多元统计分析习题

多元统计分析习题
多元统计分析习题

1.已知n=4,p=3的一个样本数据阵

143X =626,X S 833534ρ

????????????

????

计算,,v,

2.已知2

035142

411

300103

2

2X ??

??????=?

?

??????????

,用最短、最长、中间距离法聚类,并画出聚类树形图

3.已知

5

2=2

2??

∑????,要求: ①求特征根1

2λλ, ②求特征向量12μμ,

③构造主成分

12

,F F

④计算1F 的方差Var(F 1)和2F 的方差Var(F 2)

⑤计算()()()()111221

22,,,,;;;F X F X F X F X ρρρρ

4.设有12,G G 两个总体,从中分别抽取容量为3的样品如下:

要求:(1)样本的均值向量()

()12

,X

X 及离差阵12,S S

(2)假定()()12==∑∑∑,用12,S S 联合估计∑

(3)已知待判样品(27)

X

T

=,分别用距离判别法、Fisher 判别

法、Bayes 判别法判定X 的归属。

5.设111=n 个和122=n 个的观测值分别取自两个随机变量1X 和

2X 。假定这两个变量服从二元正态分布,且有相同的协方差阵。

样本均值向量和联合协方差阵为:

???

???--=111X ,??????=122X ,??????--=∑8.41.11.13.7。新样品??

????=21X ,

要求用Bayes 法和Fisher 进行判别分析。

6.已知2变量协方差阵??

?

?

??=∑3224

,要求:(1)求∑的特征根及其对应的单位特征向量;(2)组建主成分1F 、2F ;(3)验证

j j F Var λ=)(;(4)计算11x F ρ、21x F ρ。

7、试分析某海运学院100名新生的性别与来自的区域有无相关关系。(2

0.05(1) 3.84χ=)

8、已知4个样品3个数据的数据如下:

4

406

864

436

3X ??????=??????

,试求均值向量X 、协方差阵∑

、相关阵R 。

9、已知随机向量X=??????????32

1x x x ,具有均值向量826X ????=??????

和协方差阵,

????

??????--=∑411161113。设A=??

?

???131

023,试求: (1)2

1x x ρ (2)E (AX ) (3)

)(AX Cov 10.已知4个样品3个数据的数据如下:

???

??

????

???=31

6325

536123

X ,试求均值向量X 、离差阵S 、协方差阵∑、相关阵R 。

11.已知随机向量X=????

?

?????321x x x ,具有均值向量

??????????=314X 和协方差阵 ????

??????--=∑411152123。设A=???

???131

024,试求:

(1)E (AX ) (2)2

1x x ρ (3))(AX Cov

12.已知初始距离阵

44010()11205340ij D d ?????

?

?==??????

,要求用最长距离法和最短距离法进行聚类,并画出聚类树形图。

12.已知初始距离阵

???????

?

????????==?0821011

09560

74090)(5

5ij d D ,要求用最短距

离法和最长距离法进行聚类,并画出聚类树形图。

13.设112n =个和213n =个的观测值分别取自两个随机变量1X 和2X 。假定这两个变量服从二元正态分布,且有相同的协方差阵。样本均值向量和联合协方差阵为:

123X ??=????,234X ??=????,7114??∑=????。新样品??

????=21X ,要求:

(1)构造Fisher 判别函数,判别新样品的归属; (2)用Bayes 法进行判别分析。

14.已知2变量协方差阵

??

?

???=∑32

24

,要求: (1)求∑的特征根及其对应的单位特征向量;

(2)组建主成分1F 、2F ; (3)验证j j F Var λ=)(; (4)计算1

1x F ρ、2

1x F ρ。

15.为了研究吸烟是否与患肺癌有关,对126位肺癌患者及86位非

肺癌患者进行了调查,得如下表:

试利用2χ统计量检验吸烟与患肺癌是否存在相关关系。[2

05

.0χ(1)=3.84]

16.相关阵R 的特征根和特征向量分别为:

96.11=λ,[]T 507

.0593.0625.01=μ

68.02=λ, []T 843

.0491

.0219

.02--=μ

36.03=λ,

[]T 177

.0638

.0749

.03--=μ

要求:(1)构建因子载荷阵A ;

(2)分别写出指标变量1X 与1F 、2X 与2F 、3X 与2F 的相关系数; (3)计算指标变量共同度21h 、22h 、 23h 。

多元统计分析模拟考题及答案.docx

一、判断题 ( 对 ) 1 X ( X 1 , X 2 ,L , X p ) 的协差阵一定是对称的半正定阵 ( 对 ( ) 2 标准化随机向量的协差阵与原变量的相关系数阵相同。 对) 3 典型相关分析是识别并量化两组变量间的关系,将两组变量的相关关系 的研究转化为一组变量的线性组合与另一组变量的线性组合间的相关关系的研究。 ( 对 )4 多维标度法是以空间分布的形式在低维空间中再现研究对象间关系的数据 分析方法。 ( 错)5 X (X 1 , X 2 , , X p ) ~ N p ( , ) , X , S 分别是样本均值和样本离 差阵,则 X , S 分别是 , 的无偏估计。 n ( 对) 6 X ( X 1 , X 2 , , X p ) ~ N p ( , ) , X 作为样本均值 的估计,是 无偏的、有效的、一致的。 ( 错) 7 因子载荷经正交旋转后,各变量的共性方差和各因子的贡献都发生了变化 ( 对) 8 因子载荷阵 A ( ij ) ij 表示第 i 个变量在第 j 个公因子上 a 中的 a 的相对重要性。 ( 对 )9 判别分析中, 若两个总体的协差阵相等, 则 Fisher 判别与距离判别等价。 (对) 10 距离判别法要求两总体分布的协差阵相等, Fisher 判别法对总体的分布无特 定的要求。 二、填空题 1、多元统计中常用的统计量有:样本均值向量、样本协差阵、样本离差阵、 样本相关系数矩阵. 2、 设 是总体 的协方差阵, 的特征根 ( 1, , ) 与相应的单 X ( X 1,L , X m ) i i L m 位 正 交 化 特 征 向 量 i ( a i1, a i 2 ,L ,a im ) , 则 第 一 主 成 分 的 表 达 式 是 y 1 a 11 X 1 a 12 X 2 L a 1m X m ,方差为 1 。 3 设 是总体 X ( X 1, X 2 , X 3, X 4 ) 的协方差阵, 的特征根和标准正交特征向量分别 为: 1 2.920 U 1' (0.1485, 0.5735, 0.5577, 0.5814) 2 1.024 U 2' (0.9544, 0.0984,0.2695,0.0824) 3 0.049 U 3' (0.2516,0.7733, 0.5589, 0.1624) 4 0.007 U 4' ( 0.0612,0.2519,0.5513, 0.7930) ,则其第二个主成分的表达式是

多元统计分析期末试题

一、填空题(20分) 1、若),2,1(),,(~)(n N X p 且相互独立,则样本均值向量X 服从的分布 为 2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。 3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。 4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。 5、设样品),2,1(,),,(' 21n i X X X X ip i i i ,总体),(~ p N X ,对样品进行分类常用的距离 2 ()ij d M )()(1j i j i x x x x ,兰氏距离()ij d L 6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。 7、一元回归的数学模型是: x y 10,多元回归的数学模型是: p p x x x y 22110。 8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。 9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。 二、计算题(60分) 1、设三维随机向量),(~3 N X ,其中 200031014,问1X 与2X 是否独立?),(21 X X 和3X 是否独立?为什么? 解: 因为1),cov(21 X X ,所以1X 与2X 不独立。 把协差矩阵写成分块矩阵 22211211,),(21 X X 的协差矩阵为11 因为12321),),cov(( X X X ,而012 ,所以),(21 X X 和3X 是不相关的,而正态分布不相关与相互

应用多元统计分析习题解答典型相关分析Word版

第九章 典型相关分析 9.1 什么是典型相关分析?简述其基本思想。 答: 典型相关分析是研究两组变量之间相关关系的一种多元统计方法。用于揭示两组变量之间的内在联系。典型相关分析的目的是识别并量化两组变量之间的联系。将两组变量相关关系的分析转化为一组变量的线性组合与另一组变量线性组合之间的相关关系。 基本思想: (1)在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。即: 若设(1) (1)(1) (1)12(,, ,)p X X X =X 、(2)(2)(2) (2) 12(,, ,)q X X X =X 是两组相互关联的随机变量, 分别在两组变量中选取若干有代表性的综合变量Ui 、Vi ,使是原变量的线性组合。 在(1)(1)(1)(2)()()1D D ''==a X b X 的条件下,使得(1)(1)(1)(2)(,)ρ''a X b X 达到最大。(2)选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对。 (3)如此继续下去,直到两组变量之间的相关性被提取完毕为此。 9.2 什么是典型变量?它具有哪些性质? 答:在典型相关分析中,在一定条件下选取系列线性组合以反映两组变量之间的线性关系,这被选出的线性组合配对被称为典型变量。具体来说, ()(1)()(1) ()(1) ()(1)1122i i i i i P P U a X a X a X '=++ +a X ()(2)()(2) ()(2) ()(2)1122i i i i i q q V b X b X b X '=+++b X 在(1)(1)(1)(2)()()1D D ''==a X b X 的条件下,使得(1)(1)(1)(2)(,)ρ''a X b X 达到最大,则称 (1)(1)'a X 、(1)(2)'b X 是(1)X 、(2)X 的第一对典型相关变量。 典型变量性质: 典型相关量化了两组变量之间的联系,反映了两组变量的相关程度。 1. ()1,()1 (1,2,,)k k D U D V k r === (,)0,(,)0()i j i j Cov U U Cov V V i j ==≠ 2. 0(,1,2,,) (,)0 ()0() i i j i j i r Cov U V i j j r λ≠==?? =≠??>? 9.3 试分析一组变量的典型变量与其主成分的联系与区别。 答:一组变量的典型变量和其主成分都是经过线性变换计算矩阵特征值与特征向量得出的。主成分分析只涉及一组变量的相互依赖关系而典型相关则扩展到两组变量之间的相互依赖关系之中 ()(1)()(1)()(1)()(1) 1122i i i i i P P U a X a X a X '=+++a X ()(2)()(2)()(2)()(2)1122i i i i i q q V b X b X b X '=+++b X (1)(1)(1)(1)1 2 (,,,)p X X X =X 、(2)(2)(2)(2)1 2 (,,,)q X X X =X

多元统计分析期末复习试题

第一章: 多元统计分析研究的内容(5点) 1、简化数据结构(主成分分析) 2、分类与判别(聚类分析、判别分析) 3、变量间的相互关系(典型相关分析、多元回归分析) 4、多维数据的统计推断 5、多元统计分析的理论基础 第二三章:

二、多维随机变量的数字特征 1、随机向量的数字特征 随机向量X 均值向量: 随机向量X 与Y 的协方差矩阵: 当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。 随机向量X 与Y 的相关系数矩阵: 2、均值向量协方差矩阵的性质 (1).设X ,Y 为随机向量,A ,B 为常数矩阵 E (AX )=AE (X ); E (AXB )=AE (X )B; D(AX)=AD(X)A ’; Cov(AX,BY)=ACov(X,Y)B ’; (2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立. (3).X 的协方差阵D(X)是对称非负定矩阵。例2.见黑板 三、多元正态分布的参数估计 2、多元正态分布的性质 (1).若 ,则E(X)= ,D(X)= . )' ,...,,(),,,(2121P p EX EX EX EX μμμ='= )' )((),cov(EY Y EX X E Y X --=q p ij r Y X ?=)(),(ρ) ,(~∑μP N X μ ∑ p X X X ,,,21

特别地,当 为对角阵时, 相互独立。 (2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量, AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立. (4).多元正态分布的不相关与独立等价. 例3.见黑板. 三、多元正态分布的参数估计 (1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面. (2)多元分布样本的数字特征---常见多元统计量 样本均值向量 = 样本离差阵S= 样本协方差阵V= S ;样本相关阵R (3) ,V分别是 和 的最大似然估计; (4)估计的性质 是 的无偏估计; ,V分别是 和 的有效和一致估计; ; S~ , 与S相互独立; 第五章 聚类分析: 一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。用于对事物类别不清楚,甚至事物总共可能有几类都不能确定的情况下进行事物分类的场合。聚类方法:系统聚类法(直观易懂)、动态聚类法(快)、有序聚类法(保序)...... Q-型聚类分析(样品)R-型聚类分析(变量) 变量按照测量它们的尺度不同,可以分为三类:间隔尺度、有序尺度、名义尺度。 μ ) ,(~∑μP N X ) ,('A A d A N s ∑+μ) () 1(,,n X X X )' ,,,(21p X X X )' )(() () (1 X X X X i i n i --∑=n 1 X μ∑μ X ) 1 , (~∑n N X P μ) ,1(∑-n W p X X

应用多元统计分析试题及答案

一、填空题: 1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法. 2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著. 3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。通常聚类分析分为 Q型聚类和 R型聚类。 4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。 5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。 6、若 () (,), P x N αμα ∑=1,2,3….n且相互独立,则样本均值向量x服从的分布 为_x~N(μ,Σ/n)_。 二、简答 1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。 在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。 2、简述相应分析的基本思想。 相应分析,是指对两个定性变量的多种水平进行分析。设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。相应分析即是通过列联表的转换,使得因素A

和因素B 具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A 、B 的联系。 3、简述费希尔判别法的基本思想。 从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数 系数: 确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。 5、简述多元统计分析中协差阵检验的步骤 第一,提出待检验的假设 和H1; 第二,给出检验的统计量及其服从的分布; 第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域; 第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。 协差阵的检验 检验0=ΣΣ 0p H =ΣI : /2 /21exp 2np n e tr n λ???? =-?? ? ???? S S 00p H =≠ΣΣI : /2 /2**1exp 2np n e tr n λ???? =-?? ? ???? S S

多元统计分析模拟试题教学提纲

多元统计分析模拟试 题

多元统计分析模拟试题(两套:每套含填空、判断各二十道) A卷 1)判别分析常用的判别方法有距离判别法、贝叶斯判别法、费歇判别法、逐 步判别法。 2)Q型聚类分析是对样品的分类,R型聚类分析是对变量_的分类。 3)主成分分析中可以利用协方差矩阵和相关矩阵求解主成分。 4)因子分析中对于因子载荷的求解最常用的方法是主成分法、主轴因子法、 极大似然法 5)聚类分析包括系统聚类法、模糊聚类分析、K-均值聚类分析 6)分组数据的Logistic回归存在异方差性,需要采用加权最小二乘估计 7)误差项的路径系数可由多元回归的决定系数算出,他们之间的关系为 = 8)最短距离法适用于条形的类,最长距离法适用于椭圆形的类。 9)主成分分析是利用降维的思想,在损失很少的信息前提下,把多个指标转 化为几个综合指标的多元统计方法。 10)在进行主成分分析时,我们认为所取的m(m

应用多元统计分析习题解答_第五章

第五章 聚类分析 判别分析和聚类分析有何区别 答:即根据一定的判别准则,判定一个样本归属于哪一类。具体而言,设有n 个样本,对每个样本测得p 项指标(变量)的数据,已知每个样本属于k 个类别(或总体)中的某一类,通过找出一个最优的划分,使得不同类别的样本尽可能地区别开,并判别该样本属于哪个总体。聚类分析是分析如何对样品(或变量)进行量化分类的问题。在聚类之前,我们并不知道总体,而是通过一次次的聚类,使相近的样品(或变量)聚合形成总体。通俗来讲,判别分析是在已知有多少类及是什么类的情况下进行分类,而聚类分析是在不知道类的情况下进行分类。 试述系统聚类的基本思想。 答:系统聚类的基本思想是:距离相近的样品(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。 对样品和变量进行聚类分析时, 所构造的统计量分别是什么简要说明为什么这样构造 答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。因为我们把n 个样本看作p 维空间的n 个点。点之间的距离即可代表样品间的相似度。常用的距离为 (一)闵可夫斯基距离:1/1 ()() p q q ij ik jk k d q X X ==-∑ q 取不同值,分为 (1)绝对距离(1q =) 1 (1)p ij ik jk k d X X ==-∑ (2)欧氏距离(2q =) 21/2 1 (2)() p ij ik jk k d X X ==-∑ (3)切比雪夫距离(q =∞) 1()max ij ik jk k p d X X ≤≤∞=- (二)马氏距离 (三)兰氏距离 对变量的相似性,我们更多地要了解变量的变化趋势或变化方向,因此用相关性进行衡量。 将变量看作p 维空间的向量,一般用 2 1()()()ij i j i j d M -'=--X X ΣX X 11()p ik jk ij k ik jk X X d L p X X =-=+∑

(完整word版)实用多元统计分析相关习题

练习题 一、填空题 1.人们通过各种实践,发现变量之间的相互关系可以分成(相关)和(不相关)两种类型。多元统计中常用的统计量有:样本均值、样本方差、样本协方差和样本相关系数。 2.总离差平方和可以分解为(回归离差平方和)和(剩余离差平方和)两个部分,其中(回归离差平方和)在总离差平方和中所占比重越大,则线性回归效果越显著。3.回归方程显著性检验时通常采用的统计量是(S R/p)/[S E/(n-p-1)]。 4.偏相关系数是指多元回归分析中,(当其他变量固定时,给定的两个变量之间的)的相关系数。 5.Spss中回归方程的建模方法有(一元线性回归、多元线性回归、岭回归、多对多线性回归)等。 6.主成分分析是通过适当的变量替换,使新变量成为原变量的(线性组合),并寻求(降维)的一种方法。 7.主成分分析的基本思想是(设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来替代原来的指标)。 8.主成分表达式的系数向量是(相关系数矩阵)的特征向量。 9.样本主成分的总方差等于(1)。 10.在经济指标综合评价中,应用主成分分析法,则评价函数中的权数为(方差贡献度)。主成分的协方差矩阵为(对称)矩阵。主成分表达式的系数向量是(相关矩阵特征值)的特征向量。 11.SPSS中主成分分析采用(analyze—data reduction—facyor)命令过程。 12.因子分析是把每个原始变量分解为两部分因素,一部分是(公共因子),另一部分为(特殊因子)。 13.变量共同度是指因子载荷矩阵中(第i行元素的平方和)。 14.公共因子方差与特殊因子方差之和为(1)。 15.聚类分析是建立一种分类方法,它将一批样品或变量按照它们在性质上的(亲疏程度)进行科学的分类。 16.Q型聚类法是按(样品)进行聚类,R型聚类法是按(变量)进行聚类。 17.Q型聚类统计量是(距离),而R型聚类统计量通常采用(相关系数)。 18.六种Q型聚类方法分别为(最长距离法)、(最短距离法)、(中间距离法)、(类平均法)、(重心法)、(离差平方和法)。 19.快速聚类在SPSS中由(k-均值聚类(analyze—classify—k means cluster))过程实现。 20.判别分析是要解决在研究对象已(已分成若干类)的情况下,确定新的观测数据属于已知类别中哪一类的多元统计方法。 21.用判别分析方法处理问题时,通常以(判别函数)作为衡量新样本点与各已知组别接近程度的指标。 22.进行判别分析时,通常指定一种判别规则,用来判定新样本的归属,常见的判别准则有(Fisher准则)、(贝叶斯准则)。 23.类内样本点接近,类间样本点疏远的性质,可以通过(类与类之间的距离)与(类内样本的距离)的大小差异表现出来,而两者的比值能把不同的类区别开来。这个比值越大,说明类与类间的差异越(类与类之间的距离越大),分类效果越(好)。24.Fisher判别法就是要找一个由p个变量组成的(线性判别函数),使得各自组内点的

多元统计分析模拟考题及答案

一、判断题 ( 对 )112(,,,)p X X X X '=L 的协差阵一定是对称的半正定阵 ( 对 )2标准化随机向量的协差阵与原变量的相关系数阵相同。 ( 对)3典型相关分析是识别并量化两组变量间的关系,将两组变量的相关关系 的研究转化为一组变量的线性组合与另一组变量的线性组合间的相关关系的研究。 ( 对 )4多维标度法是以空间分布的形式在低维空间中再现研究对象间关系的数据分析方法。 ( 错)5),(~),,,(21∑'=μp p N X X X X Λ,,X S 分别是样本均值和样本离差阵,则, S X n 分别是,μ∑的无偏估计。 ( 对)6),(~),,,(21∑'=μp p N X X X X Λ,X 作为样本均值μ的估计,是 无偏的、有效的、一致的。 ( 错)7 因子载荷经正交旋转后,各变量的共性方差和各因子的贡献都发生了变化 ( 对)8因子载荷阵()ij A a =中的ij a 表示第i 个变量在第j 个公因子上的相对重要性。 ( 对 )9 判别分析中,若两个总体的协差阵相等,则Fisher 判别与距离判别等 价。 (对)10距离判别法要求两总体分布的协差阵相等,Fisher 判别法对总体的分布无特定的要求。 二、填空题 1、多元统计中常用的统计量有:样本均值向量、样本协差阵、样本离差阵、样本相关系数矩阵. 2、设∑是总体1(,,)m X X X =L 的协方差阵,∑的特征根(1,,)i i m λ=L 与相应的单 位正交化特征向量 12(,,,)i i i im a a a α=L ,则第一主成分的表达式是 11111221m m y a X a X a X =+++L ,方差为 1λ。 3设∑是总体1234(,,,)X X X X X =的协方差阵,∑的特征根和标准正交特征向量分别 为:' 112.920(0.1485,0.5735,0.5577,0.5814)U λ==--- ' 221.024(0.9544,0.0984,0.2695,0.0824)U λ==- '330.049(0.2516,0.7733,0.5589,0.1624)U λ==--

应用多元统计分析习题解答_因子分析

第七章 因子分析 7.1 试述因子分析与主成分分析的联系与区别。 答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。因子分析也可以说成是主成分分析的逆问题。如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。 因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。而因子分析是从显在变量去提炼潜在因子的过程。此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。 7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。具体来说,①因子分析可以用于分类。如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。对我们进一步研究与探讨指示方向。在社会调查分析中十分常用。③因子分析的另一个作用是用于时空分解。如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。 7.3 简述因子模型中载荷矩阵A 的统计意义。 答:对于因子模型 1122i i i ij j im m i X a F a F a F a F ε=++++ ++ 1,2, ,i p = 因子载荷阵为11 12121 22212 1 2 (,, ,)m m m p p pm a a a a a a A A A a a a ????? ?==???????? A i X 与j F 的协方差为: 1Cov(,)Cov(,)m i j ik k i j k X F a F F ε==+∑ =1 Cov( ,)Cov(,)m ik k j i j k a F F F ε=+∑ =ij a

13级信息与计算《多元统计分析》练习题

2013级信息与计算《多元统计分析》练习题 1.已知12x X x ??= ???的密度函数为()221212121211(,)exp 2222146522f x x x x x x x x π??=-++--+???? 试求X 的均值向量和协方差阵。 2.1233231311642(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-?? ?'=∑=-∑=-- ? ?-?? -??+ ??? 设其中试判断与是否独立? 3.设(),p X N μ∑,p p A ?为对称阵,试证明 (1)()E XX μμ''=∑+ (2)()()E X AX tr A A μμ''=∑+ (2) 设,A B 为矩阵,证明: cov(,)cov(,)AX BY A X Y B '= ()()D A X A D X A '= 4.已知 123(,,)X x x x '=的协方差阵为: 5 232 30302?? ?∑= ? ??? 求(1)123var(2)x x x -+(2)设1122123y ,x x y x x x =+=++求12cov(y ,y ) 5. 123(,,)X x x x '=的协方差阵为: 的协方差阵为:30424394024060?? ?∑= ? ??? 求(1)控制一个变量其余两个变量之间的偏相关系数, (2)1x 对23(,)x x '的全相关系数。 6.设随机向量有密度函数 223122212()2(,)(2)()x y f x y x y e π---+=+, 证明:相关系数(,)0x y ρ=,但,x y 不独立

多元统计分析试题(2012)

近几年,中国房地产业得到了长足的发展,但房地产价格的上涨一直饱受争议,甚至有逃离“北、上、广”的言论,这也从侧面反映了房地产价格的区域性特征,下表为2008年中国31个省、市、自治区房地产业的相关统计数据,试根据这些数据进行聚类分析。 表1中指标说明如下: X1:房屋平均销售价格; X2:住宅平均销售价格; X3:别墅、高档公寓平均销售价格; X4:经济适用房平均销售价格; X5:办公楼平均销售价格; X6:商业营业用房平均销售价格 X7:其他平均销售价格; X8:商品房销售面积; X9:住宅销售面积 表1

为研究某地区人口死亡状况,已按某种方法将15个已知样品分为3类,指标及原始数据见表2,试建立判别函数,并判定另外4个待判样品属于哪类? 表2 X1:0岁组死亡概率X4:55岁组死亡概率 X2:1岁组死亡概率X5:80岁组死亡概率 X3:10岁组死亡概率X6:平均预期寿命 题3 利用主成分分析综合评价全国重点水泥企业的经济效益。原始数据见表3。 表3

题4 反映城镇居民消费支出状况的指标主要有食品、衣着、居住、家庭设备用品及服务、医疗保健、交通和通信以及教育文化娱乐服务等八项消费支出指标,数据如下表4所示。以2008年为例进行说明。选取反映我国各省、市、自治区的城镇居民人均消费支出8个指标作为原始变量,运用SPSS软件,对全国31个中心城市的人均消费水平水平作因子分析。

题5、在研究国家财政收入时,我们把财政收入按收入形式分为:各项税收收入、企业收入、债务收入、国家能源交通重点建设基金收入、基本建设贷款归还收入、国家预算调节基金收入、其他收入等。为了建立国家财政收入回归模型,我们以财政收入y(亿元)为因变量。自变量如下:x 1 ——农业增 加值(亿元),x 2——工业增加值(亿元),x 3 ——建筑业增加值(亿元),x 4 ——人口数(万人),x 5 ——社会 消费总额(亿元),x 6 ——受灾面积(万公顷)。据《中国统计年鉴》获得1979—1998共20个年分的统计数据,见表5。由定性分析知,所选自变量都与变量y有较强的相关性,试做出一个较为理想的回归方程。 表5

多元统计分析期末试题及答案.doc

22121212121 ~(,),(,),(,),, 1X N X x x x x x x ρμμμμσρ ?? ∑==∑= ??? +-1、设其中则Cov(,)=____. 10 31 2~(,),1,,10,()()_________i i i i X N i W X X μμμ=' ∑=--∑L 、设则=服从。 ()1 2 34 433,4 92,32 16___________________ X x x x R -?? ?'==-- ? ?-? ? =∑、设随机向量且协方差矩阵则它的相关矩阵 4、 __________, __________, ________________。 215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。 12332313116421(,,)~(,),(1,0,2),441, 2142X x x x N x x x x x μμ-?? ?'=∑=-∑=-- ? ?-?? -?? + ??? 、设其中试判断与是否独立? (), 1 2 3设X=x x x 的相关系数矩阵通过因子分析分解为 211X h = 的共性方差111X σ= 的方差21X g = 1公因子f 对的贡献1213 30.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.10320 13 R ? ? - ????? ? -?? ? ? ?=-=-+ ? ? ? ??? ? ? ????? ? ???

应用多元统计分析习题解答-主成分分析

主成分分析 6.1 试述主成分分析的基本思想。 答:我们处理的问题多是多指标变量问题,由于多个变量之间往往存在着一定程度的相关性,人们希望能通过线性组合的方式从这些指标中尽可能快的提取信息。当第一个组合不能提取止。这就是主成分分析的基本思想。 6.2 主成分分析的作用体现在何处? 答:一般说来,在主成分分析适用的场合,用较少的主成分就可以得到较多的信息量。以各个主成分为分量,就得到一个更低维的随机向量;主成分分析的作用就是在降低数据“维数” 6.3 简述主成分分析中累积贡献率的具体含义。 答:主成分分析把p 个原始变量12,, ,p X X X 的总方差()tr Σ分解成了p 个相互独立的变量p 个主成分的,忽略 一些带有较小方差的主成分将不会给总方差带来太大的影响。这里我们()m p <个主成分,则称1 1 p m m k k k k ψλλ ===∑∑ 为主成分1, ,m Y Y 的累计贡献率,累计贡献率表明1,,m Y Y 综合12,, ,p X X X 的能力。通常取m ,使得累计贡 献率达到一个较高的百分数(如85%以上)。 答:这个说法是正确的。 即原变量方差之和等于新的变量的方差之和 6.5 试述根据协差阵进行主成分分析和根据相关阵进行主成分分析的区别。 答:从相关阵求得的主成分与协差阵求得的主成分一般情况是不相同的。从协方差矩阵出发的,其结果受变量单位的影响。主成分倾向于多归纳方差大的变量的信息,对于方差小的变量就可能体现得不够,也存在“大数吃小数”的问题。实际表明,这种差异有时很大。我 6.6 已知X =()’的协差阵为 试进行主成分分析。 解:=0 计算得 当 时 ,

多元统计分析复习整理

一、聚类分析的基本思想: 我们认为,所研究的样品或指标之间存在着程度不同的相似性。根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间的相似程度的统计量,以这些统计量为划分类型的依据,把一些相似程度较大的样品聚合为一类,把另一些彼此之间相似程度较大的样品又聚合到另外一类。把不同的类型一一划分出来,形成一个由小到大的分类系统。最后,用分群图把所有的样品间的亲疏关系表示出来。 二、聚类分析的方法 系统聚类法、模糊聚类法、K-均值法、有序样品的聚类、分解法、加入法 三、系统聚类法的种类 最短距离法、最长距离法、重心法、类平均法、离差平方和法 四、判别分析的基本思想 判别分析用来解决被解释变量是非度量变量的情形,预测和解释影响一个对象所属类别。识别一个个体所属类别的情况下有着广泛的应用 判别分析将对象进行分析,通过人们选择的解释变量来预测或者解释每个对象的所属类别。 五、判别分析的假设条件 判别分析的假设条件之一是每一个判别变量不能是其他判别变量的线性组合;判别分析的假设之二是各组变量的协方差矩阵相等。判别分析最简单和最常用的形式是采用线性判别函数。判别分析的假设之三是各判别变量之间具有多元正态分布,即每个变量对于所有其他变量的固定值有正态分布。当违背该假设时,计算的概率将非常的不准确。 六、判别分析的方法 距离判别法、Bayes判别法、Fisher判别法、逐步判别法

七、距离判别法的判别准则 设有两个总体1G 和2G ,x 是一个p 维样品,若能定义样品到总体1G 和2G 的距离d (x ,1G )和d (x ,2G ),则用如下规则进行判别:若样品x 到总体1G 的距离小于到总体2G 的距离,则认为样品x 属于总体1G ,反之,则认为样品x 属于总体样品x 属于总体2G ,若样品x 到总体1G 和2G 的距离相等,则让它待判。 八、Fisher 判别的思想 Fisher 判别的思想是投影,将k 组p 维数据投影到某一个方向,使的它们的投影与组之间尽可能地分开。 九、Bayes 判别的思想 Bayes 统计的思想是:假定对研究的对象已有一定的认识,常用先验概率分布来描述这种认识,然后我们取得一个样本,用样本来修正已有的认识,得到后验概率分布,各种统计推断都通过后验概率分布来进行。将Bayes 统计的思想用于判别分析,就得到Bayes 判别。 十、判别分析的方法和步骤 1.判别分析的对象 2.判别分析的研究设计 3.判别分析的假定 4.估计判别模型和评估整体拟合 5.结果的解释 6.结果的验证 十一、提取主成分的原则 1.累计方差贡献率大于85%, 2.特征根大于1 ,3碎石图特征根的变化趋势。 十二、因子分析的步骤 1.根据研究问题选取原始变量。 2.对原始变量进行标准化并求其相关阵,分析变量之间的相关性。 3.求解初始公共因子及因子载荷矩阵。 4.因子旋转。 5.因子得分。 6.根据因子得分值进行进一步分析。

多元统计分析期末复习试题

第一章: 多元统计分析研究的容(5点) 1、简化数据结构(主成分分析) 2、分类与判别(聚类分析、判别分析) 3、变量间的相互关系(典型相关分析、多元回归分析) 4、多维数据的统计推断 5、多元统计分析的理论基础 第二三章: 二、多维随机变量的数字特征 1、随机向量的数字特征 随机向量X均值向量: 随机向量X与Y的协方差矩阵: 当X=Y时Cov(X,Y)=D(X);当Cov(X,Y)=0 ,称X,Y不相关。 随机向量X与Y的相关系数矩阵: 2、均值向量协方差矩阵的性质 (1).设X,Y为随机向量,A,B 为常数矩阵 E(AX)=AE(X); E(AXB)=AE(X)B; D(AX)=AD(X)A’; )' ,..., , ( ) , , , ( 2 1 2 1P p EX EX EX EXμ μ μ = ' = )' )( ( ) , cov(EY Y EX X E Y X- - = q p ij r Y X ? =) ( ) , (ρ

Cov(AX,BY)=ACov(X,Y)B ’; (2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立. (3).X 的协方差阵D(X)是对称非负定矩阵。例2.见黑板 三、多元正态分布的参数估计 2、多元正态分布的性质 (1).若 ,则E(X)= ,D(X)= . 特别地,当 为对角阵时, 相互独立。 (2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量, AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立. (4).多元正态分布的不相关与独立等价. 例3.见黑板. 三、多元正态分布的参数估计 (1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面. (2)多元分布样本的数字特征---常见多元统计量 样本均值向量 = 样本离差阵S= 样本协方差阵V= S ;样本相关阵R (3) ,V分别是 和 的最大似然估计; (4)估计的性质 是 的无偏估计; ,V分别是 和 的有效和一致估计; ; S~ , 与S相互独立; 第五章 聚类分析: 一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。用于对事物类别不清楚,甚至事物总共可能有几类都不能确定的情况下进行事物分类的场合。聚类方法:系统聚类法(直观易懂)、动态聚类法(快)、有序聚类法(保序)...... Q-型聚类分析(样品)R-型聚类分析(变量) 变量按照测量它们的尺度不同,可以分为三类:间隔尺度、有序尺度、名义尺度。 二、常用数据的变换方法:中心化变换、标准化变换、极差正规化变换、对数变换(优缺点) 1、中心化变换(平移变换):中心化变换是一种坐标轴平移处理方法,它是先求出每个变量的样本平均值,再从原始数据中减去该变量的均值,就得到中心化变换后的数据。不改变样本间的相互位置,也不改变变量间的相关性。 2、标准化变换:首先对每个变量进行中心化变换,然后用该变量的标准差进行标准化。 经过标准化变换处理后,每个变量即数据矩阵中每列数据的平均值为0,方差为1,且也不再具有量纲,同样也便于不同变量之间的比较。 3、极差正规化变换(规格化变换):规格化变换是从数据矩阵的每一个变量中找出其最大值和最小值,这两者之差称为极差,然后从每个变量的每个原始数据中减去该变量中的最小值,再除以极差。经过规格化变换后,数据矩阵中每列即每个变量的最大数值为1,最小数值为0,其余数据取值均在0-1之间;且变换后的数据都不再具有量纲,便于不同的变量之间的比较。 4、对数变换:对数变换是将各个原始数据取对数,将原始数据的对数值作为变换后的新值。它将具有指数特征的数据结构变换为线性数据结构。 三、样品间相近性的度量 研究样品或变量的亲疏程度的数量指标有两种:距离,它是将每一个样品看作p 维空),(~∑μP N X μ∑μp X X X ,,,21 ),(~∑μP N X ),('A A d A N s ∑+μ)()1(,,n X X X )',,,(21p X X X )')(()()(1X X X X i i n i --∑=n 1X μ ∑μX )1,(~∑n N X P μ),1(∑-n W p X X

多元统计分析模拟考题及答案

、判断题 (对)1X (兀公2丄,X p)的协差阵一定是对称的半正定阵 (对)2标准化随机向量的协差阵与原变量的相关系数阵相同。 (对)3典型相关分析是识别并量化两组变量间的关系,将两组变量的相关关系的研究转化为一组变量的线性组合与另一组变量的线性组合间的相关关系的研究。 (对)4多维标度法是以空间分布的形式在低维空间中再现研究对象间关系的数据分析方法。(错)5X (X-X2,,X p) ~ N p( , ),X,S分别是样本均值和样本离 S 差阵,则X,—分别是,的无偏估计。 n (对)6X (X「X2, ,X p) ~ N p( , ),X作为样本均值的估计,是无偏的、有效的、一致的。 (错)7因子载荷经正交旋转后,各变量的共性方差和各因子的贡献都发生了变化 (对)8因子载荷阵A (a j)中的a ij表示第i个变量在第j个公因子上的相对重要性。 (对)9判别分析中,若两个总体的协差阵相等,则Fisher判别与距离判别等价。(对)10距离判别法要求两总体分布的协差阵相等,Fisher判别法对总体的分布无特 定的要求。 二、填空题 1、多元统计中常用的统计量有:样本均值向量、样本协差阵、样本离差阵、样本相关系数矩阵. 2、设是总体X (X」,X m)的协方差阵,的特征根i(i 1,L ,m)与相应的单 位正交化特征向量i (盼无丄,a m),则第一主成分的表达式是 y1 Q1X1 812X2 L QmX m 方差为1。 3设是总体X (X1,X2,X3, X4)的协方差阵,的特征根和标准正交特征向量分别为: 1 2.920 U;(0.1485, 0.5735, 0.5577, 0.5814) 2 1.024 U2(0.9544, 0.0984,0.2695,0.0824) 3 0.049 U3(0.2516,0.7733, 0.5589, 0.1624) 0.007U4 ( 0.0612,0.2519,0.5513, 0.7930),则其第二个主成分的表达式是 4

多元统计分析复习题(2)

多元统计分析课堂习题 一、填空题 1、随机向量()' =4321, , ,X X X X X ,均值向量()2,0,1,7μ'=以及协方差矩 阵 4122191021361 20149?? ? ? ∑= ?- ? -?? ,X 划分为 (1) 13(2)24X X X X X X X ???? ? == ? ? ? ????? ,则 协差阵()(1)(2),_________Cov X X ?? ? = ? ??? 相关矩阵()(2)(1),_________Cov X X ?? ? = ? ??? 。 2、设随机向量()1 2 333()X X X X N I μ' =:,已知()103μ'=, 0.510.50.500.5A -??= ?--??,17d ?? = ??? ,则Y AX d =+的分布为: _____。 3、距离判别法中的距离一般为马氏距离,若总体(,)G μ∑,则样品X 到总体G 的马氏距离(,)D X G = 。对于两总体111(,)G μ∑、222(,)G μ∑,协差阵 Σ1=Σ2的距离判别中,假设判别函数是 [])()2,()1,(2 1 )(μ-'=-=x a G X D G X D x W ,则 =a ,=μ ,若()0W x <,则判给总体_____。 4、设对两组变量),,,(21'=p X X X X 、),,,(q 21'=Y Y Y Y 做典型相关分析,,k k U V 分别是从X 、Y 组中提取的第k 对典型变量,则:

() ,() (1,2, ,)k k D U D V k r === (,1,2, ,) (,) () () i j i j i r Cov U V i j j r ==?? =≠? ?>? 5、请指出下列R 语言程序的含义或运行结果: (1)help(package="psych") # (2)x<-c(1:3);y<-c(1:4);x+y (3)> A=matrix(1:6,3,3) > A 运行结果为 (4)> x=1:7 ; m=matrix(x[-5],nrow=3,ncol=2) ;m 运行结果为 (5) > x=1:7 ; m=matrix(x[-5],nrow=3,ncol=2) ; apply(m,1,sum) 运行结果为 (6) > x=1:7 ; m=matrix(x[-5],nrow=3,ncol=2); is.vector(m) 运行结果为 (7) > y=1:3;y==1 运行结果为 (8) >y=1:3;y!=1 运行结果为 (9)

相关文档
最新文档