雷达知识点总结

雷达知识点总结
雷达知识点总结

雷达知识点总结

1.雷达的工作原理

1 雷达测距原理

超高频无线电波在空间传播具有等速、直线传播的特性,并且遇到物标有良

好的反射现象。

用发射机产生高频无线电脉冲波,用天线向外发射和接收无线电脉冲波,用显示器进行计时、计算、显示物标的距离,并用触发电路产生的触发脉冲使它们同步工作。

2 雷达测方位原理

(1)利用超高频无线电波的空间直线传播;

(2)雷达天线是一种定向型天线;

(3)用方位扫描系统把天线的瞬时位置随时准确地送到显示器,使荧光屏上的扫描线和天线同步旋转,于是物标回波也就按它的实际方位显示在荧光屏上。雷达基本组成

(1)触发电路(Trigger Circuit)

作用:每隔一定的时间产生一个作用时间很短的尖脉冲(触发脉冲),分别送到发射机、接收机和显示器,使它们同步工作。

(2)发射机(Transmitter)

作用:在触发脉冲的控制下产生一个具有一定宽度的大功率高频的脉冲信号(射频脉冲),经波导馈线送入天线向外发射。

参数:X波段:9300MHz—9500MHz (波长3cm)

S波段:2900MHz—3100MHz (波长10cm)

(3)天线(Scanner; Antenna)

作用:把发射机经波导馈线送来的射频脉冲的能量聚成细束朝一个方向发射出去,同时只接收从该方向的物标反射的回波,并再经波导馈线送入接收机。参数:顺时针匀速旋转,转速:15—30r/min

(4)接收机(Receiver)

作用:将天线接收到的超高频回波信号放大,变频(变成中频)后,再放大、检波,变成显示器可以显示的视频回波信号。

(5)收发开关(T-R Switch)

作用:在发射时自动关闭接收机入口,让大功率射频脉冲只送到天线向外辐射而不进入接收机;在发射结束后,能自动接通接收机通路让微弱的回波信号顺利进入接收机,同时关闭发射机通路。

(6)显示器(Display)

作用:传统的PPI显示器在触发脉冲的控制下产生一条径向的距离扫描线,用来计时、计算物标回波的距离,同时这条扫描线由方位扫描系统带动天线同步旋转。

(7)雷达电源设备(Power Supply)

作用:把船电变化成雷达所需要的具有一定频率功率和电压的专用电源。

参数:中频电源,频率:400—2000Hz

2.1 雷达中频电源设备

1)雷达为什么使用专用电源

避免低频电源设备干扰和缩小雷达体积;

雷达要求稳定、可靠的电源;

防止微波雷达与其它高频用电设备相互干扰。

2)雷达中频电源的技术要求

电压稳定(船电变化±20%,输出小于±5% );

中频稳定(400-2000Hz);

有短路、过流、过压保护措施;

操作简便、使用可靠;

能24小时连续工作;

适应海上的工作环境;

噪声振动小、换能效率高。

2.2 雷达触发脉冲产生器

(1)触发脉冲产生器的作用每隔一定的时间产生一个触发脉冲,分别送到发射机、接收机和显示器,使它们同步工作。

(2)触发脉冲产生电路现代雷达为了提高测距精度,采用一种晶体高频振荡器作为雷达的时间基准器,装在显示器里。触发脉冲由高频振荡器分频得到。

(3)脉冲重复频率(PRF)和脉冲重复周期(PRP)

(4)触发脉冲与雷达量程雷达的脉冲重复频率随量程而改变,在近、中、远量程段各选定一个脉冲重复频率,由量程开关控制变换。

PRF=500Hz~4000Hz 量程越大,PRP越大,PRF越小;反之

2.3 雷达发射机

(1)发射机组成及作用

预调制器:产生一个具有一定宽度的正极性矩形脉冲,控制调制器工作。雷达的脉冲宽度转换在此进行。

调制器:产生一个具有一定宽度、一定幅度(约1万伏特)的负极性高压矩形脉冲(调制脉冲),加给磁控管的阴极。

磁控管:在调制脉冲的控制下,产生相同宽度的大功率超高频振荡脉冲(射频脉

冲),经波导天线向外辐射。

电源:低压电源和高压电源。高压自动延时电路的作用是保证磁控管有3~5分钟的预热时间。

(3)发射机技术指标

工作波长(Wavelength)发射机的工作波长是指磁控管产生的超高频脉冲波的波长。船用雷达的频率范围是:

X波段:9300MHz—9500MHz (波长3cm)

S波段:2900MHz—3100MHz (波长10cm)

脉冲宽度(Pulse Width)脉冲宽度是指射频脉冲振荡持续的时间。

发射功率(Transmitted Power)峰值功率:在脉冲持续期间的射频振荡的平均功率。平均功率:在脉冲重复周期内的输出功率的平均值

脉冲波形(Pulse Wave Shape)发射脉冲的波形是值发射脉冲的包络形状。一般说来,波形越接近矩形越好。

发射脉冲频谱(Radio Frequency Pulse Spectrum)

发射脉冲频谱就是组成射频脉冲信号的所有频率成分的能量分布。

接收机的通频带宽度脉冲频谱要求稳定、对称,旁瓣最大值不大于主

瓣的25%

4)磁控管

磁控管的工作条件,磁控管本身完好;

灯丝加上额定工作电压,阴极加热;

磁控管阴阳极间加上额定的负极性调制脉冲;

磁控管输出负载匹配,波导与天线应连续、

不变形及内部要光洁。

磁控管的检查

(1)查磁控管电流

(2)用氖灯检查

磁控管的使用注意事项(P12)

5)脉冲调制器

调制脉冲的波形直接决定磁控管工作的好坏,要求前后沿要陡,平顶波动小。磁控管需要的高压调制脉冲的脉冲功率很大,而平均功率却很小。

6)发射机的调整

高压自动延时电路调整

磁控管电流的调整

7)发射机的状态判断

判断磁控管是否工作正常

检查磁控管电流;

用氖灯在收发机波导口检查是否发亮

2.4 微波传输及雷达天线系统

1)系统组成及作用

1 波导连接收发机与天线之间,用于传输微波能量。

2 天线用作定向发射射频脉冲信号和定向接收物标回波信号。

3 驱动电机:在相对风速100kn时能以1000~3000r/min的转速启动并驱动天线旋转。

4 传动装置(Driving Device)即减速装置,保证天线以15~30r/min速度匀速转动。

5 方位同步发送机(Bearing Transmitter)将天线的角位置信号变成电信号送给显示器的同步接收机,使扫描线随天线同步旋转。。

6 船首位置信号产生器由一个微型触点式开关和安装在天线旋转齿轮上的一个凸轮组成。每当天线转过船首方向时,凸轮使开关闭合一次,发出一个脉冲信号使显示器里的船首标志电路输出一个方波,在屏上形成一个径向亮线代表本船船首。(触点开关也可以是干簧管)

(2)波导

1)用途为减小损耗,防止辐射、干扰和失真,要使用波导或同轴电缆作为微波传输线,而不能用普通导线或电缆。

1 结构特点:由黄铜或紫铜拉制而成的空心管,内壁光洁度高,界面尺寸由传输的微波波长决定。

.2 电磁波在波导中传导的衰减(P16)

(1)与传输的波形有关

(2)与波导管尺寸有关

(3)与波导材料有关

(4)与波导内表面光洁度和清洁度有关

3 波导元件及其使用(P16)

(1)安装前要检查波导管,管内应清洁

(2)波导总长度不宜超过20m,弯波导不宜超过5个

(3)软波导不能用作弯波导,不宜装于室外

(4)波导管平面接头超天线,扼流接头朝收发机

(5)在收发机波导口要插上云母片,防止波导一旦进水直接流入磁控管而损坏磁控管

(6)波导安装时要防止波导受力

综合考虑,一般3cm雷达使用波导作馈线,在10cm雷达中,用同轴电缆作馈线。3雷达天线

主要技术指标

(1)方向性图

(2)方向性系数

(3)天线效率

(4)天线增益(Antenna Gain)

天线增益的大小直接影响雷达的作用距离,与天线的有效面积有关,一般而言,天线尺寸越大,雷达的作用距离越远(假定雷达发射功率足够)。

(5)天线波束宽度(Beamwidth)

在天线功率方向性图中主瓣波束的两个半功率点方向间的夹角称为主瓣的波束宽度。在场强方向性图中,等于场强值为0.707时的两个方向间的夹角。

隙缝波导天线

隙缝波导越长,隙缝数越多,水平波束宽度越窄、方向性越好。

隙缝波导天线主瓣轴线方向会偏离天线窗口中点法线方向的顺时针方向约3-5度,称偏离角。在安装天线底座时要注意校正。

水平极化波在海面平静状态,水平极化波引起的海浪干扰杂波最小。

垂直极化波利用10cm波长的垂直极化波抑制海浪干扰。

圆极化波圆极化波可以较好的抑制雨雪干扰

2.5 雷达接收机

1)接收机的组成及各部分作用

.1 变频器

作用是把雷达超高频回波信号变成频率较低的中频回波信号。

船用雷达接收机的中频一般为30MHz或60MHz。

.2 中频放大器

把微弱的中频回波信号不失真的放大十几万倍,然后送去检波

.3 检波器

把经过放大后的中频回波信号去掉中频成分,取出包络,变成视频脉冲信号。

4 辅助电路

增益控制电路(Receiver Gain Control)

作用:改变接收机中放的增益(放大倍数),实现对回波强度的控制;

海浪干扰抑制电路(Anti-Clutter Sea Control)

作用:抑制海浪的干扰;

自动频率控制电路(Auto Frequency Control)

作用:自动控制本机振荡器的频率,使混频器输出稳定的中频信号,显示屏上回波稳定清晰。

2)接收机的主要技术指标

1 灵敏度(Sensitivity)

表示:接收机接收微弱信号的能力;

参数:最小回波信号功率(接收机门限功率)

注意:①Prmin越小,接收机灵敏度越高,雷达作用距离越远;

②△f表示接收机通频带宽度,其值越小,则Prmin越小,接收机灵敏度越高。.2 通频带(Band Width)

表示:接收机能有效放大的信号频率范围;

参数:输入信号电压放大倍数从中心频率f0的最大值1下降到0.707时两个对应频率之差。

通频带宽→捕获多,失真小→灵敏度低,影响探测能力

通频带窄→捕获少,失真大→灵敏度高,远距探测能力强

3)接收机工作状态判断

.1 调“增益”看噪声变化

正常:顺时针调大“增益”旋钮,屏幕上出现噪声斑点;

故障:无噪声斑点或很微弱。

.2 从晶体电流看变频器的工作

正常:晶体电流值在规定范围内;

故障:无电流→本机振荡器已坏;电流偏小→本机振荡器工作不正常。注意:有晶体电流只能说明晶体和本机振荡器是工作的,不能说明一定有回波输入。2.6 雷达显示器

(1)主要技术指标

.1 平面位置显示器PPI(Plane Position Indicator)

极坐标表示,扫描中心代表天线位置;

物标回波以距离扫描线上的加强亮点表示;

回波亮点至扫描中心之间的距离代表物标距离;

扫描线随天线同步旋转.

2 技术要求

距离:[Rmin ,Rmax]

方位:[0°,360°]

满足测量精度、图像分辨力等要求

(2)雷达显示器的组成

1 阴极射线管CRT(Cathode Ray Tube)

电磁式显象管:电子束聚焦和偏转都用管颈外的线圈产生的磁场实现的。

阴极为信号极,加入负极性回波视频脉冲信号及各种刻度脉冲信号

控制栅极加可调偏压(用面板上“亮度”钮控制)和正极性方波(称辉亮方波,用以控制阴极只在扫描持续期内发射电子)。

第一阳极加+600v电压以加快电子速度。在聚焦圈中加聚焦电流或在聚焦电极上加聚焦电压,实现电子束的聚焦。

第二阳极加约+1000v特高压,加快电子束的速度,轰击荧光屏。

余辉时间:从电子束停止轰击到发光强度衰减到初始值的1%的时间。

船用雷达CRT的余辉时间一般为6~8s,属于长余辉现代光栅扫描雷达则采用短余辉CRT

2 距离扫描电路(Range Sweep Circuit)

延时线(Delay Line):用来调节扫描线的起始时间,使得扫描起点时刻和射频脉冲离开天线的时刻严格对应,以保证测距的准确。

方波产生器:在经过延时的触发脉冲的控制下,根据不同的量程产生不同宽度的方形脉冲,以控制显示器的扫描电路同步工作。

(3)光栅扫描原理

1 径向圆扫描(极坐标方式)

特点:

荧光屏上扫描线径向扫描的速率取决于量程的大小;

扫描线旋转的速率取决于天线的转速;

物标回波的强度取决于回波视频信号的幅度;

缺点:

物标回波及各种符号视频在屏幕上只能是天线每转一圈才能亮一下,整个屏面上亮度不一;

容易丢失小目标;

在常规雷达屏上标示其他符号十分麻烦、困难。

2.7 雷达显示方式

雷达显示方式的分类

1 船首向上图像不稳相对运动显示

显示特点:

扫描中心代表本船位置,在屏上不动;船首线代表本船船首方向;固定物标与本船等速反向运动;船首线指向固定方位盘的零度;读取物标的相对方位

本船转向时,船首线不动而物标回波反转,使得图像不清晰。

显示优点:

显示非常直观,便于判明目标船的位置;

判断碰撞危险方便,常用作观测瞭望。

显示缺点:若需定位(测量真方位),须加上航向,使用不便

在大风浪天气时,船首偏荡,图像模糊,测量误差大。

2 真北向上图像稳相对运动显示

显示特点:

必须接入陀螺罗经的航向信号;扫描中心代表本船位置,在屏上不动;船首线代表本船船首方向;固定物标与本船等速反向运动;船首线指向航向值固定方位盘的零度代表真北;读取物标的真方位。本船转向时,船首线移向新航向值,而物标回波不动,图像清晰。

显示优点:便于测量物标的真方位;图像稳定,显示清晰;在定位及多该向窄航道中航行使用方便。

显示缺点:当航向在090°~270 °之间时,特别在180 °附近,观测不便,容易搞错物标位置,不利于避碰操纵。

3 航向向上图像稳相对运动显示

显示优点:

具有船首向上的直观显像,判明物标的位置;具有真北向上的图像稳定,直接读取真方位;

在避碰、定位和导航中应用方便。

真运动雷达显示方式的分类

根据本船速度的输入源:计程仪真运动、模拟速度真运动

根据输入速度的类型:对地真运动、对水真运动

根据图像的指向:北向上真运动、船首向上真运动、航向向上真运动

1 真北向上真运动显示

显示特点:

扫描中心在屏上按计程仪或模拟计程仪输入的速度沿着船首向(航向)移动;

扫描中心的正上方代表真北,本船船首线指示航向;

本船转向时,船首线移动,其他物标不动;

其它运动物标按各自的航向、航速移动,固定物标静止不动。

雷达屏幕上的图像显示的是相对静止的画面,如同海图一般,但可以根据本船的位置作漫游,偏心显示可以使本船前方的区域更大。

2 对水稳定真运动显示

显示特点:

速度输入是对水速度,航向是陀螺罗经航向;

本船的船首线在航行中是稳定的;

运动的物标按照它对水的速度和航向航行;

随水漂流的物标(对水静止)在雷达屏上是不动的

固定的物标(系留于地)在雷达屏上按照风流压的相反方向和速度移动

运动物标(包括本船)的尾迹表示该物标的对水速度和航向。

3 对地稳定真运动显示

显示特点:

速度输入由双轴多普勒计程仪输入对地速度;

本船(扫描中心)在屏上将按实际的航迹向及对地速度移动。

本船的航向(船首线指向)与航迹向不一致,有一个偏角,即风流压差角。

固定的物标(系留于地)在雷达屏上是不动的。

运动的物标(包括本船)按照它对地的速度和航向航行;

雷达屏上显示的所有的物标相对与大地的位置变化。

比较及应用:

在狭水道导航时用对地稳定真运动显示比较直观方便;在进行雷达标绘、计算及判断碰撞危险、采取避碰措施时用对水稳定真运动比较方便、准确

3.1 雷达最大探测距离及其影响因素

在标准大气折射条件下,考虑到物标的高度,船用雷达的最大探测距离为:

H1 雷达天线高度H2 物标高度

3.2 雷达最大作用距离及其影响因素

影响因素:(1)雷达技术参数:

①rmax与Pt的四次方根成正比:加大发射机的发射功率,雷达最大作用距离增加,但不显著。

②rmax与Prmin的四次方根成反比:减小接收机的门限功率,雷达最大作用距离增加,但不显著

③rmax与GA和λ的平方根成正比:天线增益和工作波长对雷达的最大作用距离影响较大。

(2)物标反射性能:

物标反射雷达波性能的强弱显然影响雷达的最大作用距离,一般可用物标有效散射面积来表示。

①物标几何尺寸大小的影响:物标的尺寸越大,雷达波束照射到的面积越大,回波越强。

②物标形状、表面结构即入射波方向的影响

③物标材料的影响

④工作波长的影响3cm雷达的雨雪干扰比10cm雷达强很多。

(3)海面镜面反射的影响

(4)海浪干杂波扰的影响

海浪干扰杂波的特点:①离本船越近,海浪反射越强;随着距离增加,海浪反射强度呈指数规律迅速减弱;②海浪回波在雷达荧光屏上显示为扫描中心周围一片不稳定的鱼鳞状亮斑;③海浪回波强度与风向有关,本船上风舷的海浪杂波强,显示距离远;下风舷则弱,显示距离近;④大风浪时,海浪回波密集而变成分布在扫描中心周围的辉亮实体;若有幅度较大的涌浪,可见一条条回波带。

雷达技术参数与海浪回波的关系:

①工作波长:3cm雷达受海浪影响比10cm雷达要大近10倍;

②波束入射角:天线垂直波束越宽或天线高度越高,雷达波束对海浪的入射角越大,海浪回波越强;

③雷达波的极化类型:水平极化天线比垂直极化减少海浪发射1/4~1/10;

④脉冲宽度和水平波束宽度:两者宽度越宽时,海浪反射面积大,则海浪回波越强。

3.3 雷达最小作用距离及其影响因素

雷达盲区:在雷达最小作用距离以内的区域

结论:①雷达天线越低,垂直波束越宽,则rmin2越小,雷达探测近距离的性能越好。②一般取rmin=max{rmin2,rmin2}

3.4 雷达距离分辨力及其影响因素

影响因素:发射脉冲宽度、接收机通频带及屏幕光点尺寸。

.2 提高雷达距离分辨力的措施(1)使用窄脉冲;(2)使用宽频带接收机;(3)使用较大屏幕的显像管;(4)聚焦良好;(5)使用近量程观测。

IMO关于船用雷达性能标准中距离分辨力的规定:用2nmile量程或更小量程,在量程50%~100%的距离范围内,观测两个同方位的相邻小物标,它们能分开显示的最小间距应不大于50m。

3.5 雷达方位分辨力及其影响因素

影响因素:天线水平波束宽度、光点角尺寸、回波在屏幕扫描线上所处的位置。

①天线水平波束宽度造成物标回波“角向肥大”;

②屏幕光点角尺寸造成物标回波边缘扩大

光点角尺寸与其在扫描线上的位置有关

2 提高雷达方位分辨力的措施

(1)减小天线水平波束宽度;(2)良好聚焦,减小光点直径尺寸;

(3)正确使用量程,尽可能使观测的回波显示在1/2~2/3L区域(太靠近屏幕边缘不好);

(4)适当降低亮度,增益,以减小回波亮点尺寸。

IMO关于船用雷达性能标准中方位分辨力的规定:用1.5nmile量程2nmile量程时,在量程50%~100%的距离范围内,观测两个等距离的相邻点物标,它们能分开显示的最小方位间隔应不大于2.5°。

3.6 雷达测距精度及其影响因素

造成雷达测距误差的因素

(1)同步误差

原因:发射机电路及波导系统对发射脉冲的延时作用,造成扫描起始时刻超前于天线口辐射的时刻。

特点:使得显示屏上的物标距离比天线口到物标的实际距离要大,形成固定的测距误差。

解决方法:调整延时线抽头的位置,使扫描起始时刻等于发射机发射时刻。(2)距标测距误差

原因:电路产生固定距标圈和活动距标圈的误差。

特点:固定距标误差为所用量程的0.25%以内,活动距标误差为所用量程的1%~1.5%以内。

解决方法:使用固定距标校准活动距标;在测量时,将显示屏亮度调到最小限度,以免距标过亮。

(3)扫描锯齿波的非线性

原因:扫描锯齿波是非线性上升的。

特点:显示屏上出现的固定距标圈之间的间隔是不等的,人眼在测量物标回波时,产生较大内插误差。

解决方法:改进电路,使得扫描锯齿波尽量理想化。

(4)光点重合不准导致的误差

原因:雷达荧光屏的光点具有一定的尺寸;“径向肥大”和“角向肥大”的

作用;距标圈也存在边缘增大的现象。

特点:回波的边缘并不是物标的边缘

解决方法:测量物标时,使用活动距标圈的内缘与回波影像的的内缘相切,进行准确重合,才能得到准确的距离读数。

IMO关于“雷达性能标准”中,利用固定距标圈和活动距标圈测量物标距离的误差不能超过量程最大距离的1.5%或者70m中较大的一个值。

(5)脉冲宽度造成回波图像外测扩大引起的测距误差

原因:脉冲宽度造成雷达回波图像外测扩大c2τ/2。

特点:雷达回波图像固有的失真。

解决方法:测量物标时,不选用回波的外测边缘测距,并尽可能使用短脉冲工作状态。

(6)物标回波闪烁引起的误差

原因:本船和物标的摇摆及相对运动,造成雷达波束照射物标的部位发生变化,引起物标回波的反射中心不稳而存在物标回波的闪烁现象。

解决方法:测量物标时,掌握运动态势,把握时机

(7)雷达天线高度引起的误差

原因:现象雷达测定的距离是天线至物标的距离,而不是船舷至物标的水平距离。

特点:天线越高,影响越大;物标越远,影响越小。

减小雷达测距误差的措施

(1)准确调节显示器控制面板上的控钮,使回波饱满清晰;

(2)选择合适的量程,使得所测量的物标回波处于1/2~2/3量程处;

(3)定期将活动距标与固定距标进行对比、校正;

(4)活动距标应与物标回波准确重合,使距标圈的内缘与回波前沿(内缘)相切;

(5)尽可能选用短脉冲发射工作状态,减少回波外测扩大效应。

3.7 雷达测方位精度及其影响因素

造成雷达测方位误差的因素:

(1)方位同步系统误差

原因:天线方位的角数据传递有误差,使得扫描线与天线不能同步旋转。(2)船首线误差

原因:船首线出现的时间与天线波束轴向扫过船首的时间不一致。在“Head-up”显示方式中,测量物标回波的相对方位出现误差;在“North-up”显示方式中,存在陀螺罗经引入的误差,使得船首线指示的航向角不准。

(3)中心偏差

原因:扫描中心未调到与荧光屏的几何中心重合,使得在利用EBL测物标方位时,从固定方位刻度圈上测读的舷角不等于物标的实际舷角。

(4)水平波束宽度及光点尺寸造成的“角向肥大”误差

原因:天线水平波束宽度及光点角尺寸分别产生回波图像“角向肥大”(方位扩大效应),引起回波图像左右两侧边缘各扩大了:

(5)天线波束主瓣轴向偏移角不稳定引起的误差

原因:旋转隙缝波导天线波束主瓣轴偏离天线窗口法线方向越3°~5°,在经过安装时的校准后,还会随着雷达工作频率的漂移而改变,此误差不能完全消除

6)天线波束宽度及波束形状不对称引起的误差

原因:雷达在测量点状物标时,通常以回波中心方位作为物标方位,若雷达波束不对称,则回波的中心位置将发生畸变,并随回波的强度而变化。

(7)方位测量设备的误差

原因:雷达的方位刻度圈、机械方位标尺或EBL的产生均存在误差,从而导致测方位误差。

(8)本船倾斜或摇摆导致的误差

原因:误差当本船倾斜或摇摆时,雷达天线旋转面随之倾斜,从而使得天线扫过的物标方位角与实际物标水平面上的方位角有误差

(9)本船倾斜或摇摆导致的误差

(10)人为测读误差

原因:读数内插误差;视线未垂直荧光屏面引起的视觉误差;量程选择不当;回波未调整清晰等。

减小雷达测方位误差的措施:

(1)正确调节显示器控钮,使回波饱满清晰;

(2)选择合适的量程,使得所测量的物标回波处于1/2~2/3量程处;选择图像稳定的显示方式。

(3)调准中心,减小中心偏差;视线垂直与荧光屏面观测读数,减小视觉误差;

(4)检查船首线是否在正确位置上,校核航向值;

(5)使用EBL测物标时,应使其和物标回波边缘进行“同侧外缘”重合,消除光点扩大效应,同时修正天线水平波束宽度的扩大效应。

(6)船舶倾斜时,伺机测定物标。

3.7 雷达测方位精度及其影响因素

1 工作波长

(1)工作波长λ与最大作用距离的关系

①正常天气观测时,10cm雷达的最大作用距离稍大于3cm雷达;

②雨雪天气观测时,10cm雷达的最大作用距离比3cm雷达大得多;(2)工作波长λ与距离分辨力、测距精度的关系

3cm雷达在距离分辨力和测距精度上比10cm雷达好。

(3)工作波长λ与方位分辨力、测方位精度的关系

同样的天线尺寸,工作波长λ越短,天线水平波束宽度越窄,则方位分辨力、测方位精度越高

(4)工作波长λ与抗杂波干扰能力的关系

雨雪天气和海浪较大时,10cm雷达的性能要比3cm雷达好得多;

总结:正常天气时,3cm雷达使用性能优于10cm雷达;雨雪天气和大风浪时,则相反。

2 脉冲宽度

(1)与最大作用距离的关系

脉冲宽度越大,雷达的最大作用距离越大。

(2)与最小作用距离的关系

脉冲宽度τ越小,雷达的最小作用距离越小,近距离测量物标性能好。(3)与距离分辨力的关系

脉冲宽度τ越小,则距离分辨力越高。

(4)与测距精度的关系

脉冲宽度τ越小,雷达回波图像外测的径向扩大效应越小,图像失真小,有利于提高测距精度。

(5)与抗杂波干扰性能的关系

脉冲宽度τ越小,则同时照射在雨雪及海浪上的时间缩短,产生的干扰回波较弱,有利于雷达抗雨雪和海浪干扰的能力。

总结:除最大作用距离性能要求脉冲宽度τ大之外,其它各性能均要求脉冲宽度τ小。

为了兼顾远近量程的不同使用性能,通常:

①远量程时使用宽脉冲,以保证最大作用距离;

②近量程时使用窄脉冲,以满足最小作用距离、距离分辨力、测距精度及抗杂波干扰性能的要求。

3 脉冲重复频率F

(1)与量程的关系

远量程使用宽脉冲,低脉冲重复频率;

近量程使用窄脉冲,高脉冲重复频率。

(2)与最大作用距离的关系

脉冲重复频率越高,则天线扫过物标时,照射物标的次数多,即物标回波脉冲积累次数多,时荧光屏上的回波点较亮,容易识别,有利于提高雷达的最大作用距离。

4 发射峰值功率Pt

(1)与最大作用距离的关系

由雷达方程可知:雷达的最大作用距离于发射峰值功率的四次方根成正比,Pt越高,则最大作用距离越大,但增加不明显。

(2)与抗杂波干扰性能的关系

发射峰值功率Pt越高,则海浪、雨雪杂波及天线旁瓣干扰也随之增大。

5 天线波束宽度

(1)天线水平波束宽度

①天线水平波束宽度越小,则天线增益越大,则雷达的最大作用距离越大;

②天线水平波束宽度越小,则方位分辨力越高;

③天线水平波束宽度越小,则测方位精度越高;

④天线水平波束宽度越小,则杂波干扰强度小,雷达抑制杂波干扰性能越好总结:天线的水平波束宽度越小越好

(2)天线垂直波束宽度

①天线垂直波束宽度越小,天线辐射能量越集中,则天线增益越大,雷达的最大作用距离也越大;

②天线垂直波束宽度越小,则雷达抑制雨雪、海浪等杂波干扰性能越好。

③天线垂直波束宽度越大,则雷达最小作用距离越小,即雷达近距离探测物标性能越好;

总结:天线的垂直波束宽度应折衷考虑。

6 天线转速NA

总结:船用雷达天线采用双速天线,平时用常规低速,海浪干扰严重时用高速旋转的天线。

7 天线极化形式

总结:船用雷达天线在正常天气时,采用“水平极化”方式,在下雨天时,采用“圆极化”方式。

8 接收机灵敏度Prmin

由雷达方程可知:接收机的门限功率越小,其灵敏度越高,则雷达的最大作用距离越远。

9 接收机同频带Δf

接收机的通频带越窄,Prmin越小,其灵敏度越高,则雷达的最大作用距离越远。

接收机的通频带不够宽时,回波脉冲经过接收机的放大电路后将造成输出波形前后沿失真,导致雷达距离分辨力和测距精度降低,图像不清晰。

总结:近量程时,采用窄脉冲,接收机通频带较宽;远量程时,采用宽脉冲,接收机通频带较窄。

ARPA

1 预处理的内容、必要性

(1)预处理的内容:

雷达原始视频信号的杂波处理;

距离、方位信号的量化处理;

陀螺罗经航向信号数字化处理

计程仪航速信号的数字化处理

(2)预处理的必要性:

消除海浪、雨雪及同频雷达干扰及噪声杂波;

电子计算机的容量和处理能力有限;

模拟传感信号经过量化或数字化处理后,可变换成计算机可以接受的数字信号。

.2 雷达信号的预处理

(1)雷达回波原始视频信号的杂波处理

恒虚警处理(CFAR Processing)

CFAR-Constant False Alarm Rate,即恒虚警率,表示单位时间内出现的虚警数是一定的。

CFAR处理:先取出带杂波干扰的原始视频信号积分均值,然后再将它与原始视频信号相减,以去除杂波,输出有用的目标回波。杂波干扰的处理具有自适应的性质,抑制效果将更显著。

解相关处理(Solve Correlation Processing)

如抗同频雷达干扰。

(2)量化处理

方位量化

方位量化是对天线波束的角位置进行量化,即将360°等分成若干方位量化单元,并用一组由“0”、“1”组成的代码表示不同的方位

距离量化

距离量化,即时间量化,以雷达触发脉冲前沿为起点,将距离扫描全程对应的时间等分成若干时间量化单元。

原始视频信号的数字化

将雷达接收机输出的原始视频信号经过幅度分层和时间量化而变换成数字视频信号。

(3)罗经及计程仪信号的数字化处理

罗经信号的数字化

由陀螺罗经提供的本船航向模拟信号,用同步机或步进电机送至ARPA的预处理电路,将罗航向信号转换成数字航向信息,所用转换器件及远离与天线角位置信号量化处理相同。

计程仪信号的数字化

数据折合率符合IMO要求,即200pulse/nmile。

7.2 目标自动检测、录取和跟踪

MOON规则:在N次探测中,若某量化单位内累积出现的回波“1”的次数》M,则判断该单位内发现了目标,于是判定器输出“1”;否则,判断为无目标,判定器输出为“0”。N大,目标不易丢失,M大,不易发生误将干扰为目标的错误,检测可靠性高。

2 目标录取的方法及特点

定义:跟踪目标的选择及其跟踪的开始,称为ARPA的“目标录取”。

目标录取的任务:目标的距离、方位数据;目标的属性、尺度数据。

1)人工录取:

操作方法:用手摇(或推动)操纵杆或跟踪球,控制显示器电路产生的录取标志在荧光屏上的位置,当套在欲录取的目标回波亮点上时,按下录取开关,则将录取标志的坐标数据作为物标的初始位置并输入计算机中,完成目标录取任务。优点:用可以按照危险程度作出先后录取的方案,一般先录取船首向、右舷、离本船近的相遇船,录取目的性明确;运用观测经验,较容易在干扰背景中识别和录取目标。

缺点:录取操作过程费时间、速度慢,在多目标复杂情况下容易措手不及;如果观测疏忽,可能漏掉危险目标;目标的运动态势及危险程度随时变化,需重复进行录取操作和连续观测,值班驾驶员负担较重。

(2)自动录取:

从发现目标到各个目标位置数据送入计算机的整个录取过程由机器自动完成,仅一些辅助控制由操作者介入。

操作方法:

设置优先区

设置限制区:限制区是ARPA拒绝录取区

设置警戒区

优点:录取速度快,可应付多目标态势。

缺点:

可能会造成虚假录取,误将干扰、陆地或岛屿当作目标录取;

可能会漏掉在杂波干扰区外的弱小目标;

ARPA的优先录取准则较简单,难以适应多目标且运动态势复杂的场合,造成漏掉危险度较大的目标而酿成危险局面。

3 目标的自动跟踪

定义:观测目标位置的相继变化以建立其运动的方程,称为ARPA的“目标跟踪”。目标跟踪的任务:利用目标运动的相关性,将离散的目标位置(点迹)数据分别连成各目标的航迹,并判明其运动规律。

(1)实现自动跟踪的方法:

航迹外推:对目标未来位置的预测,即预测目标在下一周天线扫到时的位置。

由于雷达测量有误差及目标机动的随机性,航迹外推的结果必然存在误差。为了使外推的均方误差最小和实现外推的可能性,必须对采集的点迹数据进行滤波处理,以实现最佳估计,从而获得最佳预测位置。

航迹相关:对新点迹和已有航迹之间归属关系的判明。

方法:首先判明新点迹是否属于同一目标或者是其他新发现的目标;

其次,在预测位置中心设置一个“跟踪窗”或“跟踪波门”,波门尺寸应保证下一次目标(会波点)检测时,预测位置和实测位置修正后都处于该波门内,以保证连续跟踪;

第三,凡是进入波门的信号就认为是相关的,判定为同一目标的新点迹。(2)跟踪波门

波门尺寸对跟踪性能的影响

初始录取波门应足够大,以便录取成功并建立起航迹;但录取波门不可太大,否则降低录取分辨力。

建立航迹后跟踪波门尺寸要小,有利于提高跟踪精度和分辨力;

为了适应不同尺寸的目标、目标机动及跟踪误差,波门尺寸大小应能自适应调整。

ARPA采取的自动跟踪方法

波门尺寸按照目标尺寸自动调节:根据自动检测到的目标几何面积设置波门尺寸大小,使目标面积占波门面积的75%,其余25%是留有余地。

设置大、中、小三种波门尺寸,在跟踪过程中自适应调整:初始录取目标时用大波门,初始建立跟踪后用中波门;进入稳定跟踪后,用小波门。若用大波门连续5次天线扫描,目标都未能进入大波门,则判定目标丢失。

(3)自动跟踪的局限性

目标丢失

目标回波信号变弱;

杂波干扰;

目标大幅度快速机动

雷达测量或处理出现特大误差

目标进入雷达阴影区或被大目标遮挡

误跟踪

目标调换(发生目标调换的5种情形和技术措施)

3 危险判断与报警

(1)利用DCPA、TCPA进行危险判断与报警

DCPA>MIN DCPA TCPA>MIN TCPA:目标船安全;

DCPA≤MIN DCPA TCPA>MIN TCPA:目标船危险,时间有余;

DCPA≤MIN DCPA TCPA

(2)利用警戒环进行危险判断与报警

(3)利用PPC、PAD进行危险判断与报警

(4)跟踪目标丢失的危险判断与报警

相对矢量:其起点表示目标现位置;方向表示相对运动航向;长度表示对应矢量时间的预测航程;矢量末端表示对应矢量时间的预测到达位置。

真矢量:其起点表示目标现位置;方向表示真运动航向;长度表示对应矢量时间的预测航程;矢量末端表示对应矢量时间的预测到达位置。

4矢量显示模式

相对矢量(Relative Vector)显示模式

特点:本船无相对矢量,同速同向目标不显示R.V;

固定或运动目标显示R.V;

从本船到目标R.V延长线的垂足为CPA,目标航行至CPA的时间为TCPA。

适用场合:R.V显示模式可评估目标逼近本船的速度,估算CPA、TCPA,评估相遇船与本船有无碰撞危险。

真矢量(True Vector)显示模式

特点:本船与运动目标都显示T.V,其长度比为速度比,可形成0、1、2个PPC;

固定没有T.V;如果固定目标显示T.V则是因为受到风、流的影响而产生的,此时为对水T.M;

若目标的CPA=0,则该目标T.V延长线与本船航向线的交点为PPC;

若本船和目标的T.V矢端重叠或离得很近,表示有碰撞危险。

根据目标的T.V和真航迹可判断目标是否机动。

.1 ARPA的优点

(1)ARPA具有预处理和自动检测功能,可在噪声干扰环境中较可靠识别目标;(2)ARPA能自动、连续提供必要的航行及避碰信息数据,并能连续、正确、迅速地评估和预测航行态势。

(3)ARPA有多种功能,正确使用有助于解析雷达信息,确保船舶航行安全,减少碰撞事故和海上环境污染。

(4)ARPA工作自动化程度高,可减轻驾驶员的辛劳,集中精力操船和避让,确保航行安全。

3 ARPA的局限性

(1)ARPA传感器的局限性

(2)自动检测的局限性

(3)录取的局限性

(4)跟踪局限性(存在误跟踪和跟踪过程目标丢失率高)

(5)报警的局限性(需警和漏警现象)

(6)安全判据的局限性

(7)ARPA用于狭水道航行的局限性

一、距离避险线法

海员通常做法:

船舶再沿岸航行时,为了避开危险障碍物,确保船舶安全,首先在海图上确定距离避险线(由危险点的安全距离圈的切线组成),船舶航行时保持在距离避险线的外侧;其次用方位标尺线协助:将方位标尺指向航向,利用活动距标圈定出与避险线距离相对应的一根平行方位标尺线(避险方位标尺线),船舶航行过程中,随时保持使危险物标的回波处于避险方位标尺线的外侧。

二、方位避险线法

海员通常做法:

当船舶的航向和岸线或多个危险物连线的方向近于平行时,使用方位避险线来表明危险物标的方位。

首先在海图上求得物标的危险方位,在显示器上将方位标尺置于该危险方位(真方位)上;其次,在航行过程中,应将物标回波始终放在方位避险线的外侧,船首线始终放在方位避险线的安全一恻。

4.2 无线电测向原理

2 天线的方向性

(1)天线方向性图:是天线中产生感应电动势的相对振幅与电波传播方向的几何关系图。

(2)垂直天线的方向性

特点:垂直天线所产生的感应电动势与电场强度E和天线的有效高度h成正比,与电波的来向无关。

垂直天线的方向性图表示为一个圆形,这种天线称为不定向天线或无方向性天线。

3)环状天线的方向性

特点:环状天线所产生的感应电动势不仅与电场强度和环状天线的有效高度成正比,而且与电波的来向有关,与环状天线平面和电波来向的夹角的余弦成正比。

当电波来向与环状天线平面平行时,感应电动势最大;

当电波来向与环状天线平面垂直时,感应电动势最小或为零;此时,利用无线电测向仪监听到的信号声音最小或监听不到信号的声音,称为“哑点”。

环状天线的方向性图为一个“∞”字形图。

用途

如果利用环状天线感应电动势的最大值来确定电波传播方向,则无线电信标的位置一定是处于环状天线面的延长方向上。

如果利用环状天线感应电动势的最小值(哑点)来确定电波传播方向,则无线电信标的位置一定是处于环状天线面的垂直方向上。

(4)复合天线的方向性

复合天线的方向性:是垂直天线和环状天线组合而成。用以消除环状天线方向特性的双值性。设:垂直天线和环状天线产生的感应电动势的振幅相等并且相位相同,则复合天线的感应电动势为:复合天线的方向性图为一个心形图。

无线电测向仪自差

1 无线电测向仪自差产生的原因

(1)无线电测向仪附近的导体在高频电磁场中感应电动势,产生高频电流,在它周围产生二次感应磁场,从而作用在无线电测向仪的环状天线上。

(2)无线电测向仪自差

2 无线电测向仪自差生的测定

(1)目测法(此法多采用)

选择电台:肉眼可以看到天线的电台或辅助船(小艇)携带电台;

被测无线电信标固定,本船旋转,信标舷角不断变化,每隔10°~15°同时测出p和q,求出不同舷角下的无线电测向仪自差。

大船抛锚,小艇携带电台绕大船旋转。

(2)方位角法

当远离无线电信标或能见度条件限制时使用。

选择电台:在海图上标示出电台天线的位置;

本船缓慢旋转,每隔10°~15°对该电台测出无线电舷角qrr,同时记录船舶的位置与航向(TC)。

在海图上量取船舶至无线电台的真方位(TB),计算船舶与电台的真舷角p (p=TB-TC);

求出自差:f=p-qrr。

(3)利用其他无线电导航仪器测定法

利用GPS卫星导航仪、罗兰C接收机等的计算功能。

无线电测向定位

(1)准备工作:准备海图资料;选取无线电信标;本船收发机及收音机天线绝缘。

(2)测向定位步骤:

查阅海图:选择无线电信标(注意方位线交角);

测定无线电信标的方位,读取无线电舷角和船首向;

修正:

根据真航向TC将无线电舷角换算为无线电真方位RTB

大圆改正量修正:查大圆改正量表或公式计算

将无线电真方位(大圆方位)换算为恒向线方位RLB

在墨卡托海图上,从无线电信标按恒向线方位的反方向(RLB±180°)画出位置线;

若同时测得两条或三条无线电信标的位置线,可得船位三角形,即为无线电测向船位。

3 测角器的工作原理

测角器是用于测定无线电信标方位角度(舷角或方位角)的装置,由正交的固定环状天线与测角器组成的测角系统

测角器是由两个相互垂直的固定场线圈和一个可绕中心轴转动的寻向线圈组成。两个固定场线圈分别与对应的环状天线相连接。

GPS卫星导航系统(概况)

导航星全球定位系统(Navistar Global Positioning System)于1973年开始研制,1995年10越投入全部运作,历时22年。

组成:工作卫星21颗,备用卫星3颗,共24颗;

轨道:20183km,倾角55°,24颗卫星分布在6个轨

道平面内;运行周期717.98min(12h);

发射频率:1575.42MHz和1227.60MHz;

定位精度:1m ~30m ~100m;

运行规律:全球任何地方,在地平线7.5°以上至少可以看到4颗卫星。能提供全球、全天候、高精度、连续、实时的三维定位与导航。

GPS卫星导航定位原理

GPS是一种测距定位系统,利用测定高轨道卫星信号的传播延时(电波在空间传播的时间)和多普勒频移,计算出卫星与用户之间的距离、距离变化率,以精确地测定用户位置(三维)、速度(三维)和时间参数。

测定出用户到3颗卫星的距离可以得到以卫星为球心,以卫星到用户的距离为半径的三个球面,其交点就是用户的三维空间位置。

GPS卫星导航仪接收其视界内一组卫星信号,从中取得卫星星历、时钟校正参量、大气校正参量等数据,并且测量卫星信号的传播延时和多普勒频移。

根据卫星星历计算出卫星发射信号时的位置;

根据卫星信号的传播延时和光速的乘积计算出卫星与用户之间的“距离”;

根据卫星信号的传播延时、光速和多普勒频移计算出用户的三维运行速度。

若用户时钟无偏差,利用3颗卫星可以得到以卫星为球心,以卫星到用户的距离为半径的3个球面,其交点就是用户的三维空间位置。

若用户时钟不精确,需要利用第4颗卫星计算出用户的时钟偏差。

“伪距离”的概念

由于用户卫星导航仪时钟、卫星钟、电离层以及对流层引起的传播延迟产生的误差,使得卫星导航仪测得的不是用户到卫星的真距离,故称为“伪距离”。

误差的修正

修正卫星时钟偏差:从卫星的导航信号中提取时钟校正参量;

修正对流层折射误差:从卫星的导航信号中提取大气修正参量;

修正电离层折射误差:利用卫星发射的双频信号(1575.42MHz和1227.60MHz)。

GPS是无源式卫星导航系统,用户不能发射无线电信号,只处理接收到的GPS 信号进行导航定

初中物理第十二章知识点总结

第十二章:简单机械知识点: 一、杠杆: (一)、定义:在力的作用下绕着固定点转动的硬棒叫杠杆。 说明:①杠杆可直可曲,形状任意。 (二)、五要素──组成杠杆示意图。 ①支点:杠杆绕着转动的点。用字母O表示。 ②动力:使杠杆转动的力。用字母F 1 表示。 ③阻力:阻碍杠杆转动的力。用字母F 2 表示。 ④动力臂:从支点到动力作用线的距离。用字母L 1 表示。⑤阻力臂:从支点到阻力作用线的距 离。用字母L 2 表示。 (三)、画力臂方法:一找支点、二画线、三连距离、四标签。 ⑴找支点O;⑵画力的作用线(虚线);⑶画力臂(过支点垂直力的作用线作垂线);⑷标力臂(四)、研究杠杆的平衡条件: (1)、杠杆平衡是指:杠杆静止。 (2)、实验前:应调节杠杆两端的螺母,使杠杆在水平位置平衡。这样做的目的是:可以方便的从杠杆上量出力臂。 结论:杠杆的平衡条件是:动力×动力臂=阻力×阻力臂。写成公式F 1L 1 =F 2 L 2 也可写成:F 1 /F 2 =L 2 /L 1 。 注意:解决杠杆平衡时动力最小问题:此类问题中阻力×阻力臂为一定值,要使动力最小,必须使动力臂最大, 五、应用: 名称结构特征特点应用举例 省力杠杆动力臂大于阻力省力、费距离 撬棒、铡刀、动滑轮、轮轴、羊角锤、 钢丝钳、手推车、花枝剪刀 费力杠杆动力臂小于阻力费力、省距离 缝纫机踏板、起重臂、人的前臂、理发剪刀、 钓鱼杆 等臂 杠杆 动力臂等于阻力不省力不费力天平,定滑轮 说明:应根据实际来选择杠杆,当需要较大的力才能解决问题时,应选择省力杠杆,当为了使

用方便,省距离时,应选费力杠杆。 六、滑轮:1.定滑轮: ①定义:中间的轴固定不动的滑轮。 ②实质:定滑轮的实质是:等臂杠杆。 ③特点:使用定滑轮不能省力但是能改变动力的方向。 ④对理想的定滑轮(不计轮轴间摩擦)F=G 。 绳子自由端移动距离S F (或速度v F )=重物移动的距离S G (或速度v G ) 2.动滑轮: ①定义:和重物一起移动的滑轮。(可上下移动,也可左右移动) ②实质:动滑轮的实质是:动力臂为阻力臂2倍的省力杠杆。 ③特点:使用动滑轮能省一半的力,但不能改变动力的方向。 ④理想的动滑轮(不计轴间摩擦和动滑轮重力)则:F=21G 只忽略轮轴间的摩擦则,拉力F=2 1 (G 物 +G 动)绳子自由端移动距离S F (或v F )=2倍的重物移动的距离S G (或v G ) 3.滑轮组 ①定义:定滑轮、动滑轮组合成滑轮组。 ②特点:使用滑轮组既能省力又能改变动力的方向。 ③理想的滑轮组(不计轮轴间的摩擦和动滑轮的重力)拉力F= n 1 G 。只忽略轮轴间的摩擦,则拉力F=n 1 (G 物+G 动)。绳子自由端移动距离S F (或v F )=n 倍的重物移动的距离S G (或v G )。 ④组装滑轮组方法:首先根据公式n=(G 物+G 动)/F 求出绳子的股数。然后根据“奇动偶定”的 原则。结合题目的具体要求组装滑轮。 七、机械效率: 1、有用功: (1)定义:对人们有用的功。 公式:W 有用=Gh (提升重物)=W 总-W 额=ηW 总 斜面:W 有用= Gh 2、额外功: (1)定义:并非我们需要但又不得不做的功

第一章知识点总结

第一章走进细胞 考点1 细胞是最基本的生命系统 1.两条重要的结论: (1)细胞是生物体结构和功能的基本单位 (2)生命活动离不开细胞(说明了细胞的重要性) 2.生命系统的结构层次 细胞—组织—器官—系统—个体—种群—群落—生态系统—生物圈(从小到大共9个层次) 总结 1.病毒没有细胞结构,必须寄生在活细胞中才能繁殖生存。(病毒无独立性) 2.“细胞是生物体结构和功能的基本单位”这个结论是[正确的] ,但是“一切生物体都是由细胞构成的”这句话是[错误的] ,因为病毒是没有细胞结构的 3.核酸、蛋白质不是生物,但它们是有生物活性的物质 4.不是每种生物都有9个结构层次,一般来说生物越高级,结构层次越多,越复杂。具体问题要具体分析5.高等植物的结构层次中,没有“系统”这个层次。 6.对于单细胞生物,如细菌,一般可以把它归入“细胞”层次,也可以归入“个体”层次 7.最基本的生命系统是细胞,最大的生命系统是生物圈 8.导管、木纤维是死细胞;筛管是活细胞 9.种群,强调所有同一种生物;群落,强调某特定区域的所有生物,包括所有的动物、植物、微生物;生态系统,强调所有生物+无机环境 考点2原核细胞与真核细胞 1.科学家根据细胞内有无以核膜为界限的细胞核 ............,把细胞分为真核细胞 ....和原核细胞 ....两大类 2.原核细胞与真核细胞的区别 类别原核细胞真核细胞 细胞大小较小较大 细胞核 无成形的细胞核,无核膜,无核仁, 无染色体(DNA部和蛋白质结合) 有成形的真正的细胞核,有核膜、核 仁和染色体 细胞质有核糖体 有核糖体、线粒体等,植物细胞还有叶绿体和液泡等 生物类群细菌、蓝藻真菌、植物、动物原核细胞与真核细胞的共性:都有细胞膜,细胞质,核糖体。遗传物质都是DNA. 3蓝藻

脉冲多普勒雷达测速仿真汇总(可编辑修改word版)

任务书 雷达进行PD测速主要是利用了目标回波中携带的多普勒信息,在频域实现目标和杂波的分离,它可以把位于特定距离上、具有特定多普勒频移的目标回波检测出来,而把其他的杂波和干扰滤除。因此要求雷达必须具备很强的抑制杂波的能力,能在较强的杂波背景中分辨出运动目标的回波。 如今,不管是在军用还是民用上,雷达都在发挥着它很早重要的作用,与早期雷达采用距离微分方法测速相比,基于脉冲多普勒理论的雷达测速技术具有实时性好、精度高等优点。特别是现代相控阵技术在雷达领域的应用,实现了波束的无惯性扫描和工作方式的快速切换,更便于应用脉冲多普勒技术进行雷达测速。 本篇课程设计目的在于介绍脉冲多普勒雷达测速的原理,并对这种技术进行介绍和仿真。

摘要 脉冲多普勒(PD)雷达以其卓越的杂波抑制性能受到世人瞩目。现代飞行器性能的改进和导航手段的加强,使其能在低空和超低空飞行,因此防御低空入侵己成重要问题,由此要求机载雷达,包括预警机雷达和机载火控雷达具有下视能力,即要求能在强的地杂波背景中发现微弱的目标信号,所以现代的预警机雷达和机载火控雷达皆采用PD体制。脉冲多普勒雷达包含了连续波雷达和脉冲雷达两方面的优点,它具有较高的速度分辨能力,从而可以更有效地解决抑制极强的地杂波干扰问题;此外,脉冲多普勒雷达能够同时敏感地测定距离和速度信息;能够利用多普勒处理技术实现高分辨率的合成孔径图像;而且亦具有良好的抗消极干扰能力和抗积极干扰能力。 本文介绍了脉冲多普勒雷达测速的原理,信号处理。并用matlab简单的仿真了 雷达系统对信号的处理. 关键词:脉冲多普勒雷达恒虚警脉冲压缩线性调频 Abstact Pulse Doppler (PD) radar is famous for it`s outsdanding clutter suppression.Modern aircraft`s function and GPS has been strengthen.now.it makes the aircraft can fly lower and lower.So.nowadays,Defensing.Low altitude invasion has been an important problem.so we require airborne radar. Early warning radar and airborne fire control radar have the ability to look down.That is to say.The radar is be required the ability to find Weak target signal in the strong Groung clutter.So .The modern airborne early warning radar and airborne fire control radar use the PD system.Pulse Doppler (PD) radar concludes two adervantages of Continuous wave radar and impulse radar.It has a higher velocity resolution.thus it can effectively .soveing the problem of strong ground clutter.what`s more.Pulse Dppler (PD) radar can Sensitive text the Distance and speed on the same time.Itcan use Doppler processing technology to realise Synthetic aperture images with high resolution. This article sinply introduced principle of pulse Doppler radar and signal

新人教版八年级下册物理第12章知识点全面总结

12简单机械 杠杆 知识点一、杠杆 1、什么是杠杆? 一根硬棒,在力的作用下能绕着固定点转动,这根硬棒就是杠杆。 说明:①“硬棒”不一定是直棒,只要在外力作用下不变形的物体都可以看成杠杆,杠杆可以是直的也可以是任意形状的。 ①一根硬棒能成为杠杆,应具备两个条件:一是要有力的作用;二是能绕固定点转动。两个条件缺一不可。例如:撬棒在没有使用时就不能成为杠杆。杠杆的形状可以是直的,也可以是弯的,但必须是硬的,固定点可以在杠杆的一端,也可以在杠杆的其他位置。 2、杠杆的五要素: 五要素物理含义 支点杠杆可以绕其转动的点,用“O”表示 动力是杠杆转动的力,用“F1”表示 阻力阻碍杠杆转动的力,用“F2”表示 动力臂从支点O到动力F1作用线的距离,用“l1”表示 阻力臂从支点O到阻力F2作用线的距离,用“l2”表示 ①杠杆的支点一定在杠杆上,可以在杠杆的一端,也可以在杠杆的其它位置。同一杠杆,使用方法不同,支点的位置也不可能不同。在杠杆转动时,支点是相对固定的。 ①动力和阻力是相对而言的,不论是动力还是阻力,杠杆都是受力物体,跟杠杆发生相互作用的物体都是施力物体。动力和阻力的作用效果正好相反。 ①动力作用点:动力在杠杆上的作用点。 ①阻力作用点:阻力在杠杆上的作用点。 ①力臂是支点到力的作用线的距离,不是支点到力 的作用点的距离。某个力作用在杠杆上,若作用点不变,

l l l 力的方向改变,力臂一般要改变。 ①力臂有时在杠杆上,有时不在杠杆上,如果力的作用线恰好通过支点,则力臂为零。 ①力臂的表示与画法:过支点做力的作用线的垂线 ①力臂的三种表 示方式:选择哪种 方式,根 据个人习惯而定。 4、力臂的画法: 第一步:先确定支点,即杠杆绕着转动的固定点,用字母“O”表示。 第二步:确定动力和阻力。人的目的是将石头撬起,则人应向下用力,此力即为动力,用“F 1” 表示。这个力F 1的作用效果是使杠杆逆时针转动,阻力的作用效果恰好与动力的作用效果相反,在阻力的作用下杠杆应沿着顺时针方向转动,则阻力的作用效果杠杆应沿着顺时针方向转动,则阻力是石头施加给杠杆的方向向下的压力,用“F 2”表示。 第三步:画出动力臂和阻力臂。将力的作用线正向或反向延长,由支点向力的作用线作垂线,从支点到垂足的距离就是力臂,并标明动力臂与阻力臂的符号“l 1”“l 2”。 知识点二、杠杆的平衡条件 1、杠杆平衡:在力的作用下,如果杠杆处于静止状态或绕支点匀速转动时,我们就可以认为杠杆是平衡了。 2、实验探究:杠杆的平衡条件 实验器材:杠杆和支架、钩码、刻度尺、线。 实验步骤:①调节杠杆两端的螺母,使杠杆在不挂钩码时,保持水平并静止,达到平衡状态。在调节时,如果杠杆的左边下沉,则应将杠杆两端的平衡螺母向右调,如果杠杆的右边下沉,则应将杠杆两端的平衡螺母向左调,简称“左沉右调,右沉左调”。 ②如图所示,在杠杆两边挂上不同数量的钩码,调节钩码的位置,使杠杆重新在水平位置平衡。这时杠杆两边收到钩码的作用力的大小都等于钩码重力的大小。

雷达气象学考试复习总结.doc

雷达气象学考试复习 1.说明和解释冰雹回波的主要特点( 10 分)。 答:冰雹云回波特征:回波强度特别强(地域、月份、>50dBZ);回波顶高高 (>10km);上升(旋转)气流特别强 ( 也有强下沉气流, ) 。 PPI上,1、有“ V”字形缺口,衰减。2、钩状回波。3、TBSS or辉斑回波。 画图解释。 RHI 上:1、超级单体风暴中的穹窿(BWER,∵上升气流)、回波墙和悬挂回波。2、强回波高度高。3、旁瓣回波。画图解释。4、辉斑回波。5、在回波强中心的下游,有一个伸展达 60-150km 甚至更远的砧状回波。 速度图上可以看到正负速度中心分布在径线的两侧,有螺旋结构。有可能会出现速度模糊。 2.画出均匀西北风的 VAD图像 从 VAD 图像上可以获得环境风速和风向的信息,西北风的风向对应7/4 π(315 °) 如图所示,零速度线是从45°— 225°方位的一条直线(可配图说明)。由此可绘出 VAD图像。 速度 3π/4 π/4 7π/4 方位角 3.解释多普勒频移: 多普勒频移:由于相对运动造成的频率变化 设有一个运动目标相对于雷达的距离为r ,雷达波长为λ。 发射脉冲在雷达和目标之间的往返距离为 2r ,用相位来度量为 2π?2r/ λ。若发射脉冲的初始相位为φ 0,则散射波的相位为φ =φ0+4πr/ λ。

目标物沿径向移动时,相位随时间的变化率(角频率) d 4 dr 4 v r dt dt d 2f D 另一方面,角频率与频率的关系dt 则多普勒频率与目标运动速度的关系fD=2vr/ λ 4.天线方向图:在极坐标中绘出的通过天线水平和垂直面上的能流密度的相对分 布曲线图。天气雷达的天线具有很强的方向性,它所辐射的功率集中在波束所指的方向上。 反映了雷达波束的电磁场强度及其能流密度在空间的分布;曲线上各点与坐标原点的连线长度,代表该方向上相对能流密度大小。 图中能流密度最大方向上的波瓣称为主瓣,侧面的称为旁瓣,相反方向的称为尾瓣。 5.天气雷达新技术: 多基地雷达系统 双偏振天气雷达(双极化) 双多普勒雷达观测阵 组网的多普勒雷达:难点共面显示。 CAPPI 晴空条件下的测风雷达:激光雷达测云、T、 机载多参数测雨雷达: 相控阵雷达 Phase Array Radar :天线, time , 风廓线雷达: 三维雷达回波图象 闪电定位系统 6.雷达气象业务涉及的软、硬件系统及内容: 1气象雷达系统(硬件部分) 2气象雷达系统(软件部分)

人教版数学七年级上册第一章知识点总结

第一章有理数知识点总结 正数:大于的数叫做正数。0 1.概念负数:在正数前面加上负号“—”的数叫做负数。 注:0既不是正数也不是负数,是正数和负数的分界线,是整数,一、正数和负数自然数,有理数。 (不是带“—”号的数都是负数,而是在正数前加“—”的数。) 2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。 有理数:整数和分数统称有理数。 1.概念整数:正整数、0、负整数统称为整数。 分数:正分数、负分数统称分数。 (有限小数与无限循环小数都是有理数。) 注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。π是正数但不是有理数! 2.分类:两种 二、有理数⑴按正、负性质分类:⑵按整数、分数分类: 正有理数正整数正整数 有理数正分数整数0

零有理数负整数 负有理数负整数分数正分数 负分数负分数 3.数集内容了解 1.概念:规定了原点、正方向、单位长度的直线叫做数轴。 三要素:原点、正方向、单位长度 2.对应关系:数轴上的点和有理数是一一对应的。 三、数轴 比较大小:在数轴上,右边的数总比左边的数大。 3.应用 求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。 “—”号)(注意不带“+” 代数:只有符号不同的两个数叫做相反数。 1.概念(0的相反数是0) 几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。 2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之, 若a+b=0,则a与b互为相反数。 四、相反数 两个符号:符号相同是正数,符号不同是负数。 3.多重符号的化简 多个符号:三个或三个以上的符号的化简,看负号的个数,当“—”号的个数是偶数个时,结果取正号 当“—”号的个数是奇数个时,结果取负号 1.概念:乘积为1的两个数互为倒数。 (倒数是它本身的数是±1;0没有倒数) 五、倒数 2.性质若a与b互为倒数,则a·b=1;反之,若a·b=1,则a与b互为倒数。 若a与b互为负倒数,则a·b=-1;反之,若a·b= -1则a与b互为负倒数。

《论语十二章》知识点整理

《论语十二章》知识点整理 一、文学常识 1.《论语》是儒家的经典著作之一,由孔子的弟子及再传弟子编写而成。它以语录体和对话体为主,记录了孔子及其弟子言行,共20篇。 四书:《论语》《大学》、《中庸》、《孟子》五经:《诗经》《尚书》《礼记》《周易》《春秋》 2.孔子,名丘,字仲尼,春秋时期鲁国人,春秋末期的思想家、教育家,儒家思想的创始人。政治上主张“仁政”,“以德服人”,教育上主张“有教无类”“因材施教”,孔子被后世统治者尊为“圣人”,战国时期儒家代表人物,孟子与孔子并称“孔孟”,被联合国称为“世界十大文化名人”之一。 二、生字注音 论(lún)语不亦说(yuè)乎愠(yùn)三省(xǐng)传(chuán)不习乎 逾(yú)矩(jǔ)罔(w?ng )殆(dài)哉(zāi)箪(dān)陋巷(xiàng) 堪(kān)肱(gōng)笃(dǔ)志 三、重点字词解释及翻译 第一章 原文:子曰:“学∕而时习之,不亦∕说乎?有朋∕自远方来,不亦∕乐乎?人不知∕而不愠,不亦∕君子乎?” 1.字词解释:时:按时说:通“悦”,愉快朋:志同道合的人 愠:生气,发怒君子:指道德上有修养的人 2.译文:孔子说:“学习了(知识),然后按一定的时间温习它,不也是很高兴吗?有志同道合的人从远处(到这里)来,不也是很快乐吗?人家不了解我,我却不怨恨,不也是君子吗?” 3. 课文探究:第1句:讲学习方法第2句:讲学习的乐趣第3句:讲个人修养 第二章 原文:曾子曰:“吾日∕三省吾身:为人谋∕而不忠乎?与朋友交∕而不信乎?传∕不习乎?” 1.字词解释:日:每天三省:多次反省。省;自我检查、反省。三:泛指多忠:尽心竭力 信:真诚,诚实传:老师传授的知识 2.译文:曾子说:“我每天多次地反省自己:替别人办事是不是尽心竭力呢?跟朋友往来是不是诚实呢?老 师传授的知识是不是复习过呢?” 3.课文探究:本章强调治学的人重视道德修养 第三章 原文:子曰:“吾十有五∕而志于学,三十∕而立,四十∕而不惑,五十∕而知天命,六十∕而耳顺,七十∕而从心所欲,不逾矩。” 1.字词解释:有:通:“又”,用于零数和整数之间立:独立做事情惑:迷惑、疑惑 逾:越过、超过矩:规范、规范 2.译文:孔子说:“我十五岁的时候立志于做学问;三十岁能够独立做事,自立于世;四十岁能通达事理,不为外物所迷惑;五十岁的时候知道哪些是不能为人力所支配的事情;六十岁时能听得进不同意见;七十岁时能随心所欲,却不会逾越法度规矩。” 3.课文探究:本章是孔子自述他学习和提高修养的过程。 第四章 原文:子曰:“温故∕而知新,可∕以为师矣.” 1.字词解释:故:旧的知识知新:新的理解与体会可以:可以凭借。以:凭借为:做,成为 2.译文:孔子说:“温习学过的知识,从而得到新的体会与理解,可以凭借这成为老师。” 3.课文探究:本章谈学习方法。(强调“温故”,还要能“知新”,新旧知识相融合) 第五章

安防技术员考试总结题

安防技术员考试总结题(2014年) 第一章 1、人防、物防、技防相结合;探测、延迟、反应相协调 2、入侵探测报警系统包含:报警探测器、 传输系统 报警控制器 3入侵探测器按用途和使用场所分为:户内型入侵探测器 户外型入侵探测器 周界入侵探测器 重点物体防盗入侵探测器 4按探测器的警戒范围分为:点控制型:开关式探测器、紧急按钮 线控制型;主动式红外、激光探测器 5常开型探测器正常状态为断开,当探测器被触发时,开关闭合,回路电阻为零,该防区报警 6探测器和报警器的各防区的连接方式不同来分,可以分:四线制、两线制、无线制 四线制:两个接探测器的报警开关输出;两个接供电输出线. 两总线制:需采用总线制探测器,报警每个防区的报警开关信号输出线与供电线是共用的。 红外探测器波长为0.78um-1000um 红外探测器分主动式红外探测器和被动式红外探测器 7、雷达式探测器是利用了微波的多普勒效应,实现了对移动目标的探测,因其工作原理与多普勒雷达相似。 8、常用的雷达式微波探测器的中心频率为10GHz或24GHz. 9、微波探测器的探头不应对准可能会移动的物体。如门帘、窗帘、电风扇等等。 10、当在同一室内需要安装两台以上的微波探测器时易产生交叉干扰,发生误报警。 11主动式红外探测器从发射机到接收机之间的红外光束构成一道人眼看不见的封锁线,当人穿越或阻挡这条红外光束时候,接收机输出的电信号的强度就会发生变法,从而启动报警控制器发出报警信号。 12.被动式红外探测器不需要附加红外辐射光源,本身不向外界发射任何能量,而是由探测器直接探测来自移动目标的红外辐射。因此才有被动式之称。 被动式红外探测器缺点:1.穿透力差,2.不能对准发热体,如电加热器、火炉、暖气空调出风口 13.开关式探测器:磁控开关使用时可将干簧管部件安装在固定的门框或窗框上,而将永久磁铁部件安装在活动的门或窗上。 14.振动探测器有:机械式振动探测器、惯性棒电子式振动探测器、电动式振动探测器、压电晶体振动探测器,电子式全面型振动探测器。 15双技术探测器又称为双鉴探测器或复合式探测器,它是将两种探测技术结合在一起,以“相与”的关系来触发报警,既只有当两种探测器同时或相继在短暂的时间内都探测到目标时候,才发出报警信号。 微波-被红外双技术探测器采用了微波及红外线两种探测技术。 16.玻璃破碎探测器:①声控型单技术玻璃探测器;②声控——振动型双技术玻璃探测器;③次声波-玻璃破碎高频声响 双技术玻璃探测器。

脉冲多普勒雷达

脉冲多普勒雷达(pulse Doppler Radar) 学习笔记 1:PD雷达简介 PD雷达的广泛定义应为:能实现对雷达信号脉冲串频谱单根谱线滤波(频域滤波),具有对目标进行速度分辨能力的雷达 PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。通常工作在一组较高的脉冲频率上,并采用主振放大链型的信号源和距离门窄带滤波器链的信号处理器. 它具有较高的速度分辨能力,从而可以更有效的解决抑制极强的地杂波干扰的问题。 PD 雷达有多种工作模式,下图给出了PD雷达的各种工作模式。 它们各具特点,分别适用不同的环境。低重PD雷达测距不会产生模糊,旁瓣杂波电平较低,但测速模糊。高重PD雷达与之相反,测距产生模糊,旁瓣杂波由于距离重叠效应,电平比较高,但测速是清晰的。中重PD雷达的距离和多普勒频移都产生模糊,通过辅助方法可以解测距和测速模糊。 1:测速原理 雷达对目标速度的测量主要利用电磁波照射在运动目标上时产生的多普勒效应来进行。对雷达而言,当雷达与目标之间存在相对运动时,多普勒效应体现在回波信号的频率与发射信号的频率不相等。雷达发射电磁波信号后,当遇到一个向着雷达运动的目标时,由于多普勒效应,雷达接收到从这个目标返回的电磁波信号的频率将高于雷达的发射频率。而当雷达发射的电磁波遇到一个在远离雷达方向运动的目标时,则雷达收到的是低于雷达发射频率的电磁波信号。多普勒雷达正是利用两者频率之间的差值,即多普勒频移df来实现对目标速度的测量。 2:距离模糊产生原因 雷达的最大单值测距范围由其脉冲重复周期T r(PRT)决定。为保证单值测距, 通常应R max 选取T R>2 C

R max为被测目标的最大作用距离。 有时雷达重复频率的选择不能满足单值测距的要求, 例如在脉冲多普勒雷达或远程雷达, 这时目标回波对应的距离R为 R=c (m×T r+t r) 式中,t r为测得的回波信号与发射脉冲间的时延。这时将产生测距模糊, 为了得到目标的真实距离R, 必须判明式(2.1.7)中的模糊值m。 2:

第十二章简单机械知识点总结

第十二章简单机械知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

O 第十二章 简单机械 一、杠杆 (1)定义:在力的作用下绕着固定点转动的硬棒叫杠杆。 说明:①杠杆可直可曲,形状任意。 ②有些情况下,可将杠杆实际转一下,来帮助确定支点。如:鱼杆、铁锹。 (2)五要素──组成杠杆示意图。 ①支点:杠杆绕着转动的点。用字母O 表示。 ②动力:使杠杆转动的力。用字母F 1表示。 ③阻力:阻碍杠杆转动的力。用字母F 2表示。 说明:动力、阻力都是杠杆的受力,所以作用点在杠杆上。 动力、阻力的方向不一定相反,但它们使杠杆的转动的方向相反。 ④动力臂:从支点到动力作用线的距离。用字母L 1表示。 ⑤阻力臂:从支点到阻力作用线的距离。用字母L 2表示。 (3)画力臂方法:一找支点、二画线、三连距离、四标签。 ⑴找支点O ;⑵画力的作用线(虚线); ⑶画力臂(虚线,过支点垂直力的作用线作垂线); ⑷标力臂(大括号)。 (4)研究杠杆的平衡条件: 杠杆平衡是指:杠杆静止或匀速转动。 实验前:应调节杠杆两端的螺母,使杠杆在水平位置平衡。 这样做的目的是:可以方便的从杠杆上量出力臂。 结论:杠杆的平衡条件(或杠杆原理)是: 动力×动力臂=阻力×阻力臂。写成公式F 1L 1=F 2L 2也可写成:F 1/F 2=L 2/L 1。 解题指导:分析解决有关杠杆平衡条件问题,必须要画出杠杆示意图;弄清受 力与方向和力臂大小;然后根据具体的情况具体分析,确定如何使用平衡条件解决有关问题。(如:杠杆转动时施加的动力如何变化,沿什么方向施力最小等。) 解决杠杆平衡时动力最小问题:此类问题中阻力×阻力臂为一定值,要使动力最小,必须使动力臂最大,要使动力臂最大需要做到:①在杠杆上找一点,使这点到支点的距离最远;②动力方向应该是过该点且和该连线垂直的方向。 【习题】1.下列测量工具没有利用杠杆原理的是( ) A.弹簧测力计 B.杆秤 C. 台秤 D. 托盘天平 2.如图是小龙探究“杠杆平衡条件”的实验装置,用弹簧测力计在C 处竖直向上拉,杠杆保持平衡。若弹簧测力计逐渐向右倾斜,仍然使杠杆保持平衡,拉力F 的变化情况是( ) A . 变小 B . 变大 C. 不变 D.无法确定 3.(1)人要顺时针翻转木箱,请画出用力最小时力臂的大小。 (2)如图人曲臂将重物端起, 前臂可以看作一个杠杆。在示意图上画出F 1和F 2的力臂。 4. 如图所示,要使杠杆处于平衡状态,在A 点分别作用的四个力中,最小的是( ) A .F 1 B .F 2 C .F 3 D .F 4 5. 如图所示是某同学做俯卧撑时的示意图,他的质量为56kg 。身 体可视为杠杆,O 点为支点.A 点为重心。每次俯卧撑他肩膀向上撑起40cm .( g 10N/ kg ) (1) 该同学所受重力是多少 (2) 在图中画出该同学所受重力的示意图,并画出重力的力臂L 1 (3)若0B=,BC=,求地面对双手支持力的大小. (4)若他一分钟可完成30个俯卧撑,其功率多大

遥感考研总结

遥感技术基础课后作业(一) 一、名词解释 1、遥感:是一种远距离的、非接触的目标探测技术。通过对目标进行探测,获取目标的观测数据,然后对获取的观测数据进行加工处理,从而实现对目标的定位、定性、定量和变化规律的描述(即认识观测对象)。 2、遥感技术系统:从空间分布的角度:空间部分(空基系统)、地面部分(地基系统)。 从功能的角度:观测系统、数据传输与接收系统、数据处理系统、应用系统。 3、电磁波谱:将电磁波在真空中按照波长或频率依大小顺序划分成波段并排列成谱。 4、瑞利散射:由尺寸远远小于电磁波波长λ的微粒引起的散射。 5、米氏散射:由尺寸与波长λ相当的微粒(水滴、烟尘、花粉、气溶胶)引起的散射。 6、大气层窗口:电磁波辐射在大气传输中透过率比较高的波段。 7、镜面反射:电磁波照射到光滑的表面上,引起的一种入射角和反射角相等的反射。 8、漫反射:电磁波照射到一定粗糙程度的表面上,引起的一种不论入射方向如何,各个方向都有反射光,并且从各个方向观察到的反射亮度是相同的的一种反射。(在物体表面的各个方向上都有反射能量的分布的一种反射) 9、方向反射:由于地形起伏和地面结构的复杂性,电磁波往往在某些方向上反射最强烈。 10、反射率:物体的反射通量(单位时间内的反射能量)与入射通量之比,即ρ=Eρ/E。 11、波谱反射率:地物在某波段的反射通量与该波段的入射通量之比。 12、波谱反射特性:地物波(光)谱反射率随波长变化而变化的特性。 13、遥感平台:遥感过程中,搭载传感器(成像设备)的工具。 14、卫星轨道根数:用于确定轨道形状及卫星在某时刻的位置需要的参数。(表示卫星运动轨道特征的参数) 15、近极轨道:环绕地球两极并且轨道倾角约为90度附近的卫星轨道。 16、太阳同步轨道:卫星轨道面与太阳地球连线之间的夹角不随地球绕太阳公转而变化的轨道。(太阳高度角不发生变化的卫星轨道) 二、问答题 1、遥感中为什么要讲电磁波知识? 遥感是一种远距离的、非接触的目标探测技术。通过对目标进行探测,获取目标的观测数据,然后对获取的观测数据进行加工处理,从而实现对目标的定位、定性、定量和变化规律的描述(即认识观测对象)。遥感的任务,是通过探测和记录观测对象反射或辐射的电磁波,并对其进行处理、分析和应用来实现的。 遥感中的问题:1、观测对象(称为“地物”)的表现形式(色调或颜色)、2、传感器的设计;3、观测图像的识别与理解。这些问题与电磁波有关,所以需要了解电磁波。 2、电磁波有哪四个要素。 波长(相邻两个波峰(或波谷)之间的距离);振幅;传播方向;偏振面(包含电场矢量的平面)。 3、晴朗的天空为什么呈蓝色? 当天空晴朗时,空气中的微粒(水分子、气体分子)尺寸远远小于可见光的波长,从而引发瑞利散射,并且微粒的散射能力与波长的关系为:γ∝ 1/λ4 。所以波长越短,散射能力越强。在三原色中,蓝色波段的波长最短,所以散射的能力最强。所以天空成蓝色。 4、云、雾为什么呈白色? 云雾是由大气中的气溶胶、液溶胶组成,所以它们的微粒半径尺大于可见光波长,此时会发生米氏散射,而米式散射的强度几乎与波长无关,所以各波段的散射几乎相同,云雾呈白色。 5、遥感是根据什么要选择大气窗口的? 大气窗口表示的是电磁波辐射在大气传输中透过率比较高的波段,所以选择大气窗口时要先考虑大气透过率;其次,因为遥感需要使用电磁波去分辨地物,所以该电磁波需要对不同的地物有不同的反射率,便于进行区分。 6、当太阳光入射到地面时,为什么会发生三种不同形式的反射? 由于不同地区的地物表面的粗糙程度是不一样的,并且电磁波入射到地面的波长和入射角也有不同,所以导致产生的三种不同形式的散射。 7、结合健康的绿色植被的反射特性曲线,说明在进行森林普查时为什么要选择近红外波段进行遥感?监测森林病虫害的原理是什么? 8、试绘出一些常见的地物(雪地、阔叶树、针叶树、水体)在可见光和近红外波段的反射波谱特性曲线,并说明它们的差异对遥感图像色调的影响。(课本P21页) 10、遥感为什么要使用近极轨道? 通过近极轨道,卫星可以观察到地面目标区域就越广,进而可以获得全球覆盖。 11、遥感为什么要使用太阳同步轨道? (1)能使卫星以同一地方时飞过成像区域上空,成像区域在每次成像时都处于基本相同的光照条件,便于监测地物的变化情况。 (2)对卫星工程设计及遥感仪器工作非常有利 (3)有利于温度控制系统的设计 12、遥感平台的姿态及其对遥感成像的影响? 遥感平台的姿态主要有:滚动、俯仰、偏航三种姿态。 不同的姿态对遥感成像有不同的影响。 滚动和俯仰会导致遥感图像出现的非线性变形,而偏航会导致其发生线性变形。三、论述题I love you so much congratulation 1、遥感的主要使命和任务。 遥感是利用地面目标反射或辐射电磁波的固有特性,通过观察目标的电磁波信息以达到获取目标的几何信息和物理属性的目的。它主要应用于:农林、地质、水文、海洋、气象、环境。从室内的近景摄影测量大大范围的陆地、海洋信息的采集以致全球范围内的环境变化监测,遥感技术都发挥着巨大的作用。它的主要任务有:资源勘查、环境监测、植被监测、沙漠化监测、气象分析。 定性(是什么?)、定量(有什么?)、定位(在哪里?)、演变规律分析(变化否?) 2、遥感技术的主要特点和优势。 初级阶段遥感技术的特点:完善了地面到空中取得像片的手段;对像片的几何、物理特性还没有深入的研究。 发展阶段的特点:航空摄影测量的手段、方法、原理及多光谱、彩色摄影、机载侧视雷达成像技术成熟;使用多样化平台(飞机、气球、火箭等)出现了判读仪器,对像片的几何,物理特性有一定的认识;开始用于规模军事侦察和地形测图。 飞跃时期遥感技术的特点:光机扫描、CCD扫描仪成像技术、星载SAR技术成熟;成像幅面大、覆盖范围广,基本全球成像;影像获取速度快,易于重复观测;用于资源勘查、军事侦察、地形测图;波段数目多,可用波谱范围宽。遥感技术的优势?(自行解答) 课件答案:效率高,效益好(特别大范围、宏观、境外等应用);客观性好(与传统方法比较);适合动态监测、变化规律研究(传输型卫星可周期性观测)。 遥感技术基础课后作业(二) 名词解释: 传感器:收集、探测、处理和记录物体电磁波辐射信息的设备 画幅式传感器:在空间摄站上摄影的瞬间,地面上视场范围内的目标的辐射信息一次性地通过镜头中心后在焦平面上成像的成像装置。 推扫式传感器:在城乡过程中,采取线阵列或面阵列的形式对地面垂直目标进行推扫以获得电磁波信息的成像装置。 側扫式传感器:又称光学传感器,借助于遥感平台沿飞行方向运动和遥感器本身光学机械横向扫描达到地面覆盖,得到地面条带图像的成像装置。 多光谱传感器:同一瞬间,对同一景物进行摄影,并分波段记录景物辐射来的电磁波信息,形成一组多波段黑白图像的成像装置。 同轨立体观测:在同一条轨道的方向上获取立体影像的观测方法。 异轨立体观测:在不同轨道上获取立体影像的观测方法。 黑白图像:只有亮度差别,无色彩差别的图像。 彩色图像:具有色调、饱和度和亮度等色彩信息。彩色图像一般分为:真彩色图像、假彩色图像。 全色图像:黑白图像的一种,记录了所能探测到的景物所有电磁波信息(一般包括可见光和部分近红外)的黑白图像。 多光谱图像:对同一景物进行摄影时,分波段记录景物辐射来的电磁波信息,形成的一组多波段黑白图像,不同波段图像在几何上是完全配准的,但记录的是景物在不同波段范围内的电磁波信息。 热红外图像:记录的是地物热辐射信息的遥感图像。 微波图像:记录的是波长在1mm~1m之间范围内的地物辐射信息的遥感图像。画幅式图像:由画幅式相机拍摄的具有面中心对称特性的图像。 面中心投影图像:地面上所有点均通过投影中心在投影平面上成像,图像几何关系稳定。 面阵图像:即面中心投影图像。 线中心投影图像:同一幅图像有多条扫描线构成,任意一条扫描线上的点都通过某一投影中心成像,扫描线内几何关系稳定。 线阵图像:即线中心投影。 点中心投影图像:同一幅图像有许多扫描点构成,每一扫描点的几何关系都不一样。 立体图像:两幅同一地区不同角度的立体像对。 空间分辨率:图像上能够分辨的最小单元所对应地面尺寸。 光谱分辨率:反映了传感器的光谱探测能力。它包括传感器探测的波谱宽度、波段数、各波段的波长范围和间隔。 辐射分辨率:反映了传感器对电磁波探测的灵敏度。对图像的色调和表面细节有影响。 时相分辨率:是相邻两次对地面同一区域进行观测的时间间隔。 Landsat卫星:美国发射的用于进行地球资源勘查的系列卫星,至今为止已经发射了7颗(一颗失踪),现在正常运行的是4,5号卫星。4、5号卫星的轨道高度是705千米,轨道倾角是98度,太阳同步准回归轨道,准回归周期是17天,星体上分别携带了MSS(4波段)、TM(7波段)传感器。7号卫星的轨道高度705.3千米,轨道倾角是98.2度,准回归周期是16天,星体上携带了ETM+(7波段、1全色)、SEAWIFS传感器。 SPOT卫星:法国发射的高性能地球观测系列卫星,至今已经发射4颗,现在正常运行的有2、4、5号卫星。卫星的高度统一为830千米,轨道倾角为98.7度,太阳同步准回归轨道,回归周期26天,1、2、3号卫星上携带了HRV(3波段、1全色)传感器,4号卫星上携带HRVIR(4波段、1全色)传感器。IKONOS卫星:美国SpaceImaging公司1999发射的新一代高分辨率卫星中的第一颗商业卫星,轨道高度为681千米、轨道面倾角为98.1度的太阳同步轨道。星体上携带了SPACEIMAGING(4波段、1全色)传感器 Landsat图像:由Landsa卫星拍摄的图像,MSS传感器所得到的图像的空间分辨率为80米,TM传感器的分辨率为30米,ETM+传感器的分辨率为30米,

脉冲多普勒雷达的总结

脉冲多普勒雷达的总结 1、适用范围 脉冲多普勒(PD)雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。 2、PD雷达的定义及其特征 (1)定义:PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。 (2)特征:①具有足够高的脉冲重复频率(简称PRF),以致不论杂波或所观测到的目标都没有速度模糊。 ②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。 ③PRF很高,通常对所观测的目标产生距离模糊。 3、PD雷达的分类 图1 PD雷达的分类图 ①MTI雷达(低PRF):测距清晰,测速模糊 ②PD雷达(中PRF):测距模糊,测速模糊,是机载雷达的最佳波形选择 ③PD雷达(高PRF):测距模糊,测速清晰 4、机载下视PD雷达的杂波谱分析 机载下视PD雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。 、PRF 的选择 (1)高、中、低脉冲重复频率的选择 ①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。 ②迎面攻击时高PRF优于中PRF。尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。 ③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方

法。 (2)高PRF时重复频率的选择 ①使迎面目标谱线不落人旁瓣杂波区中: ②为了识别迎面和离去的目标: A、当接收机单边带滤波器对主瓣杂波频率固定时: B、当接收机单边带滤波器相对发射频率是固定时: 注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。 6、PD雷达的信号处理系统 PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。 (1)单边带滤波器 特点:带宽近似等于脉冲重复频率fr, 一般设置在中频; 从回波频谱中只滤出单根谱线; 避免了后面信号处理过程中可能产生的频谱折叠效应; 距离选通波门必须设在单边带滤波器之前; 要求带外抑制至少要大于60dB; 实现方法:采用石英晶体滤波器 (2)主瓣杂波抑制滤波器 特点:比目标回波能量要高出60-80dB; 主瓣杂波抑制滤波器的幅一频特性应是主瓣杂波频谱包络的倒数; 相当于一个白化滤波器,经过主瓣杂波抑制之后,后面的多普勒滤波器可以 按照白噪声中的匹配滤波理论来进行设计; 实现方法:首先确定它的频率,用一个混频器先消除变化的,就可以用一个固定频率的滤波器将其滤除. 确定主瓣杂波中心频率有两种方法:一种方法是利用频率跟踪; 另一种是由天线指向和载机飞行速度计算出主瓣杂波应有的多普勒频移,直接控制压 控振荡器去产生的振荡濒率。 (3)零多普勒频率抑制滤波器 特点:用于高度杂波的滤除; 同时抑制发射机直接进人到接收机的泄漏; 实现方法:①只需断开滤波器组中落人高度杂波区的那些子滤波器的输出; ②使用可防止检测高度线杂波专用的CFAR电路; ③使用航迹消隐器除去最后输出的高度线杂波。 (4)多普勒滤波器组 特点:是覆盖预期的目标多普勒频移范围的一组邻接的窄带滤波器; 起到了实现速度分辨和精确测量的作用; 可以设在中频,也可以设在视频;

雷达考试总结剖析

CHAPTER 1、空管监视技术 一、监视的概念 监视:为空中交通管理系统提供航空器和机场场面车辆的活动信息,是进行空中交通管理的基础。空中交通管制等运行单位利用监视信息判断、跟踪航空器和机场场面车辆位置,获取航空器和机场场面车辆识别信息,掌握航空器飞行轨迹和意图,调整航空器间隔及监视机场场面运行态势,提高空中交通安全的保障能力。 二、监视技术分类 1、独立非协作式监视 ?无需依靠机载电子系统,计算飞机二维位置 ?监视者:独立,被监视者(目标):被动 ? e.g.PSR 2、独立协作式监视 ?提供计算的飞机三维位置和识别、机载参数等其他信息 ?监视者:独立,被监视者(目标):被动 ? e.g.SSR(A/C、S),MLAT 3、非独立协作式监视 ?提供机载设备(GPS/INS)获得的位置信息和识别、机载参数等其他信息 ?监视者:非独立,被监视者(目标):主动(自动) ? e.g.ADS(A/C、B) CHAPTER 2一次雷达(PSR) 一、工作原理及基本组成 1、工作原理 由雷达发射机产生的电磁能, 经收发开关后传输给天线, 再由天线将此电磁能定向辐射于大气中。电磁能在大气中以光速(约3×108m/s)传播, 如果目标恰好位于定向天线的波束内, 则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射, 其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后, 就经传输线和收发开关馈给接收机。接收机将这微弱信号放大并经信号处理后即可获取所需信息, 并将结果送至终端 2、基本组成

二、优缺点 1、一次雷达优点: ? 非协作式:所有可以反射电磁波的物体都有可能被探测到 ? 独立:一次雷达不依赖于任何机载设备 2、 一次雷达缺点: ? 所有可以反射电磁波的物体都有可能被探测到,因此,不感兴趣的物体也可能被探 测到,如地面反射电磁波所形成的回波 ? 不能获取高度信息 三、任务(R 、θ、v ) 当雷达探测到目标后, 就要从目标回波中提取有关信息: 可对目标的距离和空间角度定位, 目标位置的变化率可由其距离和角度随时间变化的规律中得到,并由此建立对目标跟踪; 雷达的测量如果能在一维或多维上有足够的分辨力, 则可得到目标尺寸和形状的信息; 采用不同的极化,可测量目标形状的对称性。原理上,雷达还可测定目标的表面粗糙度及介电特性等。 1、 目标斜距的测量(R ) 雷达工作时, 发射机经天线向空间发射一串重复周期一定的高频脉冲。如果在电磁波传播的途径上有目标存在, 那么雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间, 它将滞后于发射脉冲一个时间t r 。 我们知道电磁波的能量是以光速传 播的, 设目标的距离为R , 则传播的距离等于光速乘上时间间隔, 即 式中, R 为目标到雷达站的单程距离, 单位为m; t r 为电磁波往返于目标与雷达之间的 时间间隔, 单位为s ; c 为光速,c =3×108 m/s 能测量目标距离是雷达的一个突出优点, 测距的精度和分辨力与发射信号带宽(或处理后的脉冲宽度)有关。脉冲越窄, 性能越好。 2、 目标角位置的测量(θ) 目标角位置指方位角或仰角, 在雷达技术中测量这两个角位置基本上都是利用天线的方向性来实现的。雷达天线将电磁能量汇集在窄波束内, 当天线波束轴对准目标时, 回波信号最强, 如图实线所示。当目标偏离天线波束轴时回波信号减弱, 如图虚线所示。根据接收回波最强时的天线波束指向, 就可确定目标的方向, 这就是角坐标测量的基本原理。天线波 图:角坐标测量 2 r ct R

相关文档
最新文档