红外实验报告

红外实验报告
红外实验报告

电子电路综合设计实验报告

实验名称:红外通信收发系统的设计与实践学院:信息与通信工程学院

专业:通信工程

红外通信收发系统的设计与实践

摘要

语音和音乐等低频电信号一般不适合直接远距离传输,而是通过调制加载到光或者高频信号上传输出去。本次试验的内容,就是设计一个合适的红外收发电路,实现光信号的传输和接收。红外通信系统的设计是光通信系统的一个重要分支,采用红外通信系统的设计方法来进行和目前世界上所采用的骨干通信网的光纤通信系统是有相同之处的,唯一重要的差别就是它们二者所采用的传输媒质不用,一个是大气,一个则是光纤。

关键词

红外发送红外接收滤波信号放大

1)实验目的

1、掌握简单的红外通信系统的组成及设计原理

2、掌握通信电子系统方案设计、电路设计的方法

3、熟悉电路仿真软件的使用

4、掌握PCB设计电路装配和调试的方法

2)实验所用仪器

1、函数信号发生器

2、示波器

3、晶体管毫伏表

4、万用表

5、直流稳压电源

3)所用元器件及测试仪表清单

1、8050 X 1

2、红外发送管303 X 1

3、红外接收管302 X 1

4、LM386 X 1

5、可变电阻器(10k,100k)各1

6、电阻(2k,2.7k) X 1

7、电阻(20,51)各1

8、电阻(10 ) X 1

9、电解电容(100uf,33uf,250uf)各1

10、电解电容(10uf) X 2

11、电容(0.047uf,0.01uf)各1

10、喇叭 X 1

12、kd9300 X 1

13、发光管 X 1

4)设计思路及分块和总体结构

设计思路及总体结构框图如下:

红外设计的总体构架

上图是一个简单的红外通信系统的构造图,通过实验应该能进行模块化的设计,当然整个商用的红外光通信系统是相当复杂的,这里我们只考虑最基础和最必要的部分来完成整个红外光通信收发系统的设计。

(1)信号的产生

这里利用了音乐芯片KD-9300或是LX9300来完成。

信号产生也可以用RC振荡器构成,信号的幅度不宜过大。

(2)红外光发送模块的设计

设计原则主要是考虑红外发送管的工作电流,电流过小,传输距离短,电流过大有容易毁坏发光管

红外光发送电路(3)红外光接收模块的设计

红外光接收电路

(4)高通滤波器

红外接收的二极管都是光敏二极管,这样普通灯光也对其都成一定程度的影响,为了获得更好的效果,还要在信号输出端加入高通滤波器,消除恒定的外接低频信号的干扰,这样接收效果和灵敏度将显著提高。

(5)功率放大器

利用音频功率专用放大器LM386,可以得到50~200的增益,足以驱动0.8W的小喇叭。

放大器LM386的实例电路

(6)总体电路的设计

音乐芯片所连接的喇叭的等效阻抗为8欧姆,0.25瓦。在连接实际电路时,为了将音乐芯片的输出信号送达放大电路的输入端,在音乐芯片的输出端接入一个10欧姆的电阻,等效喇叭,然后再将10欧姆电阻两端与放大电路的输入端并联,即可实现电路的设计功能。

(7)系统调制:

系统调制原则:根据电路原理先调制各单元电路,然后再整机调试。

(1)第一步是调制发送电路。记录红外发射驱动电路的输出波形和红外管中的电流;

(2)第二步调制接收电路。去掉红外接收管,加一个正弦小信号,调试输出放大倍数,要求50-200倍直至输出为正弦波,确保不是自激信号或干扰信号;

(3)第三步是整机调试。将发送电路和接收电路放到一起,在发送端送入正弦小信号,观察输出信号波形;

(4)按音乐芯片CW9300的接线方法焊好管脚,将芯片中音乐信号作为输入信号,能在喇叭中听到优美、无噪声的音乐。

5)所实现的功能说明

本实验完成的基本功能为文氏桥RC振荡电路产生的振荡信号的传送和接收. 文氏桥RC振荡电路(前级)产生的一个频率为1.5kHz振荡信号,经具有分压式电流负反馈电路的共射放大电路(后级)的LED发射后由接收电路接收。

(1)已完成功能:

通过发送电路将音乐芯片产生的信号以红外光的形式发送出去,接着在接收电路通过接收管接收发送信号接收电路LM386的三管脚之前加一小电容,等于在功率放大之前先消除恒定的外接低频信号的干扰,提高接收效果和灵敏度。LM386的放大电路,得到100倍左右的增益,来驱动0.8W的小喇叭产生音乐。(其中接收管LED2采用PIN光电二极管或者雪崩光电二极管APD,将接收到的光信号转换成电信号)

(2)主要测试方法为:

Icq:用电压表测量射极电阻Re1两端的电压,由此求出Ieq,利用Ieq≈Icq得到Icq的值。

LM386的增益:用函数信号发生器产生的正弦小信号代替接收管接收到的信号,将喇叭用500-2000欧姆的电阻代替,分别测出输入(接收管)和输出信号(喇叭)的幅度,由此计算出LM386的增益。

(3)主要测试数据为:

1.红外发送端8050静态参数:

Vcc = 5.00V ;Ubq = 2.7V ;Ueq= 2.1V ;Ucq= 3.8V;

2.红外发送端LED两端电流:

I = Ieq = Ueq/Re =2.1V/71= 29.57mA ;

3.红外发送端LED输出幅度:0.10V

4.LM386 增益测量:

输入小信号幅值 :10.2mv speaker两端幅值: 1.12V

增益A=1.12V/10.2mv=110;

测试方法为:

用函数信号发生器产生的正弦小信号代替接收管接收到的信号,将喇叭用500-2000欧姆的电阻代替,分别测出输入(接收管)和输出信号(喇叭)的幅度,由此计算出LM386的增益。

6)测试故障及问题分析

1. 信号经具有分压式电流负反馈电路的共射放大电路放大后有失真现象:通过静态参数的测量后计算,认为电路设计不存在问题,于是分析后可能是因输入信号幅度过大后引起的饱和失真所致.通过调节前级信号源电路的滑动变阻器减小了输出信号的幅度,失真明显减小,波形较好.

2. 将红外的发送接收电路结在一起调试的时候,示波器上显示波形不稳

定,干扰信号很多。这是电路上出现了自激现象,在电源与地之间并联一个大电容(100uF

左右)以及一个小电容(0.1uF)即可以解决自激问题。

3. 信号接收端出现自激:为检查是否为接收电路出问题,首先去掉发射信号而从函数信号发生器引入一个频率为1kHz幅度为1v的正弦信号,从输出端得到了信号仍然有干扰,这说明接收电路出现了问题.最初怀疑是电路中含有的高频分量引起,于是在输出端并接一旁路电容,以去除高频干扰.但是波形仍然有干扰.后来反复调节滑动变阻器得以解决问题,不过未能彻底消除干扰.

4. 在接收方面,经反复调试发现,信号的接收与两个管子之间的正对角度及之间障碍物的阻隔有很大关系,开始不注意接收到的信号很微弱,调整后才能清晰地听到。调试接收电路的主要难点是增益的调节,开始时由于电容用的不对导致放大倍数只有几倍,之后由于LM386的问题也使得输出端没有信号,经过一步步检查才发现LM386的6、8号脚是坏的,更换之后电路正常。实验时也曾经使用100k欧姆滑动变阻器代替10k欧姆滑动变阻器,发现电路不是很稳定,所以放弃使用。

5. 实验中常出现发送管和接收管之间位置不好而没有音乐产生的现象,分析原因可能为所用发射LED 为狭角的,或者发送功率较小所致,改变LED角度后发现乐音在一个方向明显增强,其余方向明显减弱,但仍有输出。

6. 接收电路调好之后,接上5V电源发现电路出现较大噪音,分析发现该电路不应出现噪音,思考之后认为问题出在电路某个点接触不良或已断开,查找之后发现将103电容接错一个小孔导致电路不通,修改之后噪音基本消除。

7.扩展功能中使用的音乐芯片经检查之后发现已经受损坏,按照书上所画重新焊接一块芯片,检测之后发现声音极小,仔细检查后发现将三极管8050的e、b、c三脚接错位置,调整之后发声正常。

8.发送、接收电路调节正常之后,要将音乐芯片连接到发送电路上,开始时没有将喇叭用一个100欧姆的电阻代替导致电路不通,消除错误后发现电路仍然不通,仔细询问同学之后发现芯片应该与发送电路共地,改正之后电路正常发声。

9.电路搭好之后,将红外接收管拔掉,喇叭仍能够有音乐出来。这样的现象说明,电路的传输并没有经过红外收发管,出现了耦合现象。检查电路发现发送部分与接收部分的供电是同一组电源线,改为两组共地的电线分别供电后,耦合现象消失。

测试结果

红外收发电路均能正常工作,有效传输距离为0.5米,最长传输距离为1米,在有效范围内音乐无失真,干扰小。在无红外信号时无自激现象。

7)总结和结论

通过这次实验我学到了很多有用的实践知识,为今后进一步在信息工程发展打下了坚实的基础。本实验主要实现了音乐信号经过红外发送和接收完成较远距离的输送。信号有效传送距离大约半米,基本实现了红外收发系统的设计与实现。

该次实验是我第一次独立的完成从开始的设计到最后的调试,在整个过程中学到很多。

经过这次实验我基本解了简单的红外光通信系统的组成及设计原理,初步了解了通信电子系统方案设计、电路设计的方法,红外发送、接收电路的设计原理和原则,熟悉了电路仿真软件proteldxp的简单使用,也深刻地感受到只有灵活运用所学的电路分析理论知识才能与实践完美的结合起来。

通过这次独立实验,我更加明白了如何才能有效、快速、实际的完成一个实验。做实验之前首先应该熟悉各个器件的使用,其次检查各个器件是否是有问题,确保器件都正常地前提下再进行实验。这样可以提高实验效率,也可以提前排除由于器件不好引出的不合理的实验现象。最后在实验过程中出现意外现象的时候,应该仔细检查电路找到问题在哪里然后再着手解决,不可以遇到问题就直接盲目的导出乱改电路,这样反而降低了实验效率。

通过这次实验实践,我主要收获了以下几个知识和经验:

1、掌握了简单的红外光通信系统的组成及设计原理;

2、通过实验节本了解了通信系统的工作模式,提供今后的专业课程学习一个很好的框架性的认识;

3、通过实验设计与修改,以及通过对芯片kd9300及lm386的查阅,初步了解了datasheetd的查阅;

4、通过实验,较好地了解了系统的调试,深切体会到系统调试的重要性,在检查电路自激现象的时候就是通过分单元调试得出的结论,从而得以解决问题,这很好的地高了自主实验的能力;

5、实验前一定要把实验原理弄清楚,及时查阅资料,实验要大胆,细心。

本次实验历时近一个月,整个过程显得繁琐,实验原理清晰,简单明了,关键在于调试,一次次地解决线路搭接,系统设计缺陷,在试验中要敢于尝试,敢于该进,遇到不会的或者暂时不能解决的不能急躁,学会独立思考,提高自主实验能力,提高独立思考解决问题能力,实验的最终成功给与了我很大鼓舞。提高了我对实验的兴趣!

附、主要元器件介绍与使用说明

1、红外线发光管303

红外发光二极管是彩电、录像机、影碟机、音响装置、空调器等各类红外遥控系统中不可缺少的电子器件,它将脉冲编码遥控指令电信号转变为940mm的红外光调制波遥控信号并辐射于空间,其性能的优劣及工作状态的正常与否,直接关系着遥控系统的灵敏度、指向性、可靠性等工作质量

的好坏。

红外发光二极管大多采用无色透明树脂封装或黑色、淡蓝色树脂封装三种形式,无色透明树脂封装的管子,可以透过树脂材料观察,若管芯下有一个浅盘,即是红外发光二极管,光电二极管和光电三极管无此浅盘;若是深色树脂封装的,可借助于万用表R×1k档进行区别,红外发光二极管的反向电阻通常为数百千欧至无穷大,其正向电阻有15~40kΩ之间(视不同型号和新旧程度而异);

而光电二极管的正向电阻仅为10kΩ左右,光电三极管的正反向电阻均为无穷大(一律为遮光条件下所测值)。

●红外发光管的检测方法与正确使用

管子的极性不能搞错,通常较长的引脚为正极,另一脚为负极。如果从引脚长度上无法辨识(比如已剪短引脚的),可以通过测量其正反向电阻确定之。测得正向电阻较小时,黑表笔所接的引脚即为正极。

通过测量红外发光二极管的正反向电阻,还可以在很大程度上推测其性能的优劣。以500型万用表R×1k档为例,如果测得正向电阻值大于20kΩ,就存在老化的嫌疑;如果接近于零,则应报废。

如果反向电阻只有数千欧姆,甚至接近于零,则管子必坏无疑;它的反向电阻愈大,表明其漏电流愈小,质量愈佳。

●红外发光管电阻值的计算

如果你的红外线二极管用一个三极管来推动,串联一个限流电阻。电源电压为5V 求限流电阻R

假设你设计流过红外线二极管电流为10mA ,三极管饱和电压0.3V

则限流电阻R= (5-0.3-1.2)/ 10mA =350欧姆

2、红外接收二极管302的判断

识别管脚极性注意:是接收二极管不是一体化接收头

(a)、从外观上识别。常见的红外线接收二极管外观颜色呈黑色。识别引脚时,面对受光视窗,

从左至右,分别为正极和负极。另外,在红外线接收二极管的管体顶端有一个小斜切平面,通常带有此斜切平面一端的引脚为负极,另一端为正极。

(b)、将万用表置于R×1k挡,用来判别普通二极管正、负电极的方法进行检查,即交换红、

黑表笔两次测量管子两引脚间的电阻值,正常时,所得阻值应为一大一小。以阻值较小的一次为准,红表笔所接的管脚为负极,黑表笔所接的管脚为正极。

B、检测性能好坏。用万用表电阻挡测量红外接收二极管正、反向电阻,根据正、反向电阻值

的大小,即可初步判断红外接收二极管的好坏。

3、音频功率放大器LM386

●LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。为使外

围元件最少,电压增益内置为20。但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至200。输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6V 电源电压下,它的静态功耗仅为24mW,使得LM386特别适用于电池供电的场合。LM386的封装形

式有塑封8引线双列直插式和贴片式。

●电路特性:

静态功耗低,约为4mA,可用于电池供电。

工作电压范围宽,4-12V or 5-18V。

外围元件少。

电压增益可调,20-200。

低失真度。

●工作原理图及管脚说明:

内部构造图:

4、音乐芯片

KD9300,CL9300,LX9300等9300音乐芯片使用说明

图上的9013可以用其他的NPN三极管代替(注意管脚顺序),接线方法:

A脚接电源正极和一个喇叭接口(如果喇叭有极性,要接正极),B脚接喇叭的另一个引脚(有极性的喇叭接负极),C脚接电源负极。3v电源就可以响了。注意焊接时烙铁需断电焊。

LX-9300的接法kd-9300的接法

参考文献

1.电路中心网站《红外通信收发电路设计》

2.《电子测量与电子电路实验》张咏梅等北京邮电大学出版社

3.《电子线路基础》高文焕等编高等教育出版社

4. 电路中心网站《红外通信收发系统的设计与实现》

5.https://www.360docs.net/doc/502557332.html,

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

Nicoletis5红外光谱仪检定标准操作规程.docx

1目的 建立 Nicoletis5 红外光谱仪的检定规程,确保仪器的性能可靠和测量的准确性。 2范围 适用于 Nicoletis5 红外光谱仪的检定。 3职责 质量检验部负责执行此规程,质量保证部负责监督实施。 4定义 无。 5内容 5.1 检定项目和技术要求 序号检定项目技术要求 1波数示值误差在 3000cm-1附近的波数视值误差±5cm-1在 1000cm-1附近的波数视值误差±1cm-1 -1 附近的波数重复性 -1 2波数重复性在 3000cm≤2.5cm -1 附近的波数重复性 -1在 1000cm≤0.5cm 3透射比重复性不大于 0.5% 在 3200cm-1~2800cm-1分辨峰7 个 4分辨力2851cm-1与 2870cm-1之间分辨深度≥18% 1583cm-1与 1589cm-1之间分辨深度≥12% -1 峰半高宽 -1水汽 1554.4cm≤2cm 5本底光谱能量分布不小于20% 3200cm-1~2800cm-1内 100%线的平直度≤1% 6 线的平直度-1-1内 100%线的平直度≤1% 100%2200cm~1900cm 800cm-1~500cm-1内 100%线的平直度≤4% 7噪声不大于 1% 5.2 检定环境 5.2.1 环境温度: 16~25℃,相对湿度:≤60%; 5.2.2 仪器应置于平稳的工作台上,不应有强光、强气流、强烈振动和强电磁干扰;5.2.3 环境无腐蚀性气体、烟尘干扰;供电电源电压220V±22V ,频率 50Hz±1Hz。 5.3 标准物质

聚苯乙烯膜红外波长标准物质。 5.4 检定内容 5.4.1 波数示值误差与波数重复性 Nicoletis5 红外光谱仪扫描范围为4000cm-1~400cm-1,分辨率为 4.0cm-1,常用扫描速度,扫描次数为 15.待 Nicoletis5 红外光谱仪稳定后,采集空气本底背景,扫描聚苯乙烯红外波长 标准物质,测量 3027cm-1, 2851cm-1,1601cm-1,1028cm-1,907cm-15 个主要吸收 峰。重复测量 3 次。按公式( 1)计算,取△V绝对值最大值为波数示值误差。按公式(2)计算,取δv绝对值最大值为波数重复性。 v=v i- v(1) δv=v max-v min(2) 式中: v——波数示值误差, cm-1; δ v——波数重复性, cm-1; -1 vi ——第 i 峰值波数测量平均值, cm ; -1 v max——第 i 峰波数测量最大值, cm-1; -1 v min——第 i 峰波数测量最小值, cm 。 在 T 绝对值最大值为透射比重复性。 R T=T max-T min( 3) 式中: R T——透射比重复性, %; T max——聚苯乙烯峰值透射比最大值,%; T min——聚苯乙烯峰值透射比最小值,%; 5.4.3 分辨力 分辨苯环特征吸收峰的个数 -1~2800cm-1范围内,谱图可分辨的吸收峰的个数,见图1。 分辨深度 -1(峰)与 2870cm-1(谷)之间的峰谷深度和1583cm-1(峰)和 1589cm-1(谷)之间的峰谷深度,用T 表示。见图 2 和图 3。 5.4.3.3 半高宽

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~

4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数(wavenumber)σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪 等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收

红外光谱仪操作规程及注意事项

发表日期:2007年6月3日【编辑录入:admin】 1.保持室内干燥,空调和除湿机必须全天开机(保持环境条件25±10℃左右,湿度≤70%); 2.保持实验室安静和整洁,不得在实验室内进行样品化学处理,实验完毕即取出样品室内的样品。 3.经常检查干燥剂颜色,如果兰色变浅,立即更换。 4.根据样品特性以及状态,制定相应的制样方法并制样。5.测试红外光谱图时,扫描空光路背景信号和样品文件信号,经傅立叶变换得到样品红外光谱图。根据需要,打印或者保存 红外光谱图。 6.实验完毕后在记录本上记录使用情况。 7.设备停止使用时,样品室内应放置盛满干燥剂的培养皿。8.干燥剂再生:将干燥剂在烘箱内105℃烘干至兰色(约3小时)即可。 9.将压片模具、KBr晶体、液体池及其窗片放在干燥器内备用。10.液体池使用NaCl、CaF2、BaF2等晶体很脆易碎,应小心保存。11.液体池使用的KRS-5晶体剧毒,使用时避免直接接触(戴手套),打磨KRS-5晶体时避免接触或吸入KRS-5粉末,打磨的 废弃物必须妥善处理。

2010-01-12 17:11:38 来源:实验室设备信息网浏览:342次 红外光谱仪操作规程及注意事项 一、操作步骤 1.开机前准备 开机前检查实验室电源、温度和湿度等环境条件,当电压稳定,室温为21±5℃左右,湿度≤65%才能开机。 2.开机 开机时,首先打开仪器电源,稳定半小时,使得仪器能量达到最佳状态。开启电脑,并打开仪器操作平台OMNIC软件,运行Diagnostic菜单,检查仪器稳定性。 3.制样 根据样品特性以及状态,制定相应的制样方法并制样。 4.扫描和输出红外光谱图 测试红外光谱图时,先扫描空光路背景信号(Collect→Background),再扫描样品文件信号(Collect→Sample),经傅立叶变换得到样品红外光谱图。 5.关机 (1)关机时,先关闭OMNIC软件,再关闭仪器电源,最后关闭计算机并盖上仪器防尘罩。(2)在记录本记录使用情况。 二、注意事项1.测定时实验室的温度应在15~30℃,所用的电源应配备有稳压装置。2.为防止仪器受潮而影响使用寿命,红外实验室应保持干燥(相对湿度应在65%以下)。3.样品的研磨要在红外灯下进行,防止样品吸水。 4.压片用的模具用后应立即把各部分擦干净,必要时用水清洗干净并擦干,置干燥器中保存,以免锈蚀。 5.OMNI采样器使用过程中必须注意以下几点: (1)样品与Ge晶体间必须紧密接触,不留缝隙。否则红外光射到空气层就发生衰减全反

红外光谱分析实验报告

仪器分析实验 实验名称:红外光谱分析实验 学院:化学工程学院专业:化学工程与工艺班级: 姓名:学号: 指导教师: 日期:

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 三、仪器和试剂 1、仪器: 美国尼高立IR-6700 2、试剂: 溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 计算机检测器样品室干涉仪光源?→??→??→??→? 四、实验步骤 1、打开红外光谱仪并稳定大概5分钟,同时进入对应的计算机工作站。 2、波数检验:将聚乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm -1进行 波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配,分析得到最吻合的图谱,即可判断物质结构。 3、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg 苯甲酸,加入在红外灯下烘干的100-200mg 溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm ),使之混合均匀。取出约80mg 混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm -1进行波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配。 4、结束实验,关闭工作站和红外光谱仪。

傅里叶红外光谱仪操作规程

傅里叶红外光谱仪操作规程 1.开机前准备 开机前检查实验室电源、温度和湿度等环境条件,当电压稳定,室温在 15~25℃、湿度≤60%才能开机。 2.开机 首先打开仪器的外置电源,稳定半小时,使得仪器能量达到最佳状态。开启电脑,并打开仪器操作平台 OMNIC软件,运行 Diagnostic菜单,检查仪器稳定性。 3.制样 根据样品特性以及状态,制定相应的制样方法并制样。固体粉末样品用 KBr 压片法制成透明的薄片;液体样品用液膜法、涂膜法或直接注入液体池内进行测定;(液膜法是在可拆液体池两片窗片之间,滴上 1-2滴液体试样,使之形成一薄的液膜;涂膜法是用刮刀取适量的试样均匀涂于 KBr窗片上,然后将另一块 窗片盖上,稍加压力,来回推移,使之形成一层均匀无气泡的液膜;沸点较低,挥发性较大的液体试样,可直接注入封闭的红外玻璃或石英液体池中,液层厚度一般为 0.01~1mm)。 4.扫描和输出红外光谱图 将制好的 KBr薄片轻轻放在锁氏样品架内,插入样品池并拉紧盖子,在软 件设置好的模式和参数下测试红外光谱图。先扫描空光路背景信号(或不放样品时的 KBr薄片,有 4个扣除空气背景的方法可供选择),再扫描样品信号,经 傅里叶变换得到样品红外光谱图。根据需要,打印或者保存红外光谱图。5.关机 (1)先关闭 OMNIC软件,再关闭仪器电源,盖上仪器防尘罩。 (2)在记录本上记录使用情况。 6.清洗压片模具和玛瑙研钵 KBr对钢制模具的平滑表面会产生极强的腐蚀性,因此模具用后应立即用水冲洗,再用去离子水冲洗三遍,用脱脂棉蘸取乙醇或丙酮擦洗各个部分,然后用电吹风吹干,保存在干燥箱内备用。玛瑙研钵的清洗与模具相同。

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

固体红外光谱实验报告

KBr压片法测定固体样品的红外光谱 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握Nicolet5700智能傅立叶红外光谱仪的操作方法。 3、掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。 4、了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。 5、通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、仪器及试剂 1 仪器:美国热电公司Nicolet5700智能傅立叶红外光谱仪;HY-12型手动液压式红外压片机及配套压片模具;磁性样品架;红外灯干燥器;玛瑙研钵。 2 试剂:苯甲酸样品(AR);KBr(光谱纯);无水丙酮;无水乙醇。 三、实验原理 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。

图1 仪器的基本结构 四、实验步骤 1. 红外光谱仪的准备 (1)打开红外光谱仪电源开关,待仪器稳定30 分钟以上,方可测定; (2)打开电脑,选择win98系统,打开OMNIC E.S.P软件;在Collect菜单下的Experiment Set-up 中设置实验参数; (3)实验参数设置:分辨率 4 cm-1,扫描次数32,扫描范围4000-400 cm-1;纵坐标为Transmittance 2.固体样品的制备 (1)取干燥的苯甲酸试样约1mg于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加入约150mg干燥且已研磨成细粉的KBr一起研磨至二者完全混合均匀,混合物粒度约为2μm以下(样品与KBr的比例为1:100~1:200)。 (2)取适量的混合样品于干净的压片模具中,堆积均匀,用手压式压片机用力加压约30s,制成透明试样薄片。 3.样品的红外光谱测定 (3)小心取出试样薄片,装在磁性样品架上,放入Nicolet5700智能傅立叶红外光谱仪的样品室中,在选择的仪器程序下进行测定,通常先测KBr的空白

红外光谱仪操作规程及注意事项

红外光谱仪操作规程及注意事项 第一环境部分: 1. 保持室内干燥,空调和除湿机必须全天开机(保持环境条件不要低于20度,湿度≤65%);在南方潮湿地方,除湿机要每天都开着控制湿度,如果是由于湿度的原因,造成KBr窗片被腐蚀,是不在保修范围内的。温度变化梯度不能大于1摄氏度每小时. 2. 保持实验室清洁,不得在实验室内进行样品化学处理,实验完毕即取出样品室内的样品。 3. 一般要求红外光谱仪24小时开机,即使做不到这一点也要保证每周都开机预热三次以上,每次两个小时以上。 4.随机带的干燥剂是分子筛,可以重复使用。若仪器humidity指示灯变红色,表明干燥剂已经受潮,应倒出放到一个烧杯里在烘箱中烘干,条件是150度下连续烘24小时,降温时可置于干燥皿中以防止再度吸潮。千万不能连干燥管一起放到烘箱烘干。(由技术员负责) 5.样品室内放有盛变色硅胶的烧杯,一旦有半数以上颜色变红,必须更换硅胶。干燥剂再生:将干燥剂在烘箱内105℃烘干至兰色(约3小时)即可。 第二制样部分: 固体样品的准备 1. 样品和KBr的比例一般为1—2mg样品配上200mg的KBr。如果样品太多,测出来的吸收峰太强,如果样品太少,有些弱峰将测不出来。因不可能用天平称量,并且每种样品的对红外光的吸收程度不一致,故常凭经验取用。一般要求所测得的光谱图中绝大多数吸收峰处于10%~80%透光率范围在内。最强吸收峰的透光率如太大(如大于30%),则说明取样量太少; 相反,如最强吸收峰为接近透光率为0%,且为平头峰,则说明取样量太多,此时均应调整取样量后重新测定。一般片子厚度应在0.5mm以下,厚度大于0.5mm时,常可在光谱上观察到干涉条纹,对供试品光谱产生干扰。 2. 红外光谱测定最常用的溴化钾最好应为光学试剂级,至少也要分析纯级。溴化钾和样品用前在红外干燥箱里充分干燥,研磨3—5分钟要连同玛瑙研钵一块放到红外烘干箱里进行干燥5分钟。 3. 压片时,把样品和KBr混合物放到压片模具时,保证样品是均匀铺平在模具里,一般压力在10-15MPa, 压力太小压出来的片子不透明,压力太大容易损坏模具。一般加上压以后,保持压力1—2分钟,然后放压取片。 4、模具用后应立即把各部分用乙醇擦干净,必要时先用水清洗干净后再用乙醇擦干,置干燥器中保存,以兔锈蚀。

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

红外使用操作步骤

红外光谱仪使用操作步骤 1.把仪器主机插头和计算机主机插头插入排插中,首先打开稳压电 源的开关,然后打开排插电源;开仪器主机电源(开关在仪器后面),预热20min左右;开启计算机。 2.样品处理:(在预热的过程中操作,以便节省时间) 在玛瑙研钵中分别研磨少量KBr粉末(用来做本底),固体样品和KBr粉末的混合物(比例约1:100~300,用来测样)至2.5微米以下(大约需时2~3min),装样。取样和装样时,药品匙不能混合使用,应分别装不同的样品。测定多个样品时,中间需要清洗附件,应非常小心地拿放玛瑙研钵,附件先用自来水冲洗干净,然后用蒸馏水冲洗,再用乙醇润洗,最后放入干燥器中。 3.测试: (1)双击打开桌面omnic应用程序,当右上角Bench Status旁出现“√”,即可进行测量。 (2)测试本底: 把装本底KBr的样品槽轻轻推进光路中,点击工具栏中Collect,点击其下的collect background (或直接点击工具栏中第一个图标collect background),按ok即收集本底谱图,测试完后按yes加到窗口中。 (3)测试样品: 把装样品的样品槽轻轻推进光路中;点击工具栏中Window,点击其下的new window,新建窗口;点击工具栏中collect,点击其下

的collect sample(或直接点击工具栏中第二个图标collect sample),按ok即收集样品谱图,测试完后按yes加到窗口中。 (4)图谱处理或保存:在工具栏中File或Edit进行文件保存或编辑处理。 A.若需要做曲线平滑,点击工具栏中的Process,再点击其下的Smooth…,根据需要设定平滑的数据,平滑完后可以删掉原始的曲线,(选中原始曲线,点击工具栏中的第八个剪刀图标即可),保存平滑后的曲线。 B.若需做基线校正,应先把图转换为ABs形式(点击工具栏中第三个图标ABs即可),再进行自动基线校正(点击工具栏中第六个图标即可),校正后的图为红色,选中原有图(此时,绿色变为红色)删除,可再把图转换为透过率形式(点击工具栏中第四个图标%T即可)。 C.若想看几个图的叠加图,点击工具栏中的Window,再点击其下的New Window…,然后在这个窗口中打开想要叠加的图谱即可。 4.测试完后,关闭测试窗口,退出程序;关闭仪器主机电源,点击 “开始”,关计算机,关插排电源和稳压电源的开关,拔出插排中仪器插头。 5.清洗所用的附件,并放回原处;KBr瓶放回干燥器中。 6.使用后登记:认真记录每次开机时间、使用者、测试样品名、样 品数、机器运转情况、指导老师等。

分析实验报告-红外光谱测定苯甲酸---最终版

华南师范大学实验报告 学生姓名:杨秀琼学号:20082401129 专业:化学年级班级:08化二 实验类型:综合实验时间:2010/3/25 实验指导老师郭长娟老师实验评分: 红外光谱法测定苯甲酸 一、[ 实验目的] 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、[实验原理] 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。不同的化学键或官能团,其振动能级从基态跃迁到激发态所需的能量不同,因此要吸收不同的红外光,将在不同波长出现吸收峰,从而形成红外光谱。 三、[仪器与试剂] 仪器:傅里叶红外光谱仪 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、[实验步骤]

1.将所有的膜具用酒精擦拭干净,用电吹风先烘干,再在红外灯下烘烤; 2.用电子天平称量一定量的KBr粉末(每份约200mg),在红外灯下研钵中加入KBr进行研磨,直至KBr粉末颗粒足够小(注意KBr粉末的干燥); 3.将KBr装入膜具,在压片机上压片,压力上升至14Mpa左右,稳定30S; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5. 取一定量的样品(样品:大约1.2-1.3g)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.然后删掉背景谱图,对样品谱图进行简单的编辑和修饰,并标注出吸收峰值,保存试样的红外谱图; 8.谱图分析:在测定的谱图中根据出现吸收带的位置、强度和形状,利用各种基团特征吸收的知识,确定吸收带的归属。若出现了某基团的吸收,应该查看该基团的相关峰是否也存在。应用谱图分析,结合其他分析数据,可以确定化合物的结构单元,在按照化学知识和解谱经验,提出可能的结构式。然后查找该化合物标准谱图来验证推定的化合物的结构式。 五、[结果与分析]

Bruker红外光谱仪软件安装、使用步骤及注意事项(精)

Bruker 红外光谱仪软件安装、使用步骤及注意事项 1. OPUS软件需要工作在win2000/XP操作系统,显示器的最小分辨率要为 1024×768。 2. 需要一块 10M 或 10M/100M兼容网卡 (实际工作在 10M 模式 , 并安装好驱动程序及 TCP/IP协议。网卡的 TCP/IP协议需要指定 IP 地址 , 一般设 为 :10.10.0.100(最后一位为 2-255之间的任意整数。子网掩码为 :255.0.0.0。其它不用设置。 3. 仪器的初始 IP 地址是 10.10.0.1,可以在 IE 地址栏中键入 10.10.0.1打开仪器的硬件信息。这步操作可以检查仪器与是否联通,在日常操作过程中不会用到, 只有当仪器出现异常时,在 BRUKER 工程师的电话指导下使用。 4. 仪器使用过程中任何时候 Internet Explorer中文件菜单下的脱机工作不能被选中,否则将导致仪器不能和电脑连接。 5. windows 系统如果要安装防火墙之类软件,请在使用本仪器前关闭 , 或设置成对本仪器 IP 地址是开放的状态。 6. 在使用仪器时, IE 上所有代理服务器设置应该取消,否则仪器与电脑不能正常通讯。 7. 必须以系统管理员的身份登陆 windows 系统,才能进行 OPUS 软件的安装, 并进行用户管理设置。 8. OPUS软件安装完毕后,需要重启电脑。运行 OPUS 软件,可以点击桌面上的OPUS 图标,缺省的密码是 OPUS (大写 ,启动软件后可以更改登陆密码。 9. 每次开始测量时,点击个性化工具条的高级数据采集(或测量菜单下高级测 量选项 ,检查(或调入事先设置好的实验参数文件(例如 c:\program files\opus\xpm\MIR_TR.XPM 文件后 , 切换到检查信号页面, 应该在几秒钟后看到红色十字架形干涉图。新仪器的干涉图正常幅度(Amplitude 的绝对值应在 18000以上 (随仪器使用时间而减弱 , 位置 (position 范围应该在 58000-62000. 看见十字型干

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除 无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】红外光是一种波长介于可见光区和微波区之间的电磁 波谱。波长在0.78?300卩m通常又把这个波段分成三个区域, 即近红外区:波长在0.78?2.5卩m (波数在12820?

4000cm-1),又称泛频区;中红外区:波长在2.5?25卩m(波数在4000?400cm-1),又称基频区;远红外区:波长在25?300卩m(波数在400?33cm-1)又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长入表征外,更常用波数 (wavenumber)c表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收 谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。

Nicoletis红外光谱仪检定标准操作规程

1目的 建立Nicoletis5红外光谱仪的检定规程,确保仪器的性能可靠和测量的准确性。 2范围 适用于Nicoletis5红外光谱仪的检定。 3职责 质量检验部负责执行此规程,质量保证部负责监督实施。 4定义 无。 5内容 5.1检定项目和技术要求 5.2检定环境 5.2.1环境温度:16~25℃,相对湿度:≤60%; 5.2.2仪器应置于平稳的工作台上,不应有强光、强气流、强烈振动和强电磁干扰;5.2.3环境无腐蚀性气体、烟尘干扰;供电电源电压220V±22V,频率50Hz±1Hz。 5.3标准物质

聚苯乙烯膜红外波长标准物质。 5.4检定内容 5.4.1波数示值误差与波数重复性 Nicoletis5红外光谱仪扫描范围为4000cm-1~400cm-1,分辨率为4.0cm-1,常用扫描速度,扫描次数为15.待Nicoletis5红外光谱仪稳定后,采集空气本底背景,扫描聚苯乙烯红外波长标准物质,测量3027cm-1,2851cm-1,1601cm-1,1028cm-1,907cm-15个主要吸收峰。重复测量3次。按公式(1)计算,取△V绝对值最大值为波数示值误差。按公式(2)计算,取δv绝对值最大值为波数重复性。 ?v=?v i-v(1) δv=v max-v min(2) 式中:?v——波数示值误差,cm-1; δv——波数重复性,cm-1; ?vi——第i峰值波数测量平均值,cm-1; v——第i峰波数标准值,cm-1; v max——第i峰波数测量最大值,cm-1; v min——第i峰波数测量最小值,cm-1。 5.4.2透射比重复性 在T绝对值最大值为透射比重复性。 R T=T max-T min(3) 式中:R T——透射比重复性,%; T max——聚苯乙烯峰值透射比最大值,%; T min——聚苯乙烯峰值透射比最小值,%; 5.4.3分辨力 分辨苯环特征吸收峰的个数 -1~2800cm-1范围内,谱图可分辨的吸收峰的个数,见图1。 分辨深度 -1(峰)与2870cm-1(谷)之间的峰谷深度和1583cm-1(峰)和1589cm-1(谷)之间的峰谷深度,用T表示。见图2和图3。 5.4.3.3半高宽

红外光谱仪标准操作规程

目的:建立尼高力IS5型红外光谱仪标准操作规程,规范检验人员的操作。: 范围:适用于本公司尼高力IS5型红外光谱仪的操作。 职责:质量管理部、QC. 内容: 1系统组成:本系统由主机,OMNIC光谱数据工作站和电脑等组成,另外还包括打印机、不间断电源等辅助设备。 应在120℃干燥4h,样品在105℃干燥4h,完成后放入干燥2操作前准备,KB r 器内备用。 2.1根据检验样品特性进行处理 压片法:取样品约1mg,置于玛瑙研钵中,一个方向均匀研磨,样品粒径小KB r 一个方向均匀研磨,粒径应小于2.5um。装入压片于2.5um,然后加入约100mg KB r 磨具约60mg,放入便携式压片机,进行压片,样片应平整透明。 涂膜法:将样品溶于不含水的溶剂中,如氯仿、甲醇、无水乙醇,滴加在盐片上,挥干溶剂后,进行检测。 薄膜法:将液体样品均匀涂于盐片上,然后盖上令一个盐片,稍加用力,来回推移,使之形成一层均匀无气泡的液膜,进行检测。 糊状法:将样品约1mg,置于玛瑙研钵中,一个方向均匀研磨,样品粒度小于2.5um,滴加石蜡糊或荧光湖,充分研磨,涂抹于盐片上,进行检测。 2.3 检查仪器各部件的电源线、数据线是否连接正常。 2.4准备相应的文件,如仪器操作规程、仪器使用记录、检验原始记录等。 2.5准备其它辅助用品。 3 开机:开启仪器开关,会听到“滋滋”声,蓝色指示灯闪烁,仪器需预热30min。打开电脑显示器、主机电源开关。点击电脑桌面“OMNIC”图标,软件右上角显示绿色对号,证明已联机。

4实验设置:点击上面工具栏“实验设置”图标,扫描次数为16次,选择“采集样品前采集背景”按钮,点击“确定”。 5 采集样品 5.1 点击软件上面工具栏的“采集样品”,在弹出的小窗口输入样品名称、批号,点击“确定”,先进行背景扫描。 5.2将样品取出固定于样品架,放入仪器,点击“确定”,开始扫描。 5.3 在左上角弹出窗口中点击“确定”,将谱图添加于当前窗口。 6红外谱图处理分析 6.1校正,点击“自动基线校正”,此时谱图会平整美观,点击校正前的谱图,谱图线变红色,然后点击“Ctrl+Delete”将原谱图删除,保留校正后谱图。 6.2转换,点击“数据处理”下拉菜单中的“透过率”,将谱图由吸光度转换为透过率。 6.3显示:下拉菜单“显示”选择“显示范围”,在x轴输入4000-400cm-1,在y 轴输入0-100%。 6.4标峰,点击“谱图分析”下拉菜单中的“标峰”,通过调节显示主要特征峰,然后点击“替代”,此“替代”必须执行,否则其他操作不能进行。 6.5使用谱图下方标注工具“T”,对“标峰”中未统一标出的峰进行单独标注或删除,谱图处理完成后,保存。 7谱图检索 7.1下拉菜单“谱图分析”选择“检索设置”,将“可选谱库和谱库组”全部加入“已选谱库和谱库组”,点击“确定”。 7.2点击下拉菜单“谱图分析”选择“谱图检索”,此时会看到样品谱图与谱图库进行对比。完成后可看到与标准谱图库中谱图的相似度与谱图名称。 8报告 8.1添加谱图库标准谱图,将谱图检索中标准谱图复制并粘贴于样品谱图窗口中,点击工具栏中“分层谱图显示”,窗口中分层显示标准谱图与样品谱图。 8.2点击下拉菜单“报告”选择“报告模板”,在弹出的小窗口中选择模板,并点击“编辑”,同时出现新的编辑窗口。 8.3在新窗口中输入样品名称、批号、实验仪器、型号、检测日期,注明标准谱

苯甲酸红外光谱的测定实验报告

苯甲酸红外光谱的测定实验报告 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握傅立叶红外光谱仪的结构和操作方法。 3、掌握基本且常用的KBr 压片制样技术。 4、通过实验巩固对常见有机化合物基团特征吸收峰的记忆。 二、仪器及试剂 1、仪器:Nexus 670型傅里叶变换红外光谱仪;BS 124S电子分析天平 2、试剂:苯甲酸样品(分析纯);KBr(光谱纯)。 三、实验原理 苯甲酸为无色,无味片状晶体。熔点122.13℃,沸点249℃,相对密度1.2659。苯甲酸是重要的酸型食品防腐剂。在酸性条件下,对霉菌、酵母和细菌均有抑制作用,但对产酸菌作用较弱。在食品工业用塑料桶装浓缩果蔬汁,最大使用量不得超过2.0g/kg;在果酱(不包括罐头)、果汁(味)型饮料、酱油、食醋中最大使用量1.0g/kg;在软糖、葡萄酒、果酒中最大使用量0.8g/kg;在低盐酱菜、酱类、蜜饯,最大使用量0.5g/kg;在碳酸饮料中最大使用量0.2g/kg。由于苯甲酸微溶于水,使用时可用少量乙醇使其溶解。 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; -1

傅里叶红外光谱仪操作规程

傅立叶变换红外光谱仪 操作规程 一、主要技术指标 1、仪器型号:Nicolet 6700 2、扫描范围:4000 cm-1~ 400cm-1 3、最小精度:1cm-1 4、检测器:DTGS 5、分束器:多层镀膜溴化钾 6、光源:EverGlo光源 二、环境条件 1、电源要求: 仪器供电电压:220V±10%,频率50Hz±10% 2、温湿度要求: 室内温度18℃~25℃相对湿度≤60% 为保证仪器达到较高的控温精度,应保证稳定室温; 实验室保持抽湿状态,以维持空气干燥,且不宜开空调。 样品室窗门应轻开轻关,避免仪器振动受损。 三、试验步骤 1、标样质量浓度曲线的绘制 (1)配制系列浓度的标液:分别称取脂肪酸甲酯0.0100g、0.0200g、 0.0300g、0.0400g和0.0500g于10mL容量瓶中,加入少量环己烷摇匀, 再加环己烷至刻线位置。分别得到质量浓度为1g/L、2 g/L、3 g/L、4 g/L、 5 g/L的脂肪酸甲酯标准溶液。 (2)按以下试验操作步骤2扫描以上所配制的各个不同质量浓度的脂肪酸甲酯标准溶液,分别得到其红外谱图。 (3)打开OMNIC分析软件,将所得的不同浓度的标样图谱以及相应的浓度数值等输入该软件,绘制脂肪酸甲酯质量浓度曲线,保存。 2、试验操作: (1)开机时,首先打开仪器电源,稳定半小时,使得仪器能量达到最佳状态。 (2)开启电脑,并打开仪器操作平台OMNIC软件,运行Diagnostic 菜单,设置实验参数并检查仪器稳定性。

(3)扫描背景谱图:用环己烷反复清洗样品池(一般为3次),扫描环己烷红外谱图并保存。 (4)稀释待测试样,用稀释过的待测试样润洗样品池(2到3次)。然后向样品池中加满试样,以环己烷为背景对试样进行扫描得到其红外谱图并保存。 (5)每个样品重复进行上述(3)(4)两步骤进行平行测定。 3、试验数据分析: (1)打开OMNIC分析软件,调取试验所得的试样谱图,与标样数据对比分析,得到试样中待测物的质量浓度。 (2)试验结束后,并依次关闭OMNIC软件及仪器、主机的电源,清洗样品池,使仪器周围保持干净整洁。 四、注意事项及维护保养 1、实验室必须有良好的接地。 2、在仪器使用过程中,请经常检查仪器内部的湿度指示,Nicolet系 列用户可用软件检查干燥剂湿度是否过关。若干燥剂颜色变浅,请 及时将干燥剂在烘箱里烘干。 3、每次做完样品后,在样品仓内放一杯干燥硅胶,以保持样品仓的干 燥并同时保护两边的KBr窗片。 4、仪器长时间不使用时,间隔几天开启仪器一段时间,使仪器处于通 电状态,可防止仪器受潮。 5、每次做完试验,用布罩将仪器盖好。

光谱分析报告 实验报告材料

实 课程名称: 材料科学基础实验 指导老师: 乔旭升 成绩: 实验名称: 光谱分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的 通过本实验了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR )和荧光光谱仪的基本原理、主要用途和实际操作过程。掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。学习分析影响测试结果的主要因素。 二、实验原理 电磁波可与多种物质相互作用。如果这种作用导致能量从电磁波转移至物质,就称为吸收。当光波与某一受体作用时,光子和接受体之间就存在碰撞。光子的能量可被传递给接受体而被吸收,由此产生吸收光谱。通常紫外和可见光的能量接近于某两个电子能级地能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁,又称为电子光谱。 当一束平行单色光照射到非散射的均匀介质时,光的一部分将被介质所反射,一部分被介质吸收,一部分透过介质。如果入射光强度为I0.反射光强度为Ir ,吸收光强度为Ia ,透过光强度为It ,则有I0=Ir+Ia+It 投射光强度与入射光强度之比称为透光率 T=It/I0 当一束具有连续波长的红外光照射某化合物时,其分子要吸收一部分光能转变为分子的震动能量或转动能量。此时若将其透过的光用单色器进行色散,就可得到一带暗条的谱带。以红外光的波长或波数为横坐标,以吸收率或者透过率百分数为纵坐标,把该谱带记录下来,就可得到该化合物的红外吸收光谱图。不同的化合物均有标准特征谱,将实验所得的光谱与标准谱对照,就可进行分子结构的基础研究和化合组成的分析。可由吸收峰的位置和形状来推知被测物的结构,按照特征峰的强度来测定混合物中各组分的含量。 当分子吸收来自光辐射的能量后,其本身就由处于稳定的基态跃迁至不稳定的激发态: M+h ν→。激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁 波(荧光或磷光)的方式回到基态: →M+荧光(或磷光)。任何能产生荧光(或磷光)的物质都具有两个特征光谱:激发光谱和发射光谱。 激发光谱:荧光(或磷光)为光致发光,因此必须选择合适的激发光波长,这可通过激发

相关文档
最新文档