大学物理2期末复习

大学物理2期末复习
大学物理2期末复习

练习一 静电场中的导体

三、计算题

1. 已知某静电场在xy 平面内的电势函数为U =Cx/(x 2+y 2)3/2,其中C 为常数.求(1)x 轴上任意一点,(2)y 轴上任意一点电场强度的大小和方向.

解:. E x =-?U/?x

=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2]

= (2x 2-y 2)C /(x 2+y 2)5/2

E y =-?U/?y

=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2

x 轴上点(y =0) E x =2Cx 2/x 5=2C /x 3 E y =0

E =2C i /x 3 y 轴上点(x =0) E x =-Cy 2/y 5=-C /y 3 E y =0

E =-C i /y 3

2.如图5.6,一导体球壳A (内外半径分别为R 2,R 3),同心地罩在一接地导体球B (半径为R 1)上,今给A 球带负电-Q , 求B 球所带电荷Q B 及的A 球的电势U A .

静电场中的导体答案

解: 2. B 球接地,有 U B =U ∞=0, U A =U BA

U A =(-Q+Q B )/(4πε0R 3) U BA =[Q B /(4πε0)](1/R 2-1/R 1)

得 Q B =QR 1R 2/( R 1R 2+ R 2R 3- R 1R 3)

U A =[Q/(4πε0R 3)][-1+R 1R 2/(R 1R 2+R 2R 3-R 1R 3)]

=-Q (R 2-R 1)/[4πε0(R 1R 2+R 2R 3-R 1R 3)]

练习二 静电场中的电介质

三、计算题

1. 如图6.6所示,面积均为S =0.1m 2的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A , B 两板分别带电 Q 1=3.54×10-

9C, Q 2=1.77×10-

9C.忽略边缘效应,

求:(1) 两板共四个表面的面电荷密度 σ1, σ2, σ3, σ4;

(2) 两板间的电势差V =U A -U B .

解:1. 在A 板体内取一点A , B 板体内取一点B ,

它们的电场强度是四

-Q

5.6

Q 图6.6

2

σ 2 σ 4

个表面的电荷产生的,应为零,有

E A =σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0 E A =σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0

而 S (σ1+σ2)=Q 1 S (σ3+σ4)=Q 2 有 σ1-σ2-σ3-σ4=0

σ1+σ2+σ3-σ4=0 σ1+σ2=Q 1/S σ3+σ4=Q 2/S

解得 σ1=σ4=(Q 1+Q 2)/(2S )=2.66?10-8C/m 2

σ2=-σ3=(Q 1-Q 2)/(2S )=0.89?10-8C/m 2 两板间的场强 E=σ2/ε0=(Q 1-Q 2)/(2ε0S )

V=U A -U B ?

?=

B

A

l E d

=Ed=(Q 1-Q 2)d /(2ε0S )=1000V

四、证明题

1. 如图6.7所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.

解:1. 设在同一导体上有从正感应电荷出发,终止于负感应电荷的电场线.沿电场线ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有

=??l E d l

+

??

ACB

l E d ??A

B

l E d 2

=??ACB

l E d ≠0

与静电场的环路定理=??l E d l

0相违背,故在

同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.

练习三 电容 静电场的能量

三、计算题

1. 半径为R 1的导体球带电Q ,球外一层半径为R 2相对电容率为εr 的同心均匀介质球壳,其余全部空间为空气.如图7.1所示.求:(1)离球心距离为r 1(r 1R 2)处的D 和E ;(2)离球心r 1, r 2, r 3,处的U ;(3)介质球壳内外表面的极化电荷. 解:1. (1)因此电荷与介质均为球对称,电场也球对称,

过场点作与

图 7.1

金属球同心的球形高斯面,有

i

S

q

0d ∑=??S D

4πr 2D=∑q 0i

当r=5cm R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 3=Q /(4πr 2)=1.27×10-8C/m 2 E 3=Q /(4πε0r 2)=1.44×104N/C D 和E 的方向沿径向. (2) 当r=5cm

?

?r

l E d ?=R

r r E d 1?

++d R R

r E d 2?

++d

R r E d 3

=Q/(4πε0εr R )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]

=540V

当r=15cm

U 2=

?

?r

l E d ?

+=d

R r

r E d 2?

++d

R r E d 3

=Q/(4πε0εr r )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]

=480V

当r=25cm

U 3=

?

?r

l E d ?∞

=r

r E d 3=Q/(4πε0r )=360V

(3)在介质的内外表面存在极化电荷,

P e =ε0χE=ε0(εr -1)E σ'= P e ·n

r=R 处, 介质表面法线指向球心

σ'=P e ·n =P e cos π=-ε0(εr -1)E

q '=σ'S =-ε0(εr -1) [Q /(4πε0εr R 2)]4πR 2

=-(εr -1)Q /εr =-0.8×10-8C

r=R+d 处, 介质表面法线向外

σ'=P e ·n =P e cos0=ε0(εr -1)E

q '=σ'S =ε0(εr -1)[Q /(4πε0εr (R+d )2]4π(R +d )2

=(εr -1)Q /εr =0.8×10-8C

2.两个相距很远可看作孤立的导体球,半径均为10cm ,分别充电至200V 和400V ,然后用一根细导线连接两球,使之达到等电势. 计算变为等势体的过程中,静电力所作的功.

解;2.球形电容器 C =4πε0R

Q 1=C 1V 1= 4πε0RV 1 Q 2=C 2V 2= 4πε0RV 2

W 0=C 1V 12/2+C 2V 22/2=2πε0R (V 12+V 22)

两导体相连后 C =C 1+C 2=8πε0R

Q=Q 1+Q 2= C 1V 1+C 2V 2=4πε0R (V 1+V 2)

W=Q 2/(2C )= [4πε0R (V 1+V 2)]2/(16πε0R )=πε0R (V 1+V 2)2

静电力作功 A=W 0-W

=2πε0R (V 12+V 22)-πε0R (V 1+V 2)2=πε0R (V 1-V 2)2

=1.11×10-7J

练习六 磁感应强度 毕奥—萨伐尔定律

三、计算题

1. 如图10.7所示, 一宽为2a 的无限长导体薄片, 沿长度方向的电流I 在导体薄片上均匀分布. 求中心轴线OO

'上方距导体薄片为a 的磁感强度.

解:1.取宽为d x 的无限长电流元

d I=I d x/(2a ) d B=μ0d I/(2πr )

=μ0I d x/(4πar )

d B x =d B cos α=[μ0I d x/(4πar )](a/r ) =μ0I d x/(4πr 2)= μ0I d x/[4π(x 2+a 2)] d B y =d B sin α= μ0Ix d x/[4πa (x 2+a 2)]

(

)

??

-+==a

a

x x a

x x

I B B 2

2

04d d πμ

=[μ0I/(4π)](1/a )arctan(x/a )a a

-=μ0I/(8a )

(

)

??

-+==a

a

y y a

x a x

Ix B B 2

2

04d d πμ

=[μ0I/(8πa )]ln(x 2+a 2)

a a

-=0

2. 如图10.8所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面. 设线圈的总匝数为N ,通过线圈的电流为I . 求球心O 的磁感强度.

解:2. 取宽为d L 细圆环电流, d I=I d N=I [N/(πR/2)]R d θ =(2IN/π)d θ

d B=μ0d Ir 2/[2(r 2+x 2)3/2] r=R sin θ x=R cos θ d B=μ0NI sin 2θ d θ /(πR )

??==π

ππθ

θμ220d sin d R

NI B B

图10.8

x

r

=μ0NI/(4R )

练习七 毕奥—萨伐尔定律(续) 磁场的高斯定理

三、计算题

1.在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路, 回路旋转方向如图11.6所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比. 解: 1.取窄条面元d S =b d r , 面元上磁场的大小为

B =μ0I /(2πr ), 面元法线与磁场方向相反.有

Φ1=?-=a

a

bI

bdr r I 2002ln 2cos 2πμππμ Φ2=

?-=a

a

bI bdr r I 42002ln 2cos 2πμππμ Φ1/Φ2=1

2. 半径为R 的薄圆盘均匀带电,总电量为Q . 令此盘绕通过盘心且垂直盘面的轴线作匀

速转动,角速度为ω,求轴线上距盘心x 处的磁感强度的大小和旋转圆盘的磁矩.

解;2. 在圆盘上取细圆环电荷元d Q =σ2πr d r , [σ=Q /(πR 2) ],等效电流元为

d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r

(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向,大小为 d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]

(

)

()()

??

++=

+=R R

x

r

x r r x

r r

r B 0

2

322

22200

2

/322

30d 4

2d σωμσωμ=

()()

()

?

+++R x

r

x r x r 0

2

322

22220d 4

σωμ

-

()

()

?++R x

r

x r x 0

2322

2220d 4

σωμ

=

???

?

?

?+++R

R

x r x

x r 0

222

02

202σωμ =???

? ??-++x x R x R R Q 222222

220πωμ (2)求磁距. 电流元的磁矩

d P m =d IS=σωr d r πr 2=πσωr 2d r

图11.6

?=R

m dr r P 0

3πσω=πσωR 4/4=ωQR 2/4

练习八 安培环路定律

三、计算题

1. 如图1

2.5所示,一根半径为R 的无限长载流直导体,其中电流I 沿轴向流过,并均匀分布在横截面上. 现在导体上有一半径为R '的圆柱形空腔,其轴与直导体的轴平行,两轴相距为 d . 试求空腔中任意一点的磁感强度.

解:1. 此电流可认为是由半径为R 的无限长圆柱电流I 1和一个同电流密度的反方向的半径为R '的无限长圆柱电流I 2组成. I 1=J πR 2 I 2=-J πR '2 J =I/[π (R 2-R '2)] 它们在空腔内产生的磁感强度分别为 B 1=μ0r 1J/2 B 2=μ0r 2J/2 方向如图.有

B x =B 2sin θ2-B 1sin θ1=(μ0J/2)(r 2sin θ2-r 1sin θ1)=0 B y =B 2cos θ2+B 1cos θ1

=(μ0J/2)(r 2cos θ2+r 1cos θ1)=(μ0J/2)d 所以 B = B y = μ0dI/[2π(R 2-R '2)] 方向沿y 轴正向

2. 设有两无限大平行载流平面,它们的电流密度均为j ,电流流向相反. 求: (1) 载流平面之间的磁感强度; (2) 两面之外空间的磁感强度.

解;2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场

为 B 1=μ0J /2

在平面①的

上方向右,在平面①的下方向左;

电流②在空间产生的磁场为 B 2=μ0J /2

在平面②的上方向左,在平面②的下方向右.

(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有 B=B 1+B 2=μ0J (2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有 B=B 1-B 2=0

练习九 安培力

图12.5

I 1

I 2

①②

三、计算题

1. 一边长a =10cm 的正方形铜导线线圈(铜导线横截面积S =

2.00mm 2, 铜的密度

ρ=8.90g/cm 3), 放在均匀外磁场中. B 竖直向上, 且B = 9.40?10-3T, 线圈中电流为I =10A . 线圈

在重力场中 求:

(1) 今使线圈平面保持竖直, 则线圈所受的磁力矩为多少.

(2) 假若线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.

解:1. (1) P m =IS=Ia 2

方向垂直线圈平面.

线圈平面保持竖直,即P m 与B 垂直.有 M m =P m ×B

M m =P m B sin(π/2)=Ia 2B

=9.4×10-

4m ?N

(2) 平衡即磁力矩与重力矩等值反向 M m =P m B sin(π/2-θ)=Ia 2B cos θ M G = M G 1 + M G 2 + M G 3

= mg (a/2)sin θ+ mga sin θ+ mg (a/2)sin θ =2(ρSa )ga sin θ=2ρSa 2g sin θ Ia 2B cos θ=2ρSa 2g sin θ tan θ=IB/(2ρSg )=0.2694

θ=15?

2. 如图1

3.5所示,半径为R 的半圆线圈ACD 通有电流I 2, 置于电流为I 1的无限长直线电流的磁场中, 直线电流I 1 恰过半圆的直径, 两导线相互绝缘. 求半圆线圈受到长直线电流I 1的磁力. 解:2.在圆环上取微元 I 2d l = I 2R d θ

该处磁场为 B =μ0I 1/(2πR cos θ)

I 2d l 与B 垂直,有d F= I 2d lB sin(π/2) d F=μ0I 1I 2d θ/(2πcos θ)

d F x =d F cos θ=μ0I 1I 2d θ /(2π)

d F y =d F sin θ=μ0I 1I 2sin θd θ /(2πcos θ)

?

-=

2

2102πππ

θ

μd I I F x =μ0I 1I 2/2

因对称F y =0.故 F =μ0I 1I 2/2 方向向右.

I

13.5

I

练习十洛仑兹力

三、计算题

1. 如图14.6所示,有一无限大平面导体薄板,自下而上均匀通有电流,

已知其面电流密度为i(即单位宽度上通有的电流强度)

(1) 试求板外空间任一点磁感强度的大小和方向.

(2) 有一质量为m,带正电量为q的粒子,以速度v沿平板法线方向

向外运动. 若不计粒子重力.求:

(A) 带电粒子最初至少在距板什么位置处才不与大平板碰撞.

(B) 需经多长时间,才能回到初始位置..

解:1. (1)求磁场.用安培环路定律得B=μ0i/2

在面电流右边B的方向指向纸面向里,在面电流左边B的方向沿纸面向外.

(2) F=q v×B=m a qvB=ma n=mv2/R

带电粒子不与平板相撞的条件是粒子运行的圆形轨迹不与平板相交,即带电粒子最初位置与平板的距离应大于轨道半径.

R=mv/qB= 2mv/(μ0iq)

(3) 经一个周期时间,粒子回到初始位置.即

t=T=2πR/v= 4πm/(μ0iq)

2. 一带电为Q质量为m的粒子在均匀磁场中由静止开始下落,磁场的方向(z轴方向)与重力方向(y轴方向)垂直,求粒子下落距离为y时的速率.并讲清求解方法的理论依据.

解:2. 洛伦兹力Q v×B垂直于v,不作功,不改变v的大小;重力作功.依能量守恒有

mv2/2=mgy,

得v=(2gy)1/2.

练习十一磁场中的介质

三、计算题

1. 一厚度为b的无限大平板中通有一个方向的电流,平板内各点的电导率为γ,电场强度为E,方向如图15.6所示,平板的相对磁导率为μr1,平板两侧充满相对磁导率为μr2的各向同性的均匀磁介质,试求板内外任意点的磁感应强度.

解:1. 设场点距中心面为x,因磁场面对称以中心面为对称面过场点取矩形安培环路,有

??l l

H d=ΣI02?LH=ΣI0

(1)介质内,0

(2)介质外,|x|>b/2. ΣI0=b?lJ=b?lγE,有

H=bγE/2B=μ0μr2H=μ0μr2bγE/

2 i v

?

图14.6

2. 一根同轴电缆线由半径为R 1的长导线和套在它外面的半径为R 2的同轴薄导体圆筒组成,中间充满磁化率为χm 的各向同性均匀非铁磁绝缘介质,如图15.7所示. 传导电流沿导线向上流去, 由圆筒向下流回,电流在截面上均匀分布. 求介质内外表面的磁化电流的大小及方向.

解:2. 因磁场柱对称 取同轴的圆形安培环路,有 ??l

l H d =ΣI 0

在介质中(R 1

介质内表面的磁化电流 J SR 1=| M R 1×n R 1|=| M R 1|=χm I /(2πR 1) I SR 1=J SR 1?2πR 1=χm I (与I 同向) 介质外表面的磁化电流

J SR 2=| M R 2×n R 2|=| M R 2|=χm I /(2πR 2) I SR 2=J SR 2?2πR 2=χm I (与I 反向)

练习十二 电磁感应定律 动生电动势

三、计算题

1. 如图17.8所示,长直导线AC 中的电流I 沿导线向上,并以d I /d t = 2 A/s 的变化率均匀增长. 导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图所示. 求此线框中产生的感应电动势的大小和方向.

解: 1. 取顺时针为三角形回路电动势正向,得三角形面法线垂直纸面向里.取窄条面积微元

d S =y d x =[(a+b -x )l/b ]d x

Φm =?

?S d S B

=()?

+-+?b

a a

b

ldx

x b a x I πμ20 =

()??

????-++b a b a b a b

Il ln 20πμ

图17.8

图17.9

图15.6

图15.7

εi =-d Φm /d t=

()dt

dI

a b a b a b b l ??????++-ln 20πμ =-5.18×10-

8V

负号表示逆时针

2. 一很长的长方形的U 形导轨,与水平面成θ 角,裸导线可在导轨上无摩擦地下滑,导轨位于磁感强度B 垂直向上的均匀磁场中,如图17.9所示. 设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计, abcd 形成电路. t=0时,v=0. 求:(1) 导线ab 下滑的速度v 与时间t 的函数关系; (2) 导线ab 的最大速度v m .

解:2. (1) 导线ab 的动生电动势为

εi = ?l v×B ·d l=vBl sin(π/2+θ)=vBl cos θ

I i =εi /R = vBl cos θ/R

方向由b 到a . 受安培力方向向右,大小为

F =| ?l (I i d l×B )|= vB 2l 2cos θ/R

F 在导轨上投影沿导轨向上,大小为

F '= F cos θ =vB 2l 2cos 2θ/R

重力在导轨上投影沿导轨向下,大小为mg sin θ

mg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )]

()[]{}

?-=v

mR l vB g dv t 0

222cos sin θθ

()()

()

mR t l B e

l B mgR v θθθ222cos 2221cos sin --=

(2) 导线ab 的最大速度v m =θ

θ

2

22cos sin l B mgR . 练习十三 感生电动势 自感

三、计算题

1. 在半径为R 的圆柱形空间中存在着均匀磁场B ,B 的方向与柱的轴线平行.有一长为2R 的金属棒MN 放在磁场外且与圆柱形均匀磁场相切,切点为金属棒的中点,金属棒与磁场B 的轴线垂直.如图18.6所示.设B 随时间的变化率d B /d t 为大于零的常量.求:棒上感应电动势的大

图18.7

小,并指出哪一个端点的电势高.

(分别用对感生电场的积分εi =?l E i ·d l 和法拉第电磁感应定律εi =-d Φ/d t 两种方法解). .解:(1) 用对感生电场的积分εi =?l E i ·d l 解:在棒MN 上取微元d x (-R

E i =[R 2/(2r )](d B/d t )

与棒夹角θ满足tan θ=x/R εi =??N M

l E i d =?N

M

i x E θcos d

=()?-?R

R

r R r x t B R 22d d d =?-+?R

R R x x t B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )

R R

-

=πR 2(d B/d t )/4

因εi =>0,故N 点的电势高. (2) 用法拉第电磁感应定律εi =-d Φ/d t 解: 沿半径作辅助线OM ,ON 组

成三角形回路MONM

=

?

?N

M

l E i d =??-M

N

l E i d

εi

=-?????M N l E i d +??O M l E i d +??

???N

O l E i d

=-(-d ΦmMONM /d t ) =d ΦmMONM /d t

而 ΦmMONM =?

?S

d S B =πR 2B/4

故 εi =πR 2(d B/d t )/4 N 点的电势高.

2. 电量Q 均匀分布在半径为a ,长为L (L >>a )的绝缘薄壁长圆筒表面上,圆筒以角速度ω绕中心轴旋转.一半径为2a ,电阻为R 总匝数为N 的圆线圈套在圆筒上,如图18.7所示.若圆筒转速按ω=ω0(1-t/t 0)的规律(ω0,t 0为已知常数)随时间线性地减小,求圆线圈中感应电流的大小和流向.

解:2. .等效于螺线管

B 内=μ0 nI=μ0 [Q ω /(2π)]/L=μ0 Q ω /(2πL )

B 外=0

Φ=?S B ?d S=B πa 2=μ0Q ω a 2 /(2 L ) εi =-d Φ/d t=-[μ0Q a 2 /(2 L )]d ω /d t

=μ0ω 0Q a 2 /(2 L t 0)

I i =εi /R=μ0ω 0Q a 2 /(2 LR t 0)

方向与旋转方向一致.

练习十四 自感(续)互感 磁场的能量

三、计算题

1. 两半径为a 的长直导线平行放置,相距为d ,组成同一回路,求其单位长度导线的自感系数L 0.

解:1. 取如图所示的坐标,设回路有电流为I ,则两导线间磁场方向向里,大小为 0≤r ≤a B 1=μ0Ir/(2πa 2)+ μ0I/[2π(d -r )] a ≤r ≤d -a B 2=μ0I/(2πr )+μ0I/[2π(d -r )] d -a ≤r ≤d B 3=μ0I/(2πr )+ μ0I (d -r )/(2πa 2) 取窄条微元d S=l d r ,由Φm =?

?S

S B d 得

Φml =?a

a r Irl 02

02d πμ+()?-a r d r Il 0

02d πμ +

?

-a

d a

r r Il πμ2d 0+()?--a d a

r d r

Il πμ2d 0

+

?

-a

d a

r r Il πμ2d 0+()?-a d a

a r

l r -d I 2

02d πμ =μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d -a )]

+[μ0Il/(2π)]ln[(d -a )/a ] +[μ0Il/(2π)]ln[(d -a )/a ]

+[μ0Il/(2π)]ln[d/(d -a )]+μ0Il/(4π) =μ0Il/(2π)+(μ0Il/π)ln(d/a )

由L l =Φl /I ,L 0= L l /l=Φl /(Il ).得单位长度导线自感 L 0==μ0l/(2π)+(μ0l/π)ln(d/a )

2 内外半径为R 、r 的环形螺旋管截面为长方形,共有N 匝线圈.另有一矩形导线线圈与其套合,如图19.4(1)所示. 其尺寸标在图19.4(2) 所示的截面图中,求其互感系数.

解:2. 设环形螺旋管电流为I , 则管内磁场大小为 B =μ0NI/(2πρ) r ≤ρ≤R

方向垂直于截面; 管外磁场为零.取窄条微元d S=h d ρ,由Φm =?

?S

S B d 得

Φm =

?R

r

NIh πρρ

μ2d 0=μ0NIh ln(R/r )/(2π) M =Φm /I ==μ0Nh ln(R/r )/(2π).

.

19.4

(1)

.

——知识就是力量,学海无涯苦作舟!——

不要担心知识没有用,知识多了,路也好选择,也多选择。比如高考,高分的同学,填报志愿的时候选择学校的范围大,而在分数线左右的就为难了,分数低的就更加不要说了。再比如,有了知识,你也可以随时炒老板。

大学物理期末考试A卷

1. 质点沿半径为R 的圆周运动,运动学方程为 2 a bt θ=+ (SI 制),a 、 b 为常量,则t 时刻法向加速度大小为n a = ,角加速度α= . 2. 质量为m 的小球,在合外力x k F -=作用下运动,已知t A x ωcos =,其中k ,ω,A 为正的常量,则在0=t 到ω π 2=t 时间内小球动量的增量为 。 3. 一简谐振动用余弦函数表示(SI 制),其曲线如右图所示,则此简谐振动的三个特征量为A= ,=ω , 0?= 。 4. 某刚性双原子分子理想气体,处于温度为T 的平衡态,k 为玻耳兹曼常量,R 为摩尔气体常量,则1mol 该理想气体的内能为 。 5. 点电荷1q 、2q 、3q 和4q 在真空中的分布如图所示,图中S 为闭合 曲面,则通过该闭合曲面的电通量??S S d E = ,式中的E 是点 电荷 在闭合曲面上任一点产生的场强的矢量和。 6. 载有恒定电流I 的长直导线旁有一半圆环导线cd ,半圆环半径为b , 环面与直导线垂直,且半圆环两端点连线的延长线与直导线相交,如图.当半圆环以速度 v 沿平行于直导线的方向平移时,半圆环上的感应电动势的大小是__________________。 1. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作[ ] (A) 匀加速直线运动,加速度沿x 轴正方向; (B) 匀加速直线运动,加速度沿x 轴负方向; (C) 变加速直线运动,加速度沿x 轴正方向; (D) 变加速直线运动,加速度沿x 轴负方向。 2. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加;(2)质点运动经一闭合路径,保守力对质点作的功为零;(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零。下列对上述说法中判断正确的是 ( ) (A )(1)、(2)是正确的 (B )(2)、(3)是正确的 (C )只有(2)是正确的 (D )只有(3)是正确的 3.处于平衡状态的一瓶氮气和一瓶氦气的分子数密度相同,分子的平均平动动能也相同,则 它们[ ] (A )温度,压强都相同; (B )温度相同,但氦气的压强大于氮气的压强; (C )温度,压强均不相同; (D )温度相同,但氦气的压强小于氮气的压强。 4. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如 图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,哪种说法正确 ( ) (A )角速度从小到大,角加速度从大到小; (B )角速度从小到大,角加速度从小到大; (C )角速度从大到小,角加速度从大到小; (D )角速度从大到小,角加速度从小到大。 5.机械波表达式0.05cos(60.06)y t x ππ=+ (SI 制),则 ( ) (A )波长为5m (B )波速为10 m/s (C )周期为 1 3 s (D ) 波沿x 轴正方向传播 学院名称: 专业班级: 姓名: 学号: 密 封 线 内 不 得 答 题 线 封 密 ?q 1 ?q 2 ?q 3 ?q 4 S O A I d c a b O 填6

大学物理2最新试题

期末练习一 一、选择题 、关于库仑定律,下列说法正确的是( ) .库仑定律适用于点电荷,点电荷其实就是体积很小的球体; .根据2021π4r q q F ε=,当两电荷间的距离趋于零时,电场力将趋向无穷大; .若点电荷1q 的电荷量大于2q 的电荷量,则1q 对2q 的电场力大于2q 对1q 的电场力; .库仑定律和万有引力定律的表达式相似,都是平方反比律。 、点电荷Q 被曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图,则引入前后( ) .曲面S 的电场强度通量不变,曲面上各点场强不变; .曲面S 的电场强度通量变化,曲面上各点场强不变; .曲面S 的电场强度通量变化,曲面上各点场强变化; .曲面S 的电场强度通量不变,曲面上各点场强变化; 、如图所示,真空中有一电量为 Q 的点电荷,在与它相距为r 的A 点处有一检验电荷 q ,现使检验电荷 q 从A 点沿半圆弧轨道运动到B 点,则电场力做功为( ) .0; .r r Qq 2π420?ε; .r r Qq ππ420?ε; .2ππ42 20r r Qq ?ε。 、已知厚度为d 的无限大带电导体板,两表面上电荷均匀分布,电荷面密度均为σ,如图所示。则板外两侧电场强度的大小为( ) .02εσ=E ; .0 2εσ=E ; .0 εσ= E ; .0=E 。 、将平行板电容器的两极板接上电源,以维持其间电压不变,用相对介电常数为r ε的均匀电介质填满板间,则下列说法正确的是( ) .极板间电场强度增大为原来的r ε倍; .极板上的电量不变;

.电容增大为原来的r ε倍; .以上说法均不正确。 、两个截面不同的铜杆串联在一起,两端加上电压为U ,设通过细杆和粗杆的电流、电流密度大小、杆内的电场强度大小分别为1I 、1j 、1E 与2I 、2j 、2E ,则( ) .21I I =、21j j >、21E E >; .21I I =、21j j <、21E E <; .21I I <、21j j >、21E E > ; .21I I <、21j j <、21E E < 。 、如图所示,A A '、B B '为两个正交的圆形线圈,A A '的半径为R ,通电流为I ,B B '的半径为R 2,通电流为I 2,两线圈的公共中心O 点的磁感应强度大小为( ) .R I B 20μ=; .R I B 0μ=; .R I B 220μ= ; .0=B 。 、如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线,外磁场垂直于水平面向上,当外力使ab 向右平移时,cd 将( )。.不动; .转动; .向左移动; .向右移动。 、E 和W E 分别表示静电场和感生电场的电场强度,下列关系式中正确的是( ) .0d =??L l E 、0d =??L W l E ; .0d ≠??L l E 、0d ≠??L W l E ; .0d =??L l E 、0d ≠??L W l E ; .0d ≠??L l E 、0d =??L W l E 。

大学物理(下)期末考试试卷

大学物理(下)期末考试试卷 一、 选择题:(每题3分,共30分) 1. 在感应电场中电磁感应定律可写成?-=?L K dt d l d E φ ,式中K E 为感应电场的电场强度。此式表明: (A) 闭合曲线L 上K E 处处相等。 (B) 感应电场是保守力场。 (C) 感应电场的电力线不是闭合曲线。 (D) 在感应电场中不能像对静电场那样引入电势的概念。 2.一简谐振动曲线如图所示,则振动周期是 (A) 2.62s (B) 2.40s (C) 2.20s (D) 2.00s 3.横谐波以波速u 沿x 轴负方向传播,t 时刻 的波形如图,则该时刻 (A) A 点振动速度大于零, (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零. 4.如图所示,有一平面简谐波沿x 轴负方向传 播,坐标原点O 的振动规律为)cos(0φω+=t A y , 则B 点的振动方程为 (A) []0)/(cos φω+-=u x t A y (B) [])/(cos u x t A y +=ω (C) })]/([cos{0φω+-=u x t A y (D) })]/([cos{0φω++=u x t A y 5. 一单色平行光束垂直照射在宽度为 1.20mm 的单缝上,在缝后放一焦距为2.0m 的会聚透镜,已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.00mm ,则入射光波长约为 (A )100000A (B )40000A (C )50000A (D )60000 A 6.若星光的波长按55000A 计算,孔镜为127cm 的大型望远镜所能分辨的两颗星2 4 1

大学物理期末考试1试卷

1.一质点沿半径为R的圆周作匀速率运动,每t时间转一圈,在2t时间间隔内,其平均速度大小和平均速率大小分别为() (A)(B)(C)(D) 2.一飞轮半径为2米,其角量运动方程为,则距轴心1米处的点在2秒末的速率和切向加速度为() (A)(B)(C)(D) 3.一人以速率=5m/s骑自行车向北行驶,人测得风以相同的速率从西偏北方向吹来,则风的实际风速是( ) (A)方向西偏南 (B)方向东偏北 (C)方向西偏南 (D)方向东偏北 4.一质量为m的质点在xoy平面上运动,其位置矢量为,则质点 在到时间内所受合力的冲 量为() (A)(B)(C)(D) 5.木棒可绕固定的水平光滑轴在竖直平面内转动,木棒静止在竖直位置,一子弹垂直于棒射入棒内,使棒与子弹共同上摆。在子弹 射入木棒的过程中,棒与子弹组成的系统的机械能、动量、角动 量分别() (A)不守恒、不守恒、守恒(B)不守恒、守恒、守恒(C)守恒、守恒、守恒 (D)无法确定 6.对驻波有下面几种说法:(1)相邻波节间的质点振动相位相同; (2)相邻波腹间的质点振动位相相同;(3)任一波节两侧的质点振 动相位相反;(4)相邻波腹和相邻波节间的距离都是。在上述方法 中: ( ) (A)(1)(2)(3)(4)都对(B)(1)(3)(4)对(C)(2) (3)对(D)(1) (4)对 7.两种气体自由度数目不同,温度相同,摩尔数相同,下面哪 种叙述正确: ( )

(A)平均平动动能、平均动能、内能都相同;(B)平均平动动能、平均动能、内能都不同; (C)平均平动动能相同,平均动能、内能都不同;(D)平均平动动能、平均动能不同,内能相同。 8.一瓶氖气和一瓶氮气密度相同,分子平均平动动能相同,且它 们都处于平衡状态,则它们( ) (A)温度相同,压强相同;(B)温度、压强都不同; (C)温度相同,但>(D)温度相同,但> 9.关于狭义相对论的时空观,有下面几种说法:(1)在同一惯性系 中同时同地发生的事件,在其它任意惯性系也是同时同地发生 的,(2)在某个惯性系中同时但不同地发生的事情,在其它惯性 系一定是不同时的;(3)时空是绝对的;在上述说法中: ( ) (A)(1)(2)对 (B)只有(1)对 (C)只有(2)对(D)只有(3)对 10.理想气体体积为 V ,压强为 p ,温度为 T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为摩尔气体常量,则该理想气体的分 子数为( ) (A) (B) (C) (D) 二、 1.一质点沿ox轴运动,坐标与时间的变化关系为,则该质点是 (1)。(①变速直线运动,②匀速直线运动) 2.一质量为m的小球以与地的仰角θ=600的初速度从地面抛出,若 忽略空气阻力,则质点落地时相对于抛出点的动量增量大小 为 (2) ,方向为(3)。 3.对于任意保守力,则(4)。 4. 狭义相对论的两条基本原理是相对性原理和(5)。 5.室内生起炉子后,温度从150C上升到270C,设升温过程中,室

2大学物理期末试题及答案

1 大学物理期末考试试卷 一、填空题(每空2分,共20分) 1.两列简谐波发生干涉的条件是 , , 。 2.做功只与始末位置有关的力称为 。 3.角动量守恒的条件是物体所受的 等于零。 4.两个同振动方向、同频率、振幅均为A 的简谐振动合成后振幅仍为A ,则两简谐振动的相位差为 。 5.波动方程 ??? ?? -=c x t A y ωcos 当x=常数时的物理意义是 。 6.气体分子的最可几速率的物理意义 是 。 7.三个容器中装有同种理想气体,分子数密度相同,方均根速率之比为 4:2:1)(:)(:)(2 /122/122/12=C B A v v v ,则压强之比=C B A P P P :: 。 8.两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。开 始他们的压强和温度都相同,现将3J 的热量传给氦气,使之升高一定的温度。若使氧气也升 高同样的温度,则应向氧气传递的热量为 J 。 二、选择题(本大题共10小题,每小题3分,共30分) 1. 一个质点作圆周运动时,则有( ) A. 切向加速度一定改变,法向加速度也改变。 B. 切向加速度可能不变,法向加速度一定改变。 C. 切向加速度可能不变,法向加速度改变。 D. 切向加速度一定改变,法向加速度不变。 2. 一个物体沿固定圆弧光滑轨道由静止下滑,在下滑过程中( ) A. 它的加速度方向永远指出圆心,其速率保持不变. B. 它受到的轨道的作用力的大小不断增加. C. 它受到的合外力的大小变化,方向永远指向圆心. D. 它受到的合外力的大小不变,其速率不断增加. 3. 一质量为m,长度为L 的匀质细杆对过杆中点且垂直的轴的转动惯量为( ) A. 2 21mL B. 23 1mL C. 241mL D. 2121mL 4.物体A 的质量是B 的2倍且静止,物体B 以一定的动能E 与A 碰撞后粘在一块并以共 同的速度运动, 碰撞后两物体的总动能为( ) A. E B. E/2 C. E/3 D. 2E/3 5.一质量为0.02kg 的弹簧振子, 振幅为0.12m, 周期为2s,此振动系统的机械能为 ( ) A. 0.00014J 6. 有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始下滑,则( ) A .物块到达斜面底端时的动量相等。 B .物块到达斜面底端时的动能相等。 C .物块和斜面组成的系统,机械能不守恒。 D .物块和斜面组成的系统水平方向上动量守恒。 7. 假设卫星环绕地球作椭圆运动,则在运动过程中,卫星对地球中心的( ) A .角动量守恒,动能守恒。 B .角动量守恒,机械能守恒。 C .角动量不守恒,机械能守恒。 D .角动量不守恒,动量也不守恒。 8.把理想气体的状态方程写成=T PV 恒量时,下列说法中正确的是 ( ) A. 对一定质量的某种气体,在不同状态下,此恒量不等, B. 对摩尔数相同的不同气体,此恒量相等, C. 对不同质量的同种气体,此恒量相等, D. 以上说法都不对。

大学物理期末考试答案2

1某质点的运动学方程x=6+3t-5t 3,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间内合力作功为A 1,32t t →时间内合力作功为A 2,43t t → ,则下述正确都为(C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间内,其平均速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D )T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?内,速率由0增加到υ; 在2t ?内,由υ增加到υ2。设该力在1t ?内,冲量大小为1I ,所作的功为1A ;在2t ?内,冲量大小为2I ,所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

(完整版)大学物理下册期末考试A卷.doc

**大学学年第一学期期末考试卷 课程名称大学物理(下)考试日期 任课教师 ______________试卷编号_______ 考生姓名学号专业或类别 题号一二三四五六七总分累分人 签名题分40 10 10 10 10 10 10 100 得分 考生注意事项:1、本试卷共 6 页,请查看试卷中是否有缺页。 2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。 部分常数:玻尔兹曼常数 k 1.38 10 23 J / K , 气体普适常数 R = 8.31 J/K.mol, 普朗克常量h = 6.63 10×34 J·s,电子电量e 1.60 10 19 C; 一、填空题(每空 2 分,共 40 分) 1. 一理想卡诺机在温度为 27℃和 127℃两个热源之间运转。若得分评卷人 使该机正循环运转,如从高温热源吸收1200J 的热量,则将向低 温热源放出热量 ______J; 2.1mol 理想气体经绝热自由膨胀至体积增大一倍为止,即 V22V1则在该过程中熵增S_____________J/k。 3.某理想气体的压强 P=105 Pa,方均根速率为 400m/s,则该气 体的密度 _____________kg/m3。 4.AB 直导体长为 L 以图示的速度运动,则导体中非静电性场强大小 ___________,方向为 __________,感应电动势的大小为 ____________。

5 5.平行板电容器的电容 C为 20.0 μ F,两板上的电压变化率为 dU/dt=1.50 × 10V/s ,则电容器两平行板间的位移电流为___________A。 6. 长度为 l ,横截面积为 S 的密绕长直螺线管通过的电流为I ,管上单位长度绕有n 匝线圈,则管内的磁能密度w 为 =____________ ,自感系数 L=___________。 7.边长为 a 的正方形的三个顶点上固定的三个点电荷如图所示。以无穷远为零电 势点,则 C 点电势 U C =___________;今将一电量为 +q 的点电荷 从 C点移到无穷远,则电场力对该电荷做功 A=___________。 8.长为 l 的圆柱形电容器,内半径为R1,外半径为R2,现使内极 板带电 Q ,外极板接地。有一带电粒子所带的电荷为q ,处在离 轴线为 r 处( R1r R2),则该粒子所受的电场力大小F_________________;若带电粒子从内极板由静止飞出,则粒子飞到外极板时,它所获得的动能E K________________。 9.闭合半圆型线圈通电流为 I ,半径为 R,置于磁感应强度为B 的均匀外磁场中,B0的方向垂直于AB,如图所示。则圆弧ACB 所受的磁力大小为 ______________,线圈所受磁力矩大小为__________________。 10.光电效应中,阴极金属的逸出功为2.0eV,入射光的波长为400nm ,则光电流的 遏止电压为 ____________V。金属材料的红限频率υ0 =__________________H Z。11.一个动能为40eV,质量为 9.11 × 10-31 kg的电子,其德布 罗意波长为nm。 12.截面半径为R 的长直载流螺线管中有均匀磁场,已知 dB 。如图所示,一导线 AB长为 R,则 AB导线中感生 C (C 0) dt 电动势大小为 _____________,A 点的感应电场大小为E。

2009大学物理(上)期末考试B卷

复旦大学信息科学与工程学院 《大学物理(上)》期末考试试卷 B 卷 共 8页 课程代码:PHYS120001.12, 考试形式: 开卷 √ 闭卷 2010年 1月 (本试卷答卷时间为120分钟,答案必须写在试卷上,做在草稿纸上无效) 专业 学号 姓名 成绩 三、计算题 题 号 一、选择题 二、填空题 21 22 23 24 总 分 得 分 阅卷人 ( 装 订 线 内 不 要 答 题 ) 一、选择题(每题3分,共30分,单选) 1. 如图,劲度系数为k 的轻弹簧在质量为m 的木块和外力 (未画出)作用下,处于被压缩的状态,其压缩量为x .当撤去外力后弹簧被释放,木块沿光滑斜面弹出,最后落到地面上. (A) 在此过程中,木块的动能与弹性势能之和守恒. (B) 木块到达最高点时,高度h 满足 mgh kx =221. (C) 木块落地时的速度v 满足 222 1 21v m mgH kx =+. (D) 木块落地点的水平距离随θ 的不同而异,θ 愈大,落地点愈远. [ ] 2. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑 轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为αA 和αB ,不计滑轮轴的摩擦,则有 (A) αA =αB . (B) αA >αB . (C) αA <αB . (D) 开始时αA =αB ,以后αA <αB . [ ]

3. 一定量理想气体经历的循环过程用V -T 曲线表示如图.在此循环过程中,气体从外界吸热的过程是 (A) A →B . (B) B →C . (C) C →A . (D) B →C 和B →C . [ ] 4. 气缸中有一定量的氦气(视为理想气体),经过绝热压缩,体积变为原来的一半,则 气体分子的平均速率变为原来的 (A) 24/5倍. (B) 22/3倍. (C) 22/5倍. (D) 21/3倍. [ ] 5. 图示为一具有球对称性分布的静电场的E ~r 关系曲线.请指出该静电场是由下列哪种带电体产生的. (A) 半径为R 的均匀带电球面. (B) 半径为R 的均匀带电球体. E (C) 半径为R 、电荷体密度ρ=Ar (A 为常 数)的非均匀带电球体. (D) 半径为R 、电荷体密度ρ=A/r (A 为常数)的非 均匀带电球体. [ ] 6. 充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F 与两极板间的 电压U 的关系是: (A) F ∝U . (B) F ∝1/U . (C) F ∝1/U 2. (D) F ∝U 2. [ ] 7. 如图所示,一厚度为d 的“无限大”均匀带电导体板,电 荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为: (A) 0. (B) 2εσ . (C) 0εσh . (D) 0 2εσh . [ ] 8. 设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一 点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E 2,U 2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为 (A) E 1 = E 2,U 1 = U 2. (B) E 1 = E 2,U 1 > U 2. (C) E 1 > E 2,U 1 > U 2. (D) E 1 < E 2,U 1 < U 2. [ ]

大学物理期末考试试卷(含答案)

《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理下册期末考试B卷题目和答案

大学学年第二学期考试B卷 课程名称大学物理(下)考试日期 任课教师____________ 考生姓名学号专业或类别 题号一二三四五六七总分累分人 签名题分40101010101010 100 得分 考生注意事项:1、本试卷共 6 页,请查看试卷中是否有缺页。 2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。 ε o =×10-12F·m-1、μ =4π×10-7H/m; k=×10-23 J·K-1、R= J·K-1·mol-1、 N A =×1023mol-1、e=×10-19C、电子静质量m e=×10-31kg, h=× 10-34J·s。 得分评卷人 一、填空题(每空2分,共40分) 1.体积为4升的容器内装有理想气体氧气(刚性分子),测得其压强为5×102Pa,则容器内氧气的平均转动动能总和为_______________J,系统的内能为_______________ J。 2.如图所示,一定质量的氧气(理想气体)由状态a 经b到达c,图中abc为一直线。求此过程中:气 体对外做的功为_ _______________;气体内能的增 加_______________;气体吸收的热量 _______________。 3.一绝热的封闭容器,用隔板分成相等的两部分,左 边充有一定量的某种气体,压强为p;右边为真空,若把隔板抽去(对外不漏气),

当又达到平衡时,气体的内能变化量为_______________J ,气体的熵变化情况是_______________(增大,不变,减小)。 4.有一段电荷线密度为λ长度为L 的均匀带电直线,,在其中心轴线上距O 为r 处P 点有一个点电荷q 。当r>>L 时,q 所受库仑力大小为_______________,当r<

《大学物理 》下期末考试 有答案

《大学物理》(下)期末统考试题(A 卷) 说明 1考试答案必须写在答题纸上,否则无效。请把答题纸撕下。 一、 选择题(30分,每题3分) 1.一质点作简谐振动,振动方程x=Acos(ωt+φ),当时间t=T/4(T 为周期)时,质点的速度为: (A) -Aωsinφ; (B) Aωsinφ; (C) -Aωcosφ; (D) Aωcosφ 参考解:v =dx/dt = -A ωsin (ωt+φ) ,cos )sin(2 4/?ω?ωπA A v T T t -=+?-== ∴选(C) 2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 (A) 7/6 (B) 9/16 (C) 11/16 (D )13/16 (E) 15/16 参考解:,1615)(221242122122 1221=-=kA k kA kA mv A ∴选(E ) 3.一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能. (B) 它的势能转换成动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大. (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. 参考解:这里的条件是“平面简谐波在弹性媒质中传播”。由于弹性媒质的质元在平衡位置时的形变最大,所以势能动能最大,这时动能也最大;由于弹性媒质的质元在最大位移处时形变最小,所以势能也最小,这时动能也最小。质元的机械能由最大变到最小的过程中,同时也把该机械能传给相邻的一段质元。∴选(D )

4.如图所示,折射率为n 2、厚度为e 的透明介质薄膜 的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1 <n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜 上,则从薄膜上、下两表面反射的光束①与②的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2 . (C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). 参考解:半波损失现象发生在波由波疏媒质到波密媒质的界面的反射现象中。两束光分别经上下表面反射时,都是波疏媒质到波密媒质的界面的反射,同时存在着半波损失。所以,两束反射光的光程差是2n 2 e 。 ∴选(A ) 5.波长λ=5000?的单色光垂直照射到宽度a=0.25mm 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹,今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离d=12mm ,则凸透镜的焦距f 为: (A) 2m (B) 1m (C) 0.5m (D) 0.2m ; (E) 0.1m 参考解:由单缝衍射的暗纹公式, asin φ = 3λ, 和单缝衍射装置的几何关系 ftg φ = d/2, 另,当φ角很小时 sin φ = tg φ, 有 1103 310500061025.0101232==?=---?????λa d f (m ) , ∴选(B ) 6.测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉 (B) 牛顿环 (C) 单缝衍射 (D) 光栅衍射 参考解:从我们做过的实验的经历和实验装置可知,最为准确的方法光栅衍射实验,其次是牛顿环实验。 ∴选(D ) 7.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为 (A) I 0 / 8. (B) I 0 / 4. (C) 3 I 0 / 8. (D) 3 I 0 / 4. 参考解:穿过第一个偏振片自然光的光强为I 0/2。随后,使用马吕斯定律,出射光强 10201 60cos I I I == ∴ 选(A ) n 3

大学物理期末考试试卷(C卷)答案

第三军医大学2011-2012学年二学期 课程考试试卷答案(C 卷) 课程名称:大学物理 考试时间:120分钟 年级:xxx 级 专业: xxx 答案部分,(卷面共有26题,100分,各大题标有题量和总分) 一、选择题(每题2分,共20分,共10小题) 1.C 2.C 3.C 4.D 5.B 6.C 7.D 8.C 9.A 10.B 二、填空题(每题2分,共20分,共10小题) 1.m k d 2 2.20kx ;2021 kx -;2021kx 3.一个均匀带电的球壳产生的电场 4.θ cos mg . 5.θcot g . 6.2s rad 8.0-?=β 1s rad 8.0-?=ω 2s m 51.0-?='a 7.GMR m 8.v v v v ≠=? ?, 9.1P 和2P 两点的位置.10.j i ??22+- 三、计算题(每题10分,共60分,共6小题) 1. (a) m /s;kg 56.111.0?+-j i ρρ (b) N 31222j i ρρ+- . 2. (a) Yes, there is no torque; (b) 202202/])([mu mbu C C ++ 3.(a)m/s 14 (b) 1470 N 4.解 设该圆柱面的横截面的半径为R ,借助于无限长均匀带电直线在距离r 处的场强公式,即r E 0π2ελ=,可推出带电圆柱面上宽度为θd d R l =的无限长均匀带电直线在圆柱

2 轴线上任意点产生的场强为 =E ρd r 0π2ε λ-0R ρ=000π2d cos R R R ρεθθσ- =θθθεθσ)d sin (cos π2cos 0 0j i ρρ+-. 式中用到宽度为dl 的无限长均匀带电直线的电荷线密度θθσσλd cos d 0R l ==,0R ρ为从 原点O 点到无限长带电直线垂直距离方向上的单位矢量,i ρ,j ρ为X ,Y 方向的单位矢量。 因此,圆柱轴线Z 上的总场强为柱面上所有带电直线产生E ρd 的矢量和,即 ??+-==Q j i E E πθθθεθσ2000)d sin (cos π2cos d ρρρρ=i 002εσ- 方向沿X 轴负方向 5.解 设邮件在隧道P 点,如图所示,其在距离地心为r 处所受到的万有引力为 23π34r m r G f ??-=ρ r m G )π34 (ρ-= 式中的负号表示f ρ与r ρ的方向相反,m 为邮件的质量。根据牛顿运动定律,得 22d )π34(dt r m r m G =-ρ

大学物理期末考试试卷(含答案)()

2008年下学期2007级《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) (2717) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率?0 =4?×10-7 T ·m/A) [ ] 2. (本题3分)(2391) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动 轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分)(2594) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为?,? < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使??角减小. (B) 转动使?角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分)(2314) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可

在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分)(2125) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电 动势为 (A) Bl v . (B) Bl v sin ?. (C) Bl v cos ?. (D) 0. [ ] 6. (本题3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 (A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21. (C) 都大于L 21. (D) 都小于L 2 1 . [ ] 7. (本题3分)(3174) 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分面处放一高折射率介质反射面M ,如图所示,则此时 (A) P 点处仍为明条纹. (B) P 点处为暗条纹. (C) 不能确定P 点处是明条纹还是暗条纹. (D) 无干涉条纹. [ ] 8. (本题3分)(3718) 在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹 (A) 宽度变小. (B) 宽度变大. (C) 宽度不变,且中心强度也不变. (D) 宽度不变,但中心强度增大. [ ]

《大学物理(一)》期末考试试题]

《大学物理(一)》综合复习资料 一.选择题 1. 某人骑自行车以速率V 向正西方行驶,遇到由北向南刮的风(设风速大小也为V ),则他感到风是从 (A )东北方向吹来.(B )东南方向吹来.(C )西北方向吹来.(D )西南方向吹来. [ ] 2.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 2 2 +=(其中a 、b 为常量)则该质点作 (A )匀速直线运动.(B )变速直线运动.(C )抛物线运动.(D )一般曲线运动. [ ] 3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 (A )不变.(B )变小.(C )变大.(D )无法判断. 4. 质点系的内力可以改变 (A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总动量. 5.一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 (A )1/2 .(B )1/4.(C )2/1.(D) 3/4.(E )2/3. [ ] 6.一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 1变为 (A )4/1E .(B ) 2/1E .(C )12E .(D )14E . [ ] 7.在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4. (B )λ/2.(C ) 3λ/4 . (D )λ. [ ] 8.一平面简谐波沿x 轴负方向传播.已知x =b 处质点的振动方程为)cos(0φω+=t y ,波速为u ,则波动方程为:

大学物理下期末试题及答案

大学物理(下)试卷(A 卷) 院系: 班级:________ : 学号: 一、选择题(共30分,每题3分) 1. 设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则 其周围空间各点的电场强度E 随距平面的位置 坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负): [ ] 2. 如图所示,边长为a 的等边三角形的三个顶点上,分别放置 着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q 从无穷远处移 到三角形的中心O 处,外力所作的功为: 0.0. 0.0 [ ] 3. 一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2 )在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ] 4. 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为: (A) E = 0,U > 0. (B) E = 0,U < 0. (C) E = 0,U = 0. (D) E > 0,U < 0.[ ] 5. C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则 (A) C 1极板上电荷增加,C 2极板上电荷减少. (B) C 1极板上电荷减少,C 2极板上电荷增加. x 3q 2

(C) C 1极板上电荷增加,C 2极板上电荷不变. (D) C 1极板上电荷减少,C 2极板上电荷不变. [ ] 6. 对位移电流,有下述四种说法,请指出哪一种说确. (A) 位移电流是指变化电场. (B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律. (D) 位移电流的磁效应不服从安培环路定理. [ ] 7. 有下列几种说法: (1) 所有惯性系对物理基本规律都是等价的. (2) 在真空中,光的速度与光的频率、光源的运动状态无关. (3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同. 若问其中哪些说法是正确的, 答案是 (A) 只有(1)、(2)是正确的. (B) 只有(1)、(3)是正确的. (C) 只有(2)、(3)是正确的. (D) 三种说法都是正确的. [ ] 8. 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的 (A) 2倍. (B) 1.5倍. (C) 0.5倍. (D) 0.25倍. [ ] 9. 已知粒子处于宽度为a 的一维无限深势阱中运动的波函数为 a x n a x n π= sin 2)(ψ , n = 1, 2, 3, … 则当n = 1时,在 x 1 = a /4 →x 2 = 3a /4 区间找到粒子的概率为 (A) 0.091. (B) 0.182. (C) 1. . (D) 0.818. [ ] 10. 氢原子中处于3d 量子态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为 (A) (3,0,1,21- ). (B) (1,1,1,21 -). (C) (2,1,2,21). (D) (3,2,0,2 1 ). [ ] 二、填空题(共30分) 11.(本题3分) 一个带电荷q 、半径为R 的金属球壳,壳是真空,壳外是介电常量为 的无限大各向同 性均匀电介质,则此球壳的电势U =________________.

大学物理期末考试复习题

1.一质点作直线运动,某时刻的瞬时速度2/v m s =,瞬时加速度2 2/a m s =-,则1秒后质点的速度( D ) (A)等于零 (B)等于2/m s - (C)等于2/m s (D)不能确定 2.一质点沿半径为R 的圆周做匀速率运动,每t 时间转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为( B ) (A) 2R t π,2R t π (B)O, 2R t π (C)0,0 (D)2R t π,0 3.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。设该人以匀速率0v 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( c ) (A)匀加速运动,0 cos v v θ= (B)匀减速运动,0cos v v θ= (C)变加速运动,0 cos v v θ = (D)变减速运动,0cos v v θ= (E)匀速直线运动,0v v = 4. 以下五种运动形式中,a ? 保持不变的运动是( D ) (A) 单摆的运动. (B) 匀速率圆周运动. (C) 行星的椭圆轨道运动. (D) 抛体运动. (E) 圆锥摆运动. 5. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度 ( C ) (A) (B) (C) (D 1.一物体作如图所示的斜抛运动,测得在轨道P点处速度大小为v ,其方向与水平方向成30°角。则物体在P点的切向加速度a τ= -0.5g ,轨道的曲率半径ρ= 2v2/√3g 。 2. 轮船在水上以相对于水的速度1V r 航行,水流速度为2V r ,一人相对于甲板以速度3V r 行走,如人相对于岸静止,则1V r 、2V r 和3V r 的关系是:v1+v2+v3=0____。 3.加速度矢量可分解为法向加速度和切向加速度两个分量,对匀速圆周运动,_切_向加速度为零,总的加速度等于_法向加速度。 1.如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋. 解:雨对地的速度2v r 等于雨对车的速度3v r 加车对地的速度1v r ,由此可作矢量三角形.根据题意得tan α = l/h . 根据直角三角形得v 1 = v 2sin θ + v 3sin α, 其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α,

相关文档
最新文档