电力机车

电力机车
电力机车

电力机车

电力机车由牵引电动机驱动车轮的机车。电力机车因为所需电能由电气化铁路供电系统的接触网或第三轨供运行中的电

力机车给,所以是一种非自带能源的机车。电力机车具有功率大、过载能力强、牵引力大、速度快、整备作业时间短、维修量少、运营费用低、便于实现多机牵引、能采用再生制动以及节约能量等优点。使用电力机车牵引车列,可以提高列车运行速度和承载重量,从而大幅度地提高铁路的运输能力和通过能力。

目录

简介

历史沿革

构造

相关信息

分类

简介

英文名称:Electric locomotives

电力机车是指从外界撷取电力作为能源驱动的铁路机车,电源包括架空电缆、第三轨、电池等。同样使用牵引电动机的电传动柴油机车、燃气机车等不属于电力机车。

春城号

由牵引电动机驱动车轮的机车。电力机车因为所需电能由电气化铁路供电系统的接触网或第三轨供给,所以是一种非自带能源的机车。电力机车具有功率大、过载能力强、牵引力大、速度快、整备作业时间短、维修量少、运营费用低、便于实现多机牵引、能采用再生制动以及节约能量等优点。使用电力机车牵引车列,可以提高列车运行速度和承载重量,从而大幅度地提高铁路的运输能力和通过能力。电力机车起动加速快,爬坡能力强,工作不受严寒的影响,运行时没有煤烟,所以在运输繁忙的铁路干线和隧道多、坡度陡的山区线路上更能发挥优越性。此外,电力旅客列车,可为客车空气调节和电热取暖提供便利条件。电力机车由于电气化铁路基本建设投资大,所以应用不如内燃机车和蒸汽机车广泛。

电力机车没有空气污染,且善于保养,牵引列车速度可达几百千米,所以高速列车都是电力机车牵引的。电力机车另一个优点就是能够在短时间内完成启动和制动,这个性能比蒸汽机车和内燃机车要优秀很多。所以在世界范围内,正大力发展电气化铁路。在绿色环保的今天,电力机车的发展更加受到重视。

运行中的电力机车

电力机车的牵引力和爬坡能力比内燃机车和蒸汽机车要大得多,在载重过大或坡度较大的情况下无需采用多机牵引。电力机车最大的优点就是无限行程,只要车辆不驶离电气化段,就不会“饿倒”(故障除外)。无需像内燃机车和蒸汽机车那样经常补充燃料。

由于我国的电气化铁路较少,所以会选择把原本无电气化的铁路经电气化改造。电气化改造后的铁路速度将从100-120km/h提高到160-200km/h,这样不仅能缩短列车的运输时间,还能达到5000t以上的货运列车运输。如今,走向“高铁时代”的中国,正大力发展电气化铁路。

历史沿革

历史简述

1835年荷兰的斯特拉廷和贝克尔两人就试着制以电池供电的二轴小型铁路车辆。1842年苏格兰人R.戴维森首先造出一台用40组电池供电的重5吨的标准轨距电力机车。由于电动机很原始,机车只能勉强工作。1879年德国人W.von西门子驾驶一辆他设计的小型电力机车,拖着乘坐18人的三辆车,在柏林夏季展览会上表演。机车电源由外部150伏直流发电机供应,通过两轨道中间绝缘的第三轨向机车输电。这是电力机车首次成功的实验。电力机车用于营业是从地下铁道开始的。1890年英国伦敦首先用电力机车在 5.6公里长的一段地下铁道上牵引车辆。干线电力机车在1895年应用于美国的巴尔的摩铁路隧道区段,采用675伏直流电,自重97吨,功率1070千瓦。19世纪末,德国对交流电力机车进行了试验,1903年德国三相交流电力机车创造了每小时210.2公里的高速纪录。

来到中国

中国于1914年在抚顺煤矿使用1500伏直流电力机车。干线铁路电力机车采用单相交流25000伏50赫电流制。1958年制成第一台以引燃管整流的“韶山”型电力机车。1968年改用硅整流器成功,称“韶山1”型,持续功率为3780千瓦。

近年来干线电力机车向大功率、高速、耐用方面发展,客运电力机车速度已从每小时160公里增加到200公里,并向250公里迈进。

各国制造的电力机车电压制较复杂,不便于国际间铁路联运过轨。近年来国际上已定

出几种电力机车用标准电压。直流电压为600伏(非优先选用)、750伏、1500伏和3000伏。单相交流电压6250伏(非优先选用)、工频50或60赫,电压15000伏、工频赫,电压25000伏、工频50或60赫等几种。

构造

简述

电力机车由机械部分、电气部分和空气管路系统三部分组成。

机械部分

包括走行部和车体。走行部是承受车辆自重和载重在钢轨上行走的部件,由2轴或3轴转向架以及安装在其上的弹簧悬挂装置、基础制动装置、轮对和轴箱、齿轮传动装置和牵引电动机悬挂装置组成。车体用来安放各种设备,同时也是乘务人员的工作场所,由底架、司机室、台架、侧墙和车顶等部分组成。司机室设在车体的两端,有走廊相通。司机室内安装控制设备,如司机控制器、制动阀、按钮开关、监测仪表和信号灯等。两司机室之间用来安装机车的全部主要设备,有时划分成小室,分别安装辅助机组、开关设备、换流装置以及牵引变压器等。部分电气设备如受电弓、主断路器和避雷器等则安装在车顶上。车钩缓冲装置安装在车体底架的两端牵引梁上。车体和设备的重量通过车体支承装置传递到转向架上,车体支承装置并起传递牵引力与制动力的作用。

电气部分

机车上的各种电气设备及其连接导线。包括主电路、辅助电路、控制电路以及它们的保护系统。①主电路:电力机车的最重要组成部分。它决定机车的基本性能,由牵引电动机以及与之相连接的电气设备和导线共同组成。在主电路中流过全部的牵引负载电流,其电压为牵引电动机的工作电压,或者接触网的网压,所以主电路是电力机车上的高电压大电流的动力回路。它将接触网上的电能转变成列车牵引所

电力机车制动机故障分析装置

需的牵引动力。②辅助电路:供电给电力机车上的各种辅助电机的电气回路。辅助电机驱动多种辅助机械设备,如冷却牵引电动机和制动电阻用的通风机,供给各种气动器械所需压缩空气的压缩机等。辅助电机可以是直流的,也可以是异步的。③控制电路:由司机控制器和控制电器的传动线圈和联锁触头等组成的低压小功率电路。控制电路的作用是使机车

主电路和辅助电路中的各种电器按照一定的程序动作。这样,电力机车即可按照司机的意图运行。④保护系统:保证上述各种电路的设施。

空气管路系统

按用途可分为:①供给机车和车辆制动所需压缩空气的空气制动气路系统。②供给机车电气设备所需压缩空气的控制气路系统。③供给机车撒砂装置、风嗽叭和刮雨器等辅助装置所需压缩空气的辅助气路系统。

作用:是风压的通道,为机车受电弓上升,机车制动,机车散热提供风源

相关信息

高铁电力动车组的车型

CRH1

CRH2

CRH3

CRH380A

CRH380B

CRH380C

CRH380D

CRH5

CRH6

分类

简述

电力机车按使用场合可分为:工矿电力机车和干线电力机车两类。工矿电力机车多采用直流制,功率和速度一般比干线电力机车小,习惯上按机车的粘着重量分级,如150吨,100吨,85吨,70吨,60吨,50吨和更轻的等级。较大吨位机车用于标准轨距线路,较轻型的机车多用于各种窄轨距线路。干线电力机车按用途可分为客运电力机车,货运电力机车,客货两用电力机车和调车电力机车四种。按照电气化铁路采用的电流制来分类,干线电力机车可分为两类。

HXD3型货运电力机车

直流电力机车

装有直流串励牵引电动机的机车,接触网电压为1500伏或3000伏直流电压。直流电力机车的起动和速度调节以往是借助于调节起动电阻和牵引电动机的串联-并联转换来完成的。但这种起动和调速方式不能作到连续平滑地调节速度,而且电能耗损大,线路转换复杂。随着直流斩波技术的发展,逐渐为新的脉冲调压方式所代替。在直流电力机车上通常采用牵引电动机磁场削弱的办法来提高机车速度,增加机车功率。磁场削弱的级数一般为二至三级。

SS9型客运电力机车

交流电力机车

接触网电压20千伏或25千伏,单相工频为50或60赫。在欧洲少数国家如联邦德国、瑞典、瑞士等国亦有采用单相低频交流制的,此时接触网电压为11~16千伏,单相工频为或25赫。交流电力机车根据变流装置和牵引电动机类型,主要有以下三种类型。

①整流器电力机车:又称单相-直流电力机车,是当前应用最广的一种交流电力机车。在整流器电力机车上,接触网上的单相高压交流电首先通过牵引变压器降压,然后通过由硅整流元件或晶闸管组成的整流装置将单相交流电变换为直流电,供给牵引电动机。一般采用

脉流串励电动机作为牵引电动机。这种电力机车有变压器和整流装置,因此采用改变变压器副边电压或对整流装置实行相位控制的办法均可改变整流电压,从而达到调节机车速度的目的。改变变压器副边输出电压的方式有两种,即低压侧调压和高压侧调压。中国的“韶山”1型电力机车即属于低压侧调压型。为了防止动轮空转,改善机车的粘着性能,便于牵

电力机车电路构造

引和制动两种工况间的相互转换,整流器电力机车也可采用他励牵引电动机,如中国试制的“韶山2”型电力机车和瑞典制造的“Rc”型电力机车即是采用他励牵引电动机。

②单相整流子电动机电力机车:又称直接式交流电力机车,采用单相整流子牵引电动机。接触网上的高压交流电经过变压器降低电压后,就直接供电给牵引电动机。这种机车电气设备简单,但单相整流子电动机的换相条件随交流电频率的增高而恶化,因此多用于单相低频交流制的电气化铁路上。

③交-直-交流电力机车:有时又称为单相-三相电力机车。在这种机车上,接触网上的高压交流电首先通过牵引变压器降压、整流,使中间直流环节保持稳定的直流电压或稳定的直流电流。然后再由逆变电路将中间直流电变换为三相交流电供给三相异步牵引电动机或三相同步牵引电动机。改变逆变装置输出的三相交流电的频率和电压即可调节机车的功率和速度。联邦德国研制成的“E120”型电力机车即为此种机车。

接触网

电力机车

电力机车本身不带原动机,靠接受接触网送来的电流作为能源,由牵引电动机驱动机车的车轮。电力机车具有功率大、热效率高、速度快、过载能力强和运行可靠等主要优点,而且不污染环境,特别适用于运输繁忙的铁路干线和隧道多,坡度大的山区铁路。

电力机车是从接触网上获取电能的,接触网供给电力机车的电流有直流和交流两种。由于电流制不同,所用的电力机车也不一样,分为直-直流电力机车、交-直流电力机车、交-直-交流电力机车三类。

直-直流电力机车采用直流制供电,牵引变电所内设有整流装置,它将三相交流电变成直流电后,再送到接触网上。因此,电力机车可直接从接触网上取得直流电供给直流串励牵引电动机使用,简化了机车上的设备。直流制的缺点是接触网的电压低,一般为1500V 或3000 V,接触导线要求很粗,要消耗大量的有色金属,加大了建设投资。

交—直流电力机车

在交流制中,目前世界上大多数国家都采用工频(50Hz)交流制,或25Hz低频交流制。在这种供电制下,牵引变电所将三相交流电改变成25 kV工业频率单相交流串励电动机,把交流电变成直流电的任务因机车上完成。由于接触网电压比直流制时提高了很多,接触导线的直径可以相对减小,减少了有色金属的消耗和建设投资。因此,工频交流制得到了广泛采用,世界上绝大多数电力机车也是交—直流电力机车。

交—直—交电力机车

采用直流串励电动机的最大优点是调速简单,只要改变电动机的端电压,就能很方便地在较大范围内实现对机车的调速。但是这种电机由于带有整流子,使制造和维修很复杂,

体积也较大。而交流无0整流子牵引电动机(即三相异步电动机)在制造、性能、功能、体积、重量、成本、及可靠性等方面远比整流子电机优越得多。它之所以迟迟不能在电力机车上应用,主要原因是调速比较困难。改变端电压不能使这种电机在较大范围内改变速度,而只有改变电流的频率才能达到目的。因此,只有当电子技术和大功率晶闸管变流装置得到迅速发展的今天,才能生产出采用三相交流电机的先进电力机车。交—直—交电力机车从接触网上引入的仍然是单相交流电,它首先把单相交流电整流成直流电,然后再把直流电逆变成可以使频率变化的三相交流电供三相异步电动机使用。这种机车具有优良的牵引能力,很有发展前途。德国制造的“E120”型电力机车就是这种机车。

1958年中国第一台电力机车

1866年,德国工程师西门子与技师哈卢施卡联营创立电机公司,发明强力发电机,制成世界上第一列电力机车。第二年在巴黎博览会上展出,震惊了许多人。1879年,在柏林的工商业博览会上,这辆世界最早的电力火车公开试运行。列车用电动机牵引,由带电铁轨输送电流,功率为3马力,一次可运旅客18人,时速7公里。两年之后1881年,柏林郊外铺设了规模虽小,但为世界最初营业用的电车路线。同时德国又试验成功驾空接触导线供电系统,使电力机车的供电线路由地面转向空中,机车的电压和功率都大大提高。

1895年,在美国的巴尔的摩一俄亥铁路线上首次出现了长途电力机车。机车重96吨,1080马力,采用550V直流供电。

1901年,西门子、哈卢施卡电机公司制造的电力机车在柏林附近创造了时速160公里的记录。

与此同时,在1880年,美国爱迪生也进行了电车的实验。

中国第一台电力机车于1958年诞生于湖南株洲,命名为“韶山”,为中国铁路步入电气化立下了汗马功劳。

电力机车由于速度快、爬坡能力强、牵引力大、不污染空气,因此发展很快。地下铁路也随着电车的出现而得以发展

在运电力机车

有:韶山(SS)1 (SS2已流产)SS3/B SS4/B/C/G (SS5已流产)SS6 SS6B SS7/B/C/D/E SS8 SS9(G)

和谐(HXD)1/2/3/3B DJ1/2 6K 8K 8G 6Y 国产韶山系列电力机车简表

型号轴式功率

kw

速度

km/h

调压方式

电机电压

(v)

首台出

厂日期

出厂数量(台)

截止到2001年

SS1 SS3 SS3b SS6 SS6b SS7 SS4 SS4G SS4b SS4c SS5 SS8 SS9 CoCo

CoCo

CoCo

CoCo

CoCo

BoBoBo

BoBo+BoB

o

BoBo+BoB

o

BoBo+BoB

o

同SS4b

BoBo

BoBo

CoCo

3900

4800

4800

4800

4800

4800

6400

6400

6400

6400

3200

3600

4800

100

100

100

100

100

100

100

100

100

100

140

170

170

33 级有级调

8级加级间调

3段顺控桥

2段桥

3段顺控桥

2段桥

3段顺控桥

3段顺控桥

3段顺控桥

3段顺控桥

2段桥

3段桥

3段顺控桥

1500

1500

1500

1500

1020

925

1020

1020

1020

1020

1030

1030

1020

1961

1978

1990

1990

1994

1992

1985

1993

1995

1995

1990

1994

1998

826(几乎全报废)

685(平原货用)

224

53

132

--

158

496(大坡道货用)

34

2

2

245(平原客用)

16

电力机车事故概况案例

2012年“”列车停于无电区一般D15事故概况 事故概况: 2012年10月14日,我段XX运用车间XXX机班HXD3-8123机车,值乘DH41087次列车,兖北四场开车经一场走白兖联络线方向,由于司机精力旁顾,在兖北一场出站前错过支线号输入时机后,未及时采取补救措施盲目运行,导致出站后装置默认外包线自动闭塞数据,机车信号双黄转白限速递减装置常用动作,机车停于分相无电区,被迫请求救援,构成铁路交通一般D15事故。 事故原因: 1、非正常情况下司机操纵不科学、不合理,在未判明列车前方进路时盲目加速。下行兖北一场出站后有三个进路方向,司机在无法车机联控确认列车运行方向时,没有适时降低列车速度,而是盲目提手柄加载运行,未给采取补救措施留出操作时间,为事故的发生埋下隐患。 2.关键地点、重点作业环节主次不分,精力不集中,错过输入时机。在距出站信号机约70米处,司机已确认进路表示器显示方向,但却将精力旁顾,在仅有的十几秒操作时间内没有完成输入步骤,耽误了操作时机。 3.发生错漏输后没有正确处理,分相前未采取补救措施。司机发现错误后没有执行“乘务员在出现错漏输时,必须在发现后

及时进行监控装置参数修正”要求,未及时采取停车措施对LKJ 降级重新输入站号操作;而是错误考虑前方有电分相,想提高速度先闯过电分相,期间盲目多次进行无效的支线号输入操作,导致在机车信号停车模式下继续运行,装置触发常用动作列车停在无电区,从而导致错误加大,问题升级,是造成本次事故的重要原因。 2013年“”事故因素概况 基本概况: 2013年2月24日,我段XX运用车间XXX机班,使用HXD2C-0127机车,DH38215次,由于机班对弓网异常信息不敏感,没有及时向车站反馈信息;对弓网故障后的应急处置能力差,应急处置措施不正确,造成接触网故障持续存在,导致接触网故障信息不能及时反馈,为后续列车运行带来了较大隐患,构成段定事故因素。 原因分析 1、对弓网异常信息不敏感。接到车站注意观察接触网运行的通知后,未降低运行速度,以75km/h的速度常速运行通过观察地点,对接触网状态确认不彻底,接触网吊悬故障未发现。 2、对弓网故障后的应急处置能力差,应急处置措施不正确。在机车出现只有感应网压、自动降弓动作后未果断采取停车措施。 3、对自动降弓故障不能做出正确判断。对接触网故障导致的机车受

电力机车

1、电力机车的基本特性有哪些? 答:电力机车的基本特性包括机车的速度特性、牵引力特性、牵引特性。 2、电力机车的基本特性与牵引电机的特性有什么关系? 答:牵引电机的特性就是电力机车的特性,基本特性类似于直流电机的特性即“牛马特性”,动力可以随载荷的大小而变化,例如载荷大~电流增大~动力增大;载荷小~电流减小~动力减小。采用交流电时,可以通过改变电阻的大小来改变电流的大小从而改变动力的大小。

式中: V——机车速度; M——牵引电动机轴输出转矩; ηd——牵引电动机效率; ηc——传动装置效率; m——机车配用电动机数目,对于个别传动机车为机车动轴数; Fk——机车轮周牵引力(KN)。 5、何谓机车的牵引特性?为什麽机车的牵引特性一般由试验方法获得? 答:牵引特性是机车牵引力与机车速度的关系,称为机车的牵引特性。 车牵引特性曲线一般由机车型式试验测出。或在已知机车速度特性曲线和牵引力特性曲线后,给定一电机电枢电流Ia值,求出机车牵引特性的一组FK–V值,根据不同负载下的数组FK–V值,绘出机车牵引特性曲线。 6、说明采用不控中抽式整流线路的电力机车工作原理。 答:牵引变压器二次侧绕组分成oa、ob两段, 两段电压大小相等、方向相反。整流元件D1、D2的正极分别与二次侧绕组的a、b点相接,负极相互联接在一起。牵引电动机的一端与变压器二次侧绕组的中点o相接,另一端经平波电抗器PK与整流电路的输出端即整流元件的负极相接。 在路正常工作,当变压器二次侧电压正半周a点为高电位时,整流元件D1导通,电流由a 点经整流元件D1、平波电抗器PK、牵引电动机M回到O点,构成一闭合回路。此时,整流元件D2因承受反向电压而截止。当变压器二次侧电压负半周b点为高电位时,整流元件D2导通,电流由b点经整流元件D2、平波电抗器PK、牵引电动机M回到O点,也构成一闭合回路。此时,整流元件D1因承受反向电压而截止。由此可知,在交流电压的正负两个半周内,变压器二次侧绕组oa、ob交替流过电流而牵引电动机M中则始终流过连续不断的方向不变的电流,保证了直流(脉流)牵引电动机的正常工作。 7、说明采用不控桥式整流线路的电力机车工作原理。 答:整流元件D1-D4接成一个电桥形式,变压器二次侧绕组ab接到电桥一对角线的m、n两

《电力机车电器》练习册复习资料

《电力机车电器》复习题 注意事项:简答题和论述题给出答案在教材上的页码,标在题的后面,用数字的形式注明 1.电力机车电器的工作条件是什么?2 2.电力机车电器的发展概况和趋势是什么?2 3.有触点电器产生热量都有那几种因素?4 4.温升4 5.请你说说电器温升对电器使用的影响?4 6.发热温度极限4 7.我国国家标准规定最高环境温度为( 40 )℃4 8.我国绝缘材料耐热等级可分为A、E、B、F、和( H )级。4 9.电器工作时通电导体将产生电阻损耗,当导体中流过交变电流时, 要考虑导体的(集肤)效应。6 10.铁磁体在交变磁通的作用下会在铁磁零件中产生电阻损耗。 11.绝缘介质的损耗一般和导体的电场强度和频率有关。6 12.热稳定状态7 13.不稳定发热状态8 14.散热有哪几种形式?8 15.从电器发热和冷却的观点一般将电器的工作状态分为长期工作制、 长期工作制、短时工作制和(间断)几种。8 16.长期工作制8 17.长期工作制的特点是电器损耗所产生的热量不是全部散发到周围 介质中去。F 18.电器的热时间常数T越大,表示达到稳定温升的时间越长。T 19.电器的短时工作制9 20.说说短时工作制为什么允许有一定程度的过载?9 21.间断工作制10 22.电动力10 23.载流导体既有有利的一面又有有害的一面。T 24.说明平行载流导体受力方向和电流之间的关系。11 25.请你说说平行载流导体受力大小都和什么因素有关?12

26.电器的电动稳定性12 27.触头的电稳定性12 28.触头的电动斥力都和哪些因素有关?12 29.判断两平行导体电动力的方向 30.判断两垂直载流导体电动力的方向 31.判断电弧置于磁场中电动力的方向 32.判断铁磁物体附近的载流电动力的方向 33.判断凹形铁磁物体附近的载流电动力的方向 34.电弧14 35.请你谈谈电弧的利用和危害?14

DC型电力机车高低压试验

D C型电力机车高低压 试验 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

H X D1C型电力机车高低压试验程序 一、低压试验 (一)准备工作 1.各自动开关和模式选择开关在正常运行位; 2.确认总风缸风压不低于700kPa,各风路塞门在正常工作位置。 3.确认控制电源柜上照明及停放制动自动开关在闭合位。 4.自动制动阀“运转位”、单独制动阀均置“制动区”,机车制动缸压力300kPa,停放制动“制动位”。 5.确认换向手柄、调速手柄置“0”位,打开机械室门。 6.网重联时,重联机车完成以上各项后,闭合蓄电池“控制电源输出”自动开关,大闸 手柄置“重联位”、小闸手柄置“运转位”,确认本机与重联机车的车钩、气路(列车管、总风管及平均管)和电路电缆联接完成,并开放联接的气路塞门; (二)试验顺序及要求 1.闭合蓄电池电源 (1)闭合控制电源柜“控制电源输出”自动开关32-F02,检查 DC110V、DC24V和电源模块相应工作指示是否正常(红灯故障,绿灯正常); (2)检查控制电源柜上显示屏,蓄电池输出电压不低于88V,Ⅰ、Ⅱ端司机操纵台上控制电压表的电压指示应与控制电源柜上显示屏的指示相一致; (3)机车控制系统得电自检,可听到电器的动作声,大约60秒左右完成,在此过程中,应禁止其他操作; (4)自检结束后,检查微机显示屏、监控显示屏、制动显示屏上电显示应正常。 2.闭合电钥匙开关 (1)插入机车电钥匙开关22-S01(22-S02)并转动到“闭合”位,司机室操纵权被选择,机车允许操纵,此时应从微机显示屏“主界面”上确认显示的各种信息及图标无异常;

《电力机车电器》题库

《电力机车电器》题库 第二章电弧及灭弧装置 一、填空题 1、带电粒子从电弧区转移到周围介质中去的现象称为(扩散)。 2、热辐射是发热体的热量以(电磁波)形式传播能量的过程。 3、交流电器设备的发热主要由( 导体和线圈的)损耗、( 铁心的)损耗和( 触头的)损耗引起。 4、在放电间隙中,同时存在着两种过程:(游离)和(消游离),它们是矛盾的统一体。 5、按照电流性质电弧可分为(直流电弧)和(交流电弧)。 6、电器在工作过程中,产生多种损耗,其中主要的损耗有(铜损耗)、(铁损耗),高压电器还要考虑(介质损耗)。 二、判断题 1、金属栅片灭弧装置在交流中的应用比直流电器中的应用更为广泛。(√) 2、交流电弧比直流电弧容易熄灭。(√) 3、利用回路电动力拉长电弧时,电流越小越好。(×) 4、电弧属于气体放电的一种形式。(√) 5、直流电弧熄灭的原理是过零熄灭。(×) 三、选择题 1、电弧的(B )区是电弧中温度最高、亮度最强的区域。 A、近阴极区 B、弧柱区C近阳极区 2、拉开刀开关时使电弧拉长属于(A ) A、机械力拉长 B、电动力拉长 C、磁吹灭弧 3、交流电弧主要采用( B )来灭弧。 A、磁吹灭弧 B、金属栅片灭弧 C、真空灭弧 4、磁吹灭弧是利用了(A )方法来灭弧的? A、拉长电弧 B、灭弧罩灭弧 C、真空灭弧 D、金属栅片灭弧 四、简答题 1、什么是电动力?触头电动力是怎样引起的? 载流导体处在磁场中会受到力的作用,载流导体间相互也会受到力的作用,这种力称为电动力。 触头闭合通过电流时,在触头间有电动力存在。这是因为触头表面不管加工怎样平整,从微观上看仍然是凹凸不平的。由于接触面积远小于触头表面积,电流线在接触点处产生收缩,由此而引起触头间的电动斥力。

铁路机车基本知识概述

铁路机车基本知识概述 机车是铁路运输的基本动力。客货列车的牵引和车站上的调车作业,都由机车来承担。机车对铁路运输的安全正点、多拉快跑、优质低耗起着重要的作用,也是发展铁路运输业的关键设备。因此,车站与行车有关的计划与指挥人员,对各种类型机车的基本性能和运用常识应有一定的了解。 一、机车的种类 机车按原动力的不同可分为蒸汽机车、内燃机车(内燃动车组)和电力机车(电力动车组)三种。 机车按用途的不同可分为运行速度较高的客运机车、牵引力较大的货运机车和机动灵活的调车机车。 1.蒸汽机车 蒸汽机车的应用,已有170多年的历史。它是通过蒸汽机,把燃料(煤、油、木材)的热能转变成机械能,用来牵引列车运行的一种机车。蒸汽机车主要由锅炉、汽机、走行部、车架、煤水车、车钩及缓冲装置和制动装置等部分组成。 蒸汽机车热效率低、能源消耗大、输送能力小,所以,目前在我国已逐步被淘汰。 2.内燃机车 内燃机车是以柴油机为原动力的机车。它的特点是热效率高,持续工作时间长,适合长交路运行。

目前,我国运用的内燃机车,按其传动方式的不同,可分为电传动和液力传动两种类型。 电传动内燃机车是由柴油机带动发电机,把柴油机的机械能转变成电能,将电能供给牵引电动机,再经齿轮传递给机车轮对使机车运行。 液力传动内燃机车是在柴油机与机车动轮之间装有一套液力传动装置,柴油机输出的扭矩通过传动装置传递到机车的轮对上,使机车产生牵引力。 目前,我国生产的几种内燃机车的概况如表1-4所示。 表1-4几种国产内燃机车概况表

3.电力机车 电力机车本身不带能源,是依靠从沿途接触网导线上获取电能,通过牵引电动机而驱动的机车。 发电厂将110~220kV的三相工频交流电经输电线送往铁路牵引变电所,由牵引变电所分别向与其两边相邻区间的接触网上供给25~27.5kV的单相工频交流电,供电力机车使用。 电力机车主要由车体、走行装置、车底架、车钩及缓冲装置、制动装置和一整套电气设备组成。 电力机车具有功率大、起动速度快、善于爬坡、便于实施高速重载等优点。目前国产主要型号电力机车的技术性能如表1-5所示。 表1-5几种韶山系列电力机车概况表

电力机车工作原理

电力机车工作原理 电气化铁路的回路就是火车脚下的铁路。机车先通过电弓从接触网(就是天上的电线) 上受电,在经过机车上的牵引变压器,整流柜,逆变,然后传入牵引电机带动机车,最后通过车轮传入钢轨。形成一个巧妙的电路。 和电传动内燃机车相比就是动力源不同,能量来自接触网,其他如走行部,车体等并没有本 质区别。通过受电弓将25KV的电压引至车内变压器,之后,若是交直流传动的,便进行整流,驱动直流电动机,电机通过齿轮驱动轮对。一般调节晶闸管的导通角度来调节功率,从而进行调速。交直交流传动的要在整流后加逆变环节,之后驱动异步电动机,驱动轮对。这种的调速较为复杂,要合理调节逆变的频率和整流的电压才能保证功率因数。大体过程就是这样。 电力机车是通过车顶上的集电弓(也称受电弓)从接触网获取电能,把电能输送到牵引电动 机使电动机驱动车轮运行的机车。 电力机车的分类: 1按机车轴数分: 四轴车:轴式为BO-BO ; 六轴车:轴式为CO-CO、BO-BO-BO ; 八轴车:轴式为2(B0-B0); 十二轴车:轴式为2(C0-C0)、2(B0-B0-B0)。 轴式“ B ”表示一个转向架有2根轴;轴式“ C”表示一个转向架有3根轴;脚号“ 0”表示每个轴有一台牵引电机;"-"表示转向架之间是通过车体传递牵引力。 2、按用途分: (1)客运电力机车。用来牵引各种速度等级的客运列车,其特点是速度较高,所需牵引力较小。 ⑵货运电力机车。用来牵引货物列车,其特点是载荷大,牵引力大,但速度较低。 (3)客货通用电力机车。尤其是近年来新型电力机车中,其恒功运行速度范围大,可适用牵引客运列车,也可适用牵引货运列车。 3、按轮对驱动型式分: (1) 个别驱动电力机车指每一轮对是由单独的一台牵引电动机驱动的电力机车。 (2) 组合驱动电力机车指几个轮对用机械方式互相连接成组,共同由一台牵引电动机驱动 的电力机车。 现代电力机车大都采用个别驱动方式,而很少再采用组合驱动。 车和多流制电力机车。 直流制电力机车:即直流电力机车,它是由直流电网供电,采用直流牵引电机驱动的电力机车。 交流制电力机车:可分为单相低频(25Hz或16 2/3Hz)电力机车和单相工频(50Hz)电力机 车。 交直传动电力机车:是由接触网引人单相工频交流电经机车内的变流装置供给直(脉)流牵引电动机来驱动的机车。 交流传动电力机车:是由接触网引人单相工频交流电经机车内的变流装置供给交流(同步或异步)牵引电动机来驱动的机车。

电力机车电器作业答案

电力机车电器作业答案 第一章电器的发热与电动力 1.热传导现象的实质是通过具有一定内部能量的物质基本质点间的直接相互作用,使能量从一个质点传递到另一相邻质点。热传导的方向是由较热部分传播;或由发热体向与它接触的物体传播。对流是通过流体(液体与气体)的运动而传递热量。热辐射是发热体的热量以电磁波形式传播能量的过程。 2.电器发热的原因有两个方面:一是电流通过导体的电阻损耗所产生的热量;另一方面是由于铁磁体在交变磁通作用下产生的磁滞损耗和涡流损耗而引起的发热。 3.电器温升是指电器温度升高后,其本身温度与周围环境温度之差;所谓最高极限温度就是保证电器的机械强度、导电、导磁性以及介质的绝缘性不受危害的极限温度;从最高极限温度减去最高环境温度即为允许温升值。 4.电器的热稳定性是指在一定时间内能承受短路电流的热作用而不发生热损坏的能力。 5.电器的电动稳定性就是指当大电流通过电器时,在其产生的电动力作用下,电器有关部件不产生损坏或永久变形的性能。也可以说电器有关部分在电动力作用下不产生损坏或永久变形所能通过的最大电流的能力。 第二章电弧及灭弧装置 1.当在大气中开断或闭合电压超过10V、电流超过0.5A的电路时,在触头间隙(或称弧隙)中会产生一团温度极高、亮度极强并能导电的气体,称为电弧。 2.电弧产生的过程中主要的物理现象有:碰撞游离、热游离、热发射、强电场发射。

3.交流电弧与直流电弧不同,交流电流的瞬时值随时间变化,每周期内有两次过零点。电流经过零点时,弧隙的输入能量等于零,电弧温度下降,电弧自然熄灭。而后随着电压和电流的变化,电弧重新燃烧。因此,交流电弧的燃烧,实际上就是电弧的点燃、熄灭周而复始的过程。 4.交流电弧过零熄灭后,在孤隙间存在着介质强度恢复过程和弧隙电压恢复过程。 5.常用的灭弧装置有:磁吹灭弧装置、灭弧罩、油冷灭弧装置、气吹灭弧装置、横向金属栅片灭弧、真空灭弧装置。 6.灭弧罩的作用是让电弧与固体介质相接触,降低电弧温度,从而加速电弧熄灭。 第三章触头 1. 为了保证电器可靠工作,对触头有如下要求:工作可靠;有足够的机械强度;长期通过额定电流时,温升不超过规定值;通过短路电流时,有足够的热稳定性和电动稳定性;有足够抵抗外界腐蚀(如氧化、化学气体腐蚀)的能力;寿命长。 2. 触头的参数主要有触头的结构尺寸、开距、超程、研距、触头初压力和终压力等。 3. 触头处于断开位置时,动静触头之间的最小距离s称为触头的开距。 4. 触头的超程是指触头对完全闭合后,如果将静触头移开,动触头在触头弹簧的作用下继续前移的距离r。 5. 触头的接触电阻包括收缩电阻和表面膜电阻。触头接触处的表面无论经过多细致的加工处理,从微观角度分析,其表面总是凹凸不平的,它们不是整个面积接触,而是只有若干个突起部分相接触,实际接触面积比视在接触面积小得多,当电流通过实际接触面积时,电流只从接触点上通过,在这些接触点附

(完整版)铁道机车发展史

世界机车发展史 1804年,英国人理查德·特里维希克改进瓦特的蒸汽机,造出了一台货运 蒸汽机车。这台蒸汽机车,在结构上初步具备了早期蒸汽机车的雏形。后来, 他又把这种蒸汽机装在铁路马车上,于是,出现了最早的蒸汽机车。他的这一 发明,被称作世界交通运输史上具有开创性意义的发明创造。 理查德·特里维希克 1810年,英国人乔治·斯蒂芬森开始自己动手制造蒸汽机车,到1814年 他的“布鲁克”号机车开始运行,这台机车有两个汽缸、一个 2.5米长的锅炉,装有凸缘的车轮可以拉着8节矿车载重30吨,以6.4千米/时的速度前进。在 以后的10年中,史蒂文生造了12辆与“布鲁克”号相似的火车头,虽然在设 计上没有突破前人的成就,但他以经预见到火车时代即将到来。 “布鲁克”号 1825年9月27日,乔治·斯蒂芬森亲自驾驶自己设计制造的“动力”1号 机车,拉着550名乘客,从达灵顿出发,以24千米/时的速度驶向斯托克顿, 这被认为是人类历史上第一列用蒸汽机车牵引,在铁路上行驶的旅客列车。 乔治·斯蒂芬森

1878年, 河北开滦煤矿开工, 为了运输煤炭, 清政府决定修建唐胥铁路, 并于1880年动工, 1881年通车, 铁路全长10千米, 后来, 有凭借英国人的几 分设计图纸, 利用矿厂的起重机锅炉﹑长井架等设备, 装配制成中国第一台蒸 汽机车──“龙”号机车。 “龙”号蒸汽机车 蒸汽机车虽然得到广泛应用, 但也存在着许多难以克服的缺点, 比如他运 送的煤的1/4被他自己“吃掉”了, 他每行驶80千米~100千米就要加水, 行 驶200千米~300千米就要加煤, 行驶5000千米~7000千米还要洗炉;他在行驶中要排放黑烟, 污染环境, 尤其是在过山洞时, 浓烟难以散出去, 影响旅客和 车上工作人员的健康…… 正是由于这些原因, 曾经辉煌一时的蒸汽机车开始退出历史舞台, 逐渐被新一代的电力机车和内燃机车所取代。 1879年, 德国人西门子制造出一台小型电力机车, 由150负直流发电机供电,能运载20名乘客,时速12千米,同年在柏林贸易展览会上,西门子驾驶 这辆电力机车首次成功运行。这台“不冒烟”的机车引起人们极大的兴趣, 电 力机车从此发展起来。1890年, 英国的电力机车正式用于营业; 美国于1895 年开始将电力机车应用于干线运输; 以后德国、日被相继研制出了实用的电力 机车。 1879年西门子在柏林展示第一辆小型电动机车 1903年7月8日,德国首先运行了由钢轨供电的动车组,由4节动车和2 节拖车编成。同年8月14日,又运行了由接触网供电的动车组,这是世界上第一列由接触网供电的单相交流电动车组。 1904年, 瑞士又架设了单向交流电压1.5万伏的高压电线, 为500马力的BB型电力机车供电, 从此, 电气化铁路迅速发展起来。 20世纪出,美国通用电气公司组装了一辆汽油机车,用内燃机带动发电机,在通过发电机带动电动机,推动机车前进。柴油机发明后,由于它的经济性好,很快在铁路上得到广泛应用。1925年,美国新泽西州的中央铁路使用了第一辆

电力机车主电路发展概述(I)

电力机车主电路的发展概述 电力机车(electric locomotive)本身不带原动机、靠接受沿线接触网送来的电流作为能源、由牵引电动机驱动车轮的机车。所需的电能,可以由多种形式(火力、水力、风力、核能等)转换而来。电力机车具有功率大、热效率高、速度快、过载能力强和运行可靠边等主要优点,而且不污染环境,特别适用于运输繁忙的铁路干线和隧道多、坡度大的山区铁路。 发展概况【top】最早造出第一台标准轨距电力机车的是苏格兰人R·戴维森,时间是1842年,由40组蓄电池供电,但没有实用价值。1879年5月,德国人W·VON西门子设计制造了一台能拉乘坐18人的三辆敞开式“客车”的电力机车,它由外部150V直流发电机通过第三轨供电,这是电力机车首次成功的试验。1881年,法国在巴黎展出了第一条由架空导线供电的电车线路,这就为提高电压,采用大功率牵引电动机创造条件。1895年,美国在巴尔的摩—俄亥俄间5. 6 km长的遂道区段修建了直流电气化铁路,在该区段上运行的干线电力机车自重97 t,采用675 V直流电,功率为1 070 kW。1903年德国的三相交流电力机车创造了每小时210km 的高速记录。 中国最早使用电力机车在1914年,是抚顺煤矿使用的1 500 V直流电力机车。1958年中国成功地生产出第一台电力机车,从采用引燃管整流器到硅整流器,机车性能不断改进和提高,到1976年制成韶山型(SS1型)131号时已基本定型。截止到1989年停止生产,SS1型电力机车总共制造出厂926台,成为中国电气铁路干线的首批主型机车。1966年SS2型机车制成。1978年研制成功的SS3型机车,不仅改善了牵引性能,还把机车的小时功率从4 200kW提高到4 800kW,载止到1997年底,共生产了987台,成为中国第二种主型电力机车。1985年又研制成功了SS4型8轴货运电力机车,它是国产电力机车中功率最大的一种(6 400kW),已成为中国重载货运的主型机车。以后又陆续研制成功了SS5、SS6和SS7 型电力机车。1994研制成功了时速为160 km的准高速四轴电力机车等。至此,中国干线电力机车已基本形成了4、6、8 轴和3 200、4 800和6 400kW功率系列。1999年5月26日,中国株洲电力机车厂生产出第一台时速超过200km的DDJ1001号“子弹头”电力机车,标志着中国铁路电力牵引已跻身于国际高速列车的行列。为追踪世界新型“交—直—交”电力机车新技术,从20世纪70年代末开始,中国铁路一直在进行中小功率变流机组的地面试验研究和大功率的交—直—交电力机车的研制,也已取得了阶段性成果。 类型【top】电力机车是从接触网上获取电能的,接触网供给电力机车的电流有直流和交流两种。由于电流制不同,所用的电力机车也不一样,基本上可以分为三类: 直—直流电力机车采用直流制供电时,牵引变电所内设有整流装置,它将三相交流电变成直流电后,再送到接触网上。因此,电力机车可直接从接触网上取得直流电供给直流串励牵引电动机使用,简化了机车上的设备。直流制的缺点是接触网的电压低,一般为1 500V或3 000V,接触导线要求很粗,要消耗大量的有色金属,加大了建设投资。 交—直流电力机车在交流制中,目前世界上大多数国家都采用工频(50Hz)交流制,或25Hz低频交流制。在这种供电制下,牵引变电所将三相交流电改变成25 kV工业频率单相交流串励电动机,把交流电变成直流电的任务在机车上完成。由于接触网电压比直流制时提高了很多,接触导线的直径可以相对减小,减少了有色金属的消耗和建设投资。因此,工频交流制得到了广泛采用,世界上绝大多数电力机车也是交—直流电力机车。 交—直—交电力机车采用直流串励电动机的最大优点是调速简单,只要改变电动机的端电压,就能很方便地在较大范围内实现对机车的调速。但是这种电机由于带有整流子,使制造和维修很复杂,体积也较大。而交流无整流子牵引电动机(即三相异步电动机)在制造、性能、功能、体积、重量、成本、及可靠性等方面远比整流子电机优越得多。它之所以迟迟不能在电力机车上应用,主要原因是调速比较困难。改变端电压不能使这种电机在较大范围内改变速度,而只有改变电流的频率才能达到目的。因此,只有当电子技术和大功率晶闸管变流装置得到迅速发展的今天,才能生产出采用三相交流电机的先进电力机车。交—直

电力机车电器复习题及答案

中南大学现代远程教育课程考试(专科)复习题及参考答案 《电力机车电器》 一、填空 1. 电器散热的形式有传导对流和辐射三种。 2. 触头材料可分为纯金属合金和金属陶冶材料三大类。 1. 3. 触头的磨损包括机械磨损化学磨损和电磨损。 2. 4. 电空传动装置主要由电空阀和压缩空气驱动装置组成。 5. 在电力机车电器上采用的传动装置主要有和。 3. 6. 转换开关反向鼓有向前位和向后位两个工作位置,牵引制 动鼓有牵引位和制动位两个工作位置。 7. 在CZ5-22-10/22 型接触器中,常开主触头数为,常闭主触头数为,常开联锁触头数为,常闭联锁触头数为。 8. 灭弧罩根据其缝的数量可分为和两种。 9. 电力机车的总开关和总保护电器是。 10. 电磁传动装置是一种将能转换成能的装置。 11. TFK1B—110型电空阀为式电空阀,其额定电压为。 12. 司机控制器的换向手柄在位时,调速手轮可在“制动”区域转动。4.13.气缸式传动装置主要由气缸、活塞和弹簧等组成。 14.气缸式传动装置可分为单活塞气缸传动和双活塞气缸传动两种。 15. 继电器由测量机构、比较机构、执行机构三个部分组成。 5.1 6. 继电器的返回系数是返回值和动作值的比值。 6.1 7. 在SS系列电力机车上使用的机械式继电器有风速继电器 、压力继电器、油流继电器。 18. 主司机控制器和调车控制器从结构来看都属于控制器。 7.19. 电空阀按工作原理分有开式和闭式两种。 20. CZT-20B型直流接触器有个常开主触头,个常闭主触头。 8.21. TSG3-630/25型单臂受电弓使用的是粉末冶金滑板 滑板,其原始厚度为10mm 磨损至3mm 时到限。

电力机车的特点

专业知识分享版 使命:加速中国职业化进程 电力机车是从接触网获取电能,用牵引电动机驱动的机车。这里叙述的电力机车仅指用于铁路干线的一般客货运电力机车,且以交直传动电力机车为主。 电力机车具有一系列特点: (1)可广泛利用多种一次能源 如可以由热力、水力、天然气甚至于地热、原子能、太阳能等转换而来,只要有相应的发电站,便可以利用相应的能量。 (2)功率大 由于在电力机车上没有产生能量的装置,也没有燃料储备,因而在同样的机车重量下,其功率要比自给式机车大。机车按单位重量所具有的功率称为机车的比功率,这是衡量机车技术水平的一个标志。目前电力机车的比功率一般达到40-60kW/t 。 (3)速度高 由于电力机车功率大,因而可以获得较高的速度。目前,一般客运电力机车运行速度已达160-200km/h ,货运电力机车也达到120-140km/h 。随着新型机车的不断出现,电力牵引的高速动车运行速度已达到300-400km/h 。 (4)效率高

专业知识分享版 使命:加速中国职业化进程 电力机车本身的效率为80%-85%o 但考虑到整个电力牵引系统,其平均效率则不是固定的,它与供电系统的电能来源有关,在由水力发电站供电的情况下,电力牵引的效率可达到60%-70%。 (5)过载能力强 机车在起动、牵引重载列车和通过困难区段时,具有一定的过载能力是十分重要的。对于非自给的电力机车,其能量是来自较强大的供电系统,因此机车的过载能力仅受牵引电机的限制,而牵引电机的过载能力是较高的。 (6)运输成本低 电力机车检修工作量小,维修周期长,每两次大修之间运行公里数为蒸汽机车和内燃机车的2倍。由于电力机车运输能力的增加,足以补偿电气化初期投资,所以铁道电气化长远经济效益好。 (7)司机劳动条件好,无烟气排放污染 电力机车不冒烟,不排废气,通过长大隧道时,乘务人员和旅客可免受烟气之苫,从而也为广大旅客创造清洁的旅行条件。此外,电力机车可以将接触网电能转供列车使用而不影响牵引功率,不用装设车下柴油发电机组,也不用发电车,提高列车的舒适度和经济性。 (8)不受外界条件限制在山区和高寒地区电力机车功率发挥更好。

电力机车电器课程复习资料D

《电力机车电器》课程复习资料 一、填空题: 1.触头的接触形式分为________、________和________三种。 2.在电力机车电器上采用的传动装置主要有________和________。 3.触头的磨损包括________、________和________。 4.电空传动装置主要由________和________组成。 5.触头材料可分为________、________和________三大类。 6.转换开关反向鼓有________位和________位两个工作位置,牵引制动鼓有________位和________位两个 工作位置。 7.在CZ5-22-10/22 型接触器中,常开主触头数为________,常闭主触头数为________,常开联锁触头数 为________,常闭联锁触头数为________。 8.灭弧罩根据其缝的数量可分为________和________两种。 9.时间继电器起延时作用的主要部件是________。 10.电磁传动装置是一种将________能转换成________能的装置。 11.继电器的返回系数是________和________的比值。 12.在SS系列电力机车上使用的机械式继电器有________、________、________。 13.主司机控制器和调车控制器从结构来看都属于________控制器。 14.电空阀按工作原理分有________和________两种。 15.CZT-20B型直流接触器有________个常开主触头,________个常闭主触头。 16.TFK1B—110型电空阀为________式电空阀,其额定电压为________。 17.司机控制器的换向手柄在________位时,调速手轮可在“制动”区域转动。 18.气缸式传动装置主要由________、________和________等组成。 19.气缸式传动装置可分为________和________两种。 20.继电器由________、________、________三个部分组成。 21.TSG3-630/25型单臂受电弓使用的是________滑板,其原始厚度为________磨损至________时到限。 22.缓冲阀由________和________两部分组成。 23.受电弓上升过程与下降过程的静态特性曲线不重合的原因是在受电弓活动关节存在着________。 24.为了减小摩擦力,在受电弓的各铰接部分均装有________。 25.TSG3-630/25型单臂受电弓的静态接触压力为________。 26.TSG3-630/25型单臂受电弓的最大升弓高度________。 27.TDZ1A-10/25型空气断路器低压部分主要包括________、________、________、________、________和 ________等部件。 二、判断题: 1.加大触头压力可使接触电阻减小。 [ ] 2.CZ5-22-10/22型接触器有两个常开联锁触头。 [ ] 3.触头的磨损主要取决于机械磨损。 [ ] 4.接触电阻随外加压力的增大而增大。 [ ] https://www.360docs.net/doc/5017659092.html,H4型转换开关可以在带电状态下转换。 [ ] 6.受电弓在其工作高度范围内受电弓的静态接触压力基本不变。 [ ] 7.主断路器隔离开关自身不带灭弧装置,它只能在主触头分断完成后才能进行分断操作。 [ ] 8.油流继电器的左右方向可以互换。 [ ] 9.司机控制器的换向手柄在“0”位时,调速手轮可以任意动作。 [ ] 10.司机控制器的调速手轮在“牵引”区域时,换向手柄被锁在“前”位或“后”位。 [ ]

电力机车发展史

电力机车-概况 由牵引电动机驱动车轮的机车。电力机车因为所需电能由电气化铁路供电系统的接触网或第三轨供运行中的电力机车 给,所以是一种非自带能源的机车。电力机车具有功率大、过载能力强、牵引力大、速度快、整备作业时间短、维修量少、运营费用低、便于实现多机牵引、能采用再生制动以及节约能量等优点。使用电力机车牵引车列,可以提高列车运行速度和承载重量,从而大幅度地提高铁路的运输能力和通过能力。电力机车起动加速快,爬坡能力强,工作不受严寒的影响,运行时没有煤烟,所以在运输繁忙的铁路干线和隧道多、坡度陡的山区线路上更能发挥优越性。此外,电力旅客列车,可为客车空气调节和电热取暖提供便利条件。电力机车由于电气化铁路基本建设投资大,所以应用不如内燃机车和蒸汽机车广泛。电力机车没有空气污染,且善于保养,牵引列车速度可达几百千米,所以高速列车都是电力机车牵引的。电力机车另一个优点就是能够在短时间内完成启动和制动,这个性能比蒸汽机车和内燃机车要优秀很多。所以在世界范围内,正大力发展电气化铁路。在绿色环保的今天,电力机车的发展更加受到重视。由于我国的电气化铁路较少,所以会选择把原本无电气化的铁路经电气化改造。电气化改造后的铁路速度将从100-120km/h提高到160-200km/h,这样不仅能缩短列车的运输时间,还能达到5000t以上的货运列车运输。如今,走向“高铁时代”的中国,正大力发展电气化铁路。 电力机车-历史沿革 历史简述

1835年荷兰的斯特拉廷和贝克尔两人就试着制以电池供电的二轴小型铁路车辆。1842年苏格兰人R.戴维森首先造出一台用40组电池供电的重 5吨的标准轨距电力机车。由于电动机很原始,机车只能勉强工作。1879年德国人 W.von西门子驾驶一辆他设计的小型电力机车,拖着乘坐18人的三辆车,在柏林夏季展览会上表演。机车电源由外部150伏直流发电机供应,通过两轨道中间绝缘的第三轨向机车输电。这是电力机车首次成功的实验。电力机车用于营业是从地下铁道开始的。1890年英国伦敦首先用电力机车在 5.6公里长的一段地下铁道上牵引车辆。干线电力机车在1895年应用于美国的巴尔的摩铁路隧道区段,采用675伏直流电,自重97吨,功率1070千瓦。19世纪末,德国对交流电力机车进行了试验,1903年德国三相交流电力机车创造了每小时210.2公里的高速纪录。 来到中国 中国于1914年在抚顺煤矿使用1500伏直流电力机车。干线铁路电力机车采用单相交流 25000伏50赫电流制。1958年制成第一台以引燃管整流的“韶山”型电力机车。1968年改用硅整流器成功,称“韶山1”型,持续功率为3780千瓦。近年来干线电力机车向大功率、高速、耐用方面发展,客运电力机车速度已从每小时160公里增加到200公里,并向250公里迈进。各国制造的电力机车电压制较复杂,不便于国际间铁路联运过轨。近年来国际上已定出几种电力机车用标准电压。直流电压为600伏(非优先选用)、750伏、1500伏和3000伏。单相交流电压6250伏(非优先选用)、工频50或60赫,电压15000伏、工频赫,电压25000伏、工频50或60赫等几种。 各种类型的电力机车(19张) 电力机车-构造

关于我国电力机车发展过程的研究报告

关于我国电力机车发展过程的研究报告 专业:电气工程及其自动化 班级:电气 姓名:无名 学号: 10009300 指导教师:莫

电力机车 电力机车是指由电动机驱动车轮的机车。电力机车因为所需电能由电气化铁路供电系统的接触网或第三轨供运行中的电力机车给,所以是一种非自带能源的机车。电力机车具有功率大、过载能力强、牵引力大、速度快、整备作业时间短、维修量少、运营费用低、便于实现多机牵引、能采用再生制动以及节约能量等优点。使用电力机车牵引车列,可以提高列车运行速度和承载重量,从而大幅度地提高铁路的运输能力和通过能力。 我国电力机车发展概述 中国最早使用电力机车在1914年,是抚顺煤矿使用的1500V直流电力机车。1958年中国成功地生产出第一台电力机车,从采用引燃管整流器到硅整流器, 机车性能不断改进和提高,到1976年制成 韶山l型(SS1型)131号时已基本定型。 截止到1989年停止生产,SS l型电力机车总 共制造了926台,成为中国电气化铁路干线 的首批主型机车。1966年SS2型机车制成, 1978年研制成功的SS3型机车,不仅改善 了牵引性能,还把机车的小时功率从4 200kW提高到4800kW,截止到1997年底,共生产了987台,成为中国第二种主型电力机车。1985年又研制成功了SS4型8轴货运电力机车,它是国产电力机车中功率最大的一种达到(6400kW),已成为中国重载货运的主型机车。以后又陆续研制成功了SS5、SS6和SS7型电力机车。1994年研制成功了时速为160 km 的准高速四轴电力机车等。至此,中国干线电力机车已基本形成了4,6,8轴和3200kW、4800kW和6400kW功率系列。1999年5月26日,中国株洲电力机车厂生产出第一台时速超过200km的DDJ1型“子弹头”电力机车,标志着中国铁路电力牵引已跻身于国际高速列车的行列。为追踪世界新型“交-直-交”电力机车新技术,从20世纪70年代末开始,中国铁路一直在进行中小功率变流机组的地面试验研究和大功率的交-直-交电力机车的研制,也已取得了阶段性成果。 中国电力机车的研制开始于1958年。当时的铁道部田心机车车辆工厂,也就是现在的株洲电力机车工厂在协助湘潭电机厂制造工矿电力机车的同时,设计并试制铁路干线电力机车。1958年初,铁道部、第一机械工业部组织考察团赴苏联考察学习。当时,苏联基本定型的是使用20千伏工频单相交流制的Н60型电力机车,与中国决定采用的25千伏工频单相交流制不尽相同,于是对Н60型电力机车进行了大胆地技术改造,其中重大修改达78处。1958年12月28日,

1.4电力机车的相关知识

第四节 电力机车的相关知识 电力机车是从接触网上获取电能,用电动机驱动运行的机车或动车。 目前,我国使用的是整流器式交—直电力机车。交—直电力机车顶部的受电弓将接触网上的单相工频交流电引入机车,每台机车上装设有一套把交流电变换成直流电的整流装置,变压整流后供给直流牵引电动机。直流牵引电动机因带有整流子,在制造和维护检修等方面均较复杂。而交流无整流子牵引电动机(即三相异步电动机)在制造、性能、功率、体积、重量、成本、维护及可靠性等方面远比整流子电机优越得多。以前,由于技术上还不能很好的解决大功率交流异步电动机的经济调速问题,所以交流异步电动机在牵引方面未得到很快的发展。长期以来各种牵引电机几乎都为整流子直流牵引电机所占领。 今天,由于电力电子技术和晶闸管(即可控硅)变流装置的迅速发展,特别是大功率晶闸管性能不断的提高和半导体集成电路的迅速发展,以及可关断晶闸管(GT0)在大功率变流装置上的广泛应用,为交流电机变频调速提供了新的技术途径。20世纪90年代以来,发达国家机车电传动已由交—直传动全面发展到交流传动,交一直传动的机车已停止生产。我国已于1996年由株洲电力机车厂制造成功了交—直—交原形机车。交—直—交电力机车仍是由接触网供给单相交流电,而牵引电动机为三相异步电动机,要调节异步电动机的转速,目前比较理想的方法是改变交流电的频率.所以这种电力机车首先把单相交流整流成直流,然后再把直流逆变成可以使频率变化的三相交流电,供异步电动机使用。 目前,国外(如法国)已经采用了单相电源不经中间的直流环节,而直接变换为频率可调的三相交流电。这就使电传动系统结构更为简单,机车重量也轻,更有发展前途。今后机车电传动技术必将有一个快速发展。 我国铁路电力机车除了少量是进口的外,大部分是使用国产韶山SS型机车。SS型机车已发展了1型~9型(连续)等。其中,SS4型货运机车应用了晶闸管电子技术,实现了无级调速,并将6轴改为8轴,机车功率达到6400kW;SS5和SS8型客运机车最高速度分别提高到140km/h和160km/h;SS9型客运机车最高速度又提高到170km/h,已初步满足牵引重载货运、大编组客运列车,进行快速或准高速运输。 一、电力机车简况及其牵引特性 1.电力机车简况 (1)工作原理概述 以韶山1(SS1)型电力机车为例,原理电路如图1-14所示。 受电弓升起时其滑板与接触线接触,将电压、电流引人电力机车。QF为主断路器(包括

电力机车电器复习题及答案

《电力机车电器》 一、填空 1. 电器散热的形式有、和三种。 2. 触头材料可分为、和三大类。 3. 触头的磨损包括、和。 4. 电空传动装置主要由和组成。 5. 在电力机车电器上采用的传动装置主要有和。 6. 转换开关反向鼓有位和位两个工作位置,牵引制动鼓有位和位两个工作位置。 7. 在CZ5-22-10/22 型接触器中,常开主触头数为,常闭主触头数为,常开联锁触头数为,常闭联锁触头数为。 8. 灭弧罩根据其缝的数量可分为和两种。 9. 电力机车的总开关和总保护电器是。 10. 电磁传动装置是一种将能转换成能的装置。 11. TFK1B—110型电空阀为式电空阀,其额定电压为。 12. 13.气缸式传动装置主要由、和等组成。 14.气缸式传动装置可分为和两种。 15. 继电器由、、三个部分组成。 16. 继电器的返回系数是和的比值。 17. 在SS系列电力机车上使用的机械式继电器有、、 。 18. 主司机控制器和调车控制器从结构来看都属于控制器。 19. 电空阀按工作原理分有和两种。 20. CZT-20B型直流接触器有个常开主触头,个常闭主触头。 21. TSG3-630/25型单臂受电弓使用的是滑板,其原始厚度为 磨损至时到限。 22.缓冲阀由和两部分组成。 23.受电弓上升过程与下降过程的静态特性曲线不重合的原因是在受电弓活动关

节存在着。 24.为了减小摩擦力,在受电弓的各铰接部分均装有。 25型单臂受电弓的静态接触压力为。 25型单臂受电弓的最大升弓高度。 1A25型空气断路器低压部分主要包 括、、、、和 等部件。 二、判断 1. 受电弓在其工作高度范围内受电弓的静态接触压力基本不变。() 2. CZ5-22-10/22型接触器有两个常开联锁触头。() 3. 触头的磨损主要取决于电磨损。() 4. 司机控制器的换向手柄在“0”位时,调速手轮可以任意动作。() 5. TKH4型转换开关可以在带电状态下转换。() 6. 加大触头压力可使接触电阻减小。() 7.主断路器隔离开关自身不带灭弧装置,它只能在主触头分断完成后才能进行分断操作。() 8. 油流继电器的左右方向可以互换。() 9. 接触电阻随外加压力的增大而增大。() 10. 司机控制器的调速手轮在“牵引”区域时,换向手柄被锁在“前”位或“后”位。() 11.高压连接器可以在带电状态下进行分断操作。() 12. EVS630/1—110DC型真空接触器由交流电源控制。() 13. 电流互感器是按照接近短路状态设计的,使用中不能开路。() 型高压电流互感器属保护级电流互感器。() 15. TCK7G型电空接触器不带吹弧线圈。() 三、名词解释 1.触头开距 2. 动作时间 3. 释放时间 四、简答

相关文档
最新文档