高等代数子空间

欧几里得空间习题解答

第九章 欧几里得空间习题解答 P394.1.1 (,)'0(""0)'(')'''(,)A A A αααααβαβαβααβαβ∴=≥=?====正定非负性证得 由矩阵失去,线性性成立,再由(,)=A A 对称性成立,是一个内积 ( )111 11 61P394.1.2,(006);19,,P394.1.2 |(,)|||||(,)|i i j ij i j n n n ij i j i j n n ij i j i j A a x y c s B a x y εεαεεεαβαβαβ====?? ? ? == ? ? ??? ∴≤=∴--≤∑∑∑∑L L L Q 的度量矩阵即为A 不等式为|() 393.2P ①, α=(2,1,3,2), β =(1,2,-2,1) |||,)0,,2 αβαβαβπ αβ∴====∴⊥∴= 〈〉 393.2P ②, α=(1,2,2,3), β =(3,1,5,1) |||6,(,)18 (,)(,)arc cos cos ||||24arc arc αβαβαβπαβαβ=====∴==== 393.2P ③, α=(1,1,1,2), β =(3,1,-1,0) ||||(,)3 ,arc 700'30''38 αβαβαβ===∴==?〈〉 P393. 3 ||||||αβαβ+≤+Q

(,)|||()()||||| (,)(,) d d d αγαγαββγαββγαββγ∴=-=-+-≤-+-+ = P393.4在4 R 中求一单位向量与(1,1,-1),(1,-1,1-,1),(2,1,1,3)正交 解设所求 2123412341234123 44123(,,,)1,00230 1 1111111 111111102000 1003,211301310 0314,0,1 4i x x x x x x x x x x x x x x x x x x x x x x αα==+-+=??? ?--+=????+++=? ???-????-- ? ? ? ? ? ?--→-→= ? ? ? ? ? ?+ ? ?????? ===-= -∑则且与各向量的内积为0得令得 ,0,1,3),() -单位化 393.5P ①证:因为12(,)0, 1.2,,i n i n γαααα==L L 而是一个基 1 1 (,)(,)(,)0. 0. n n i i i i i i k k γγγαγαγ==∴====∑∑因此,必有 393.5P ②证,Q 12(,)(,), 1.2,i i i n γαγα==L 12(,)0, 1.2i i n γγα∴-==L 由第①小题:12120,γγγγ-==故 P393.6 1231232211(,,)(,,)2123122αααεεε?? ? =-- ? ?--?? Q 而1232211212,,3122ααα?? ?-- ? ?--?? 是正交矩阵,所以是标准正交基

第七章线性变换总结篇(高等代数)

第 7章 线性变换 7.1知识点归纳与要点解析 一.线性变换的概念与判别 1.线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就是其保持向量的加法与数量乘法的变换。 2.线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3.线性变换的性质 设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈。 性质1. ()()00,σσαα==-; 性质2. 若12s ,, ,ααα线性相关,那么()()()12s ,, ,σασασα也线性相关。 性质3. 设线性变换σ为单射,如果12s ,, ,ααα线性无关,那么()()()12s ,, ,σασασα 也线性无关。 注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=++ + 记:

()()112111222 2121212,,,,, ,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? 于是,若()dim V n =,12,, ,n ααα是V 的一组基,σ是V 的线性变换, 12,, ,m βββ是 V 中任意一组向量,如果: ()()()11111221221122221122n n n n m m m mn n b b b b b b b b b σβααασβααασβααα=+++=+++=++ + 记: ()()()()()1212,,,,m m σβββσβσβσβ= 那么: ()()1121 112222121212,,,,, ,m m m n n n mn b b c b b c b b c σβββααα?? ? ? = ? ??? 设112111222212m m n n mn b b c b b c B b b c ?? ? ? = ? ??? ,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是 12,, ,m ηηη的一个极大线性无关组,那么()()() 12 ,r i i i σβσβσβ就是 ()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的 秩等于秩()B 。 4. 线性变换举例 (1)设V 是数域P 上的任一线性空间。 零变换: ()00,V αα=?∈; 恒等变换:(),V εααα=?∈。 幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使 得σ =m 0,就称σ为幂零变换。

(完整版)高等代数(北大版)第9章习题参考答案

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

线性空间与欧几里得空间

线性空间与欧几里得空间 自测题 一、填空题 1、对欧几里得空间V 中的任意向量βα,,有()βαβα≤ ,,而且等号成立当且仅当 。 2、设1W 与2W 是V 的两个线性子空间,如果1W +2W 中的每个向量α都可唯一的被表示成21ααα+=,2211W W ∈∈αα,,则称1W +1W 为这两个子空间的 。 3、两个同构的线性空间的维数 。 4、第二类正交变换的行列式的值等于 。 5、如果A 是正交矩阵。若k 为实数,使kA 为正交矩阵,则k 等于 。 二、选择题 6、下列n R 的子集是n R 的子空间的为( ) A :(){}n i Z a a a a a i n ...,3,2,1,.....,,,321=∈ B :(){}0.....,,,21321=a a a a a a n C :(){}R a a a a n ∈211,,0,...,0, C :{} 1..)...,,(2222121≤+++n n a a a a a a 7、全体正实数的集合+R 对于下面定义的加法与标量乘法:k a a k a b b a ==⊕ ,构成R 上的线性空间,则+R 的零元素为( ) A :0 B: 1 C: 2 D: 3 8、若A 是正交矩阵,则下列矩阵中仍为正交矩阵的是(多重选择,其中k 是1±≠的整数) A:kA B:k A C:交换A 的任两行所得的矩阵 D :把A 的某行k 倍加到另一行所得的矩阵 9、设A 是欧几里得空间V 关于基n ααα,,,...21的度量矩阵,则A 满足以下哪个条件时,n ααα,,,...21是规范正交基? ( ) A: A 是正交矩阵 B :A 为对称矩阵 C :1-A 为正交矩阵 D :A 为单位矩阵 10、以下哪个结论不是两个线性子空间1W 与2W 的和21W W +为直和的等价命题:( ) A :dim ()()()()221121dim dim dim dim W W W W W W >+>+且

北京大学数学系《高等代数》(第3版)(欧几里得空间)笔记和课后习题(含考研真题)详解【圣才出品】

第9章欧几里得空间 9.1复习笔记 一、定义与基本性质 1.欧几里得空间定义 设V是实数域R上一线性空间,在V上定义了一个二元实函数,称为内积,记作(α,β),它具有以下性质: (1)(α,β)=(β,α); (2)(kα,β)=k(α,β); (3)(α+β,γ)=(α,γ)+(β,γ); (4)(α,α)≥0,当且仅当α=0时(α,α)=0. 这里α,β,r是V中任意的向量,k是任意实数,这样的线性空间V称为欧几里得空间. 2.长度 (1)定义 非负实数称为向量α的长度,记为|α|. (2)关于长度的性质 ①零向量的长度是零, ②|kα|=|k||α|, ③长度为1的向量称为单位向量.如果α≠0,向量1 α α 就是一个单位向量,通常称此为

把α单位化. 3.向量的夹角 (1)柯西-布涅柯夫斯基不等式,即对于任意的向量α,β有 |(α,β)|≤|α||β| 当且仅当α,β线性相关时,等号才成立. (2)非零向量α,β的夹角<α,β>规定为 (3)如果向量α,β的内积为零,即(α,β)=0,那么α,β称为正交或互相垂直,记为α⊥β. 零向量才与自己正交. (4)勾股定理,即当α,β正交时,|α+β|2=|α|2+|β|2. 4.有限维空间的讨论 (1)度量矩阵 设V是一个n维欧几里得空间,在V中取一组基ε1,ε2,…,εn,对V中任意两个向量α=x1ε1+x2ε2+…+x nεn,β=y1ε1+y2ε2+…+y nεn,由内积的性质得 a ij=(εi,εj)(i,j=1,2,…,n), 显然a ij=a ji,于是

利用矩阵,(α,β)还可以写成(α,β)=X'AY, 其中 分别是α,β的坐标,而矩阵A=(a ij)nn称为基ε1,ε2,…,εn的度量矩阵. (2)性质 ①设η1,η2,…,ηn是空间V的另外一组基,而由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为C,即(η1,η2,…,ηn)=(ε1,ε2,…,εn)C,于是基η1,η2,…,ηn的度量矩阵B=(b ij)=(ηi,ηj)=C'AC;表明不同基的度量矩阵是合同的. ②对于非零向量α,即有(α,α)=X'AX>0.因此,度量矩阵是正定的. 二、标准正交基 1.正交向量组 欧式空间V中一组非零的向量,如果它们两两正交,就称为一正交向量组. 按定义,由单个非零向量所成的向量组也是正交向量组. 2.标准正交基

高等代数 第四章 线性变换

第四章 线性变换 习题精解 1. 判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3) 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4) 在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f 6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ= 8) 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是. 2)当0=α时,是;当0≠α时,不是. 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α. 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β A =)(αk A ),,(321kx kx kx ),,2() ,,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α 故A 是P 3 上的线性变换. 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f 故A 为][x P 上的线性变换. 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ) A 0())((x kf x kf =k =)A ))((x f 7)不是.例如取a=1,k=I,则

第四章习题与复习题(线性空间)----高等代数

习题5. 1 1. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 2.全体正实数R + , 其加法与数乘定义为 ,,k a b ab k a a a b R k R +⊕==∈∈其中 判断R + 按上面定义的加法与数乘是否构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为 A B AB BA ⊕=- 按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 4.在22P ?中,{}2222/0,,W A A A P W P ??==∈判断是否是的子空间. 习题 1.讨论22P ?中 1234111111,,,111111a a A A A A a a ???????? ==== ? ? ? ????????? 的线性相关性. 2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中 1234010011001111ααααα?????????? ? ? ? ? ? ? ? ? ? ?== ? ? ? ? ?- ? ? ? ? ?-?????????? 2111,=,=,=,3010 2212342347P ααααα??????????? = ? ? ? ? ?-?????????? 110-11-1103.在中求在基=,=,=,=下的坐标.11100000 4.已知3R 的两组基 (Ⅰ): 123111ααα?????? ? ? ? ? ? ? ? ? ??????? 11=,=0,=0-11

(Ⅱ):123121βββ?????? ? ? ? ? ? ? ? ? ??????? 23=,=3,=443 (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵; (2) 已知向量123123,,,,,αααααβββ?? ? ? ??? 1在基下的坐标为0求在基下的坐标-1; (3) 已知向量123123,,,,,βββββααα?? ? ? ???1在基下的坐标为-1求在基下的坐标2; (4) 求在两组基下坐标互为相反数的向量γ. 5.已知P [x ]4的两组基 (Ⅰ):2321234()1()()1()1f x x x x f x x x f x x f x =+++=-+=-=,,, (Ⅱ):2323321234()()1()1()1g x x x x x x x x x x x x x =++=++=++=++,g ,g ,g (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵; (2) 求在两组基下有相同坐标的多项式f (x ). 习题 证明线性方程组 12345123451 234536420 22353056860 x x x x x x x x x x x x x x x +--+=?? +--+=??--+-=? 的解空间与实系数多项式空间3[]R x 同构. 习题 1. 求向量()1,1,2,3α=- 的长度. 2. 求向量()()1,1,0,12,0,1,3αβ=-=与向量之间的距离. 3.求下列向量之间的夹角 (1) ()()10431211αβ==--,,,,,,, (2) ()()12233151αβ==,,,,,,,

高等代数北大版教案-第6章线性空间

第六章 线性空间 §1 集合映射 一 授课内容:§1 集合映射 二 教学目的:通过本节的学习,掌握集合映射的有关定义、运算,求和号 与乘积号的定义. 三 教学重点:集合映射的有关定义. 四 教学难点:集合映射的有关定义. 五 教学过程: 1.集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义:(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \. 定义:(集合的映射) 设A 、B 为集合.如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ).(,:a f a B A f → 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像.A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即 {}A a a f A f ∈=|)()(. 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射.若 ,B b ∈?都存在 A a ∈,使得b a f =)(,则称f 为满射.如果f 既是单射又是满射,则称f 为 双射,或称一一对应. 2.求和号与求积号 (1)求和号与乘积号的定义 为了把加法和乘法表达得更简练,我们引进求和号和乘积号. 设给定某个数域K 上n 个数n a a a ,,,21 ,我们使用如下记号:

高等代数 线性变换自测题

线性变换自测题 一、填空题(每小题3分,共18分) 1.σ是22?F 上的线性变换,若??? ? ??=100 71 )(A σ,则=-)3(A σ . 2.σ:22R R →,)0,2(),(y x y x +-=σ;τ:22R R →,) ,3(),(y x y y x + -=τ, 则=+),)((y x τσ .=),)((y x τσ .=-),)(2(y x σ . 3.设???? ? ?=2231 A ,则向量???? ??11是A 的属于特征值 的特征向量. 4.若???? ? ??--=10 0001 011 A 与???? ? ? ?--10101 01k k B 相似,则k = . 5.设三阶方阵A 的特征多项式为322)(2 3 +--=λλλλf ,则=||A . 6.n 阶方阵A 满足A A =2,则A 的特征值为 . 二、判断说明题(每小题5分,共20分) 1.n 阶方阵A 至少有一特征值为零的充分必要条件是0||=A . 2.已知1 -=PBP A ,其中P 为n 阶可逆矩阵,B 为一个对角矩阵.则A 的特 征向量与P 有关. 3.σ为V 上线性变换,n ααα,,,21 为V 的基,则)(,),(),(21n ασασασ 线性无关. 4.α为V 上的非零向量,σ为V 上的线性变换,则} )(|{)(1 αησηασ==-是 V 的子空间. 三、计算题(每小题14分,共42分) 1.设??? ? ? ? ?----=a A 3 3242 111 与??? ? ? ??=b B 0 0020 002 相似. (1)求b a ,的值; (2)求可逆矩阵,使B AP P =-1.

高等代数-第四章-线性变换

第四章 线性变换 习题精解 1. 判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3) 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4) 在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f 6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ= 8) 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是. 2)当0=α时,是;当0≠α时,不是. 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α. 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β A =)(αk A ),,(321kx kx kx ),,2() ,,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α 故A 是P 3 上的线性变换. 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f 故A 为][x P 上的线性变换. 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ) A 0())((x kf x kf =k =)A ))((x f 7)不是.例如取a=1,k=I,则 A (ka)=-i , k(A a)=i, A (ka )≠k A (a)

习题与复习题详解线性空间高等代数

习题与复习题详解线性 空间高等代数 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

习题5. 1 1.判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答 是. 因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间. 2.全体正实数R +, 其加法与数乘定义为 ,,k a b ab k a a a b R k R +⊕==∈∈其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈. 因为,a b R a b ab R ++?∈?⊕=∈, ,R a R a a R λλλ++?∈∈?=∈, 所以R +对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕; (2)()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕; (3) R +中存在零元素1, ?a R +∈, 有11a a a ⊕=?=; (4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==; (6)()()a a a a a λμμλμλ μλλμ?? ==== ?? ? ;

(7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕; 所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为 按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否. A B B A ∴⊕⊕与不一定相等. 故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间. 4.在22P ?中,{}2222/0,,W A A A P W P ??==∈判断是否是的子空间. 答 否. 121123123345?????? ? ? ??????? 例如和的行列式都为零,但的行列式不为零, 也就是说集合对加法不封闭. 习题 1.讨论22P ?中 的线性相关性. 解 设11223344x A x A x A x A O +++=, 即1234 1 234 12341234 00 ax x x x x ax x x x x ax x x x x ax +++=??+++=??+++=??+++=? . 由系数行列式3111111 (3)(1)111111 a a a a a a =+- 知, 3 1 , , a a ≠-≠且时方程组只有零解这组向量线性无关; 2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中 解 设11223344x x x x ααααα=+++

高等代数第七章 线性变换复习讲义

第七章线性变换 一.线性变换的定义和运算 1.线性变换的定义 (1)定义:设V是数域p上的线性空间,A是V上的一个变换,如果对任意α,β∈V和k∈P都有A(α+β)=A(α)+A(β),A(kα)=kA(α)则称A为V的一个线性变换。(2)恒等变换(单位变换)和零变换的定义:ε(α)=α,ο(α)=0,任意α∈V. 它们都是V的线性变换。 (3)A是线性变换的充要条件:A(kα+lβ)=kA(α)+lA(β),任意α,β∈V,k,l∈P. 2.线性变换的性质 设V是数域P上的线性空间,A是V的线性变换,则有(1)A(0)=0; (2)A(-α)=-A(α),任意α∈V; (3)A(∑kiαi)=ΣkiA(α),α∈V,ki∈P,i=1,…,s;(4)若α1,α2,…,αs∈V,且线性相关,则A(α1),A (α2),…,A(αs)也线性相关,但当α1,α2,…,α s线性无关时,不能推出A(α1),A(α2),…,A(α

s)线性无关。 3.线性变换的运算

4.线性变换与基的关系 (1)设ε1,ε2,…,εn是线性空间v的一组基,如果线性变换A和B在这组基上的作用相同,即Aεi=Bεi,i=1,2,…,n,则有A=B. (2)设ε1,ε2,…,εn是线性空间v的一组基,对于V 中任意一组向量α1,α2,…,αn,存在唯一一个线性变换A 使Aεi=αi,i=1,2,…,n. 二.线性变换的矩阵 1.定义:设ε1,ε2,…,εn是数域P上n维线性空间v的一组基,A是V中的一个线性变换,基向量的像可以被基线性表出 Aε1=a11ε1+a21ε2+…an1εn Aε2=a12ε1+a22ε2+…an2εn …… Aεn= a1nε1+a2nε2+…annεn 用矩阵表示就是A(ε1,ε2,…,εn)=(ε1,ε2,…,εn)A,其中 a 11 a 12 …… a 1n a 21 a 22 …… a 2n A= …… a n1 a n2 …… a nn 称为A在基ε1,ε2,…,εn下的矩阵。 2.线性变换与其矩阵的关系 (1)线性变换的和对应于矩阵的和; (2)线性变换的乘积对应于矩阵的乘积; (3)线性变换的数量乘积对应于矩阵的数量乘积;

高等代数与解析几何第七章(1-3习题) 线性变换与相似矩阵答案

第七章线性变换与相似矩阵 习题7、1 习题7、1、1判别下列变换就是否线性变换? (1)设就是线性空间中得一个固定向量, (Ⅰ),, 解:当时,显然就是得线性变换; 当时,有,,则,即此时不就是得线性变换。(Ⅱ),; 解:当时,显然就是得线性变换; 当时,有,,则,即此时不就是得线性变换。(2)在中, (Ⅰ), 解:不就是得线性变换。因对于,有,,所以。(Ⅱ); 解:就是得线性变换。设,其中,,则有 , 。 (3)在中, (Ⅰ), 解:就是得线性变换:设,则 , ,。

(Ⅱ),其中就是中得固定数; 解:就是得线性变换:设,则 , ,。 (4)把复数域瞧作复数域上得线性空间,,其中就是得共轭复数; 解:不就是线性变换。因为取,时,有,,即。 (5)在中,设与就是其中得两个固定得矩阵,,。 解:就是得线性变换。对,,有 , 。 习题7、1、2在中,取直角坐标系,以表示空间绕轴由轴向方向旋转900得变换,以表示空间绕轴由轴向方向旋转900得变换,以表示空间绕轴由轴向方向旋转900得变换。证明(表示恒等变换), , ; 并说明就是否成立。

证明:在中任取一个向量,则根据,及得定义可知:,,;, ,;,,,即,故。 因为, ,所以。 因为, ,所以。 因为, ,所以。 习题7、1、3在中,,,证明。 证明:在中任取一多项式,有 。所以。 习题7、1、4设,就是上得线性变换。若,证明 。 证明:用数学归纳法证明。当时,有 命题成立。假设等式对成立,即。下面证明等式对也成立。因有

,即等式对也成立,从而对任意自然数都成立。 习题7、1、5证明(1)若就是上得可逆线性变换,则得逆变换唯一;(2)若,就是上得可逆线性变换,则也就是可逆线性变换,且 。 证明:(1)设都就是得逆变换,则有,。进而。即得逆变换唯一。 (2)因,都就是上得可逆线性变换,则有 ,同理有 由定义知就是可逆线性变换,为逆变换,有唯一性得。 习题7、1、6设就是上得线性变换,向量,且,,,都不就是零向量,但。证明,,,线性无关。 证明:设,依次用可得 ,得,而,故;同理有:,得,即得;依次类推可得,即得,进而得。 有定义知,,,线性无关。 习题7、1、7设就是上得线性变换,证明就是可逆线性变换得充要条件为既就是单射线性变换又就是满射线性变换,即就是一一变换。

高等代数向量空间思考题

1. 设V 是数域Ω上的n 维向量空间, 1,,s u u V ∈…线性无关, 1,,t w w V ∈…, 这 里s t n +=. 对每个{1,2,,}i t ∈…, 记 {11111 [,,,], [,,,,,,,,].i s i i s i i t V u u w W u u w w w w ?+==………… 假设对每个{1,2,,}i t ∈…, 有dim 1i V s =+, 且对任意的{1,2,,}i j t ≠∈…, 有i j W W ≠. 证明: 11,,,,,s t u u w w ……恰是V 的一个基底. 2. 设V 是数域Ω上的n 维向量空间, σ是V 上的线性变换,设 Im {()|}, Ker {|()0},x x V x V x σσσσ=∈=∈= 证明存在正整数k 使得Im Ker .k k V σσ=⊕ 3. 设V 是复数域 上的n 维向量空间, σ,τ均是V 的线性变换, 假设σ,τ的特征多项式相同, 且σττσ=. 若V 可分解成σ的一维不变子空间的直和, 而τ的每个特征子空间都是一维的, 则对任意的u V θ≠∈, 有u 是σ的特征向量当且仅当u 是τ的根向量. 4. 设σ是欧氏空间V 上的线性变换,证明σ是正交变换当且仅当对V 的任意子空间S 均有() ().V S S σσ⊥⊥=⊕ 5. 设ξ是n 维欧氏空间V 上的一个双线性函数, 那么存在唯一的,p q ∈ , 使得在V 的适当基底1,,n u u …下, 对任意的11n n u a u a u V =++∈ , 有 22 2211(,)p p p q u u a a a a ξ++=++??? .

高等代数与解析几何第七章线性变换与相似矩阵答案

习题 习题判别下列变换是否线性变换? (1)设是线性空间中的一个固定向量,(Ⅰ),, 解:当时,显然是的线性变换; 当时,有,,则,即此时不是的线性变换。(Ⅱ),; 解:当时,显然是的线性变换; 当时,有,,则,即此时不是的线性变换。(2)在中, (Ⅰ), 解:不是的线性变换。因对于,有,,所以。(Ⅱ); 解:是的线性变换。设,其中,,则有 , 。 (3)在中, (Ⅰ), 解:是的线性变换:设,则 , ,。 (Ⅱ),其中是中的固定数;

解:是的线性变换:设,则 , ,。 (4)把复数域看作复数域上的线性空间,,其中是的共轭复数;解:不是线性变换。因为取,时,有,,即。 (5)在中,设与是其中的两个固定的矩阵,,。 解:是的线性变换。对,,有 , 。 习题在中,取直角坐标系,以表示空间绕轴由轴向方向旋转900的变换,以表示空间绕轴由轴向方向旋转900的变换,以表示空间绕轴由轴向方向旋转900的变换。证明(表示恒等变换), , ; 并说明是否成立。 证明:在中任取一个向量,则根据,及的定义可知:,,;,,;,,,即,故。 因为, ,所以。 因为, ,所以。 因为,

,所以。 习题在中,,,证明。 证明:在中任取一多项式,有 。所以。 习题设,是上的线性变换。若,证明 。 证明:用数学归纳法证明。当时,有 命题成立。假设等式对成立,即。下面证明等式对也成立。因有 ,即等式对也成立,从而对任意自然数都成立。 习题证明(1)若是上的可逆线性变换,则的逆变换唯一;(2)若,是上的可逆线性变换,则也是可逆线性变换,且 。 证明:(1)设都是的逆变换,则有,。进而。即的逆变换唯一。(2)因,都是上的可逆线性变换,则有 ,同理有 由定义知是可逆线性变换,为逆变换,有唯一性得。 习题设是上的线性变换,向量,且,,,都不是零向量,但。证明,,,线性无关。 证明:设,依次用可得 ,得,而,故;同理有:,得,即得;依次类推可得,即得,进而得。

高等代数欧几里得空间知识点总结

第九章 欧几里得空间( * * * ) 一、复习指导:在第九章中,有两个重要的考点:1.标准正交基(施密特正交化)2.实对称矩阵如何相似对角化,如何求标准形。除此之外,欧氏空间的含义,概念,性质也要作为一个比较重要的内容来复习。 二、考点精讲: 三、首师大真题: (一)欧氏空间 1.设V 是是数域R 上一线性空间,在V 上定义了一个二元实函数,称为内积,记为(,)αβ,特具有一下性质: (1)(,)(,)αββα=; (2)(,)(,)k k αβαβ= (3)(,)(,)(,)αβγαγβγ+=+; (4)(,)0αα≥,当且仅当α=0时(,)αβ=0.这里,,αβγ是V 中任意的向量,k 是任意实数,这样的线性空间V 称为欧几里得空间。 2.α的长度,记为α。 3.非零向量的夹角,β规定为(,) ,arccos ,0,ααβαβπαβ =≤≤ 4.如果向量,αβ的内积为零,即(,)0αβ=,那么,αβ称为正交或互相垂直,记为αβ⊥。 5.设V 是一个n 维欧几里得空间,在V 中取一组基1,2,......,n εεε令 (,),(,1,2,....)ij i j a i j n εε==矩阵()ij n n A a ?= 称为基1,2,......,n εεε的度量矩阵。 (1)度量矩阵是正定的; (2)不同基底的度量矩阵是合同的。 6.欧氏空间V 中一组非零向量,如果它们两两正交,就称为一正交向量组。在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基。 (1)施密特正交化 这是把线性无关向量组改造为单位正交向量组的方法. 以3个线性无关向量α1,α2,α3为例. ①令β1=α1, β2=α2- 11112) ,() ,(ββββα, β3=α3-11113),(),(ββββα-22223) ,() ,(ββββα. 此时β1,β2,β3是和α1,α2,α3 等价的正交非零向量组. (二)同构 1.实数域R 上欧氏空间V 与' v 称为同构,如果由V 到' v 有一个1-1上的映射σ,适合 (1)()()()σαβσασβ+=+ (2)()()k k σασα=

第七章线性变换总结篇(高等代数)

第七章线性变换总结篇(高 等代数) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第 7章 线性变换 7.1知识点归纳与要点解析 一.线性变换的概念与判别 1.线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+, ()()k k σασα=。 注:V 的线性变换就是其保持向量的加法与数量乘法的变换。 2.线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3.线性变换的性质 设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈。 性质1. ()()00,σσαα==-; 性质2. 若12s ,, ,ααα线性相关,那么()()()12s ,, ,σασασα也线性相关。 性质3. 设线性变换σ为单射,如果12s ,,,ααα线性无关,那么 ()()()12s ,,,σασασα 也线性无关。 注:设V 是数域P 上的线性空间,12,, ,m βββ,12,, ,s γγγ是V 中的两个向量 组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=++ + 记:

()()112111222 2121212,,,,, ,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? 于是,若()dim V n =,12,, ,n ααα是V 的一组基,σ是V 的线性变换, 12,,,m βββ是V 中任意一组向量,如果: ()()()11111221221122221122n n n n m m m mn n b b b b b b b b b σβααασβααασβααα=+++=+++=++ + 记: ()()()()()1212,,,,m m σβββσβσβσβ= 那么: ()()112111222 2121212,,,,, ,m m m n n n mn b b c b b c b b c σβββααα?? ? ? = ? ??? 设112111222 212m m n n mn b b c b b c B b b c ?? ? ? = ? ??? ,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是12,, ,m ηηη的一个极大线性无关组,那么()()()12 ,r i i i σβσβσβ就是 ()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的秩等于秩()B 。 4. 线性变换举例 (1)设V 是数域P 上的任一线性空间。 零变换: ()00,V αα=?∈; 恒等变换:(),V εααα=?∈。

习题与复习题详解线性空间高等代数

习题5. 1 1.判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答 是. 因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间. 2.全体正实数R +, 其加法与数乘定义为 ,,k a b ab k a a a b R k R +⊕==∈∈o 其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈. 因为,a b R a b ab R ++?∈?⊕=∈, ,R a R a a R λλλ++?∈∈?=∈o , 所以R +对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕;

(2)()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕; (3) R +中存在零元素1, ?a R +∈, 有11a a a ⊕=?=; (4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==o ; (6)()()a a a a a λ μμλμλμλλμ??==== ??? o o o o ; (7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕o o o ; 所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为 按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否. A B B A ∴⊕⊕与不一定相等. 故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间. 4.在22P ?中,{}2222/0,,W A A A P W P ??==∈判断是否是的子空间. 答 否. 121123123345?????? ? ? ??????? 例如和的行列式都为零,但的行列式不为零, 也就是说集合对加法不封闭.

相关文档
最新文档