横梁受力及变形分析

横梁受力及变形分析
横梁受力及变形分析

横梁受力及变形分析

横梁系统为复杂空间结构,需搭建三维受力模型,根据结构特征和装配接触做力系叠加。对横梁系统而言,受到横梁自重和刀架自重的体积力作用,及组件接触面间表面力作用,前者引起整理结构变形,后者引起局部结构变形,在切削状态还受切削力外力作用引起复杂动态变形。考虑组件装配接触间隙,接触形式,液压油膜厚度等因素,变形问题复杂。首先简化结构模型,做整体受力计算简图。

一、横梁本身受自重和刀架重力三维力系搭建

横梁两端靠立柱支撑,梁反面垂直导向面与立柱导轨面结合,结合面定量润滑,液压机构控制后端压板与立柱导轨面夹紧,自此产生Y向面压与垂向静摩擦力。本机床为重型机床,横梁自重40t,刀架组件重20t,大重量体积力导致横梁产生较大弯曲和扭转变形,必须进行补偿,避免变形导致机床精度超差。在不考虑横梁和刀架组装结构、组合形式的前提下,做横梁受力模型。根据横梁受力分析,刀架在横梁中间位置,滑枕向下伸出最长时,横梁变形最大。即图1中a=0时。

注:O ,K ——横梁、刀架重心。分别以两点为原点建立横梁全局坐标系和刀架局部坐标系,(a,b,c)为局部坐标系在全局坐标系中坐标;利用UG得到的重量报告

知刀架重心在横梁中间位置时(a,b,c)=(0,619.765,164.5676)。

F1,F2——左右支撑力;

M1,M2——左右支撑扭矩;

G1 ,G2——横梁自重,刀架自重;

G2` ——刀架自重等效力;

M3 ——刀架自重力偶扭矩.

图1 横梁三维受力分析图

钢混组合连续梁桥顶推施工受力特性分析

钢混组合连续梁桥顶推施工受力特性分析 钢混组合梁因其受力性能好,预制化程度高而得到广泛应用,国家在“十三五”期间大力提倡钢桥的应用,因此该桥在我国又迎来了新的历史机遇。在钢混组合梁的施工中,主梁与桥面板往往是分开施工的,组合梁的钢主梁因为其自重轻、几乎是等截面的优点,通常采用顶推法进行施工,而桥面板通常采用预制形式,安装方法上采用间断施工法来改善支点处桥面板受力。 鉴于组合梁的应用前景,对于分析组合梁在施工过程的受力,模拟其在施工 中的受力状态,显得十分有必要。本文选择钢板组合梁进行研究,希望能为同类桥梁的施工与设计提供帮助。 本文主要进行了以下几个方面的研究:(1)回顾了钢混组合梁与顶推施工法 的发展历程,就顶推施工法的分类与与发展特点进行了详细阐述,展望了顶推施 工法需要关注的问题,对组合梁的结构特征以及顶推法的发展历程有了全方位的了解与认识。(2)简化导主梁模型,采用位移法分析了顶推过程主梁的受力。 获得了顶推过程中主梁内力与支点反力的解析表达式,确定了顶推过程主梁的控制截面与时间节点。分析了导梁长度、自重集度以及刚度对主梁受力的影响,确定了导主梁顶推过程最佳的长度比α,自重集度比β以及刚度比γ。 (3)采用杆系有限元分析了某钢板组合梁顶推施工过程,确定了导梁的合理 设计参数与截面形式,得到了有限元仿真模拟下导梁前端的挠度变化情况以及主梁的内力与支反力,验证了导梁设置的合理性和有效性。(4)采用有限元软件中的施工阶段联合截面分析了桥面板的施工过程,比较了桥面板在间断施工法与顺序施工法下施工顺序的差异,比较了在两种施工法下支点处桥面板的受力状态,验 证了间断施工法的可靠。

最新先简支后结构连续梁桥的受力分析与施工技术

先简支后结构连续梁桥的受力分析与施工 技术

先简支后结构连续梁桥的受力分析与施工技术 先简支后结构连续梁桥的受力分析与施工技术 随着国家队高速公路的投入加大,高速公路的发展取得了很大的成绩。公路桥梁的构造也得到了长足的发展,同时对高速公路的行车舒适性也提出了更高的要求。高速公路桥梁逐渐由广泛使用的简支梁桥更多的向先简支后结构连续的方向 论文格式论文范文毕业论文 【摘要】随着国家队高速公路的投入加大,高速公路的发展取得了很大的成绩。公路桥梁的构造也得到了长足的发展,同时对高速公路的行车舒适性也提出了更高的要求。高速公路桥梁逐渐由广泛使用的简支梁桥更多的向先简支后结构连续的方向发展,其结构特性在有效避免了简支梁桥与连续梁桥的缺点的同时又兼顾了二者的优点,很快在桥梁中成为广泛使用的结构形式。 【关键词】 先简支后结构连续梁的受力特征;施工工艺过程;质量控制引言目前在国内高速公路桥梁中普遍使用装配式预应力钢筋混凝土“T”(箱)型板梁。简支梁桥的优点在于结构简单,属于静定结构,且造价相对较低,施工简单,工期相对较短。在正常条件使用情况下,桥梁不会有刚体位移,并且梁体一端可以自由伸缩,不产生多余的内力。但缺点是由于其自身结构,抗震能力和外力抵抗能力较弱,梁体自身变形大,存在落梁的危险,尤其是在跟高墩组合使用的情况下安全储备较低。对于大跨径的连续梁桥而言,目前主要采用支架法、挂篮悬臂对称浇筑法和拼装法施工,虽然改良了梁体自身受力,克服了简支梁桥的一些缺点,但其施工过程复杂繁琐,费时费工,成本大,一般在遇到特殊地形和跨越长距离时使用。先简支后结构连续梁因其受力和施工工艺相对简单克服了以上两者的问题而得到大范围的实际应用。 1 先简支后结构连续梁的受力特点分析 (2)在结构使用过程中,混凝土自身的收缩徐变,负弯矩预应力的布置同时也影响梁体的受力变化。

悬臂梁分析报告

悬臂梁受力分析报告 高一博 2016.11.13 西安理工大学 机械与精密仪器工程学院

摘要 利用ANSYS对悬臂梁进行有限元静力学分析,得到悬臂梁的最大应力和挠度位移。从而校验结构强度和尺寸定义,从而对结构进行最优化设计修正。 关键词:悬臂梁,变形分析,应力分析

目录 一.问题描述: (4) 二.分析的目的和内容: (4) 三.分析方案和有限元建模方法: (4) 四.几何模型 (4) 五.有限元模型 (4) 六.计算结果: (5) 七.结果合理性的讨论、分析 (8) 八.结论 (8) 参考文献 (8)

一.问题描述: 现有一悬臂梁,长500MM,一端固定,另外一端施加一个竖直向下的集中力200N。 其截面20MMX20MM的矩形,现在要分析该梁的在集中力作用下产生的位移,应力和局部应力。 二.分析的目的和内容: 1.观察悬臂梁的变形情况; 2.观察分析悬臂梁的应力变化; 3.找出其最大变形和最大应力点,分析形成原因; 三.分析方案和有限元建模方法: 1.使用ANSYS-modeling-create-volumes-block建模, 2.对梁进行材料定义,网格划分。 3.一端固定,另外一端施加一个向下的200N的力。 4.后处理中查看梁的应力和变形情况。 四.几何模型 500X20X20的梁在在ANSYS中进行绘制.由于结构简单规则,无需简化。 五.有限元模型 单元类型:solid brick8node45 材料参数:弹性模量2e+11pa,泊松比0.3 边界条件:一端固定,一端施加载荷 载荷:F=200N 划分网格后的悬臂梁模型

悬臂梁的受力分析与结构优化

悬臂梁的受力分析与结构优化 吴鑫龙3136202062 【摘要】悬臂梁不管是在工程设计还是在机械设计中都有着广泛的应用,其有着结构简单,经济实用等优点。但受到其自身结构的限制,一般悬臂梁的力学性能和使用性能都会受到很大的限制。本篇主要探究悬臂梁在使用中的受力情况并从材料力学的角度来对其进行优化设计,并对新设计悬臂梁进行分析。 【Abstract 】Cantilever whether in engineering or mechanical design have a wide range of applications, it has a simple structure, economical and practical advantages. But by its own structural limitations, the general cantilever mechanical properties and performance will be greatly limited. This thesis is focus on exploring the cantilever in use from the perspective of the forces and the mechanical design to be optimized., and analysis the new design cantilever . 【关键词】悬臂梁受力设计 【Keywords】cantilever force analysis optimization 背景及意义 悬臂梁是指梁的一端为不产生轴向、垂直位移和转动的固定支座,另一端为自由端(可以产生平行于轴向和垂直于轴向的力)。在实际工程分析中,大部分实际工程受力部件都可以简化为悬臂梁。但是悬臂梁的缺点在于它的受力性能不好,即使只是在悬臂梁末端施加一个较小的载荷,通过较长力臂的放大作用,也会对底部连接处产生一个很大的弯矩。因此,对悬臂梁强度校核前的受力分析和对其进行优化设计对工程和机械领域的发展都有着极大的意义。 一般悬臂梁的受力分析 一般悬臂梁,既没有经过任何结构和形状改变的普通悬臂梁。

桥梁结构形式和受力特点

桥梁结构形式和受力特点 摘要:桥梁跨过河流,跨过峡谷,让交通变得便利,让城市与城市之间的距离变短,从古代的石拱桥到今天的悬索桥,斜拉桥等,桥梁的结构发生了怎样的变化,有些怎样的特点。 关键词:桥梁结构受力特点 1. 梁式桥包括简支板梁桥、悬臂梁桥、连续梁桥其中简支板梁桥跨越能力最小,一般一跨在8-20m.连续梁桥国内最大跨径在200m以下,国外已达240m。 2.拱桥在竖向荷载作用下,两端支承处产生竖向反力和水平推力,正是水平推力大大减小了跨中弯矩,使跨越能力增大.理论推算,混凝土拱极限跨度在500m左右,钢拱可达1200m.亦正是这个推力,修建拱桥时需要良好的地质条件。 3.刚架桥有T形刚架桥和连续刚构桥,T形刚架桥主要缺点是桥面伸缩缝较多,不利于高速行车.连续刚构主梁连续无缝,行车平顺.施工时无体系转换.跨径我国最大已达270m(虎门大桥辅航道桥)。 4.缆索承重桥(斜拉桥和悬索桥)是建造跨度非常大的桥梁最好的设计.道路或铁路桥面靠钢缆吊在半空,缆索悬挂在桥塔之间。斜拉桥已建成的主跨可达890m,悬索桥可达1991m。 5.组合体系桥有梁拱组合体系,如系杆拱、桁架拱、多跨拱梁结构等.梁刚架组合体系,如T形刚构桥等。 6.桁梁式桥:有坚固的横梁,横梁的每一端都有支撑。最早的桥梁就是根据这种构想建成的。他们不过是横跨在河流两岸之间的树干或石块。现代的桁梁式桥,通常是以钢铁或混凝土制成的长型中空桁架为横梁。这使桥梁轻而坚固。利用这种方法建造的桥梁叫做箱式梁桥。 7.悬臂桥:桥身分成长而坚固的数段,类似桁梁式桥,不过每段都在中间而非两端支承。 拱桥:借拱形的桥身向桥两端的地面推压而承受主跨度的应力。现代的拱桥通常采用轻巧、开敞式的结构。 8.吊桥:是建造跨度非常大的桥梁最好的设计。道路或铁路桥面靠钢缆吊在半空,钢缆牢牢地悬挂在桥塔之间。较古老的吊桥有的使用铁链,有的甚至使用绳索而不是用钢缆。 9.拉索桥:有系到桥柱的钢缆。钢缆支撑桥面的重量,并将重量转移到桥柱上,使桥柱承受巨大的压力。 班级:2011级2班姓名:夏一

ANSYS悬臂梁的自由端受力的有限元计算[1]

悬臂梁自由端受力的有限元计算 任柳杰10110290005 一、计算目的 1、掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 2、熟悉有限元建模、求解及结果分析步骤和方法。 3、利用ANSYS软件对梁结构进行有限元计算。 4、梁的变形、挠曲线等情况的分析。 5、一维梁单元,二维壳单元,三维实体单元对计算结果的影响。 6、载荷施加在不同的节点上对结果的影响。 二、计算设备 PC,ANSYS软件(版本为11.0) 三、计算内容 悬臂梁受力模型 如上图所示,一段长100[mm]的梁,一端固定,另一段受到平行于梁截面的集中力F的作用,F=100[N]。梁的截面为正方形,边长为10[mm]。梁所用的材料:弹性模量E=2.0 105[MPa],泊松比0.3。 四、计算步骤(以梁单元为例) 1、分析问题。 分析该物理模型可知,截面边长/梁长度=0.1是一个较小的值,我们可以用梁单元来分析这样的模型。当然,建立合适的壳单元模型和实体单元模型也是可以的。故拟采用这三种不同的 方式建立模型。以下主要阐述采用梁单元的模型的计算步骤。 2、建立有限元模型。 a)创建工作文件夹并添加标题; 在个人的工作目录下创建一个文件夹,命名为beam,用于保存分析过程中生成的各种文件。 启动ANSYS后,使用菜单“File”——“Change Directory…”将工作目录指向beam 文件夹;使用/FILNAME,BEAM命令将文件名改为BEAM,这样分析过程中生成的文件均 以BEAM为前缀。 偏好设定为结构分析,操作如下: GUI: Main Menu > Preferences > Structural b)选择单元; 进入单元类型库,操作如下: GUI: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add… 对话框左侧选择Beam选项,在右侧列表中选择2D elastic 3选项,然后单击OK按钮。

悬臂梁应变测量

悬臂梁应变测量 摘要:在航空、机械及材料研究领域中,零件的强度是一个很重要问题。研究强度问题的途径之一便是实验应力分析。本课程设计便是利用实验应力分析中的电测法来测定弹性元件等强度悬臂梁在力的作用下产生的应变。具体方法是通过在悬臂梁上粘贴三个应变片,它们均分布在悬臂梁的上表面上,其中一应变片位于纵向轴的中心线上,其余两个应变片分别位于轴中心线的两侧等距离处,且靠近变动端;然后通过增减砝码的个数改变所加的力,利用数字万用表记录、读取数据。为了减小实验误差,本实验采用多次测量求平均值的方法,并对实验数据利用Excel进行了拟合,作出了应变片的电阻变化值与载荷之间的关系图,再根据有关公式,最终得出在弹性限度内悬臂梁的应变与它所受到的外力大小成线性关系。 关键词:电测法;应变片;悬臂梁;数字万用表

引言 研究强度问题可以有两种途径,即理论分析和实验应力分析。实验应力分析是用实验方法来分析和确定受力构件的应力、应变状态的一门科学,通过实验应力分析可以检验和提高设计质量、工程结构的安全性和可靠性,并且可以达到减少材料消耗、降低生产成本和节约能源的要求。实验应力分析的方法很多,有电测法、光测法、机械测量方法等。本实验主要是利用电测法。电测法有电阻、电容、电感测试等多种方法,其中以电阻应变测量方法应用较为普遍。电阻应变测量方法是用电阻应变片测定构件表面的应变,再根据应变--应力关系确定构件表面应力状态。工程中常用此方法来测量模型或实物表面不同点的应力,它具有较高的灵敏度和精度。由于输出的是电信号,易于实现测量数字化和自动化,并可进行遥测。电阻应变测量可以在高温、高压、高速旋转、强磁场、液下等特殊条件下进行,此外还可以对动态应力进行测量。由于电阻应变片具有体积小、质量轻、价格便宜等优点,且电阻应变测试方法具有实时性、现场性,因此它已成为实验应力分析中应用最广的一种方法。它的主要缺点就是,一个电阻应变片只能测量构件表面一个点在某一个方向的应变,不能进行全域性的测量]1[。 本实验为悬臂梁的应变测量,所谓的悬臂梁,即一端固定,另一端可以动的弹性元件。应变是描述一点处变形程度的力学量,它是由载荷、温度、湿度等因素引起的物体局部的相对变形,主要有线应变和切应变两类。电阻应变片是一种将机械构件上应变的变化转换为电阻变化的传感元件。 本实验使用的方法为电测法,通过逐级加减载荷改变悬臂梁所受的力,使之发生不同的形变,用电阻应变片作为传感器,将微小的形变这个非电学量转换成电学量电阻的变化来测量悬臂梁的主应变。在该实验中电阻的变化量是通过数字万用表直接读数处理得到的,之后通过应力与应变之间的关系得出悬臂梁所受的正应力,利用Excel制作出拟合曲线进行分析。本实验主要目的在于了解悬臂梁、电阻应变片的结构及工作原理,掌握数字万用表测电阻的方法及原理,理解灵敏度对测量结果的影响,最终利用数

预应力混凝土连续梁桥

6.2 预应力混凝土连续梁桥 6.2.1力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 6.2.2立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图6.1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图6.1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小主要取决于经济分跨和

悬臂梁的受力分析

悬臂梁的受力分析 实验目的:学会使用有限元软件做简单的力学分析,加深对材料力学相关内容的理解,了解如何将理论与实践相结合。 实验原理:运用材料力学有关悬臂梁的的理论知识,求出在自由端部受力时,其挠度的大小,并与有限元软件计算相同模型的结果比较 实验步骤: 1,理论分析 如下图所示悬臂梁,其端部的抗弯刚度为 3 3EI l ,在其端部施加力F ,可得到其端部挠度为:3 3Fl EI ,设其是半径为0.05米,长为1米,弹性 模量11 210E =?圆截面钢梁,则其可求出理论挠度值3 4 43Fl ER ωπ=,先分别给F 赋值为100kN ,200kN ,300kN ,400kN ,500kN .计算结果如下表: 2有限元软件(ansys )计算: (1)有限元模型如下图:

模型说明,本模型采用beam188单元,共用11个节点分为10个单元,在最有段施加力为F 计算得到端部的挠度如下表所示, 得到梁端部在收到力为100kN时Y方向的位移云图: 将理论计算结果与ansys分析结果比较如下表:

通过比较可得,理论值与软件模拟结果非常接近,在力学的学习中只要能熟练的掌握理论知识,在软件模拟过程中便可做到心中有数,在本实验中理论值是通过材料力学中得一些假设得到的一个解析解,而实验也是用了相同的假设,并将梁离散为十个单元,得到数值解,因此和理论值的误差是不可避免的,通过增加离散单元的个数可以有效的减少误差,但是增大了计算量,因此在实践中,只要选取合适的离散单元数,能够满足实践要求即可,这就需要有更加扎实有限元知识作为指导。 通过本次试验,让我对力学知识及力学知识的应用有了更进一步的了解,对今后的学习应该有一定的指导意义。 附:ansys命令流 /TITLE,liangfenxi /PREP7 !* ET,1,BEAM188 !* !* MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2e11 MPDATA,PRXY,1,,0.3 SECTYPE, 1, BEAM, CSOLID, q, 0

悬臂梁

带孔的悬臂梁有限元分析 下图所示为带方孔(边长为80mm)的悬臂梁,其上受部分均布载荷(p=10Kn/m)作用,试采用一种平面单元,对图示两种结构进行有限元分析,并就方孔的布置进行分析比较,如将方孔设计为圆孔,结果有何变化?(板厚为1mm,材料为钢) 问题分析: 1.该问题属于平面应力问题。分析类型为静力分析。 2.初步判断孔的上边受拉力,下边受压力。 3.其最大位移发生在受力部位。 4.经查询资料,该悬臂梁材料为钢。其45号钢。E=210GPa.泊松比V=0.37 一进入ANSYS 例如在D盘建立一名为lianxi的文件夹,工作文件名为xuanbiliang。然后运行 开始——>程序——>ANSYS11.0.0——> Ansys Product Launcher →file Management →select Working Directory: D:\lianxi,input job name: xuanbiliang→Run 二建立几何模型 1.首先设置优先权 1))Main Menu:Preferences 2)在弹出的对话框中将“Structural”选项选中。按下OK按钮完成操作并关闭 对话框

2.建立模型。 1. Main Menu:Preprocessor→Modeling→Create→keypionts→in active cs. 2. 创建关键点在打开的对话框里面分别输入要建立模型的关键点,在上面的输入框里面输入关键点的编号,下面的三个输入框内输入其坐标。为1(0,0,0)2(0,500,0)3(900,250,0)4(450,500,0)5(900,500,0)如下 3.创建悬臂梁面积。Main Menu:Preprocessor→Modeling→Create→Areas→arbitary→Though kps.分别选中图上的1-5点,点击OK

三角形悬臂梁应力分析备课讲稿

三角形悬臂梁应力分 析

三角形悬臂梁应力分析 摘要:在有限元分析软件ANSYS12.0平台上建立三角形悬臂梁的力学模型, 添加约束和载荷,计算出应力分布,并与理论计算值相比较。 ⒈ 引言 目前,ANSYS 软件具有其强大的功能已经被广泛的应用于机械,化工,土 木,交通等各个领域。应用ANSYS 分析,可以大大减少人力物力的投入,而且可 靠性高,对于三角形悬臂梁分析其应力和变形情况,分析方法和结论可作为这 类设计的参考。 ⒉ 计算模型 Ⅰ问题描述 【三角形悬臂梁忽略重力作用,∠BAC=α,AB 边上作用均布载荷q ,求应 力的解析表达,计算出BC 边上的应力值并与ANSYS 计算值比较,绘出应力曲线 图】 选取应力函数: Ansys 计算参数值:AB=1000mm ,α=30°,厚度t=20mm 2222[()sin cos cos tan ]C r r r ?θθθθα=?-+- Ⅱ解析解 根据弹塑性平面问题的极坐标解答,利用以下公式推导:

222 222211111()r r r r r r r r r r r θθ??σθ?σ???τθθθ ??=+???=?????=-=-????? 以及 2222cos sin 2sin cos sin cos 2sin cos x r r y r r θθθθσσθσθτθθ σσθσθτθθ=+-=++ 已知 2222[()sin cos cos tan ]C r r r ?θθθθα=?-+-, 故有以下式子成立: 22222222222[2()2sin cos 2cos tan ][2()2sin cos 2cos tan ][cos 2sin 2tan ][2sin 22cos 2tan ]C r r r r C r C r r r C r r ?αθθθθα?αθθθθα?θθαθ ?θθαθ ?=-+-??=-+-??=-++??=-+? 所以, 22222222211[2()sin 22cos tan 2cos 2tan ][2()sin 22cos tan ]111()[1cos 2sin 2tan ]r r C r r r C r C r r r r r θθ??σαθθθαθαθ ?σαθθθα???τθθαθθθ ??=+=---+???==-+-?????=-=-=--????? 因此, 222222222224cos sin 2sin cos [2()2sin 2cos 2cos tan 2cos cos 2tan sin 2cos 2sin 2tan ]sin cos 2sin cos [2()2cos sin 2cos 2sin 2tan 2tan sin cos 3tan cos ]x r r y r r C C θθθθσσθσθτθθ αθθθθαθθαθθθασσθσθτθθ αθθθθθααθθαθ=+-=---+++=++=-+-++- 由边界0()/y y q t σ==-,即当0θ=时,/y q t σ=-;带入y σ的表达式中可 得:

预应力混凝土连续梁桥

预应力混凝土连续梁桥. 一预应力混凝土连续梁桥 1.力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等

会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径 的桥梁。 2.立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题, 可以设计成等跨或不等跨、等截面或变截面的结构形式(图1)。结构形式的选 择要考虑结构受力合理性,同时还与施工方法密切相关。 a b

a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时, 为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于 预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径. 大小主要取决于经济分跨和 施工的设备条件。 连续梁跨数以三跨连续梁用得最为广泛,连续梁桥连续超过五跨时的内力情况虽然与五跨时相差不大,但连续过长会造成梁端伸缩量很大,需设置大位移量的伸缩缝,因此,连续跨数一般不超过五跨。 2.梁高选择

悬臂梁变形及应力分析

基于ANSYS 10.0 对悬臂梁的强度及变形分析 姓名:刘吉龙 班级:机制0803班 学号:200802070516

对悬臂梁的受力及变形分析摘要:本研究分析在ANSYS10.0平台上,采用有限元法对悬臂梁进行强度与变形分析、验证此悬臂梁设计的合理性。 一、问题描述 长度L=254 mm的方形截面的铝合金锥形杆,上端固定,下端作用有均布拉力P=68.9 Mpa,上截面的尺寸50.8×50.8 mm,下截面尺寸25.4×25.4 mm(见右图),弹性模量E=7.071×104 Mpa,泊松比μ=0.3,试用确定下端最大轴向位移δ和最大轴向应力。试将分析结果与理论解进行比较,说明有限元分析的误差。(理论解:最大轴向位移δ=0.1238 mm)。 二、建立有限元模型: 定义模型单元类型为:solid(实体)95号单元,材料常数为:弹性模量 E=7.071×104 Mpa,泊松比μ=0.3。 三、有限元模型图: 建立有限元模型时,观察模型的形状可知,我们可以先建立模型的上下底面,再根据有上下底面形成的八个关键点(keypoints)生成线,接着生成面,生成体。最后生成该悬臂梁的模型图,示图如下:

整个模型建立好之后即可对其划分网格,划分网格时,若选择自由划分则生成的网格比较混乱,不能比较准确的模拟该梁真实的受力变形情况。故我们选择智能划分模式,并且分别对模型的各个棱边(lines)进行均匀分割,这样可以划分出比较理想的网格,更利于我们的研究和分析。网格划分之后的模型图为: 四、加载并求解: 根据该悬臂梁的受力特点,我们在其下底面(比较大的底面)上进行六个自由度的位移约束,而在其上地面上施加大小为P=68.9 Mpa均布拉力,将载荷加载好之后便可进行运算求解,求解完成之后,我们得到其位移变形图如下:

预应力连续桥

一、连续梁桥的特点 从下图连续梁桥与简支梁桥的受力情况对比,可以归纳出连续梁桥的主要特点: (1) 由于支点负弯矩的卸载作用,跨中正弯矩大大减小,恒载、活载均有卸载作用。 (2) 由于弯矩图面积的减小,跨越能力增大。 (3) 超静定结构,对基础变形及温差荷载较敏感。 (4) 行车条件好。 图8-1-1-1 简支梁与连续梁的受力对比 二、连续刚构桥的特点 从下图连续刚构桥与连续梁桥的受力情况对比,可以归纳出连续刚构桥的主要特点: (1) 恒载、活载负弯矩卸载作用基本与连续梁接近; (2) 桥墩参加受弯作用,使主梁弯矩进一步减小; (3) 弯矩图面积的减小,使得跨越能力大,在小跨径使用时梁高较低; (4) 超静定次数高,对常年温差、基础变形、日照温均较敏感; 图8-1-1-2连续梁与连续刚构的受力对比 一、平面布置

连续梁桥或连续刚构桥的平面布置方式包括:正交布置、斜交布置、曲线布置等方式。 图8-1-2-1 连续梁桥平面布置示例 在连续结构的布置方式中,常常会使用到“联”的概念。连续梁由若干梁跨(通常为3~8跨)组成一联,每联两端设置伸缩缝,整个桥梁可由一联或多联组成。 二、立面布置 1. 分跨确定 连续梁桥和连续刚构桥除了按常规桥梁分跨原则考虑外,其立面布置考虑时关注的其 它原则包括:减小弯矩、增加刚度、方便施工、美观要求。 在中小跨度的连续梁中通常采用等跨布置以方便施工。 在大跨度连续梁中通常采用不等跨布置,合理的变中跨跨度比值可以减小中跨跨中弯矩。

图8-1-2-2 连续梁桥的等跨布置和不等跨布置 2. 梁高确定 中小跨度的预应力混凝土连续梁可以采用等高度连续梁,大跨度的预应力混凝土连续梁一般采用变高度连续梁。连续梁的高度需要根据设计计算最终确定。在截面拟定时可以参照不同类型结构的高跨比指标来确定梁高。 图8-1-2-3 连续梁桥的等高布置和不等高布置 3. 体系选择 通常我们总体布置时还需要对比是采用连续梁体系结构还是连续刚构体系结构。 连续刚构桥的主要特点: ◆墩梁固结,固结部分通常在需要布置大跨、高墩处采用。 ◆墩梁固结有利于悬臂施工,且可以减少大型支座及其养护维修和更换; ◆在受力方面,上部结构仍表现出连续梁特点; ◆在构造方面,主梁常采用变截面箱型梁,桥墩多采用矩形和箱形截面的柱式墩或双薄壁墩。

材料力学梁变形实验报告

梁变形实验报告 (1)简支梁实验 一、实验目的 1、简支梁见图一,力F 在跨度中点为最严重受力状态,计算梁内最危险点达到屈服应力时的屈服载荷Fs ; 2、简支梁在跨度中点受力F=时,计算和实测梁的最大挠度和支点剖面转角,计算相对理论值的误差; 3、在梁上任选两点,选力F 的适当大小,验证位移互等定理; 4、简支梁在跨度中点受力F=时,实测梁的挠度曲线(至少测8个点挠度,可用对称性描点连线)。 二、试件及实验装置 简支梁实验装置见图一,中碳钢矩形截面梁,屈服应力 =s σ360MPa ,弹性模量E=210GPa 。 百分表和磁性表座各1个; 砝码5个,各砝码重;砝码盘和挂钩1套,约重;游标卡尺和钢卷尺各1个。 三、实验原理和方法 1、求中点挠度 简支梁在跨度中点承受力F 时,中点挠度最大,在终点铅垂方向安装百分表,小表针调到量程中点附近,用手轻拍底座振动,使标杆摩擦力最小,大表指针示值稳定时,转表盘大表针调零,分级加力测挠度,检验线性弹性。 2、求支点转角 图一 实验装置简图

梁小变形时,支点转角a δθ≈;在梁的外伸端铅垂方向安装百分表,加力测 挠度,代入算式求支点转角。 3、验证位移互等定理: 图二的线弹性体,F 1在F 2引起的位移 12 上所作之功,等于F 2在F 1引起的位移21 上所作之功,即:212121??=??F F ,若 F 1=F 2,则有:2112?=? 上式说明:当F 1与F 2数值相等时,F 2在点1沿F 1方向引起的位移12 ,等于F 1在点2沿F 2 方向引起的位移 21 ,此定理称为位移互等定理。 为了尽可能减小实验误差,重复加载4次。取初载荷F 0=(Q+)kg ,式中Q 为砝码盘和砝码钩的总重量, F=2kg ,为了防止加力点位置变动,在重复加载 过程中,最好始终有的砝码保留在砝码盘上。 四、数据记录 1、中点分级加载时,中点挠度值: F(kg) w(×10-2mm) 0 20 41 62 83 103 △w(×10-2mm) 20 21 21 21 20 2、测支点转角 F=;w (端点)=;a=71mm 3、验证位移互等定理 F (2)= w (5)= F (5)= w (2)= 4、绘制挠曲线(中点加载F=) 图二 位移互等定理示意图 21 F 1 1 2 12 F 2 1 2

悬臂梁的应力测试应变片课程设计

题目:应变片课程设计 悬臂梁的应力测试 2015 年 1 月

一、力学篇应变实验课程设计细则 ------------------- 3 二、实验器材 ------------------------------------- 4 三、实验预想步骤 --------------------------------- 4 四、实验操作步 ----------------------------------- 5 五、实验数据及分析 ------------------------------- 8 六、电阻应变片的选择 ----------------------------- 8 七、电阻应变片的粘贴工艺 ------------------------ 18 八、实验心得 ------------------------------------ 20

前言 应变式传感器可以用来检测:位移压力力矩应变温度湿度光强辐射热加速度液体流量等物理参数。目前是国内外应用量最为广泛的一种传感器,它在世界上占各类传感器80%以上。 本次课程设计根据实验室条件和应变式传感器的特点,从应变片粘贴工艺要求设计机械结构测点布置应变片电源电路应变片补偿电路检测误差分析构建圆筒偏载试验等为题,使学生从简单受力结构分析入手,运用计算机模拟软件确定测点布置,结合动手具体粘贴应变片,对应变片实测数据校准整定;从而完成一个完整的测试工作。 一、任务设计与要求 1 应用力学知识(理论力学材料力学),运用软件ansys分析简支梁受力集中区,确定测点布置位置,采用钢板尺作为测试对象,验证理论分析和仿真分析及实验分析的结果一致性; 2 应用力学知识(理论力学材料力学),运用软件ansys分析悬臂梁受力集中区,确定测点布置位置,采用钢板尺作为测试对象,验证理论分析和仿真分析及实验分析的结果一致性; 3 应用力学知识(理论力学材料力学),运用软件ansys分析传动轴受力集中区,确定测点布置位置,采用钢板尺作为测试对象,验证理论分析和仿真分析及实验分析的结果一致性;

连续梁桥的特点

一、连续梁桥的特点: 两跨或者两跨以上连续的梁桥,属于超静定体系。连续梁在恒活载作用下,产生的支点负弯矩对跨中正弯矩有下载作用,是内力状态比较均匀合理,因而梁高可以减小,节省材料,且刚度大,整体性能好,超载能力大,安全性打,桥面伸缩缝少。 预应力混凝土连续梁桥在设计中必须以各个截面的最大正、负弯矩的绝对值之和,也即按弯矩变化的幅值布置预应力筋。在公路桥上,由于恒载弯矩占总弯矩的比例较大,实际上支点控制设计的是负弯矩,跨中控制设计的是正弯矩(因支点上的活载正弯矩与恒载负弯矩之和为负弯矩;跨中的活载负弯矩与恒载正弯矩之和是正弯矩)。在梁体中,弯矩有正、负变号的区段仅在支点到跨中的某一区段。这样,预应力束筋并不增加太大的用量,就能满足设计的要求。 连续梁桥是超静定结构,基础不均匀沉降将在结构中产生附加内力,因此,对桥梁基础要求较高,通常宜用于地基较好的场合。此外,箱梁截面局部温差,混凝土收缩、徐变及预加应力均会在结构中产生附加内力,增加了结构设计的复杂性。 二、箱形截面梁的特点: 箱形截面是一种闭口薄壁截面,其抗扭刚度大,并具有较T 形截面高的截面效率指标ρ,同时它的顶板和顶板面积均比较大,能有效地承担正负弯矩,并满足配筋的需要。此外,当桥梁承受偏心荷载时,箱形截面梁抗扭刚度大,内力分布比较均匀;在桥梁处于悬臂状态时,具有良好的静力和动力稳定性,对悬臂施工的大跨度梁桥尤为有利。由于箱形截面的整体性能好,因而在限制车道数通过车辆时,可以超载通行。 一般来讲,单箱截面整体性好,施工方便,材料用量经济,抗扭刚度大,当桥面宽度不大时可以采用;当桥面宽度较大时,可以采用双箱或多箱截面。双箱或多箱由于增加了腹板,刚度和强度都大幅度提高,但是由于腹板重量的增加抵消了这一优点。 三、预应力混凝土连续梁桥的里面布置: 预应力混凝土连续梁桥的立面布置一般采用不等跨的形式。因为如采用等跨布置,则边跨内力将控制全桥设计,而这样做事是不经济的。一般边跨长度选为中跨跨径的0.5—0.8倍,钢筋混凝土连续梁桥取偏大值是边跨与中跨控制截面内力基本相同。 配筋原则及方法:预应力束筋的布置形式,与桥梁结构体系、受力情况、构造式、施工方法都有密切的关系。在其它条件已经确定的情况下,预应力束筋的布置形式应根据结构受力要求确定。对于就地现浇预应力混凝土变截面连续梁桥,应利用梁的形心轴线变化而使束筋曲率不大的布置形式,获得较大偏心距。预应力束筋的有效偏心距是从束筋重心处至梁截面形心轴的距离。 参考文献: 一姚玲森,项海帆,顾安邦,桥梁工程(第二版)人民交通出版社 2010 二JTG D62—2004,公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004 三JTG D60—2004.公路桥涵设计通用规范[S].北京:人民交通出版社,2004 四城市道路与桥梁设计规范(汇编) 五城市道路与桥梁验收规范(汇编) 六公路工程技术标准( JTGB01-2003) 七公路桥涵设计同用规范(JTG D60-2004) 八张树认等钢筋混凝土及预应力混凝土桥梁结构设计原理北京人民交通出版社2004 九范立础.预应力混凝土连续梁桥[M].北京:人民交通出版社,2001.

第二个问题的实作范例1——悬臂梁应力分析——操作指导

第二个问题的实作范例1——悬臂梁受均布压力载荷的弯曲问题 1.问题描述与解析解 有一个如图0所示的悬臂梁(截面为10mm*10mm的矩形,长度100mm),受均布压力载荷10N/m2。试求出该悬臂梁的最大应力和最大挠度。 (它的解析解已经解完了,在图0的下面,挠度7.5e- 6mm,应力0.003MPa,即3000Pa。)

图0 悬臂梁的问题描述 2. 用CATIA中的工程分析模块(即CAE模块)求解该问题的思路 1). 启动CATIA,建立一个悬臂梁的3D模型,设置单位,加材料。(这一步已经做完了。) 2). 然后,进入工程分析模块,加固定约束,加均布载荷,求解,查看结果。 3). 分析两次计算,第一次线性单元的边长为6mm,计算精度很低。第二次抛物线单元的边长为3mm, CATAI得到的挠度、应力与解析解基本一致。 3 在CATIA求解该问题的操作指导 1). 启动CATIA,打开xuanbiliang目录下的xuanbiliang.CATPart文件,在该文件中的几何模型中已经加好了材料(钢)。 2). 进入创成式零件有限元分析模块,如图1。之后点击“确定”,如图2。 图1

图2 3). 在零件的有限元模块中选择 工具条中的 按钮,按照如图3所示的方式选择梁的一个端面,点击“确 定”,即可完成悬臂约束的施加。 (该约束限制了空间中的6各自由度。) 图3 4). 选择 工具条中的 按钮,并选择悬臂梁的上表面,在pressure中输入10N_m2,如图4、图5。施加了载荷与约束的悬臂梁如图6。

图4 图5 图6 5). 在特征树的finite element model.1——nodes and elements 下的 上双击,如图7。弹出如图8的对话框,在size中输入6mm的单元边长,点击确定。

悬臂梁 弹性力学

《弹性理论及其工程应用》课程三级项目说明书 学生姓名:李志鹏 专业班级: 10级工设一班 指导教师:周庆田 得分:

一、设计任务 使用matlab 软件对端部受集中载荷的悬臂梁进行数值分析 具体内容 1. 对悬臂梁进行应力及位移分析,并以云图形式给出结果。 2. 由图形结果确定梁最易折断部分。 1.首先讨论梁内应力分布。 其边界条件为: (σx )0x ==0; (τxy )h ±=y =0; (σy )h ±=y =0; F= -? +-h h dy xy τ σx = 2 f 2y ???= xy c 1 (a) (f ?为应力函数) 双调和方程为:4 4x f ???+ 2 2 2 4y x f ????+ 4 4y f ???=0 (b ) 通过对(a )、(b )两式积分可得: )(2)(673622 2c y c x c y c x f y +++=??= ?σ (c ) 4322212232 1c x c x c y c y x f xy ----=???-=?τ (d )

2.系数的确定 由上述边界条件及(c )、(d )可得: 07632 ====c c c c ; 2 14 21h c c -= ; I F h F c -=-=3123δ ( 3 3 2h I δ=为截面对中性轴的截面二次矩【惯性矩】) 至此,所有常数均已求出,于是可得应力场: I Fxy x - =σ 0=y σ )(222 y h I F xy --=τ 3.然后讨论梁内位移分布 (1)应用应变位移关系及胡克定律,由应力场方程可得出: )](2[)1(222x y h I F E G x v y u EI Fxy E y v EI Fxy E x u xy xy y y x --+===??+??=-==??-===??ντγννσεσε 通过对上式积分得到位移表达式:

三跨连续梁桥动力特性分析

三跨连续梁桥动力特性分析 第一章在桥梁设计中,动力特性的研究尤为重要。对动力特性进行分析与研究 最主要的原因是为了避免共振。本文通过比较惯性矩变化导致的刚度分配变化和跨径布置对多跨变截面连续梁桥自振特性的影响,并运用有限元软件对三跨连续梁桥进行动力特性分析,得出三跨连续梁桥的自振频率的变化规律,从而为冲击 系数的合理取值提供依据。 1.1 多跨连续梁桥的跨径布置 连续梁桥分为等截面连续梁桥和变截面连续梁桥。 等截面连续梁桥可以选用等跨布置和不等跨径布置两种布置方式。等跨布置的跨径大小主要取决于分孔是否经济和施工技术条件等。当桥梁按照等跨径布置会使标准跨径较大时,为了减少边跨的正弯矩,将边跨跨径取小于中跨的结构布置,即不等跨布置,一般边跨与中跨跨长之比在0.6—0.8之间,边跨与中跨跨长之比简称边中跨比。 当连续梁桥主跨的跨径接近或者大于70m时,若主梁仍然采用等截面的布置方式,在恒载和活载作用时,将会出现主梁支点截面的负弯矩比跨中截面的正弯矩大很多。为了使受力更加合理和建造更加经济,此时,采用变截面连续梁桥的设计,不仅更加经济,也使受力更加符合要求,高度变化和内力变化基本相适应。对于跨径,变截面连续梁桥立面一般采用不等跨径布置。对于三跨以上的连续梁桥,除边跨之外,其余中间跨一般采用等跨径布置以方便施工。对于多于两跨的连续梁桥,其跨径比一般为0.6—0.8左右。当采用箱形截面的三跨连续梁桥时,该比值甚至可减少至0.5—0.7,当接近0 .618 时,桥跨变化会显得平顺、流畅,较为美观。此时,连续箱梁的梁高宜采用变高度设计,其底曲线采用折线(采用折线形截面布置可使构造简单、施工方便)、二次抛物线和介于折线与二次抛物线之间的1.5—1.8次抛物线的设计形式,从而使底曲线变化规律与连续梁弯矩变化规律基本接近。 1.2 分析动力特性的原因 所谓动力特性是指自振周期(自振频率)、振型、阻尼比三个主要方面。分

相关文档
最新文档