《点集拓扑学》第7章 §7.5 度量空间中的紧致性

《点集拓扑学》第7章 §7.5 度量空间中的紧致性
《点集拓扑学》第7章 §7.5 度量空间中的紧致性

§7.5度量空间中的紧致性

本节重点:掌握度量空间中的紧致空间、可数紧致空间、序列紧致空间、列紧空间之间的关系.

由于度量空间满足第一可数性公理,同时也是空间,所以上一节中的讨论(参见表7.2)因此我们,一个度量空间是可数紧致空间当且仅当它是列紧空间,也当且仅当它是序列紧致空间.但由于度量空间不一定就是Lindeloff空间,因此从定理7.4.2并不能断定列紧的度量空间是否一定就是紧致空间.本节研究这个问题并给出肯定的回答.

定义7.5.1 设A是度量空间(X,ρ)中的一个非空子集.集合A的直径diam(A)定义为

diam(A)=sup{ρ(x,y)|x,y∈A}若A是有界的

diam(A)=∞ 若A是无界的

定义7.5.2 设(X,ρ)是一个度量空间,A是X的一个开覆盖.实数λ>0称为开覆盖A的一个Lebesgue数,如果对于X中的任何一个子集A,只要diam(A)<λ,则 A包含于开覆盖A的某一个元素之中.

Lebesgue数不一定存在.例如考虑实数空间R的开覆盖

{(-∞,1)}∪{(n-1/n,n+1+1/n) |n∈Z+}

则任何一个正实数都不是它的Lebesgue数.(请读者自补证明.)

定理7.5.1[Lebesgue数定理] 序列紧致的度量空间的每一个开覆盖有一个Lebesgue数.

证明设X是一个序列紧致的度量空间,A是X的一个开覆盖.假若开覆盖A没有Lebesgue 数,则对于任何i∈Z+,实数1/i不是A的Lebesgue数,所以X有一个子集E,使得diam(E)<1/i并且Ei不包含于A的任何元素之中.

在每一个之中任意选取一个点,由于X是一个序列紧致空间,所以序列有一个收敛的子序列.由于A是X的一个开覆盖,故存在A∈A使得y∈A,并且存在实数ε>0使得球形邻域B(y,ε)A.由于,所以存在整数M

>0使得当i>M时.令k为任意一个整数,使得k>M+2/ε,则对于任何

ρ(x,y)≤ρ(x,)+ρ(,y)<ε

这证明

A

与的选取矛盾.

定理7.5.2 每一个序列紧致的度量空间都是紧致空间.

证明设X是一个序列紧致的度量空间,A是X的一个开覆盖.根据定理7.5.1,X的开覆盖A有一个Lebesgue数,设为λ>0.

令B={B(x,λ/3)}.它是X的一个开覆盖.我们先来证明B有一个有限子覆盖.

假设B没有有限子覆盖.任意选取一点∈X.对于i>1,假定点已经取定,由于

不是X的覆盖,选取.按照归纳原则,序列已经取定.易

见对于任何i,j∈Z+,i≠j,有ρ()>λ/3.序列没有任何收敛的子序列.(因为任何y∈X的球形邻域B(y,λ/6)中最多只能包含这个序列中的一个点.)这与X是序列紧致空间相矛盾.

现在设{}是开覆盖B的一个有限子覆盖.由于其中每一个元素的直径都小于λ,所以对于每一个i=1,2,…,n存在使得B(,λ/3).于是{}是A的一个子覆盖.

因此,根据定理7.5.2以及前一节中的讨论可见:

定理7.5.3 设X是一个度量空间.则下列条件等价:

(1)X是一个紧致空间;

(2)X是一个列紧空间;

(3)X是一个序列紧致空间;

(4)X是一个可数紧致空间.

我们将定理7.5.3的结论列为图表7.3以示强调.

作业:

P205 1.

本章总结:

(1)重点是紧致性、紧致性与分离性的关系.

(2)度量空间(特别是)中的紧致性性质要掌握.

(3)紧致性是否是连续映射所能保持的、可积的、可遗传的?证明时牵涉到的闭集要注意是哪个空间的闭集.

模式识别复习重点总结

1.什么是模式及模式识别?模式识别的应用领域主要有哪些? 模式:存在于时间,空间中可观察的事物,具有时间或空间分布的信息; 模式识别:用计算机实现人对各种事物或现象的分析,描述,判断,识别。 模式识别的应用领域:(1)字符识别;(2) 医疗诊断;(3)遥感; (4)指纹识别 脸形识别;(5)检测污染分析,大气,水源,环境监测; (6)自动检测;(7 )语声识别,机器翻译,电话号码自动查询,侦听,机器故障判断; (8)军事应用。 2.模式识别系统的基本组成是什么? (1) 信息的获取:是通过传感器,将光或声音等信息转化为电信息; (2) 预处理:包括A\D,二值化,图象的平滑,变换,增强,恢复,滤波等, 主要指图 象处理; (3) 特征抽取和选择:在测量空间的原始数据通过变换获得在特征空间最能反映分类 本质的特征; (4) 分类器设计:分类器设计的主要功能是通过训练确定判决规则,使按此类判决规 则分类时,错误率最低。把这些判决规则建成标准库; (5) 分类决策:在特征空间中对被识别对象进行分类。 3.模式识别的基本问题有哪些? (1)模式(样本)表示方法:(a )向量表示;(b )矩阵表示;(c )几何表示;(4)基元(链码)表示; (2)模式类的紧致性:模式识别的要求:满足紧致集,才能很好地分类;如果不满足紧致集,就要采取变换的方法,满足紧致集 (3)相似与分类;(a)两个样本x i ,x j 之间的相似度量满足以下要求: ① 应为非负值 ② 样本本身相似性度量应最大 ③ 度量应满足对称性 ④ 在满足紧致性的条件下,相似性应该是点间距离的 单调函数 (b) 用各种距离表示相似性 (4)特征的生成:特征包括:(a)低层特征;(b)中层特征;(c)高层特征 (5) 数据的标准化:(a)极差标准化;(b)方差标准化 4.线性判别方法 (1)两类:二维及多维判别函数,判别边界,判别规则 二维情况:(a )判别函数: ( ) (b )判别边界:g(x)=0; (c n 维情况:(a )判别函数: 也可表示为: 32211)(w x w x w x g ++=为坐标向量为参数,21,x x w 12211......)(+++++=n n n w x w x w x w x g X W x g T =)(为增值模式向量。 ,=为增值权向量,T n n T n n x x x x X w w w w W )1,...,,(),,...,,(21121+=+

遥感影像解译不确定性的评估与表达

遥感影像解译不确定性的评估与表达 摘自《遥感数据的不确定性问题》 承继成郭华东史文中等编著 遥感数据的精度评估研究是从1975 年开始的(1973 年发射第一个遥感卫星)。最早Hord 和Brooner(1976),Van Genderen 和Lock(1977)及Ginevan(1979) 曾提出了建立测试评估地图的标准和技术的建议。Roslnfield(1982),Congalton(1983),Aronoff(1985)对遥感数据精度的评估标准和技术进行了较深入的研究,以后又有更多的人参与了该项研究工作。误差矩阵是主要的方法,它能很好地表达专题图的精度,已经成为普遍采用的方法。 一、遥感影像解译不确定性评估综述 遥感解译有人工目视判读和计算机自动分类处理。在本章中我们主要指计算机自动分类。造成遥感影像解译不确定性的原因有遥感数据固有的不确定性(包括地物波谱的固有的不确定性和遥感影像数据固有的不确定性等)和遥感数据获取、处理、传输、分类过程造成的误差。因此遥感数据解译过程中的不确定性是客观存在、不可避免的。任何解译的成果图件在不同程度上都存在着一定的不确定性,符合“任何人工模拟产品与客观真实世界之间总是存在一定差异”的原理。 遥感影像数据的不确定性是普遍存在的。一些遥感影像的分辨率很低,经过各种处理影像分类的可信度尽管有所提高但仍然存在不确定性( 表1),一些地物的可信度仍很低。 表 1 遥感影像分类的可信度(%)( 据吴连喜,2002)

遥感数据分类的不确定性度量方法通常用误差矩阵来度量。从误差矩阵中可以计算出分类精度的指标,如“正确分类比”。另一种指标是由Cohen 提出来的Kappa 系数,后来经Foody(1992) 修正后称为Tau 系数。 遥感数据分类的专题不确定性是指专题值与其真值的接近程度,其度量随专题数据类型的不同而不同(Lanter and Veregin,1992)。专题数据的类型有两种:分类专题数据(categorical thematic data) 和连续专题数据(continuous thematic data), 也有将其分为定性数据(qualitative data) 和定量数据的(quantitative data)。连续数据的不确定性度量指标与位置不确定性的度量指标相类似,如方差等(Lanter and Veregin,1992;Heuvelink,1993;Goodchild et al,1992)。 遥感数据不确定性的度量一般采用基于像元的分类结果评估,其不确定性度量评估流程如图1(Lunetta et al,1991)。

空间统计-空间自相关分析

空间自相关分析 1.1 自相关分析 空间自相关分析是指邻近空间区域单位上某变量的同一属性值之间的相关程度,主要用空间自相关系数进行度量并检验区域单位的这一属性值在空间区域上是否具有高高相邻、低低相邻或者高低间错分布,即有无聚集性。若相邻区域间同一属性值表现出相同或相似的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域也高(低),则称为空间正相关;若相邻区域间同一属性值表现出不同的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域低(高),则称为空间负相关;若相邻区域间同一属性值不表现任何依赖关系,即呈随机分布,则称为空间不相关。 空间自相关分析分为全局空间自相关分析和局部空间自相关分析,全局自相关分析是从整个研究区域内探测变量在空间分布上的聚集性;局域空间自相关分析是从特定局部区域内探测变量在空间分布上的聚集性,并能够得出具体的聚集类型及聚集区域位置,常用的方法有Moran's I 、Gear's C 、Getis 、Morans 散点图等。 1.1.1 全局空间自相关分析 全局空间自相关分析主要用Moran's I 系数来反映属性变量在整个研究区域范围内的空间聚集程度。首先,全局Moran's I 统计法假定研究对象之间不存在任何空间相关性,然后通过Z-score 得分检验来验证假设是否成立。 Moran's I 系数公式如下: 11 2 11 1 ()()I ()()n n ij i j i j n n n ij i i j i n w x x x x w x x =====--= -∑∑∑∑∑(式 错误!文档中没有指定样式的文字。-1) 其中,n 表示研究对象空间的区域数;i x 表示第i 个区域内的属性值,j x 表示第j 个区域内的属性值,x 表示所研究区域的属性值的平均值;ij w 表示空间权重矩阵,一般为对称矩阵。 Moran's I 的Z-score 得分检验为:

非参数统计实验(全)新

第四章 非参数统计实验 参数统计学中的许多统计分析方法的应用对总体都有严格的假定,例如,t 检验要求总体服从正态分布,F 检验要求误差呈正态分布且各组方差为齐性的等等,然而在现实生活中,有许多总体的分布我们却是一无所知或知之甚少,所以在参数模型中所建立的统计推断就会失效,于是,人们希望在不假定总体分布的情况下,尽量从数据本身来获得所需要的信息。这就是非参数统计的宗旨。非参数统计方法简便,适用性强,但检验效率较低,应用时应加以考虑。 实验一 卡方检验(Chi-square test ) 实验目的: 掌握卡方检验方法。 实验内容: 一、2χ拟合优度检验 二、2χ独立性检验 三、2χ齐性检验 实验工具: SPSS 非参数统计分析菜单项和Crosstabs 菜单项。 知识准备: 一、卡方拟合优度检验 2 χ检验(Chi —Square Test) 适用于拟合优度检验,适用于定类变量的检验问 题,用来检验实际观察数目与理论期望数目是否有显著差异。当检验问题是实际分布是否与理论分布相符合时,在大样本时也可以用分类数据的卡方检验来解决,这时的卡方检验也称为分布拟合的卡方检验。 若样本分为k 类,每类实际观察频数为k f f f ,,,21 ,与其相对应的期望频数为 k e e e ,,,21 ,则检验统计量2χ可以测度观察频数与期望频数之间的差 异。其计算公式为: ∑ ∑ -= -= =期望频数 期望频数实际频数2 1 2 2 ) () (k i i i i e e f χ

很显然,实际频数与望频数越接近,2χ值就越小,若2χ=0,则上式中分子的每—项都必须是0,这意味着k 类中每一类观察频数与期望频数完全一样,即完全拟合。2χ统计量可以用来测度实际观察频数与期望频数之间的拟合程度。 在H 0成立的条件下,样本容量n 充分大时,2χ统计量近似地服从自由度df =k-1的 2 χ分布,因而,可以根据给定的显著性水平α,在临界值表中查到 相应的临界值)1(2 -k αχ。若)1(2 2 -≥k αχχ ,则拒绝H 0,否则不能拒绝H 0。 所有的统计软件都可以输出检验统计量的显著性p 值,也可以根据显著性p 值和显著性水平α作比较,若α≤p ,则拒绝H 0,否则不能拒绝H 0。 另外卡方拟合优度检验也可以用来检验某总体是否服从某一特定分布的假设。拟合优度检验中几种常用分布的参数如表4-1: 表4-1 拟合优度检验中几种分布的参数 二、2χ独立性检验 假设有n 个随机试验的结果按照两个变量A 和B 分类,A 取值为A 1,A 2,…,A r ,B 取值为B 1,B 2,…,B s ,则形成了一张s r ?的列联表,称为s r ?二维列联 表。其中ij n 表示A 取A i 及B 取B j 的频数,n n r 1 i s 1 j ij =∑∑==,其中: r ,...,2,1i ,n n s 1j ij i.== ∑=表示各行的频数之和 s ,...,2,1i ,n n r 1 i ij .j == ∑=表示各列的频数之和

泛函分析题1.2完备化答案

泛函分析题1_2完备化p13 1.2.1 (空间S) 令S为一切实(或复)数列 x = ( ξ1, ξ2, ..., ξn, ... ) 组成的集合,在S中定义距离为 ρ(x, y) = ∑k ≥ 1 (1/2k) · | ξk -ηk |/(1 + | ξk -ηk | ), 其中x = ( ξ1, ξ2, ..., ξk, ... ),y = ( η1, η2, ..., ηk, ... ).求证S为一个完备的距离空间.证明:(1) 首先证明ρ是S上的距离. ρ的非负性和对称性是显然的; 因为实函数f (t) = t /(1 + t ) = 1 - 1/(1 + t )在[0, +∞)严格单调增, 故对任意a, b∈ ,有 | a |/(1 + | a |) + | b |/(1 + | b |) ≥ | a | /(1 + | a | + | b |) + | b |/(1 + | a | + | b |) = ( | a | + | b | )/(1 + | a | + | b |) ≥ ( | a + b | )/(1 + | a + b |), 由此可立即得知ρ在S上满足三角不等式. 所以,ρ是S上的距离,从而(S, ρ)为距离空间. (2) 设{x n}是S中的一个Cauchy列,记x n = ( ξ1(n), ξ2(n), ..., ξk(n), ... ). 则?k∈ +,(1/2k) · | ξk(n)-ξk(m)|/(1 + | ξk(n)-ξk(m)| ) ≤ρ(x n, x m) → 0 (m, n→∞)., 因此| ξk(n)-ξk(m)| → 0 (m, n→∞). 故{ξk(n)}n ≥ 1是 (或 )中的Cauchy列,因此也是收敛列. 设ξk(n)→ξk ( n→∞),并设x = ( ξ1, ξ2, ..., ξk, ... ),则x∈S. 下面证明ρ(x n, x)→ 0 ( n→∞). ?ε > 0,存在K∈ +,使得∑k > K (1/2k) < ε /2. 又存在N∈ +,使得?n∈ +,当n > N时,?k≤K都有| ξk(n)-ξk | < ε /2. 此时,ρ(x n, x) = ∑k ≥ 1 (1/2k) · | ξk(n)-ξk |/(1 + | ξk(n)-ξk | ) = ∑k ≤K (1/2k)·| ξk(n)-ξk |/(1 + | ξk(n)-ξk | ) + ∑k > K (1/2k)·| ξk(n)-ξk |/(1 + | ξk(n)-ξk | ) ≤∑k ≤K (1/2k)·| ξk(n)-ξk | + ∑k > K (1/2k) < (ε /2) ·∑k ≤K (1/2k) + ε /2 < ε /2 + ε /2 = ε. 所以,x n→x ( n→∞). 因此S中的Cauchy列都是收敛列,故S为完备距离空间. 1.2.2 在一个度量空间(X, ρ)上,求证:基本列是收敛列,当且仅当其中存在一串收敛子列. 证明:必要性是显然的,只证明充分性. 设{x n}是X中的一个Cauchy列,且{x n}有一个收敛子列{x n(k)},记x n(k) →x. ?ε > 0,存在N∈ +,使得?m, n≥N都有ρ(x n, x m) < ε /2.

不确定性知识发现的粗糙集理论与方法-西南交大科研院-西南交通大学

自然科学奖推荐项目公示内容 1、项目名称: 不确定性知识发现的粗糙集理论与方法 2、推荐单位: 重庆市科学技术委员会 3、项目简介: 知识发现与数据挖掘(KDD)概念由U. Fayyad教授1989年提出。第一届KDD国际会议1995年召开后,国际上掀起了知识发现研究热潮。近年来云计算、物联网、社交网络等迅猛发展,数据急剧增长,大数据的出现进一步使知识发现研究成为科技界、工业界、金融界等社会各界关注的焦点。数据已从简单的处理对象转变成为基础性资源。如何从数据中高效发现有价值的知识,成为世界各国竞争的战略性问题之一。其中,不确定性知识发现的难度大、价值高,从知识发现研究开始就成为了一个关键瓶颈问题。 项目第一完成人早在上世纪九十年代就开始在国内开展粗糙集研究,利用在西安交大和西南交大作兼职教授的机会,组织两校吴伟志、米据生、李天瑞等一大批青年博士开展粗糙集不确定性知识发现研究,形成一支稳定精干的青年研究队伍。在科技部、教育部、基金委等部委14项科研项目持续资助下,经过十多年不懈攻关,在不确定性知识发现的粗糙集基础理论和模型算法上取得重要突破,并在解决流程工业控制、遥感图像处理、生物信息处理等应用领域的关键问题中发挥了重要作用,部分成果获重庆市自然科学一等奖。本项目的关键科学发现点为: ①首次发现粗糙集代数描述形式与信息熵描述形式之间呈包含关系,修正了学术界长期公认的二者之间等价这一经典结论,建立了不确定性知识的粗糙集近似逼近理论,为不确定性知识发现中的知识表达、特征度量、特征选择奠定了理论基础。 ②创建不确定性知识表达的多粒度粗糙集模型,刻画了人脑多粒度认知机理,揭示了知识粒度的演化规律,实现了复杂问题的多粒度求解,突破了传统数据挖掘仅能获取单粒度知识的局限。 ③首次建立不确定性知识近似逼近中特征选择的充分性判据和必要性判据,实现了最优特征选择这一NP-hard问题的粗糙集近似求解。 ④创建数据特征驱动的知识发现模型,通过不确定性知识的特征度量,实现了多源异构、海量动态数据的渐进式高效知识发现。 本项目出版著作9部、国际会议文集13部,获发明专利4项,发表SCI/EI高水平论文90/305篇。20篇主要论著SCI他引406次,共计他引3553次。SCI他引杂志包括IEEE TKDE、IEEE TFS、IEEE IS、KBS、Artificial Intelligence、Information

度量空间中的紧致性

定义7.5.1 定理7.5.2 作业 §7.5度量空间中的紧致性 本节重点:掌握度量空间中的紧致空间、可数紧致空间、序列紧致空间、列紧空间之间的关系. 由于度量空间满足第一可数性公理,同时也是空间,所以上一节中的讨论(参见表7.2)因此我们,一个度量空间是可数紧致空间当且仅当它是列紧空间,也当且仅当它是序列紧致空间.但由于度量空间不一定就是Lindeloff空间,因此从定理7.4.2并不能断定列紧的度量空间是否一定就是紧致空间.本节研究这个问题并给出肯定的回答. 定义7.5.1 设A是度量空间(X,ρ)中的一个非空子集.集合A的直径diam(A)定义为 diam(A)=sup{ρ(x,y)|x,y∈A}若A是有界的 diam(A)=∞ 若A是无界的 定义7.5.2 设(X,ρ)是一个度量空间,A是X的一个开覆盖.实数λ>0称为开覆盖A的一个Lebesgue数,如果对于X中的任何一个子集A,只要diam(A)<λ,则 A包含于开覆盖A的某一个元素之中. Lebesgue数不一定存在.例如考虑实数空间R的开覆盖 {(-∞,1)}∪{(n-1/n,n+1+1/n) |n∈Z+} 则任何一个正实数都不是它的Lebesgue数.(请读者自补证明.) 定理7.5.1[Lebesgue数定理] 序列紧致的度量空间的每一个开覆盖有一个Lebesgue数. 证明设X是一个序列紧致的度量空间,A是X的一个开覆盖.假若开覆盖A没有Lebesgue 数,则对于任何i∈Z+,实数1/i不是A的Lebesgue数,所以X有一个子集E,使得diam(E)<1/i并且Ei不包含于A的任何元素之中.

空间计量经济学分析

空间计量经济学分析 空间依赖、空间异质性 ?传统的统计理论是一种建立在独立观测值假定基础上的理论。然而,在现实世界中,特别是遇到空间数 据问题时,独立观测值在现实生活中并不是普遍存在的(Getis, 1997)。 ?对于具有地理空间属性的数据,一般认为离的近的变量之间比在空间上离的远的变量之间具有更加密切 的关系(Anselin & Getis,1992)。正如著名的Tobler地理学第一定律所说:“任何事物之间均相关,而离的较近事物总比离的较远的事物相关性要高。”(Tobler,1979) ?地区之间的经济地理行为之间一般都存在一定程度的Spatial Interaction,Spatial Effects):Spatial Dependence and Spatial Autocorrelation)。 ?一般而言,分析中涉及的空间单元越小,离的近的单元越有可能在空间上密切关联(Anselin & Getis, 1992)。 ?然而,在现实的经济地理研究中,许多涉及地理空间的数据,由于普遍忽视空间依赖性,其统计与计量 分析的结果值得进一步深入探究(Anselin & Griffin, 1988)。 ?可喜的是,对于这种地理与经济现象中常常表现出的空间效应(特征)问题的识别估计,空间计量经济 学提供了一系列有效的理论和实证分析方法。 ?一般而言,在经济研究中出现不恰当的模型识别和设定所忽略的空间效应主要有两个来源(Anselin, 1988):空间依赖性(Spatial Dependence)和空间异质性(Spatial Heterogeneity)。 空间依赖性 ?空间依赖性(也叫空间自相关性)是空间效应识别的第一个来源,它产生于空间组织观测单元之间缺乏 依赖性的考察(Cliff & Ord, 1973)。 ?Anselin & Rey(1991)区别了真实(Substantial)空间依赖性和干扰(Nuisance)空间依赖性的不同。 ?真实空间依赖性反映现实中存在的空间交互作用(Spatial Interaction Effects), ?比如区域经济要素的流动、创新的扩散、技术溢出等, ?它们是区域间经济或创新差异演变过程中的真实成分,是确确实实存在的空间交互影响, ?如劳动力、资本流动等耦合形成的经济行为在空间上相互影响、相互作用,研发的投入产出行为及政策 在地理空间上的示范作用和激励效应。 ?干扰空间依赖性可能来源于测量问题,比如区域经济发展过程研究中的空间模式与观测单元之间边界的 不匹配,造成了相邻地理空间单元出现了测量误差所导致。 ?测量误差是由于在调查过程中,数据的采集与空间中的单位有关,如数据一般是按照省市县等行政区划 统计的,这种假设的空间单位与研究问题的实际边界可能不一致,这样就很容易产生测量误差。 ?空间依赖不仅意味着空间上的观测值缺乏独立性,而且意味着潜在于这种空间相关中的数据结构,也就 是说空间相关的强度及模式由绝对位置(格局)和相对位置(距离)共同决定。 ?空间相关性表现出的空间效应可以用以下两种模型来表征和刻画:当模型的误差项在空间上相关时,即 为空间误差模型;当变量间的空间依赖性对模型显得非常关键而导致了空间相关时,即为空间滞后模型(Anselin,1988)。 空间异质性 ?空间异质性(空间差异性),是空间计量学模型识别的第二个来源。 ?空间异质性或空间差异性,指地理空间上的区域缺乏均质性,存在发达地区和落后地区、中心(核心) 和外围(边缘)地区等经济地理结构,从而导致经济社会发展和创新行为存在较大的空间上的差异性。 ?空间异质性反映了经济实践中的空间观测单元之间经济行为(如增长或创新)关系的一种普遍存在的不 稳定性。 ?区域创新的企业、大学、研究机构等主体在研发行为上存在不可忽视的个体差异,譬如研发投入的差异 导致产出的技术知识的差异, ?这种创新主体的异质性与技术知识异质性的耦合将导致创新行为在地理空间上具有显著的异质性差异, 进而可能存在创新在地理空间上的相互依赖现象或者创新的局域俱乐部集团。 ?对于空间异质性,只要将空间单元的特性考虑进去,大多可以用经典的计量经济学方法进行估计。 ?但是当空间异质性与空间相关性同时存在时,经典的计量经济学估计方法不再有效,而且在这种情况下,

第八章欧氏空间

第九章欧氏空间 [教学目标] 1理解欧氏空间、内积、向量的长度、夹角、正交和度量矩阵的概念。2理解正交组、正交基、标准正交基和正交矩阵的概念,理解n维欧氏空间的标准正交基的存在性和标准正交基之间过渡矩阵的性质,重点掌握施密特正交化方法。 3理解欧氏空间同构的定义和同构的充要条件。 4理解正交变换的定义及正交变换与正交矩阵的关系,掌握正交变换的几个等价条件。 5理解子空间的正交和正交补的概念,掌握正交补的结构和存在唯一性。 6理解对称变换的定义和对称变换与对称矩阵之间的关系,掌握实对称矩阵特征值的性质,重点掌握用正交变换把实对称矩阵及实二次型 化为对角形和标准形的方法。 [教学重难点] 欧氏空间的定义,求向量的长度和夹角的方法,施密特正交化方法,正交变换与正交矩阵的关系,用正交变换把实对称矩阵及实二次型化为对角形和标准形的方法。 [教学方法]讲授,讨论和习题相结合。 [教学时间]18学时。 [教学内容]

欧氏空间的定义和性质,标准正交基,同构,正交变换,子空间,对称矩阵的标准形,向量到子空间的矩离、最小二乘法*。 [教学过程] §1 定义、性质 定义1:设V 是R 上的一个线性空间,在V 上定义了一个二元实函数,称为内积,记为),(βα,如果它具有以下性质: (1)),(),(αββα= (2)),(),(βαβαk k = (3)),(),(),(γβγαγβα+=+ (4)0),(≥αα当且仅当0=α时0),(=αα。 这里R k V ∈∈,,,γβα,则V 称为欧几里得空间(简称欧氏空间) 例1、例2。 练习:394P 1(1)。 定义2:非负实数),(αα称为α的长度,记为α 性质:ααk k = 单位向量:长度为1的向量。 α单位化: α α -Cauchy Буняковский不等式:βα,?,有 βαβα≤),( 等号成立当且仅当βα,线性相关。 在不同内积中,-Cauchy Буняковский不等式的具体例子: 例1中,2 2221222212211n n n n b b b a a a b a b a b a ++++++≤+++

拓扑学第四章-紧致性

第四章 紧致性 紧致性是数学分析中的重要概念。尽管这个概念出现的较早,但是,从本质上讲,它是一个拓扑概念,也是一个最基本的拓扑性质。 我们先回顾一下度量空间紧性(列紧性)概念(在实直线上,紧性是描述闭区间性质的,而在实分析中,闭区间具有良好的性质)。 §4-1 度量空间(,)X d 中紧性(简单复习) 定义1 设A 是(,)X d 的一个子集。如果A 中任一无穷点列有子列收敛于X 中的一点,则称A 是相对列紧的; 如果A 中每个收敛子列的极限点都属于A ,则称A 是列紧的; 如果(,)X d 本身是列紧的,则称为列紧空间。 注释:这里的紧性之所以成为列紧,是因为用序列收敛描述的。 ●下面的结论是显然的(由于都是过去的知识,所以不加证明的给出) (1) 有限子集总是列紧的。 (2) 列紧空间是完备的(但,完备空间未必是列紧的)。 (3) 若A 是(,)X d 的列紧子集,则A 是(,)X d 的有界闭集。 (4) 在一般度量空间中,(3)成立,反之未必;如果(,)X d 是列紧空间,则 A 列紧 ? A 是闭集。 (5) 列紧的度量空间必是可分的。 ●进一步分析:列紧性能用来刻画闭集,但是,它是利用“序列”形式刻画的。人们找出了一种非序列刻画的方式。 定义2 设A 是(,)X d 的一个子集。 是X 的一族开集,满足U U A ∈?,则称为A 在X 中的开覆盖; 若中只有有限个子集,称为有限开覆盖; 若X 本身的每一开覆盖都有一有限子覆盖,则称X 为紧致空间(有的书成为紧空间) ★ 理论上可以证明:对于度量空间来说,列紧性与紧致性是等价的。即列紧空间?紧致空间(这在泛函分析书中都有介绍)。 §4-2 拓扑空间的紧性

2018年度医学统计学试卷及其规范标准答案

医学统计学试题及答案 习题 《医学统计学》第二版(五年制临床医学等本科生用) (一)单项选择题 1.观察单位为研究中的( d )。 A.样本 B. 全部对象 C.影响因素 D. 个体 2.总体是由( c )。 A.个体组成 B. 研究对象组成 C.同质个体组成 D. 研究指标组成 3.抽样的目的是(b )。 A.研究样本统计量 B. 由样本统计量推断总体参数 C.研究典型案例研究误差 D. 研究总体统计量 4.参数是指(b )。 A.参与个体数 B. 总体的统计指标 C.样本的统计指标 D. 样本的总和 5.关于随机抽样,下列那一项说法是正确的( a )。 A.抽样时应使得总体中的每一个个体都有同等的机会被抽取 B.研究者在抽样时应精心挑选个体,以使样本更能代表总体 C.随机抽样即随意抽取个体 D.为确保样本具有更好的代表性,样本量应越大越好 6.各观察值均加(或减)同一数后( b )。 A.均数不变,标准差改变 B.均数改变,标准差不变 C.两者均不变 D.两者均改变 7.比较身高和体重两组数据变异度大小宜采用( a )。 A.变异系数 B.差 C.极差 D.标准差 8.以下指标中(d)可用来描述计量资料的离散程度。 A.算术均数 B.几何均数 C.中位数 D.标准差 9.偏态分布宜用(c)描述其分布的集中趋势。 A.算术均数 B.标准差 C.中位数 D.四分位数间距 10.各观察值同乘以一个不等于0的常数后,(b)不变。 A.算术均数 B.标准差 C.几何均数 D.中位数 11.( a )分布的资料,均数等于中位数。 A.对称 B.左偏态 C.右偏态 D.偏态 12.对数正态分布是一种( c )分布。

13 度量空间的可分性与完备性

1.3度量空间的可分性与完备性 在实数空间R中,有理数处处稠密,且全体有理数是可列的,我们称此性质为实数空间R 的可分性.同时,实数空间R还具有完备性,即R中任何基本列必收敛于某实数.现在我们将这些概念推广到一般度量空间. 1.3.1 度量空间的可分性 定义1.3.1设X是度量空间,,A B X ?,如果B中任意点x B ∈的任何邻域(,) O xδ内都含有A的点,则称A在B中稠密.若A B ?,通常称A是B的稠密子集. 注1:A在B中稠密并不意味着有A B ?.例如有理数在无理数中稠密;有理数也在实数中稠密.无理数在有理数中是稠密的,无理数在实数中也是稠密的,说明任何两个不相等的实数之间必有无限多个有理数也有无限多个无理数. 定理1.3.1设(,) X d是度量空间,下列命题等价: (1) A在B中稠密; (2) x B ?∈,{} n x A ??,使得lim(,)0 n n d x x →∞ =; (3) B A ?(其中A A A ' =,A为A的闭包,A'为A的导集(聚点集)); (4) 任取0 δ>,有(,) x A B O xδ ∈ ?.即由以A中每一点为中心δ为半径的开球组成的集合覆盖B. 证明按照稠密、闭包及聚点等相关定义易得. 定理1.3.2稠密集的传递性设X是度量空间,,, A B C X ?,若A在B中稠密,B在C 中稠密,则A在C中稠密. 证明由定理1.1知B A ?,C B ?,而B是包含B的最小闭集,所以B B A ??,于是有C A ?,即A在C中稠密.□ 注2:利用维尔特拉斯定理可证得{定理(Weierstrass多项式逼近定理) 闭区间[,] a b上的每一个连续函数都可以表示成某一多项式序列的一致收敛极限.} (1)多项式函数集[,] P a b在连续函数空间[,] C a b中稠密. 参考其它资料可知:

不确定性知识发现的粗糙集理论与方法

经 自然科学奖推荐项目公示内容 1、项目名称: 不确定性知识发现的粗糙集理论与方法 2、推荐单位: 重庆市科学技术委员会 3、项目简介: 知识发现与数据挖掘(KDD)概念由 U . Fayyad 教授 1989 年提出。第一届 K DD 国 际会议 1995 年召开后,国际上掀起了知识发现研究热潮。近年来云计算、物联网、 社交网络等迅猛发展,数据急剧增长,大数据的出现进一步使知识发现研究成为科 技界、工业界、金融界等社会各界关注的焦点。数据已从简单的处理对象转变成为 基础性资源。如何从数据中高效发现有价值的知识,成为世界各国竞争的战略性问 题之一。其中,不确定性知识发现的难度大、价值高,从知识发现研究开始就成为 了一个关键瓶颈问题。 项目第一完成人早在上世纪九十年代就开始在国内开展粗糙集研究,利用在西 安交大和西南交大作兼职教授的机会,组织两校吴伟志、米据生、李天瑞等一大批 青年博士开展粗糙集不确定性知识发现研究,形成一支稳定精干的青年研究队伍。 在科技部、教育部、基金委等部委14 项科研项目持续资助下, 过十多年不懈攻关, 在不确定性知识发现的粗糙集基础理论和模型算法上取得重要突破,并在解决流程 工业控制、遥感图像处理、生物信息处理等应用领域的关键问题中发挥了重要作用, 部分成果获重庆市自然科学一等奖。本项目的关键科学发现点为: ①首次发现粗糙集代数描述形式与信息熵描述形式之间呈包含关系,修正了学 术界长期公认的二者之间等价这一经典结论,建立了不确定性知识的粗糙集近似逼 近理论,为不确定性知识发现中的知识表达、特征度量、特征选择奠定了理论基础。 ②创建不确定性知识表达的多粒度粗糙集模型,刻画了人脑多粒度认知机理, 揭示了知识粒度的演化规律,实现了复杂问题的多粒度求解,突破了传统数据挖掘 仅能获取单粒度知识的局限。 ③首次建立不确定性知识近似逼近中特征选择的充分性判据和必要性判据,实 现了最优特征选择这一NP-hard 问题的粗糙集近似求解。 ④创建数据特征驱动的知识发现模型,通过不确定性知识的特征度量,实现了 多源异构、海量动态数据的渐进式高效知识发现。 本项目出版著作9 部、国际会议文集13 部,获发明专利4 项,发表SCI/EI 高水 平论文 90/305 篇。20 篇主要论著SCI 他引 406 次,共计他引3553 次。SCI 他引杂志 包括 IEEE TKDE 、IEEE TFS 、IEEE IS 、KBS 、Artificial Intelligence 、Information

拓扑空间、开集、闭集、闭包、聚点、邻域

第一章拓扑空间与拓扑不变量 数学分析中的连续函数的定义与和值域都是欧氏空间(直线、平面或空间)或是其中的一部分。本章将首先把连续函数的定义域和值域的主要特征抽象出来用以定义度量空间,将连续函数的主要特征抽象出来用以定义度量空间的连续映射。然后将两者再度抽象,给出拓扑空间和拓扑空间之间的连续映射。随后逐步提出拓扑空间的一些基本问题如邻域、开集、闭集、闭包、聚点、导集、内部、边界、序列、极限等。进一步引入紧致性、连通性、可数性与分离性等重要的拓扑不变性 §1.1拓扑空间、开集、闭集、聚点、闭包、邻域 一、问题的引入 数学分析里我们知道,在连续函数的定义中只涉及距离这个概念,定义域是一维欧氏空间,即实数空间,两点之间的距离d(x,y)=|x-y|,即两两实数之差的绝对值,定义域是n维欧氏空间,两点x=(x1 ,x2,…,x n),Y=(y1,y2,…,y n) 之间的距离 d(x,y)= 。 无论是几维空间,它的距离都有下面的性质: 1. d(x,y)≥0 , ?x,y∈n R; 2. d(x,y) = 0 ?x = y ; 3. d(x,y) = d(y,x) ?x,y∈n R; 4. d(x,z) ≤d(x,y) + d(y,z) , ?x,y,z∈n R; 这些性质反映了距离的特征。 将n R推广为一般的集合,我们由距离可以抽象出度量以及度量空间的定义。(一)度量空间 1.定义 定义1 设X是一个集合,ρ:X×X→R ,如果对于任何x,y,z∈X,有 ①(正定性)ρ(x,y)≥0 并且ρ (x,y) = 0 ?x = y ; ②(对称性)ρ (x,y) = ρ (y,x) ; ③(三角不等式)ρ (x,z) ≤ρ (x,y) + ρ (y,z) 则称ρ是集合X中的一个度量。

拓扑空间与度量空间性质异同浅析论文

拓扑空间与度量空间性质异同浅析摘要:拓扑空间是度量空间的延伸,是用抽象化的语言来阐述相关概念,蕴含着丰富的性质。本文将拓扑空间中一些性质与度量空间中的一些性质做了一些比较,特别是对拓扑空间中相关反例进行了研究。 关键词:拓扑空间,度量空间,可分性 拓扑空间和度量空间是数学专业的最基本内容之一,研究他们的基本定义和相关性质是后续研究的重要基础,下面我们将其相关定义和性质进行梳理。 一、相关定义 拓扑空间的定义如下: 定义1. 设x是一非空集合,x的一个子集族称为x的一个拓扑,如果它满足: (1)都包含在中 (2)中任意多个成员的并集仍在中 (3)中有限多个成员的交集仍在中 度量空间的定义如下: 定义2. 集合x上的一个度量是一个映射:,它满足 (1)正定性. , ,, 当 (2)对称性. , (3)三角不等式. , 当集合x上规定了一个度量后,称为度量空间。从相关定义中看出,若将度量空间中的开子集取作球形邻域,则拓扑空间是度量空间的推广。常见的度量空间有下面的一些例子:

例1:欧氏空间赋予距离拓扑后为度量空间。 例2:空间x赋予如下度量:,则x为度量空间。 例3:对实数上的闭区间上连续函数空间,我们可以赋予如下最大模范数诱导的度量,即任意两个连续函数的的距离为这两函数差的最大模,同样对于可导函数,光滑函数都有类似的定义。 例4:在辛几何中,在哈密顿微分同胚群中hofer曾定义了如下度量: 从其诱导的范数称为hofer范数,该范数是研究辛拓扑、辛嵌入的强有力武器。 二、相关性质 度量空间中许多性质都发源于欧氏空间,它们满足、、、分离公理与、可数公理,但有许多性质到拓扑空间就不再保持。例如可分性就不再保持。 命题1:可分度量空间的子空间也是可分的。 证明:不妨假设x是可分的度量空间,a是x的子空间,b为x的可数稠密子集。下面证明为a的可数稠密子集。 首先证明为a的可数子集。因为b为可数子集,可数集的子集仍为可数集,所以为a的可数子集。 其次证明为a的稠密子集,此时需要在子空间拓扑下讨论,即需证明a中任何开集与的交不空,由子空间拓扑定义,a中开集u为x中开集p与a的交,即.又因为b为x的稠密子集,即x的任何开集与b的交非空。所以,从而得证。 但可分拓扑空间的子空间一般是不可分的,例子参见[1]。

泛函分析中的度量空间

泛函分析主要内容 泛函分析是20世纪30年代形成的数学分科。是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 1、度量空间 定义:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有 (I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当 x = y; (II)(对称性)d(x,y)=d(y,x); (III)(三角不等式)d(x,z)≤d(x,y)+d(y,z) 则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。 例:实数带有由绝对值给出的距离函数d(x, y) = |y?x|,和更一般的欧几里得n维空间带有欧几里得距离是完备度量空间 2、赋范线性空间 泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔

伯特空间。 例:任何赋范向量空间通过定义d(x, y) = ||y?x|| 也是度量空间。 (如果这样一个空间是完备的,我们称之为巴拿赫空间)。例:曼哈顿范数引发曼哈顿距离,这里在任何两点或向量之间的距离是在对应的坐标之间距离的总和。 3、希尔伯特空间 希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。 4、巴拿赫空间 巴拿赫空间理论(Banach space)是192O年由波兰数学家巴拿赫(S.Banach)一手创立的,数学分析中常用的许多空间都是巴拿赫空间及其推广,它们有许多重要的应用。大多数巴拿赫空间是无穷维空间,可看成通常向量空间的无穷维推广。

度量空间的可分性与完备性

1.3 度量空间的可分性与完备性 在实数空间R 中,有理数处处稠密,且全体有理数是可列的,我们称此性质为实数空间R 的可分性.同时,实数空间R 还具有完备性,即R 中任何基本列必收敛于某实数.现在我们将这些概念推广到一般度量空间. 1.3.1 度量空间的可分性 定义1.3.1 设X 是度量空间,,A B X ?,如果B 中任意点x B ∈的任何邻域(,)O x δ内都含有A 的点,则称A 在B 中稠密.若A B ?,通常称A 是B 的稠密子集. 注1:A 在B 中稠密并不意味着有A B ?.例如有理数在无理数中稠密;有理数也在实数中稠密.无理数在有理数中是稠密的,无理数在实数中也是稠密的,说明任何两个不相等的实数之间必有无限多个有理数也有无限多个无理数. 定理1.3.1 设(,)X d 是度量空间,下列命题等价: (1) A 在B 中稠密; (2) x B ?∈,{}n x A ??,使得lim (,)0n n d x x →∞ =; (3) B A ?(其中A A A '=U ,A 为A 的闭包,A '为A 的导集(聚点集)); (4) 任取0δ>,有(,)x A B O x δ∈?U .即由以A 中每一点为中心δ为半径的开球组成的集合 覆盖B . 证明 按照稠密、闭包及聚点等相关定义易得. 定理1.3.2 稠密集的传递性 设X 是度量空间,,,A B C X ?,若A 在B 中稠密,B 在C 中稠密,则A 在C 中稠密. 证明 由定理1.1知B A ?,C B ?,而B 是包含B 的最小闭集,所以B B A ??,于是有C A ?,即A 在C 中稠密.□ 注2:利用维尔特拉斯定理可证得{定理(Weierstrass 多项式逼近定理) 闭区间[,]a b 上的每一个连续函数都可以表示成某一多项式序列的一致收敛极限.} (1)多项式函数集[,]P a b 在连续函数空间[,]C a b 中稠密. 参考其它资料可知: (2)连续函数空间[,]C a b 在有界可测函数集[,]B a b 中稠密. (3)有界可测函数集[,]B a b 在p 次幂可积函数空间[,]p L a b 中稠密(1p ≤<+∞). 利用稠密集的传递性定理1.3.2可得: (4)连续函数空间[,]C a b 在p 次幂可积函数空间[,]p L a b 中稠密(1p ≤<+∞). 因此有[,][,][,][,]p P a b C a b B a b L a b ???. 定义1.3.2 设X 是度量空间,A X ?,如果存在点列{}n x A ?,且{}n x 在A 中稠密,则称A 是可分点集(或称可析点集).当X 本身是可分点集时,称X 是可分的度量空间.

《点集拓扑学》第7章 §7.5 度量空间中的紧致性

§7.5度量空间中的紧致性 本节重点:掌握度量空间中的紧致空间、可数紧致空间、序列紧致空间、列紧空间之间的关系. 由于度量空间满足第一可数性公理,同时也是空间,所以上一节中的讨论(参见表7.2)因此我们,一个度量空间是可数紧致空间当且仅当它是列紧空间,也当且仅当它是序列紧致空间.但由于度量空间不一定就是Lindeloff空间,因此从定理7.4.2并不能断定列紧的度量空间是否一定就是紧致空间.本节研究这个问题并给出肯定的回答. 定义7.5.1 设A是度量空间(X,ρ)中的一个非空子集.集合A的直径diam(A)定义为 diam(A)=sup{ρ(x,y)|x,y∈A}若A是有界的 diam(A)=∞ 若A是无界的 定义7.5.2 设(X,ρ)是一个度量空间,A是X的一个开覆盖.实数λ>0称为开覆盖A的一个Lebesgue数,如果对于X中的任何一个子集A,只要diam(A)<λ,则 A包含于开覆盖A的某一个元素之中. Lebesgue数不一定存在.例如考虑实数空间R的开覆盖 {(-∞,1)}∪{(n-1/n,n+1+1/n) |n∈Z+} 则任何一个正实数都不是它的Lebesgue数.(请读者自补证明.) 定理7.5.1[Lebesgue数定理] 序列紧致的度量空间的每一个开覆盖有一个Lebesgue数. 证明设X是一个序列紧致的度量空间,A是X的一个开覆盖.假若开覆盖A没有Lebesgue 数,则对于任何i∈Z+,实数1/i不是A的Lebesgue数,所以X有一个子集E,使得diam(E)<1/i并且Ei不包含于A的任何元素之中. 在每一个之中任意选取一个点,由于X是一个序列紧致空间,所以序列有一个收敛的子序列.由于A是X的一个开覆盖,故存在A∈A使得y∈A,并且存在实数ε>0使得球形邻域B(y,ε)A.由于,所以存在整数M >0使得当i>M时.令k为任意一个整数,使得k>M+2/ε,则对于任何 有

相关文档
最新文档