第六章 精馏系统

第六章 精馏系统
第六章 精馏系统

第六章精馏系统

一、工艺流程简介

脱丁烷塔是大型乙烯装置中的一部分。本塔将来自脱丙烷塔釜的烃类混合物(主要有C4、C5、C6、C7等),根据其相对挥发度的不同,在精馏塔内分离为塔顶C4馏分,含少量C5

馏分,塔釜主要为裂解汽油,即C5以上组分的其他馏分。因此本塔相当于二元精馏。

工艺流程为:来自脱丙烷塔的釜液,压力为0.78MPa, 温度为65℃(由TI-1指示),经进料手操阀V1和进料流量控制FIC-1,从脱丁烷塔(DA-405)的第21块塔板进入(全塔共有40块板)。在本塔提馏段第32块塔板处设有灵敏板温度检测及塔温调节器TIC-3(主调节器)与塔釜加热蒸汽流量调节器FIC-3(副调节器)构成的串级控制。

塔釜液位由LIC-1控制。塔釜液一部分经LIC-1调节阀作为产品采出,采出流量由FI-4指示,一部分经再沸器(EA-405A/B)的管程汽化为蒸汽返回塔底,使轻组分上升。再沸器采用低压蒸汽加热,釜温由TI-4指示。设置两台再沸器的目的是釜液可能含烯烃,容易聚合堵管。万一发生此种情况,便于切换。再沸器A的加热蒸汽来自FIC-3所控制的0.35MPa 低压蒸汽,通过入口阀V3进入壳程,凝液由阀V4排放。再沸器B的加热蒸汽亦来自FIC-3所控制的0.35MPa低压蒸汽,入口阀为V8,排凝阀为V9。塔釜设排放手操阀V24,当塔釜液位超高但不合格不允许采出时排放用(排放液回收)。塔顶和塔底分别设有取压阀V6和V7,引压至差压指示仪PDI-3,及时反映本塔的阻力降。此外塔顶设压力调节器PRC-2,塔底设压力指示仪PI-4,也能反映塔压降。

塔顶的上升蒸汽出口温度由TI-2指示,经塔顶冷凝器(EA-406)全部冷凝成液体,冷凝液靠位差流入立式回流罐(FA-405)。冷凝器以冷却水为冷剂,冷却水流量由FI-6指示,受控于PRC-2的调节阀,进入EA-406的壳程,经阀V23排出。回流罐液位由LIC-2控制。其中一部分液体经阀V13进入主回流泵GA405A,电机开关为G5A。泵出口阀为V12。回流泵输出的物料通过流量调节器FIC-2的控制进入塔顶。备用回流泵的入口阀为V15,出口阀为V14,泵电机开关是G5B。另一部分作为产品经入口阀V16,用主泵GA-406A送下道工序处理。主泵电机开关为G6A,出口阀为V17。顶采备用泵GA-406B的入口阀为V18,电机开关为G6B,泵出口阀为V19。顶采泵输出的物料由回流罐液位调节器LIC-2控制,以维持回流罐的液位。回流罐底设排放手操阀V25,用于当液位超高但不合格不允许采出时排放用(排放液回收)。

手操阀VC4是C4充压阀。系统开车时塔压低会导致进料的前段时间内入口部分因进料大量闪蒸而过冷,局部过冷会损坏塔设备。进料前用C4充压可防止闪蒸。

二、流程图说明

1.流程图画面

详见图8-1。

图8-1 流程图画面

2.流程图中各设备说明

DA-405 脱丁烷塔GA-405A/B 回流泵

FA-405 回流罐EA-405A/B 再沸器

EA-406 冷凝器GA-406A/B 塔顶产品采出泵3.手操器

V24 塔釜泄液阀V25 回流罐泄液阀

VC4 C4充压阀

4.开关及快开阀门

V1 进料前阀V3 EA-405A入口阀V4 EA-405A出口阀V6、V7 压差阀

V8 EA-405B入口阀V9 EA-405B出口阀V12 GA-405A出口阀V13 GA-405A入口阀V14 GA-405B 出口阀V15 GA-405B入口阀V16 GA-406A入口阀V17 GA-406A出口阀V18 GA-406B入口阀V19 GA-406B出口阀V23 冷却水出口阀N2 氮气置换

GY 公用工程具备YB 仪表投用

5.调节阀

V2 进料调节阀V5 塔釜采出调节阀

V11 再沸器蒸气调节阀V10 回流量调节阀

V20 放火炬调节阀V21 塔顶采出调节阀

V22 冷却水调节阀

三、自控系统简介

1.质量调节

本精馏过程的质量调节采用以提馏段灵敏温度作为主参数,以再沸器加热蒸气的流量作为调节参数,这样就组成了一个由灵敏板温度和再沸器加热蒸汽流量的串级调节系统,以实现对塔的间接分离质量控制。

2.压力控制

在正常的压力情况下,由塔顶冷凝器的冷却水量来调节压力(PRC-2)。高于操作压力0.40 MPa(表压)时, 改用放空方法控制(PIC-01)。此种控制称为超驰控制(或取代控制)。3.液位调节

塔釜液位由调节塔釜的产品采出量来维持恒定。具有高低液位报警。回流罐液位由调节塔顶产品送出量来维持恒定,设有高低液位报警。LIC-1和LIC-2构成本塔物料平衡控制。4.流量调节

进料量和回流量都采用单回路的流量控制。再沸器加热介质流量,由灵敏板温度调节和蒸气流量调节构成串级调节系统。

5.报警说明

LIC-1 塔釜液位>80% (H)

LIC-1 塔釜液位<30% (L)

LIC-2 回流罐液位>80% (H)

LIC-2 回流罐液位<30% (L)

PIC-1 塔顶压力>0.4MPa (H)

TIC-3 灵敏板温度<5.0℃(L)

TIC-3 灵敏板温度>79℃(H)

PDI-3 塔压差>0.1MPa (H)

四、指示与控制仪表说明

位号名称和量程正常值

TI-1 进料温度(0~100℃) 65 ℃

TI-6 回流温度(0~100℃) 38 ℃

TI-4 塔釜温度(0~200℃) 121 ℃

TI-2 塔顶温度(0~100℃) 46 ℃

TI-7 冷却水入口温度(0~100℃) 30 ℃

FH 放火炬流量(0~1000 kmol/h) 0.0 kmol/h

PI-4 塔釜压力(0~1MPa) 0.42 MPa

FI-4 塔釜采出流量(0~400 kmol/h) 130 kmol/h

FI-5 塔顶采出流量(0~600 kmol/h) 240 kmol/h

FI-6 冷却水流量(0~400 kmol/h) 1850 kmol/h

FIC-1 进料量调节器(0~800 kmol/h) 370 kmol/h

FIC-2 回流量调节器(0~800 kmol/h) 350 kmol/h

LIC-1 塔釜液位调节器(0~100%) 55 %

LIC-2 回流罐液位调节器(0~100%) 55 %

PIC-1 塔压调节器(高压调节)(0~1MPa) 0.40 MPa

PRC-2 塔压调节器(正常调节)(0~1MPa) 0.35 MPa

TIC-3 灵敏板温度调节器(0~100℃) 78 ℃

FIC-3 再沸器蒸气流量调节器(0~800 kmol/h) 264 kmol/h

PI-5 蒸气压力(0~1MPa) 0.35 MPa

TI-5 蒸气温度(0~200℃) 135 ℃

AI-1 塔顶C5含量(0~1.0%) <0.5 %

AI-2 塔釜C4含量(0~10.0%) <1.5 %

TDI-8 塔温差>5 ℃

PDI-3 塔压差0.07 MPa

五、操作说明

为了提高仿真训练的效率,仿真软件的时间常数设计得比真实系统小,因此运行节奏比真实系统快得多。大型工业化精馏塔开车时温度,特别是组分的变化通常较慢,如果按真实系统设计时间常数,仿真训练时间将拉得很长。

本精馏塔的全部操作和控制都可在流程图画面G1中进行。

1.单塔冷态开车

单塔冷态开车和多塔串联冷态开车在方法上的主要区别是:单塔开车时允许在进料达到一定的塔釜液位时暂停进料,以便有充分的时间调整塔的运行状态。而多塔串联冷态开车时,各塔的进料往往是前塔的塔釜或塔顶的出料。因此进料量仅允许适当减小,但不能停止,否则会干扰相关的塔,导致停车。

精馏塔开车前应当完成如下主要准备工作:管线及设备试压;拆除盲板;管线及设备氮气吹扫和氮气置换;检测及控制仪表检验与校零;公用工程投用;系统排放和脱水等。本软件简化为以下①至④步操作。

①开车前的准备工作:将各阀门关闭。各调节器置手动,且输出为零。

②开“N2”开关,表示氮气置换合格。

③开“G.Y.”开关,表示公用工程具备。

④开“Y.B.”开关,表示仪表投用。

⑤开C4充压阀VC4,待塔压PRC-2达0.31MPa 以上, 关VC4,防止进料闪蒸,使塔设备局

部过冷(此步不完成,后续评分为零)。

⑥开冷凝器EA-406的冷却水出口阀V23。

⑦开差压阀V6和V7。

⑧开进料前阀V1。手动操作FIC-1的输出约20%(进料量应大于100kmol/h),进料经过

一段时间在提馏段各塔板流动和建立持液量的时间迟后,塔釜液位LIC-1上升。由于进料压力达0.78 MPa,温度为65℃,所以进塔后部分闪蒸使塔压上升。

⑨通过手动PRC-2输出(即冷却水量),控制塔顶压力在0.35MPa 左右,投自动。

⑩当塔釜液位上升达60%左右,暂停进料。开再沸器EA-405A的加热蒸汽入口阀V3和出口阀V4。

⑾手动开加热蒸汽量FIC-3的输出约20%,使塔釜物料温度上升直到沸腾。塔釜温度低于约108℃的阶段为潜热段,此时塔顶温度上升较慢,回流罐液位也无明显上升。

⑿注意当塔釜温度高于108℃后,塔顶温度及回流罐液位明显上升。说明塔釜物料开始沸腾。为了防止回流罐抽空,当回流罐液位上升至10%左右,开GA405A泵的入口阀V13,启动泵G5A(GA405A),然后开泵出口阀V12。手动FIC-2的输出大于50%,进行全回流。

回流量应大于300 kmol/h。

⒀调整塔温进行分离质量控制。此时塔灵敏板温度TIC-3大约为69~72℃左右。缓慢调整塔釜加热量FIC-3,以每分钟0.5℃提升TIC-3直到78℃(实际需数小时)。缓慢提升温度的目的是使物料在各塔板上充分进行汽液平衡,将轻组分向塔顶升华,将重组分向塔釜沉降。当TIC-3的给定值升至78℃时,将灵敏板温度控制TIC-3投自动(主调节器),将FIC-3投自动(副调节器),然后两调节器投串级。同时观察塔顶C5含量 AI-1和塔底C4含量AI-2,应当趋于合格。同时注意确保塔釜液位LIC-1和回流罐液位 LIC-2不超限(当塔顶AI-1不合格且LIC-2大于80%,应及时开阀门V25排放。同理,当塔釜AI-2不合格且LIC-1大于80%,应及时开阀门V24排放)。

⒁此刻塔顶及塔釜液位通常尚未达到50%,重开进料前阀V1,手动操作FIC-1的输出。可逐渐提升进料量,由于塔压及塔温都处于自动控制状态,塔釜加热量和塔顶冷却量会随进料增加而自动跟踪提升。最终进料流量达到370 kmol/h时将 FIC-1投自动。

⒂手动FIC-2的输出将回流量提升至350 kmol/h左右,投自动。

⒃塔顶采出:提升进料量的同时,应监视回流罐液位。当塔顶C5含量AI-1低于0.5% 且

LIC-2达到50%左右时,先开V16阀,开泵G6A(GA406A),再开泵出口阀V17。手动调节LIC-2的输出,当液位调至50%时投自动。

⒄塔底采出:提升进料量的同时,应监视塔釜液位。当塔底C4含量AI-2低于1.5% 且

LIC-2达到50%左右时,手动调节LIC-1的输出,当液位调至50%时投自动。

⒅将塔顶压力调节器PRC-2和PIC-1投超驰(用投串级代替)。

⒆微调各调节器给定值,使精馏塔达到设计工况:

FIC-1 370 kmol/h

FIC-2 350 kmol/h

LIC-1 50 %

LIC-2 50 %

TIC-3 78 ℃

PRC-2 0.35 MPa

AI-1 <0.5 %

AI-2 <1.5 %

2.多塔串联冷态开车

精馏塔开车前应当完成如下主要准备工作:管线及设备试压;拆除盲板;管线及设备氮气吹扫和氮气置换;检测及控制仪表检验与校零;公用工程投用;系统排放和脱水等。本软件简化为以下①至④步操作。

①开车前的准备工作:将各阀门关闭,各调节器置手动,且输出为零。

②开“N2”开关,表示氮气置换合格。

③开“G.Y.”开关,表示公用工程具备。

④开“Y.B.”开关,表示仪表投用。

⑤开C4充压阀VC4,待塔压PRC-2达0.31MPa 以上, 关VC4。防止进料闪蒸使塔设备局部

过冷(此步不完成,后续评分为零)。

⑥开冷凝器EA-406的冷却水出口阀V23。

⑦开差压阀V6和V7。

⑧开进料前阀V1。手动操作FIC-1的输出约20%(进料量应大于100kmol/h),进料经过

一段时间在提馏段各塔板流动和建立持液量的迟后,塔釜液位LIC-1上升。由于进料压力达0.76 MPa,温度为65℃,所以进塔后部分闪蒸使塔压上升。

⑨通过手动PRC-2输出(即冷却水量),控制塔顶压力在0.35MPa 左右,投自动。

⑩当塔釜液位上升达15%左右,开再沸器EA-405A的加热蒸汽入口阀V3和出口阀V4。

⑾手动开加热蒸汽量FIC-3的输出约20%,使塔釜物料温度上升直到沸腾。塔釜温度低于约108℃的阶段为潜热段,此时塔顶温度上升较慢,回流罐液位也无明显上升。

⑿注意当塔釜温度高于108℃后,塔顶温度及回流罐液位明显上升,说明塔釜物料开始沸腾。为了防止回流罐抽空,当回流罐液位上升至10%左右,开GA405A泵的入口阀V13,启动泵G5A(GA405A),然后开泵出口阀V12。手动FIC-2的输出大于50%,进行全回流。

回流量应大于300 kmol/h。

⒀调整塔温进行分离质量控制。此时塔灵敏板温度TIC-3大约为69~72℃左右。缓慢调整塔釜加热量FIC-3,以每分钟0.5℃提升TIC-3直到78℃(实际需数小时)。缓慢提升温度的目的是使物料在各塔板上充分进行汽液平衡,将轻组分向塔顶升华,将重组分向塔釜沉降。当TIC-3的给定值升至78℃时,将灵敏板温度控制TIC-3投自动(主调节器),将FIC-3投自动(副调节器),然后两调节器投串级。同时观察塔顶C5 含量 AI-1和塔底C4含量AI-2,应当趋于合格。同时注意确保塔釜液位LIC-1和回流罐液位 LIC-2不超限(当塔顶AI-1不合格且LIC-2大于80%,应及时开阀门V25排放。同理,当塔釜AI-2不合格且LIC-1大于80%,应及时开阀门V24排放)。

⒁手动FIC-2的输出将回流量提升至350 kmol/h 左右,投自动。

⒂塔顶采出:提升进料量的同时,应监视回流罐液位。当塔顶C5含量AI-1低于0.5% 且

LIC-2达到50%左右时,先开V16阀,开泵G6A(GA406A),再开泵出口阀V17。手动调节LIC-2的输出,当液位调至50%时投自动。

⒃塔底采出:提升进料量的同时,应监视塔釜液位。当塔底C4含量AI-2低于1.5% 且

LIC-2达到50%左右时,手动调节LIC-1的输出,当液位调至50%时投自动。

⒄逐渐提升进料量,由于塔压及塔温都处于自动控制状态,塔釜加热量和塔顶冷却量会随进料增加而自动跟踪提升。最终进料流量达到370 kmol/h时将 FIC-1投自动。

⒅将塔顶压力调节器PRC-2和PIC-1投超驰(用投串级代替)。

⒆微调各调节器给定值,使精馏塔达到设计工况:

FIC-1 370 kmol/h

FIC-2 350 kmol/h

LIC-1 50 %

LIC-2 50 %

TIC-3 78 ℃

PRC-2 0.35 MPa

AI-1 <0.5 %

AI-2 <1.5 %

冷态开车完毕。

3. 正常停车

停车前状态及准备同正常工况。

①将塔压控制在0.35MPa,并保持自动。

②手动FIC-1,关进料前阀V1。

③将TIC-3与FIC-3串级解列。手动减小FIC-3的输出(约关至25%), 同时加大塔顶和塔

釜采出。

④当釜液降至5%,停止塔采出。

⑤当回流罐液位降至20%时, 停回流, 停再沸器加热, 停塔顶采出。

⑥关GA-405A出口阀, 停GA-405A,关入口阀; 关GA-406A出口阀, 停GA-406,关入口

阀。

⑦将回流罐液体从底部泄出, 将釜液泄出。

⑧手动开大PIC-1输出泄压, 手动关PRC-2。

⑨关再沸器入、出口阀,关冷却水出口阀,关压差阀。

⑩待压力泄压至0.0, 停车完毕。

4. 紧急停车

停前状态及准备同正常工况。

①关FIC-1,关进料前阀。

②立即手动开大FIC-2, 使回流量增至415 kmol/h左右。

③立即手动减小FIC-3, 使蒸气流量减至约222 kmol/h。

④如果两个液位不超上限, 立即关闭塔顶、塔釜采出。

⑤用蒸气量(FIC-3) 和回流量(FIC-2) 维持全回流操作, 并维持两个液位不超限。

⑥完毕。

六、事故设置及排除

1、停冷却水(F2)

事故现象:冷却水流量为0.0 kmol/h (FI-6)。塔压升高。塔顶温度上升。

处理方法:放火炬保压。停进料。关加热蒸气量。关塔顶采出。釜液排出。

在此基础上进行完全停车操作。

合格标准:尽快关进料,并在一定时间内完成停车操作。

2、停加热蒸汽(F3)

事故现象:水蒸汽断,即加蒸汽流量为0.0 kmol/h (FIC-3的输入)。塔釜温度降低(TI-4)。

灵敏板温度降低(TIC-3)。塔釜产品不合格。塔顶产品不合格。压差、温差减小。

处理方法:关进料。停塔顶采出。压力高时放火炬。釜液排出。在此基础上进行完全停车。

合格标准:尽快关进料,并在一定的时间内完成停车操作。

3、无进料(F4)

事故现象:进料量为0.0 kmol/h (FIC-2的输入)。

处理方法:紧急停车。

合格标准:紧急停车过程操作正确。

4、停电(停动力电) (F5)

事故现象:由于GA-405A/B、GA-406A/B停转。回流量为0.0 (FIC-2)。塔顶采出量为

0.0 (FI-5)。

处理方法:关进料阀。停塔顶采出。排放火炬维持塔压及回流罐液位。在以上基础上进行停车操作。

合格标准:尽快停进料、停车。

5、无回流量(F6)

事故现象:回流量逐步降为0.0 (FIC-2),回流泵坏。

处理方法:开备用泵GA-405B及相关阀门。关泵GA-405A及相关阀门。

合格标准:尽快按规程开启备用泵GA-405B。操作顺序正确,系统恢复正常。

七、开车评分信息

本软件设有三种开车评分信息画面。

1.简要评分牌

能随时按键盘的F1键调出。本评分牌显示当前的开车步骤成绩、开车安全成绩、正常工况质量(设计值)和开车总平均成绩。为了有充分的时间了解成绩评定结果,仿真程序处

于冻结状态。按键盘的任意键返回。

2.开车评分记录

能随时按键盘的Alt+F键调出。本画面记录了开车步骤的分项得分、工况评分

的细节、总报警次数及报警扣分信息。显示本画面时,软件处于冻结状态。按键盘的任意键返回。

3.趋势画面

本软件的趋势画面记录了重要变量的历史曲线,可以与评分记录画面配合对开车全过程进行评价。

八、开车评分标准

1.开车步骤评分要点

①各阀门及泵开关均关闭,即阀V1、V3和V23,泵G5A、

G5B、G6A和G6B都关闭 9 分

②氮气置换、公用工程具备且仪表投用,即N2、GY和

YB全开,C4升压完成 10分

③进料,即阀V1开,进料量FIC-1>100 kmol/h 15分

④塔顶冷却,控制塔顶压力为0.35 MPa 20分

⑤塔釜加热,加热量FIC-3>100 kmol/h 20分

⑥开回流,回流量FIC-2>300 kmol/h 25分

总计:99分

2.正常工况质量评分要点

① 365< FIC-1 < 375 kmol/h 5分

② 0.415 < PI-4 < 0.425 MPa 5分

③ 128 < FI-4 < 132 kmol/h 5分

④ 120 < TI-4 < 121.5 ℃ 5分

⑤ 260 < FIC-3 < 270 kmol/h 5分

⑥ 77.5 < TIC-3 < 78.2 ℃ 10分

⑦ 0.05 < PDI-3 < 0.08 MPa 6分

⑧ 345 < FIC-2 < 355 kmol/h 6分

⑨ 45.5 < TI-2 < 46.5 ℃ 6分

⑩ 0.34 < PRC-2 < 0.36 MPa 6分

⑾ 1800 < FI-6 < 1898 kmol/h 4分

⑿ 45% < LIC-1 < 60% 4分

⒀ 45% < LIC-2 < 60% 4分

⒁ 238 < FI-5 < 245 kmol/h 4分

⒂ TIC-3 和FIC-3 都投自动及串级 4分

⒃ PRC-2和 PIC-1投自动与超驰(串级代) 4分

⒄ 0.1% < AI-1 < 0.5% (塔顶C5) 8分

⒅ 0.7% < AI-2 < 1.5% (塔底C4) 8分

总计:99分

苯—甲苯分离过程板式精馏塔设计说明

课程设计说明书 设计题目:分离苯—甲苯筛板式精馏塔的设计 学号: 0812024057 学生姓名:郭博元杨逍孙娟 专业班级:生工 082 指导教师: 2010 年 11月 15 日

课程设计任务书 一、课题名称 分离苯—甲苯筛板式精馏塔的设计 二、课题条件(原始数据) 一、设计方案的选定原料:苯、甲苯 年处理量: 100000t(十万吨)/年——进料量 原料组成(甲苯的质量分率):、0.65——0.4 料液初温: 30℃ 操作压力、回流比、单板压降:自选 进料状态:饱和液体进料 塔顶产品浓度: 98.5%——98% 塔底釜液含甲苯量不低于97%——99%(质量分率)塔顶采用全凝器,泡点回流 塔釜:饱和蒸汽间接/直接加热 塔板形式:筛板 生产时间:330天/年,每天24h运行 冷却水温度:20℃~35℃ 设备形式:筛板塔 厂址:沿海某城市(大气压:760mmHg) 三、设计内容(包括设计、计算、论述、实验、应绘图纸

等根据目录列出大标题即可) 1概述 2设计方案的选择及流程说明 3塔板数的计算(板式塔)或填料曾的高度计算(填料塔) 4主要设备工艺尺寸设计 1)塔径及提留段塔板结构尺寸的确定 2)总塔高总、压降 5附属设备选型 6设计结果汇总 7工艺流程图及精馏塔装配图 8设计评述 四图纸要求 1 工艺流程图(在说明书上画草图) 2 精馏塔装配图

目录 摘要 (1) Abstract .......................... 错误!未定义书签。第一章文献综述. (1) 第二章设计方案的确定 (3) 2.1 操作条件的确定 (3) 2.2 确定设计方案的原则 (4) 第三章塔体计算 (6) 3.1 设计方案的确定 (6) 3.2 精馏塔的物料衡算 (6) 第四章塔板计算 (8) 4.1 塔板数的确定 (8) 4.2 精馏段的计算 (12) 4.3提留段的计算 (28) 第五章塔附件设计 (44) 5.1附件的计算 (44) 5.2 附属设备设计 (48) 设计小结 (51) 附录 (52)

过程控制作业答案

第一章 概述 1.1 过程控制系统由哪些基本单元构成?画出其基本框图。 控制器、执行机构、被控过程、检测与传动装置、报警,保护,连锁等部件 1.2 按设定值的不同情况,自动控制系统有哪三类? 定值控制系统、随机控制系统、程序控制系统 1.3 简述控制系统的过渡过程单项品质指标,它们分别表征过程控制系统的什么性能? a.衰减比和衰减率:稳定性指标; b.最大动态偏差和超调量:动态准确性指标; c.余差:稳态准确性指标; d.调节时间和振荡频率:反应控制快速性指标。 第二章 过程控制系统建模方法 习题2.10 某水槽如图所示。其中F 为槽的截面积,R1,R2和R3均为线性水阻,Q1为流入量,Q2和Q3为流出量。要求: (1) 写出以水位H 为输出量,Q1为输入量的对象动态方程; (2) 写出对象的传递函数G(s),并指出其增益K 和时间常数T 的数值。 (1)物料平衡方程为123d ()d H Q Q Q F t -+= 增量关系式为 123d d H Q Q Q F t ??-?-?= 而22h Q R ??= , 33 h Q R ??=, 代入增量关系式,则有23123 ()d d R R h h F Q t R R +??+=? (2)两边拉氏变换有: 23 123 ()()()R R FsH s H s Q s R R ++ =

故传函为: 23232 3123 ()()()11R R R R H s K G s R R Q s Ts F s R R +=== +++ K=2323 R R R R +, T=23 23R R F R R + 第三章 过程控制系统设计 1. 有一蒸汽加热设备利用蒸汽将物料加热,并用搅拌器不停地搅拌物料,到物料达到所需温度后排出。试问: (1) 影响物料出口温度的主要因素有哪些? (2) 如果要设计一温度控制系统,你认为被控变量与操纵变量应选谁?为什么? (3) 如果物料在温度过低时会凝结,据此情况应如何选择控制阀的开、闭形式及控制器 的正反作用? 解:(1)物料进料量,搅拌器的搅拌速度,蒸汽流量 (2)被控变量:物料出口温度。因为其直观易控制,是加热系统的控制目标。 操作变量:蒸汽流量。因为其容易通过控制阀开闭进行调整,变化范围较大且对被 控变量有主要影响。 (3)由于温度低物料凝结所以要保持控制阀的常开状态,所以控制阀选择气关式。控制 器选择正作用。 2. 如下图所示为一锅炉锅筒液位控制系统,要求锅炉不能烧干。试画出该系统的框图,判断控制阀的气开、气关型式,确定控制器的正、反作用,并简述当加热室温度升高导致蒸汽蒸发量增加时,该控制系统是如何克服干扰的? 解:系统框图如下:

板式精馏塔设计方案

板式精馏塔设计方案 一、设计方案确定 1.1 精馏流程 精馏装置包括精馏塔,原料预热器,再沸器,冷凝器,釜液冷却器和产品冷却器等,为保持塔的操作稳定性,流程中用泵直接送入塔原料,乙醇、水混合原料液经预热器加热至泡点后,送入精馏塔。塔顶上升蒸汽采用全凝器冷凝后经分配器一部分回流,一部分经过冷却器后送入产品储槽,塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后为冷却水循环利用。 塔板是板式塔的主要构件,分为错流式塔板和逆流式塔板两类,工业中以错流式为主,常用的错流式塔板有:泡罩塔板,筛孔塔板,浮阀塔板。泡罩塔板是工业上应用最早的塔板,其主要的优点是操作弹性较大,液气比围较大,不易堵塞;但由于生产能力及板效率底,已逐渐被筛孔塔板和浮阀塔板所替代。筛孔塔板优点是结构简单,造价低,板上液面落差小,气体压强底,生产能力大;其缺点是筛孔易堵塞,易产生漏液,导致操作弹性减小,传质效率下降。而浮阀塔板是在泡罩塔板和筛孔塔板的基础上发展起来的,它吸收了前述两种塔板的优点。浮阀塔板结构简单,制造方便,造价底;塔板开孔率大,故生产能力大;由于阀片可随气量变化自由升降,故操作弹性大;因上升气流水平吹入液层,气液接触时间长,故塔板效率较高。但浮阀塔板也有缺点,即不易处理易结焦、高粘度的物料,而设计的原料是乙醇-水溶液,不属于此类。故总结上述,设计时选择的是浮阀塔板。 1.2设计方案论证及确定 1.2.1 生产时日及处理量的选择:设计要求塔年处理11.5万吨乙醇—水溶液系统,年工作日300d,每天工作24h。 1.2.2 选择用板式塔不用填料塔的原因:因为精馏塔精馏塔对塔设备的要求大致如下: (1)生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流动。

精馏塔提馏段的温度控制系统

南华大学 过程控制仪表课程设计 设计题目精馏塔提馏段的温度控制系统学生XXX 专业班级自动化X X X 学号XXXXXXXXXX 指导老师XXX 2012年6月25日

目录 1.系统简介与设计目的 (2) 2.控制系统工艺流程及控制要求 (3) 3.设计方案及仪表选型 (4) 3.1控制方案的确定 (4) 3.2控制系统图、方框图 (5) 4.各个环节仪表的选型,仪表的工作原理以及性能指标 (7) 4.1检测元件 (7) 4.1.1铠装热电偶特点 (7) 4.1.2铠装热电偶主要技术参数 (7) 4.2变送器 (7) 4.2.1变送器主要技术指标 (7) 4.3调节器 (8) 4.4执行器 (8) 4.4.1电/气阀门定位器作用 (8) 5.绘制仪表盘电气接线图,端子接线图 (10)

6.仪表型号清单 (11) 7.设计总结 (12) 参考文献 (13) 1.系统简介与设计目的 精馏操作是炼油、化工生产过程中的一个十分重要的环节。精馏塔的控制直接影响到工厂的产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以 来一直受到人们的高度重视。精馏塔是一个多输入多输出的对象,它由很多级塔 板组成,在机理复杂,对控制要求又大多较高。这些都给自动控制带来一定的困难。同时各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的 特点,进行自动控制方案设计和研究。精馏塔的控制最终目标是,在保证产品质 量的前提下,使回收率最高,能耗最小,或使总收益最大。在这个情况为了更好 实现精馏的目标就有了提馏段温度控制系统的产生。

按提馏段指标的控制方案,当塔釜液为主要产品时,常常按提馏段指标控制。 如果是液相进料,也常采用这类方案。这是因为在液位相进料时,进料量的变化, 首先影响到塔底产品浓度,塔顶或精馏段塔板上的温度不能很好地反映浓度的变 化,所以采用提馏段控制温度比较及时。另外如果对釜底出料的成分要求高于塔 顶出料,塔顶或精馏段板上温度不能很好反映组分变化和实际操作回流比大于几 倍最小回流比时,可采用提馏段控制。提馏段温度是衡量质量指标的间接指标,而以改变再沸器加热量作为控手段的方案,就是提馏段温控。 精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总收益最大,成本最小。

“化工原理”第6章《精馏》复习题.

《化工原理》第六章“精馏”复习题 一、填空题 1. 在汽-液相平衡的t-x-y图中,沸点与液相组成的关系曲线,称为________,沸点与汽相组成的曲线,称为____________.( ***答案***液相线(或泡点线) 汽相线(或露点线)) 2. 在汽-液相平衡的t-x-y图中, 液相线与汽相线将图平面平分为三个区:汽相线以上的区域称为________,液相线以下的区域称为_________,汽.液相线之间的区域为___________. (***答案*** 汽相区液相区汽液共存区) 3. 在y-x图中,以A组份标绘的平衡曲线在对角线的左上方,则表示A组分比B组分的挥发度______.平衡曲线若在对角线的右下方,则表示A组分比B组分挥发度_____. (***答案*** 高低) 4. 精馏过程,就是利用混合液的各组分具有不同的__________,利用_____________、_____________的方法,将各组分得以分离的过程. (***答案*** 沸点(或挥发度) 多次部分汽化多次部分冷凝) 5. 某泡点进料的连续精馏塔中,进料组成xf=0.35,系统的平均相对挥发度α=2.44, 当xf=0.93时,达到此分离要求的最小回流比Rmin=____. (***答案*** 1.66) 6. 当塔板中上升的汽相与下降液相之间达到_____时,该塔板称理论塔板。 ***答案*** (相平衡) 7. 分离某些α接近1的物系时,可采用一些特殊的精馏方法,如_______,_________. (***答案***萃取精馏恒沸精馏) 8. 分离要求一定。当回流比为一定时,在五种进料状况中,____进料的q值最大,其温度______,此时,提馏段操作线与平衡线之间的距离____,分离所需的总理论板数________。(***答案***冷液tF <t泡最远最少) 9. 精馏过程设计时,增大操作压强,则相对挥发度____,塔顶温度____,塔釜温度____。(增大,减小,不变,不确定)(答案: 减小,增加,增加)。 10. 对一定组成的二元体系,精馏压力越大,则相对挥发度______,塔操作温度____对分离______。( 越小越高越不利) 11. 精馏操作的依据是混合液中各组分的_____差异。实现精馏操作的必要条件包括___________和_____________。 (挥发度。塔顶液相回流塔底上升气流) 12. 简单蒸馏过程中,釜内易挥发组分浓度逐渐___,其沸点则逐渐___。(*答案* 减小升高) 13. 试述五种不同进料状态下的q值:(1)冷液进料____;(2)泡点液体进料_____;(3)汽液混合物进料___;(4)饱和蒸汽进料____;(5)过热蒸汽进料________。(***答案***(1)q>1(2)q=1(3)0<q<1(4)q=0 (5)q<0) 14. 某连续精馏塔中,若精馏段操作线方程的截距等于零,则:(1)回流比等于___;(2)馏出液量等于___;(3)操作线斜率等于___。(以上均用数字表示)(∞;0;1) 15. 某精馏塔的设计任务为:原料为F,xF,要求塔顶为xD塔底为xW。设计时若选定的回流比R不变,加料热状态由原来的饱和蒸汽加料改为饱和液体加料,则所需理论板数N___,提馏段上升蒸汽量V'____,提馏段下降液体量L'__,精馏段上升蒸汽量V____,精馏段下降液体量L____。(增加,不变,减少)(***答案***减少,增加,增加,不变,不变。) 16. 某精馏塔在操作时,加料热状态由原来的饱和液体进料改为冷液进料,且保持F,xf,

精馏塔温度控制系统设计.doc

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 090302074 学生姓名:杨昌宝 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而且大多数控制对象在运行的同时自身的结构也在发生变化。所以仅用前馈并不能达到良好的控制品质。这时就需要加入反馈,反馈的特点是根据偏差来决定控制输入,不管对象的模型如何,也不管外界的干扰如何,只要有偏差,就根据偏差进行纠正,可以有效的消除稳态误差。解决前馈不能控制的不可测干扰。 前馈反馈综合控制在结合二者的优点后,可以提高系统响应速度 关键词:提馏段温度前馈-反馈串级控制

化工原理习题解 第六章 蒸馏

第六章 蒸 馏 相平衡 【6-1】苯(A)和甲苯(B)的饱和蒸气压数据如下。 根据上表数据绘制总压为时苯一甲苯溶液的-t y x -图及y x -图。此溶液服从拉乌尔定律。 解 计算式为 ,00 00 B A A B p p p x y x p p p -==- 计算结果见下表 苯-甲苯溶液的t x y --计算数据 苯-甲苯溶液的t y x --图及y x -图,如习题6-1附图1与习题6-1附图2所示。

习题6-1附图1 苯-甲苯t-y-x 图 习题6-1附图2 苯-甲苯y-x 图 【6-2】在总压.101325kPa 下,正庚烷-正辛烷的汽液平衡数据如下。 试求:(1)在总压.101325kPa 下,溶液中正庚烷为(摩尔分数)时的泡点及平衡汽相的瞬间组成;(2)在总压.101325kPa 下,组成.035x =的溶液,加热到117℃,处于什么状态?溶液加热到什么温度,全部汽化为饱和蒸气? 解 用汽液相平衡数据绘制t y x --图。 (1) 从t y x --图上可知,.035x =时的泡点为113.8℃,平衡汽相的瞬间组成.053y =。 (2) .035x =的溶液,加热到117℃时为气液混合物,液相组成.024x =,汽相组成.040y =。 .035x =的溶液加热到118℃时,全部汽化为饱和蒸气。 习题6-2附图 正庚烷-正辛烷t-y-x 图 【6-3】 甲醇(A)-丙醇(B)物系的汽液平衡服从拉乌尔定律。 (1) 试求温度80℃t =、液相组成.05x =(摩尔分数)时的汽相平衡组成与总压。 (2) 试求总压为.10133kPa 、液相组成.04x =(摩尔分数)时的汽液相平衡温度与汽相组成。 (3) 试求液相组成.06x =、汽相组成.084y =时的平衡温度与总压。组成均为摩尔分数。 用Antoine 方程计算饱和蒸气压(kPa) 甲醇 .lg ..157499 71973623886A p t =- +o 丙醇 .lg .137514 674414193 B p t =- +o 式中t 为温度,℃。 解 (1) 80℃t =)时,..1811,5093A B p kPa p kPa ==o o B A B p p x p p -=-o o o 总压 ()() ....18115093055093116A B B p p p x p kPa =-+=-?+=o o o 汽相组成 (181105) 0781116 A p x y p ?== =o (2) 已知..10133,04,求、p kPa x x y ==

板式精馏塔课程设计

《化工原理》课程设计报告 苯-氯苯分离过程板式精馏塔设计 学院 专业 班级 学号 姓名 合作者 指导教师

化工原理设计任务书 一、设计题目: 苯-氯苯分离过程板式精馏塔设计 二、设计任务 1)进精馏塔的原料液中含氯苯为38%(质量百分比,下同),其余为苯。 2)塔顶馏出液中含氯苯不高于2%。 3)生产能力为日产纯度为99.8%的氯苯Z吨产品。年工作日300天,每天24小时连续运行。(设计任务量为3.5吨/小时) 三、操作条件 1.塔顶压强4kPa(表压); 2.进料热状况,自选; 3.回流比,自选; 4.塔釜加热蒸汽压力0.5MPa; 5.单板压降不大于0.7kPa; 6. 设备型式:自选 7.厂址天津地区 四、设计内容 1.精馏塔的物料衡算; 2.塔板数的确定; 3.精馏塔的工艺条件及有关五行数据的计算; 4.精馏塔的塔体工艺尺寸计算; 5.塔板的主要工艺尺寸计算; 6.塔板的流体力学计算; 7.塔板负荷性能图; 8.精馏塔接管尺寸计算; 9.绘制生产工艺流程图; 10.绘制精馏塔设计条件图; 11.绘制塔板施工图; 12.对设计过程的评述和有关问题的讨论

五、基础数据 1.组分的饱和蒸汽压 i p (mmHg ) 2.组分的液相密度ρ(kg/m 3) 纯组分在任何温度下的密度可由下式计算 苯 t A 187.1912-=ρ 氯苯 t B 111.11127-= ρ 式中的t 为温度,℃。 3.组分的表面张力σ(mN/m ) 双组分混合液体的表面张力m σ可按下式计算: A B B A B A m x x σσσσσ+= (B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热 常压沸点下的汽化潜热为35.3×103kJ/kmol 。 纯组分的汽化潜热与温度的关系可用下式表示: 38 .01212??? ? ??--=t t t t r r c c (氯苯的临界温度:C ?=2.359c t ) 5.其他物性数据可查化工原理附录。

苯-甲苯板式精馏塔的课程设计

目录 板式精馏塔设计任务书 (3) 设计题目: (3) 二、设计任务及操作条件 (3) 三、设计内容: (3) 一.概述 (5) 1.1 精馏塔简介 (5) 1.2 苯-甲苯混合物简介 (5) 1.3 设计依据 (5) 1.4 技术来源 (6) 1.5 设计任务和要求 (6) 二.设计方案选择 (6) 2.1 塔形的选择 (6) 2.2 操作条件的选择 (6) 2.2.1 操作压力 (6) 2.2.2 进料状态 (6) 2.2.3 加热方式的选择 (7) 三.计算过程 (7) 3.1 相关工艺的计算 (7) 3.1.1 原料液及塔顶、塔底产品的摩尔分率 (7) 3.1.2 物料衡算 (8) 3.1.3 最小回流比及操作回流比的确定 (8) 3.1.4精馏塔的气、液相负荷和操作线方程 (9) 3.1.5逐板法求理论塔板数 (10) 3.1.6 全塔效率的估算 (11) 3.1.7 实际板数的求取 (13) 3.2 精馏塔的主题尺寸的计算 (13) 3.2.1 精馏塔的物性计算 (13) 3.2.2 塔径的计算 (15) 3.2.3 精馏塔高度的计算 (17) 3.3 塔板结构尺寸的计算 (18) 3.3.1 溢流装置计算 (18) 3.3.2塔板布置 (19) 3.4 筛板的流体力学验算 (21) 3.4.1 塔板压降 (21)

3.4.2液面落差 (22) 3.4.3液沫夹带 (22) 3.4.4漏液 (22) 3.4.5 液泛 (23) 3.5 塔板负荷性能图 (23) 3.5.1漏夜线 (23) 3.5.2 液泛夹带线 (24) 3.5.3 液相负荷下限线 (25) 3.5.4 液相负荷上限线 (25) 3.5.5 液泛线 (26) 3.6 各接管尺寸的确定 (29) 3.6.1 进料管 (29) 3.6.2 釜残液出料管 (29) 3.6.3 回流液管 (30) 3.6.4塔顶上升蒸汽管 (30) 四.符号说明 (30) 五.总结和设计评述 (31)

精馏塔温度控制系统设计

精馏塔温度控制系统设计 The Standardization Office was revised on the afternoon of December 13, 2020

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 0 学生姓名:杨昌宝 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化

注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而

板式精馏塔设计书.doc

板式精馏塔设计任务书4-3 一、设计题目: 苯―甲苯精馏分离板式塔设计 二、设计任务及操作条件 1、设计任务:生产能力(进料量) 6万吨/年 操作周期 7200 小时/年 进料组成 48.0%(质量分率,下同) 塔顶产品组成 98.0% 塔底产品组成 3.0% 2、操作条件 操作压力常压 进料热状态泡点进料 冷却水 20℃ 加热蒸汽 0.19MPa 3、设备型式筛板塔 4、厂址安徽省合肥市 三、设计内容: 1、概述 2、设计方案的选择及流程说明 3、塔板数的计算(板式塔) ( 1 ) 物料衡算; ( 2 ) 平衡数据和物料数据的计算或查阅; ( 3 ) 回流比的选择; ( 4 ) 理论板数和实际板数的计算; 4、主要设备工艺尺寸设计 ( 1 ) 塔内气液负荷的计算; ( 2 ) 塔径的计算; ( 3 ) 塔板结构图设计和计算; ( 4 )流体力学校核; ( 5 )塔板负荷性能计算; ( 6 )塔接管尺寸计算; ( 7 )总塔高、总压降及接管尺寸的确定。 5、辅助设备选型与计算 6、设计结果汇总 7、工艺流程图及精馏塔装配图 8、设计评述

目录 1、概述 (3) 1.1 精馏单元操作的简介 (3) 1.2 精馏塔简介 (3) 1.3 苯-甲苯混合物简介 (3) 1.4设计依据 (3) 1.5 技术来源 (3) 1.6 设计任务和要求 (4) 2、设计计算 (4) 2.1确定设计方案的原则 (4) 2.2操作条件的确定 (4) 2.2.1操作压力 (4) 2.2.2进料状态 (5) 2.2.3加热方式的选择 (5) 2.3设计方案的选定及基础数据的搜集 (5) 2.4板式精馏塔的简图 (6) 2.5常用数据表: (6) 3、计算过程 (8) 3.1 相关工艺的计算 (9) 3.1.1 原料液及塔顶、塔底产品的摩尔分率 (9) 3.1.2原料液及塔顶、塔底产品的平均摩尔质量 (9) 3.1.3 物料衡算 (9) 3.1.4 最小回流比及操作回流比的确定 (9) 3.1.5精馏塔的气、液相负荷和操作线方程 (10) 3.1.6逐板法求理论塔板数 (10) 3.1.7精馏塔效率的估算 (12) 3.1.8实际板数的求取 (12) 3.2精馏塔的工艺条件及有关物性数据的计算 (12) 3.2.1操作压力计算 (12) 3.2.2操作温度计算 (13) 3.2.3平均摩尔质量计算 (13) 3.2.4平均密度计算 (14) 3.2.5液体平均表面张力计算 (15) 3.2.6液体平均粘度计算 (16) 3.3 精馏塔的主要工艺尺寸的计算 (17) 3.3.1 塔内气液负荷的计算 (17) 3.3.2 塔径的计算 (17) 3.3.3 精馏塔有效高度的计算 (19) 3.4 塔板结构尺寸的计算 (19) 3.4.1 溢流装置计算- (19) 3.4.2塔板布置 (21) 3.5筛板的流体力学验算 (23) 3.5.1 塔板压降相当的液柱高度计算 (23) 3.5.2液面落差 (24)

苯氯苯板式精馏塔的工艺设计工艺计算书

苯氯苯板式精馏塔的工艺设计工艺计 算书 1

2

苯-氯苯板式精馏塔的工艺设计工艺计算书(精馏段部分) 化学与环境工程学院 化工与材料系 5月27日

课程设计题目一——苯-氯苯板式精馏塔的工艺设计 一、设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.8%的氯苯50000t/a,塔顶馏出液中含氯苯不高于2%。原料液中含氯苯为35%(以上均为质量%)。 二、操作条件 1.塔顶压强4kPa(表压); 2.进料热状况,自选; 3.回流比,自选; 4.塔釜加热蒸汽压力506kPa; 5.单板压降不大于0.7kPa; 6.年工作日330天,每天24小时连续运行。 三、设计内容 1.设计方案的确定及工艺流程的说明; 2.塔的工艺计算; 3.塔和塔板主要工艺结构的设计计算; 4.塔内流体力学性能的设计计算; 5.塔板负荷性能图的绘制; 1 2020年5月29日

2 2020年5月29日 6.塔的工艺计算结果汇总一览表; 7.辅助设备的选型与计算; 8.生产工艺流程图及精馏塔工艺条件图的绘制; 9.对本设计的评述或对有关问题的分析与讨论。 四、基础数据 1.组分的饱和蒸汽压οi p (mmHg) 2.组分的液相密度ρ(kg/m 3) 纯组分在任何温度下的密度可由下式计算 苯 t A 187.1912-=ρ 推荐:t A 1886.113.912-=ρ 氯苯 t B 111.11127-=ρ 推荐:t B 0657.14. 1124-=ρ 式中的t 为温度,℃。 3.组分的表面张力σ(mN/m)

3 2020年5月29日 双组分混合液体的表面张力m σ可按下式计算: A B B A B A m x x σσσσσ+= (B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热 常压沸点下的汽化潜热为35.3×103kJ/kmol 。纯组分的汽化潜热与温度的关系可用下式表示: 38 .01 238 .012??? ? ??--=t t t t r r c c (氯苯的临界温度:C ?=2.359c t ) 5.其它物性数据可查化工原理附录。 附参考答案:苯-氯苯板式精馏塔的工艺计算书(精馏段部分) 苯-氯苯板式精馏塔的工艺计算书(精馏段部分) 一、设计方案的确定及工艺流程的说明 原料液经卧式列管式预热器预热至泡点后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却后送至苯液贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷却后送入氯苯贮罐。流程图略。

精馏塔设计指导书

简单填料精馏塔设计 设计条件与任务: 已知F 、xF 、xD 、xw 或F 、xF 、xD 和η,塔顶设全凝器,泡点回流,塔底间接(直接)蒸汽加热。 1 全塔物料衡算求产品流量与组成 (1)常规塔 全塔总物料衡算 总物料 F = D + W 易挥发组分 F χF = D χD + W χW 若以塔顶易挥发组分为主要产品,则回收率η为 D F Dx Fx η= 式中 F 、D 、W ——分别为原料液、馏出液和釜残液流量,kmol/h ; χF 、χD 、χW ——分别为原料液、馏出液和釜残液中易挥发组分的摩尔分率。 由(3-1)和(3-2)式得: W D W F x x x x F D --= (2) 直接蒸汽加热 总物料 * 0F S D W +=+ 易挥发组分 ** 00F D W Fx S y Dx W x +=+ 式中 V 0 ——直接加热蒸汽的流量,kmol/h ; У0 ——加热蒸汽中易挥发组分的摩尔分率,一般У0=0; W * ——直接蒸汽加热时釜液流量,kmol/h ; χ*W ——直接蒸汽加热时釜液中易挥发组分的摩尔分率。 2 计算最小回流比 设夹紧点在精馏段,其坐标为(xe,ye)则 min D e e e x y R y x -= - 设夹紧点在提馏段,其坐标为(xe,ye) min min (1)(1)e W e W y x R D qF L V R D q F x x -+==+--- 基础数据:气液相平衡数据

3 确定操作回流比 min (1.1~2.0)R R = 4 计算精馏段、提馏段理论板数 ① 理想溶液 图解法或求出相对挥发度用逐板计算法求取。 ② 非理想溶液 相平衡数据为离散数据,用图解法或数值积分法求取 精馏段 1 1 R D f N x R x n n dx N dN x x += =-? ? 因 111 D n n x R y x R R += +++ 所以 ()/D f x R x n n D n dx N y x x y R = ---? (4) 提馏段 1 1 S f W N x S x n n dx N dN x x += =-? ? 因 11 W n n x R y x R R +'+= -'' 蒸汽回流比(1)(1)(1)(1)V R D q F D F R R q W W W W +--'= ==+-- 所以 ()/(1) f w x S x n n n w dx N y x y x R = '---+? (5) 式(4)、(5)中塔板由下往上计数。 5 冷凝器和再沸器热负荷 冷凝器的热负荷 ()C DV DL Q V I I =- 再沸器的热负荷 B C D W F Q Q DI WI FI =++- 待求量:进料温度t F 、塔顶上升蒸汽温度t DV (与x D 对应的露点温度)、回流温度t DL (与x D 对应的泡点温度)、再沸器温度tw (与x W 对应的泡点温度)。 物性数据: ① 各组分在平均温度下的液相热容、气相热容或汽化热。 ② 各组分的热容方程常数 如 2 3 p c A BT CT DT =+++ ③ 由沃森公式计算汽化热 21 0.38211( )1r V V r T H H T -?=?-

精馏塔控制系统设计

Hefei University 《化工仪表及自动化》过程考核之三——设计 题目:精馏塔控制系统设计, 系别: 班级: 姓名: 学号: 教师: 日期:

目录 Hef e i Un iv ers ity (1) 化工班:《化工仪表及自动化》 (1) 过程考核之三——设计 (1) 一、概述 (3) 二、内容 (3) 三、说明 (3) 1、工作要求 (3) 2、物料 (3) 3、精馏过程的控制方案设计 (4) 四、设备选型 (5) 1、测控仪表选型 (5) 2、执行机构选型 (5) 五、总结 (5) 六、参考文献 (5)

精馏塔控制系统设计 一、概述 精馏塔是化工生产中分离互溶液体混合物的典型分离设备。它是依据精馏原理对液体进行分离,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组份(即沸点较低或饱和蒸汽压较高的组分)汽化。经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,从而实现分离的目的,满足化工连续化生产的需要。精馏塔塔釜温度控制的稳定与否直接决定了精馏塔的分离质量和分离效果,控制精馏塔的塔釜温度是保证产品高效分离,进一步得到高纯度产品的重要手段。维持正常的塔釜温度,可以避免轻组分流失,提高物料的回收率,也可减少残余物料的污染作用。影响精馏塔温度不稳定的因素主要是来自外界来的干扰。 二、内容 蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度)的特性,实现分离目的的单元操作。蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。 本文主要内容是结合课本所学仪表自动化知识,掌握测控仪表,了解二元精馏系统流程仪表的位号和特点,仔细研究二元精馏的工艺流程图,熟悉工艺流程依次设计一套完整的控制方案,使系统能对二元精馏的工艺过程进行有效地控制。 三、说明 1、工作要求 精馏塔控制系统主要分为三部分控制:塔釜温度控制精馏塔塔釜温度是产品成分的间接质量指标,要求温度检测点在系统受到干扰时温度变化灵敏,因此塔内测温点设置在灵敏板上,通过控制再沸器蒸汽流量来实现温度的稳定。 2、物料

第六章 精馏系统

第六章精馏系统 一、工艺流程简介 脱丁烷塔是大型乙烯装置中的一部分。本塔将来自脱丙烷塔釜的烃类混合物(主要有C4、C5、C6、C7等),根据其相对挥发度的不同,在精馏塔内分离为塔顶C4馏分,含少量C5 馏分,塔釜主要为裂解汽油,即C5以上组分的其他馏分。因此本塔相当于二元精馏。 工艺流程为:来自脱丙烷塔的釜液,压力为0.78MPa, 温度为65℃(由TI-1指示),经进料手操阀V1和进料流量控制FIC-1,从脱丁烷塔(DA-405)的第21块塔板进入(全塔共有40块板)。在本塔提馏段第32块塔板处设有灵敏板温度检测及塔温调节器TIC-3(主调节器)与塔釜加热蒸汽流量调节器FIC-3(副调节器)构成的串级控制。 塔釜液位由LIC-1控制。塔釜液一部分经LIC-1调节阀作为产品采出,采出流量由FI-4指示,一部分经再沸器(EA-405A/B)的管程汽化为蒸汽返回塔底,使轻组分上升。再沸器采用低压蒸汽加热,釜温由TI-4指示。设置两台再沸器的目的是釜液可能含烯烃,容易聚合堵管。万一发生此种情况,便于切换。再沸器A的加热蒸汽来自FIC-3所控制的0.35MPa 低压蒸汽,通过入口阀V3进入壳程,凝液由阀V4排放。再沸器B的加热蒸汽亦来自FIC-3所控制的0.35MPa低压蒸汽,入口阀为V8,排凝阀为V9。塔釜设排放手操阀V24,当塔釜液位超高但不合格不允许采出时排放用(排放液回收)。塔顶和塔底分别设有取压阀V6和V7,引压至差压指示仪PDI-3,及时反映本塔的阻力降。此外塔顶设压力调节器PRC-2,塔底设压力指示仪PI-4,也能反映塔压降。 塔顶的上升蒸汽出口温度由TI-2指示,经塔顶冷凝器(EA-406)全部冷凝成液体,冷凝液靠位差流入立式回流罐(FA-405)。冷凝器以冷却水为冷剂,冷却水流量由FI-6指示,受控于PRC-2的调节阀,进入EA-406的壳程,经阀V23排出。回流罐液位由LIC-2控制。其中一部分液体经阀V13进入主回流泵GA405A,电机开关为G5A。泵出口阀为V12。回流泵输出的物料通过流量调节器FIC-2的控制进入塔顶。备用回流泵的入口阀为V15,出口阀为V14,泵电机开关是G5B。另一部分作为产品经入口阀V16,用主泵GA-406A送下道工序处理。主泵电机开关为G6A,出口阀为V17。顶采备用泵GA-406B的入口阀为V18,电机开关为G6B,泵出口阀为V19。顶采泵输出的物料由回流罐液位调节器LIC-2控制,以维持回流罐的液位。回流罐底设排放手操阀V25,用于当液位超高但不合格不允许采出时排放用(排放液回收)。 手操阀VC4是C4充压阀。系统开车时塔压低会导致进料的前段时间内入口部分因进料大量闪蒸而过冷,局部过冷会损坏塔设备。进料前用C4充压可防止闪蒸。 二、流程图说明 1.流程图画面 详见图8-1。

精馏塔工艺工艺设计计算

第三章 精馏塔工艺设计计算 塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。 本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。 3.1 设计依据[6] 3.1.1 板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度 T T T H E N Z )1( -= (3-1) 式中 Z –––––板式塔的有效高度,m ; –––––塔内所需要的理论板层数; –––––总板效率; –––––塔板间距,m 。 (2) 塔径的计算 u V D S π4= (3-2) 式中 D –––––塔径,m ; –––––气体体积流量,m 3 u –––––空塔气速, u =(0.6~0.8) (3-3) V V L C u ρρρ-=m a x (3-4) 式中 L ρ–––––液相密度,3

V ρ–––––气相密度,3 C –––––负荷因子, 2 .02020?? ? ??=L C C σ (3-5) 式中 C –––––操作物系的负荷因子, L σ–––––操作物系的液体表面张力, 3.1.2 板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计 W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。 3 2100084.2??? ? ??=W h OW l L E h (3-7) 式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取1。 h T f L H A 3600= θ≥3~5 (3-8) 006.00-=W h h (3-9) ' 360000u l L h W h = (3-10) 式中 u 0ˊ–––––液体通过底隙时的流速,。 (2) 踏板设计 开孔区面积a A : ??? ? ? ?+-=-r x r x r x A a 1 222s i n 1802π (3-11)

精馏塔装配图

1、本设备按GB150-1998《钢制压力容器》和HG20652-95《钢制化工容器制造技术要求》进行 制造、试验和验收,并接受劳动部颁发《压力容器安全技术监察规程》的监督;2、焊条采用电弧焊,焊条牌号E4301; 3、焊接接头型式及尺寸,除图中标明外,按HG20583-1998规定,角焊缝的焊接尺寸按较薄板 厚度,法兰焊接按相应法兰中的规定; 4、容器上A、B类焊缝采用探伤检查,探伤长度20%; 5、设备制造完毕后,卧立以0.2MPa进行水压试验; 6、塔体直线允许度误差是H/1000,每米不得超过3mm,塔体安装垂直度允差是最大30mm; 7、裙座螺栓孔中心圆直径允差以及相邻两孔或任意两弦长允差为2mm; 8、塔盘制造安装按JB1205《塔盘技术条件》进行; 9、管口及支座方位见接管方位图。 1 23 45 k 86 79 j1 10 1112 i n 1 13 14 2 3 4 5 30 11l Ⅰ 41 40 39 审核审定批准 1:5 Ⅲ 设计制图校核职务件号 12345 6 9 7810 34 Ⅱ j3 Ⅲ 35 38 3736g h Ⅳ 33 3231 27 Ⅴ 1:5 19151312 141716 1823212022 252426ⅤI 1:5 292830 3133 323534363738 39 40 41Ⅵ 18 15 16Ⅴ f 33 m5 31 32 34 35 17 50 51m7 19 20b c a 30 29e 28 2726 a f k 1:2 Ⅵ 1:2 A、B类焊缝 j1 管口方位示意图 m1-7j4 d 25 24 2322 21b c e l g d n i j2h j3 HG20594-971 1.03设计项目设计阶段 重量(Kg) 总重322.7 94.2374.19140.62.97 5.382.364.67 0.41 精馏塔 1∶20 比例 图幅 A1 版次 引出孔 φ159×4.5法兰 PN1.0,DN40接管 DN20,L=250日期 姓名 图号或标准号 名称 基础环 筋板JB4710-92 GB/T3092-93HG20594-97JB4710-92GB/T3092-93静电接地板盖板垫板引出管 DN40排气管 φ80材料Q235-A Q235-A 数量 148单件6.72Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A 2424114111 3.931.551.17毕业设计施工图 备注 21.9376181210.692.02380370.70.411.0382.3248.10.411.031.874.150.962.36118.3 310.10.411.03370.738021.032.612.2442.54总质量:27685 Kg 2901 1Q235-A GB/T3092-93回流管 DN45法兰 PN1.0,DN20筒体 φ1600×16法兰 PN1.0,DN32上封头DN1600×16接管 DN20,L=250法兰 PN1.0,DN20法兰 PN1.0,DN600接管 DN20,L=250法兰 PN1.0,DN20GB/T3092-93GB/T3092-93JB4710-92 HG20594-97HG5-1373-80JB/T4737-95进料管 DN32塔釜隔板液封盘 吊柱 GB/T3092-93HG20594-97HG20594-97HG8162-87HG20594-97GB/T3092-93GB704-88出气管 DN600扁钢 8×16气体出口挡板1Q235-A Q235-A Q235-A·F 16MnR Q235-A Q235-A·F Q235-A 组合件16MnR 1111111Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A·F 1111311450.6 法兰 PN1.0,DN45接管 DN20,L=250法兰 PN1.0,DN20下封头DN1600×16法兰 PN1.0,DN20地脚螺栓M42×4.5HG20594-97JB/T4736-95HG21515-95HJ97403224-3HG20594-97GB/T3092-93HJ97403224-7JB/T4734-95补强圈 DN450×8人孔 DN450塔盘裙座筒体 HG20594-97GB/T3092-93JB4710-92JB4710-92HG20652-1998JB/ZQ4363-86引出管 DN20引出孔 φ133×4检查孔 排净孔Q235-A Q235-A Q235-A 组合件Q235-A Q235-A 16MnR Q235-A 71751111116.944.357 Q235-A Q235-A Q235-A Q235-A Q235-A 1111224δ=8 技术特性表 连接尺寸标准 HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG21515-95h 20l 20m1-7 n 40 450j1-4k i 204020公称尺寸 d 20f g e 322045符号b c 20600凹液面计口凹凹凹凹凹凹 出料口人孔再沸器返回口 温度计口排气管口至再沸器口紧密面 型式凹凹凹凹凹凹压力计口回流口进料口液面计口用途或名称温度计口气相出口管口表 7许用应力 MPa 焊缝接头系数腐蚀裕量 mm 全容积 m 容器类别 11 109 83设计压力 MPa 设计温度 ℃工作压力 MPa 工作温度 ℃工作介质主要受压元件65 43 序号 21项 目0.5857.93271170指 标0.11500.027筒体、封头、法兰102 技术要求

相关文档
最新文档