一起,特别是可反复擦写的FLASH存储器可有效地降低开发成本。 管脚说明: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL 门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL 门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。 P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。 P3口也可作为AT89C51的一些特殊功能口,如下表所示: 口管脚备选功能 P3.0 RXD(串行输入口) P3.1 TXD(串行输出口) P3.2 /INT0(外部中断0) P3.3 /INT1(外部中断1) P3.4 T0(记时器0外部输入) P3.5 T1(记时器1外部输入) P3.6 /WR(外部数据存储器写选通) P3.7 /RD(外部数据存储器读选通) P3口同时为闪烁编程和编程校验接收一些控制信号。 RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。 /ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可

数字光纤通信系统简介

浅谈数字光纤通信系统 摘要 当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。因而传统的模拟信号的传输的信息容量已经远远不能满足当前生产生活的实际技术需求,从上世纪开始数字信号传输已经逐步取代模拟信号,成为当前电视、电话、网络中信息传输的主要方式。 本文就光纤通信网络中的数字光纤通信部分进行了简要的介绍以及分析,涉及数字光纤通信系统基本概念特点的解析,系统的组成结构,主要传输体制以及线路的编码方式。 关键字数字光纤通信系统准同步数字系列(PDH)同步数字系列(SDH)线路编码 内容 一.数字光纤通信系统概况 光纤是数字通信的理想的传输信道。与模拟通信相比,数字通信有许多优点,最主要的是数字系统可以恢复因传输损失导致的信号畸变,因而传输质量高。大容量长距离的光纤通信系统几乎都是采用数字传输方式。 在光纤通信系统中,光纤中传输的是二进制光脉冲“0”码和“1”码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulse code modulation),即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。 二.数字光纤通信系统组成 数字光纤通信系统如图1所示,与模拟系统主要区别在于数字系统中有模数转换设备和数字复接设备,即为PCM端机。 1.模数转换设备。它将来自用户的模拟信号转换为对应的数字信号。数字 复接设备则将多路低速数字信号按待定的方式复接成一路高速数字信 号,以便在单根光纤中传输。 2.输入接口将来自PCM端机的数字基带信号适配成适合在光纤信道中传 输的形态。

相关文档
最新文档