小应变基本理论和常用方法

小应变基本理论和常用方法
小应变基本理论和常用方法

填空题:

1:低应变法是采用(低能量瞬态)或(稳态激振)方式在桩顶激振,实测桩顶部的速度时程曲线或速度导纳曲线,通过波动理论分析或频域分析,对桩身完整性进行判定的检测方法。2:低应变动力检测方法包括(反射波法)和(机械阻抗法)

3:低应变动测反射波法是通过分析实测桩顶(速度响应信号)的特征来检测桩身的(完整性),判别桩身(缺陷)位置及影响程度。

4、低应变反射波法、桩身混凝土纵波波速的定义为(C=√(E/ρ));缺陷的深度计算式为(ΔT/2

?C)(均写出表达式即可)。

5:低应变法的理论基础以(一维线弹性杆件)模型为依据。因此受检桩的长细比、瞬态激励脉冲有效高频分量的波长与桩的横向尺寸之比均宜大于(5),设计桩身截面宜(基本规则)。

6:速度导纳是指(响应速度与激励力之比)。

7:在时域曲线上所显示的动力检测力脉冲波越宽,它的频谱(越窄),(低频成分)越丰富;

反之,力脉冲波越窄,其频谱(越宽),(高频成分)越丰富。

8:桩身缺陷越严重,缺陷处透射波强度越(弱)。

9:当桩身存在着离析时,波阻抗变化主要表现为(ρ?C)的变化当桩身存着缩径时,波阻抗的变化主要表现为( A )的变化。

10:某截面受力大小为F,截面积为S,该截面所受平均应力大小为为(F/S)。

11:弹性模量为E的线弹性体,写出应力、应变间基本关系式(σ=E?)

12:当初始入射波F1沿X正向(向下)传播尚未达到阻抗变化界面前,下行波就是(入射波),无(上行波)

13:初始入射波F i沿X正向(向下)传播,到达阻抗变化界面将产生(反射和透射)

14:透射波在截面变化处总是(不)改变方向或符号,且截面缩小处透射波的幅值(大于)入射波。

15:若在桩顶检测出的反射波速度信号与入射波极性相反,则表明在相应位置截面(扩大)。16:虽然波速与混凝土强度二者并不呈一一对应关系,但二者整体趋势上(呈正相关关系)。17:声波透射法以超声波的(声速)和(振幅)为主,(频率)和(波形畸变)为辅来判断混凝土的质量。

18:高应变测桩时,若遇到桩身某截面有缩颈或断裂,则会产生(上行拉伸波),若桩侧某部位土阻力明显增大,会产生(上行压缩波)

选择题:

1:桩的动测技术中主要采用(A)

A 纵波

B 横波

C 表面波

2:机械阻抗法的导纳曲线可计算的特征数据有:(A B C D)

A桩的测量长度、导纳几何平均值、理论值B桩的动刚度

C波速D一阶谐振频率

3:一般在各种激振下桩的竖向振动包含了(A D)

A低频的刚体运动B高频的刚体运动

C低频的波动D高频的波动

4:一根弹性杆的一维纵波速度为3000m/s,当频率为3000Hz的下弦波在该杆中传播时,它的波长为(A)

A 1m

B 9m

C 1mm

D 9mm

5:一根Φ为377mm长18m的沉管桩,低应变动测在时域曲线中反映的桩底反射为12ms,其波速为(B)

A 3200m/s

B 3000m/s

C 1500m/s

6:一根Φ为377mm长18m的沉管桩,(同上题工地桩)对实测曲线分析发现有二处等距同相反射,进行频率分析后发现幅频曲线谐振峰间频差为250Hz,其缺陷部位在(B)A4m B 6m C 8m D 12m

7:桩身缺陷在实测曲线上的表现是(D)

桩身扩径在实测曲线上的表现是(B)

A 力值越大,速度值越大

B 力值增大,速度值减小

C 力值减小,速度值减小

D 力值减小,速度值增大

8:对于应力波反射法,要检测桩身深部缺陷,应选用(B C)材质锤头,它可产生较丰实的(F)信号;欲提高分辨率,应采用高频成分丰富的力波,应选用(D)材质锤头。

A 硬橡胶

B 木

C 尼龙

D 铁

E 高频

F 低频

G 宽频

9:桩动测法的波速C指的是(D)

A 测点处的波速 B.桩全长的平均波速 C.桩入土深度的平均波速 D.测点下桩长平

均波速

10:满足一维应力波理论的条件是(B D)

A λ≈D

B λ?D

C λ<

D D λ?L

E λ?L

F λ≈L

(λ-波长,D-桩径,L-桩长)

11:频域分析过程中,深部缺陷和浅部缺陷的频差分别为Δf1和Δf2,则(A)AΔf2?Δf1BΔf2?Δf1

CΔf2=Δf1D不好比较

12:当桩顶作用于一个正弦激振力时(假设桩材为均匀线弹性),一维应力波理论能适用于桩的前提是(D)。

A 桩长度远大于桩径;

B 激振力波长远大于桩径;

C 激振力波长等于桩径;

D 同时满足A和B。

13:一根置于地面,两端自由的桩,窄方波入射时,在桩身正中央所记录的入射波幅V I与反射波幅V R间的关系为(A)

A V R≈V I

B V R≈-2V I

C V R≈-V I

D V R≈2V I

14:同上题,入射波与反射波的时差为(B)

A 2L/C

B L/C

C 1.5L/C

D 2.5L/C

15:一根置于地面,两端自由的桩,方波入射时,桩顶所测的桩底反射波幅V R与入射波幅V I 间的关系为(D)

A Vr≈V I

B Vr≈-2V I

C Vr≈- V I

D Vr≈2V I

16:一维线弹性杆中,质点位移u是位置x和时间t的函数,则某点附近的应变和该点的加速度分别表达为:(B)

A ?u/?x,?u/?t

B ?u/?x,?2u/?2t

C ?2u/?2x,?u/?t

D ?2u/?2x,?2u/?2t

17:桩长20m,c=4000m/s,两端均为自由,t=0时刻一端受到半正弦力脉冲激励,脉冲力持续时间1ms,则(C)桩任何位置受力均为零。

A t=3.0ms

B t=5.0ms

C t=5.5ms

D t=6.0ms

18:机械阻抗法可用来检测混凝土灌注桩的(AB)

A判定桩身完整性B检测桩身缺陷及其位置

C估算单桩承载力D确定桩的极限荷载

E区分缺陷类型

19:桩侧土阻力对应力波传播的影响有哪些方面?(ACD)

A导致应力波迅速衰减B影响桩身应力波传播速度

C影响缺陷反射波幅值D产生土阻力波

20:应力波沿桩身传播,其衰减快慢同(ABC)有关

A桩阻尼B土阻尼

C应力波频率D激振能量

21:下列哪些桩不宜采用反射波法进行低应变完整性检测?(BCDE)

AC20的素混凝土桩B桩径1.4m,取样抗压强度5.8MPa的高压旋喷桩

C水泥土搅拌桩D薄壁钢管桩

E碎石桩F桩径1m,桩长15m的人工挖孔桩

22:为兼顾频域分辨率,按照采样定理应(AD)

A适当降低采样频率B选用较高的采样频率

C采用较小的采样时间间隔D增加采样点数

23:声波透射法检测时,增大声波频率,有利于(A)

A 增强对缺陷的分辨力

B 延缓声波的衰减

C 增大声波的探测距离

D 提高信号的信噪比

判断题:

1:纵波、横波可在任何弹性介质中传播。(×)

2:瞬态激振应通过现场敲击试验,选择合适重量的激振力锤和锤垫,宜用窄脉冲获取桩底或桩身下部缺陷反射信号。(×)

3:对于嵌岩灌注桩,从理论上讲可以用低应变反射波法有效地检测出桩端的嵌岩质量,即在桩端波形呈反向反射时,则认为嵌岩状况良好,反之则认为在桩端处存在低劣混凝土或沉渣的可能性较大,或存在软弱夹层或岩溶孔洞等。(√)

4:解一维波动方程式时,杆的自由端的边界条件为u=0,杆的固定端的边界条件为?u/?x =0 (其中u为截面位移,x为截面位置)(×)

5:对公路工程中的大直径基桩,当传感器与激振点间距过大时,测得的波速会大于实际波速,因此相应的缺陷位置的计算深度也会比实际的大。(√)

6:因桩端部分桩身阻抗与持力层阻抗相匹配可能会导致实测信号无桩底信号。(√)

7:当桩顶受到瞬态脉冲力作用时,激振能量以应力波形式沿桩身传递,当遇到桩身截面波阻抗(ρCA)发生变化时,,将产生反射波和透射波,应力波反射透射的能量大小取决于界面上下的波阻抗ρCA值,并遵守能量守恒定律。界面上下的波阻抗相差越大,反射波能量就越大,透射波的能量越小。(√)

8:对于时域信号,采样频率越高,则采集的数字信号越接近模拟信号,越有利于缺陷位置的准确判定。(√)

9:由于桩中应力波速度和混凝土强度密切相关,有定量关系,所以在基桩动测中可用应力波速度计算混凝土强度。(×)

10:桩顶受锤击时,应力波沿桩身下行,遇到桩身阻抗增大,会产生上行的压缩波;遇到桩

身阻抗减小,则产生上行的拉伸波。(√)

11:桩顶受到锤击力时,当遇到桩身有缺损时,在实测曲线上的表现是使力值减少,速度值增大。(√)

12:受外力作用的弹性直杆中,应力波传播速度与质点振动速度是有区别的,质点振动速度取决于应力大小,而波速传播速度仅为材料性质的函数。(√)

13:桩端下的沉渣越厚则桩端反射波信号越强。(√)

14:桩径增大时,桩截面各部位的运动不均匀性也会增加,桩浅部的阻抗变化往往表现出明显的方向性。(√)

15:用瞬态激振检验基桩质量通常使用力锤或力棒,根据所需要的带宽和能量(信噪比)要求,可选择不同重量和锤头材质(如钢、铝、硬塑、尼龙、木等)的激振设备。(√)

16:纵波、横波和表面波是根据介质质点运动速度和波的传播方向来区分的。

(√)

17:机械阻抗法可直接测出单桩的承载力。(×)

18:在一维弹性杆中,只要有质点的纵向振动,就会有波的纵向传播。(√)

19:应力波通过缺陷桩部位会引起质点运动速度幅值的衰减,扩径桩也同样。(×)

20:若桩的横向尺寸影响不可忽略,瞬态集中力作用于桩顶时,将在桩顶以下某一深度范内,一维理论的平截面假设不成立,只有减少集中力中的高频成分才能使这一深度缩小。

(×)

21:波速与混凝土强度等级呈正相关关系,虽不是线形关系,但是一一对应关系。(×)

22:应力波反射法和声波投射法所测混凝土的声速,为同一性质的纵波,所以波速相同。(-)23:对同一根桩而言,不论采用何种激振方式,得到的导纳曲线都一样。(√)

24:桩土系统受到瞬态冲击激励后的响应不但取决于冲击激励函数的形式,而且取决于桩土系统本身的动力特性,同一系统受到不同激励冲击,其响应是不同的。(√)

25:如果桩的实测导纳曲线与正常桩的典型导纳曲线有较大出入,则桩身可能有各种缺陷。(√) 26:应力波沿桩身传播时,与桩周土有关,当桩周土土质好时,桩身应力波传播速度快;反之,桩身应力波传播速度慢。(×)

27:钻孔灌注桩的混凝土质量密度越大,应力波传播速度越快。(×)

28:桩底或缺陷反射波幅值的大小,不仅与桩底或缺陷处的性质及桩周阻力有关,还与手锤激励的频率特性与桩纵向振动的频响特性是否匹配有关。(√)

计算题:

1:假设一均质等截面细长混凝土桩,截面积为A,密度为ρ,实验测得当锤击力为F时,对应质点振动速度为v,小应变法测得速度波第一峰与桩底反射波峰间的时间差为ΔT,求桩长。

(ΔT/2 *F/(vρA))

2:有一桩桩长为20m,其混凝土应力波速度为4000m/s,试画出下列情况下的理论时域信号波形。(均需标明时间和位置)

①完整

②时间t=4ms处广义波阻抗减小

③时间t=2.5ms处广义波阻抗增大

3:钢筋混凝土应力波C=3800m/s,重度r=25kN/m3,截面A=0.4×0.4㎡,计算混凝土桩的弹性模量E和阻抗Z值(提示:E=rc2/g,Z=rCA/g)。(3.68E4MPa,1.55E6 N?s/m)

4:考虑桩长为L的纯端承桩,波速为C,桩顶入射波为钟形力脉冲,忽略阻尼(1)画出桩底在0-8L/C时段内的速度波和位移波,;

(2)画出桩正中心在0-3L/C时段内的速度波;

(3)假设是一自由杆,画出桩正中心在0-3L/C时段内的速度波。

5:有一混凝土预制桩,桩长L=20m,截面积A=0.25m2,应力波波速C=4000m/s,一端受到一个最大幅值为40kN,作用时间为2ms的锯齿形脉冲力P(t)激励,忽略阻尼的影响。

(1)画出脉冲力结束时(t=2ms)的桩内应力分布图,求出最大应力值(σmax=40/0.25=160(kPa))

(2)当另一端分别为自由端和固定端时,画出t=5.5ms时的桩内应力分布图并计算最大应

力值。(σmax=40/0.25=160(kPa))

6:有一弹性自由杆,长L=20m,应力波速C=4000m/s,当一端受瞬态激励后,实测速度波形为如图所示的等腰三角形,最大值v=2m/s,持续时间1ms,推算弹性杆(忽略材料的阻尼影响)另一端在4.5ms、5.25ms,5.5ms和7.5ms时的质点速度。(速度波传播到另一端时,自由端

速度加倍,走完全程用时5ms:0 2m/s 4m/s 0)

论时域信号波形。

8:有一混凝土预制桩桩长L=30m,截面积A=0.16m2,应力波波速C=4000m/s,一端受到一辐值为60kN持续时间为3ms的半正弦脉冲力P(t)激励,求脉冲力结束那一瞬间的桩内应力分布图和最大应力值。(0到12m的半正弦,幅值60kN σmax=60kN/0.16m2 =375kPa)

9:已知桩长为10m,根据下表被检桩的测试情况

(1) 计算桩身波速平均值(选3#-7#桩求平均波速,3196m/s)

(2) 计算9#桩的缺陷位置(4E-3s/2*3196m/s=6.4m)

其中:1-8#桩ΔT为速度波第一峰与桩底反射波峰间的时间差;9#桩ΔT为第一峰与缺陷反射波峰间的时间差

10:波动理论法中,单桩简化为一自由支承细长弹性杆件,

(1)试推导出古典的一维波动方程:(提示:利用微单元体受力分析,应力应变关系σ=E?,

牛顿第二定律F=ma)

?2u/ ?2t=(E/ρ)?2u/ ?2x

其中:

u:截面位移,是时间t及截面位置x的函数

ρ:杆件的质量密度

E:材料弹性模量

(2)当杆的一端自由,一端固定时,写出其边界条件(自由端:?u/?x=0 固定端:u=0)

11:已知某桩的质量密度为2500kg/m3,桩长为10m,桩径为0.5m,实测波速C=4000m/s,求(1)阻抗Z(Z=ρCA=2.5E3*4E3*0.52π/4=1962500 N?s/m)

(2)弹性模量E(E=ρC2 =2500*40002 =4E4MPa)

(3)第一次和第二次桩底反射时间(ΔT1=2L/C=5ms,ΔT2=4L/C=10ms)

(4)两端自由时的一阶基频和二阶基频(f1=C/2L=200Hz,f2=2f1 =400Hz)

12:某工程桩存在两个缺陷,在第一个缺陷处,桩径从Φ600减少为Φ550,弹性摸量从E=3.5E4 MPa变化为E=3.4E4 MPa,波速C=3500m/s减少为C=3400m/s,第二缺陷处,截面直径再减少50,E=3.4E4 MPa保持不变,波速变为C=3600m/s,判断两缺陷的大小。(β=Z2/Z1,

Z=AE/C,算得β

1=(5.5/6.0)2 *(3.4/3.5)*(3500/3400)=84%,β

2

=(5.0/5.5)2*(3400/3600)=78%,

第二个缺陷大)

13:某变截面杆(假设为一维弹性杆件)由杆1和杆2组成,如图,A、C端均为自由端,初始时A端受到峰值为0.8mm/s的半正弦初速度激振,激振力作用时间宽度为1ms。已知杆1直径为400mm,长为8m,杆2直径为200mm,长为10m,杆1杆2波速均为4000m/s,密度为2400kg/m3,忽略阻尼影响。计算

(1)杆2的B端在 2.5ms时力值F;(2.5ms时正好力波峰值F I=Z?V=ρCA V=2400*4000*(π*0.42/4)*0.8E-3=964.6N 到达B端,变截面处透射

波σT=2/(1+A1/A2)?σI?A1/A2 ,F T=2/(1+ A1/A2)?F I =2/5*964.6=385.8N ) (2)杆1的A端在10ms时力值F。(自由端,激振后0)

14:假定杆体材料匀质,缺陷仅由截面变化引起,

(1)已知入射波幅值为4mm/s,反射波幅值为2mm/s,试求缺陷位置等效面积与正常面积之比。(V R=V I(A1-A2)/(A1+A2),算得A2 /A1=1/3)

(2)设A2/A1=0.8,初始入射波幅值为1cm/s,求缺陷位置界面反射波幅值。(V R=(1/9)?V I=0.11 cm/s)

15:某根端承的预制方桩,桩长10m,截面为350*350,质量密度为2.4t/m3,幅频曲线上桩底相邻谐振峰间的频差f=200Hz。

(1)计算导纳理论值Nc;(C=2L?Δf=4000m/s,N C=1/(ρCA)=8.5E-7 s/kg)

(2)假设桩端为无限刚性,计算v/F-f曲线上出现第一个波峰的频率f1;(f1=C/4L=100Hz) (3)假定实测f1=45Hz;判断桩端土质好坏;(实测f1=45 Hz,比100Hz小很多,表明桩底土相当软弱)

(4)假定导纳曲线上起始近视直线段上一频率值fm=20Hz,对应的导纳幅值∣V/F∣m =1.13E-7m/(s.N-1),计算实测动刚度K d。(K d=(2πfm)/∣V/F∣m=1.11E9N/m)

16:一纯摩擦桩,桩长20m,桩径0.8m,混凝土应力波速度为4000m/s,桩周土为淤泥质土画出下列情况下的理论时域信号波形:

(1)画传感器、激振点均在桩顶(需标明时间和位置)

(2)传感器安装在桩顶、激振点在桩顶下4m(敲击瞬间开始计时)

综合题:

1:简述应力波反射法的基本假定、原理及成果分析。

(理论基础:以一维线弹性杆件模型为依据,所以对桩的长细比、瞬态激励脉冲有效高频分量的波长与桩的横向尺寸之比均要求足够大,设计桩身截面宜基本规则。另外,一维理论要求应力波在桩身中传播时平截面假设成立,所以对异型桩不适用。

基本原理:在桩顶竖向激振,弹性波沿桩身向下传播,在桩身阻抗有明显变化界面处,将产生反射波,经过对数据的分析,对桩身完整性进行判定。)

2:简述机械阻抗法测桩的基本原理和成果分析

(机械阻抗法是使用力传感器和加速度传感器分别测量冲击力和响应随时间变化的波

形f(t)、a(t),对a(t)做数值积分得到v(t),对f(t)、v(t)分别进行FFT运算,变换为频谱F(ω)和v(ω)后再相除,得到桩的导纳幅频曲线,并给出每个频率对应的导纳值。机械阻抗法是通过测定施加给桩的激励函数和桩的动态响应函数来识别桩的动态特性的。

通过对导纳曲线的分析计算,可以判定桩身混凝土有无缺陷、缺陷的位置及其程度。

使用导纳值低频线形段可以计算出桩基的动刚度。)

3:基桩完整性检测的常用方法有哪些?(反射波法和机械阻抗法)

4:为什么低应变检测只能定性不能定量地分析混凝土桩的桩身完整性和判定桩身缺陷的类型和位置、程度?(检测中分析的仅是阻抗变化,阻抗的变小可能是任何一种或多种缺陷类型极其程度大小的表现。测试量只有一条桩身响应的实测曲线ΔT=2L/C,借用的已知量或经验值ρ、C、A,能够分析的只是相对变化)

5:为什么被检测桩要求足够的长细比(参见题1)

6: 列出5种桩身无缺陷但测不到桩底信号的情况。(软土地区的超长桩,长径比很大;桩周土约束很大,应力波衰减很快;桩身阻抗与持力层阻抗匹配良好;桩身截面阻抗显著突变或沿桩长渐变;预制桩接头缝影响)

7:简要说明:对大直径基桩,当传感器与激振点间距过大时,测得的波速会大于实际波速。(锤击点与传感器安装点有一定的距离,接收点测到的入射峰总比锤击点处滞后,况且表面波或剪切波的传播速度比纵波低很多,这种滞后更明显,测得的ΔT比实际的小。)

8:何为桩的动刚度?可用哪种方法得到?动刚度与静刚度大致比例关系怎样?(K d=F d/u;可用稳态或瞬态激振法得到速度导纳曲线低频段斜率的倒数得到桩的动刚度;动刚度与静刚度大致比例关系,通常桩底土质好时,采用1.0-1.4,软时,采用1.4-1.8)

9:什么是有效检测桩长?如何确定?(由于受桩周土约束、激振能量、桩身材料阻尼和桩身截面阻抗变化等因素的影响,应力波传播的过程为一能量和幅值逐渐衰减的过程,若桩过长(或长径比较大)或桩身截面阻抗多变或变幅较大,往往应力波尚未反射回桩顶甚至尚未传到桩底,其能量已完全衰减或提前反射,致使仪器测不到桩底反射信号,而无法评定整根桩的完整性。在我国,若排除其他条件差异而只考虑各地区地质条件差异时,桩的有效检测长度主要受桩土刚度比大小的制约。因各地提出的有效检测范围变化很大,如长径比30~50。桩长30~50m 不等,规范并未规定有效检测长度的控制范围。具体工程的有效检测桩长,应通过现场试验,依据能否识别桩底反射信号,来确定。)

10:低应变动力试桩时,如何根据不同需要采用不同的振源,为什么?(参见题11)

11:检测桩身结构完整性时,对不同部位的缺陷,其振源有何不同的要求?(瞬态激振操作应通过现场试验选择不同材质的锤头或锤垫,以获得低频宽脉冲或高频窄脉冲。当锤头质量较大或刚度较小时,冲击入射波脉冲较宽,以低频成分为主;当冲击力大小相同时,其能量较大,应力波衰减较慢,适合于获得长桩桩底信号或下部缺陷的识别。当锤头质量较轻或刚度较大时,冲击入射波脉冲较窄,以高频成分为主;当冲击力大小相同时,虽其能量较小并加剧大直径桩的尺寸效应影响,但较适合于桩身浅部缺陷的识别及定位。)12:桩身质点振动速度和桩身应力波波速有哪些区别?低应变法在桩的检测中,质点振动速度和应力波波速的大致范围是多少?(各质点本处于平衡状态,桩顶受激励后,质点进入运动状态,质点的这个运动速度称为质点振动速度;受激励扰动的质点同周围质点间产生附加弹性力,使相邻质点也进入运动状态,这种作用依次传递下去形成波动,这种扰动借质点间的弹性力逐渐传播过程的弹性波传播速度称为应力波波速。一般,质点运动速度V=10E-2m/s,钢桩波速C=5120m/s,混凝土桩波速C=3000-4500m/s)

13:工程实践中相当一部分Ⅰ类桩测不到桩底反射信号,为什么(参见题6)

14:在工程桩低应变检测中,对于长桩、大桩和嵌岩桩,应采取哪几种测试技术并说明作用?

(对于长桩,应采用高能量低频锤头锤击,使应力波传播远一些可以反映深部缺陷和

突出桩底反射,从而判断其嵌岩效果;2)同时应采用低能量高频锤头,使提高

激振频率降低激振波长,提高对桩浅部的分辨率,使其能突出桩浅部缺陷信号;

应将传感器放置1/2~2/3桩径处,确保良好藕合,以减少面波和钢筋笼的影

响。)

15:低应变测桩时,如果测振传感器安装点与激振点保持一定距离,则测得的一维纵波速比真实的波速高还是低?如果桩身有较大的截面变化,则测得的波速比真实的高还是低?

(参见题7)

16:反射波法测试波形中叠加的谐波振荡可能是由哪些原因造成的?(传感器的安装不可能是完全的刚性连接,传感器的质量与安装弹性组成一弹簧-质量系统,安装刚度大,谐振频率大,安装刚度过小时,传感器测出的振动就不但有被检桩的振动,还有安装谐振,产生寄生振荡;另外,桩顶受敲击后,除下行波外,还产生沿桩顶面传播的波,剪切波和表面波在桩顶表面来回反射也会叠加到传感器接收到的信号中;还可能有些外部干扰和电源干扰等等)

UASB反应器的原理

UASB反应器的原理 升流式厌氧污泥床(UASB)反应器是由Lettinga在七十年代开发的。图2是UASB反应器及其设备的示意图。废水被尽可能均匀的引入到UASB反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。厌氧反应发生在废水与污泥颗粒的接触过程,反应产生的沼气引起了内部的循环。附着和没有附着在污泥上的沼气向反应器顶部上升,碰击到三相分离器气体发射板,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,气体被收集到反应器顶部的三相分离器的集气室。一些污泥颗粒会经过分离器缝隙进入沉淀区。UASB反应器包括以下几个部分:进水和配水系统、反应器的池体和三相分离器(图2)。如果考虑整个厌氧系统还应该包括沼气收集和利用系统。在UASB反应器中最重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。 2、反应器的池体几何形状 第一个生产性的UASB反应器(200m3)和在圣保罗CETESB处理生活污水的中试厂(1 20m3)具有特殊的形状,即上部的(沉淀池的)截面积大于下部反应区的截面积(图3a)。较大表面积的沉淀器的水力负荷较低,有利于保持反应器内的污泥,对于低浓度污水尤为重要。但是对于高浓度污水,有机负荷比水力负荷更重要,因此沉淀池截面没有必要设计为较大的表面积(图3b)。但是实际上不论是在建的或已投入运转的大部分生产规模的UASB反应器,在反应器的反应和沉淀部分是等面积的(图3c所示)。建筑直壁的反应器比斜壁的具有较大(或较小) 沉淀池的反应器在结构上更加有利。因此,以下仅讨论直壁的UASB反应器。 从反应器的形状有矩形和圆形这两种反应器,已大量应用于实际中。圆形反应器具有结构较稳定的优点,同时对于圆形反应器在同样的面积下,其周长比正方形的少12%。所

低应变分析

基桩低应变检测实例分析与处理方法 基础工程是建筑工程的重要组成部分,地基基础工程的质量直接关系到整个建筑物的结构安全。桩基础是主要的基础形式之一,由于桩的施工具有高度的隐蔽性,因此桩基工程的设计、施工、质量检测等方面往往比上部建筑结构更为复杂,更容易存在质量隐患。桩基工程的质量问题将直接危及主体结构的正常使用与安全。 桩基质量检测技术,特别是桩基动力试验,涉及到岩土力学、振动学、桩基施工技术和计算机技术等诸多学科知识,它既不同于常规的建筑材料试验,又不同于普通的建筑结构测试。因此,作为一名检测人员,应坚持不懈地学习专业理论知识,不断地积累实际工作经验,努力地提高桩基检测的技术水平,进一步完善基桩质量检测技术。 桩基在施工过程中如果控制不当,就会造成质量事故。特别是钻(冲)孔灌注桩,往往在浇注混凝土时出现质量问题。下面,本人就近几年在基桩低应变检测中测得的几例比较典型的钻(冲)孔灌注桩工程实例进行分析,供同行参考。 图1:中国南洋汽摩集团有限公司综合宿舍楼工程,该桩桩径500mm,有效桩长40m,混凝土强度C20,简易钻孔桩。该桩在2.2m附近有同向反射,并伴有多次反射,断桩,判为Ⅳ类桩。处理方法:开挖处理,开挖至2.2m左右,发现钢筋笼内空心,下去1m左右出现平整的水泥土,继续开挖至5m左右(采用人工挖孔桩的方法),出现密实的混凝土,修整后再测,桩身完整。原因分析:在浇灌至距桩顶标高5m左右,导管拔空,混凝土无法从导管中下去,拔出导管后直接把混凝土从孔口倒下,于是孔中的泥浆和砂浆的混合物就被倒下的混凝土压缩在2.2m至5m 左右的钢筋笼中,水份被吸收后就形成前面的状态。经与浇灌工人核对后,情况完全符合。 图2:瑞安红旭车辆贸易公司综合楼工程,该桩桩径500mm,有效桩长45m,混凝土强度C20,简易钻孔桩。该桩在5.1m附近有同向反射,并伴有多次反射,断桩,判为Ⅳ类桩。原因分析:在该桩所在的轴线上有5根桩出现类似的情况,该轴线靠近河边,在河床底下有一层流动性淤泥,

电阻应变测量原理及方法

目录 电阻应变测量原理及方法 (2) 1. 概述 (2) 2. 电阻应变片的工作原理、构造和分类 (3) 电阻应变片的工作原理 (3) 电阻应变片的构造 (4) 电阻应变片的分类 (5) 3. 电阻应变片的工作特性及标定 (8) 电阻应变片的工作特性 (8) 电阻应变片工作特性的标定 (13) 4. 电阻应变片的选择、安装和防护 (16) 电阻应变片的选择 (16) 电阻应变片的安装 (17) 电阻应变片的防护 (19) 5. 电阻应变片的测量电路 (19) 直流电桥 (19) 电桥的平衡 (23) 测量电桥的基本特性 (23) 测量电桥的连接与测量灵敏度 (24) 6. 电阻应变仪 (31) 静态电阻应变仪 (31) 测量通道的切换 (33) 公共补偿接线方法 (36) 7. 应变-应力换算关系 (37) 单向应力状态 (37) 已知主应力方向的二向应力状态 (37) 未知主应力方向的二向应力状态 (38) 8. 测量电桥的应用 (40) 拉压应变的测定 (40) 弯曲应变的测定 (44) 弯曲切应力的测定 (46) 扭转切应力的测定 (47) 内力分量的测定 (48)

电阻应变测量原理及方法 1. 概述 电阻应变测量方法是实验应力分析方法中应用最为广泛的一种方法。该方法是用应变敏感元件——电阻应变片测量构件的表面应变,再根据应变—应力关系得到构件表面的应力状态,从而对构件进行应力分析。 电阻应变片(简称应变片)测量应变的大致过程如下:将应变片粘贴或安装在被测构件表面,然后接入测量电路(电桥或电位计式线路),随着构件受力变形,应变片的敏感栅也随之变形,致使其电阻值发生变化,此电阻值的变化与构件表面应变成比例,测量电 路输出应变片电阻变化产生的信号,经放大电路放大后,由指示仪表或记录仪器指示或记录。这是一种将机械应变量转换成电量的方法,其转换过程如图1所示。测量电路的输出信号经放大、模数转换后可直接传输给计算机进行数据处理。 电阻应变测量方法又称应变电测法,之所以得到广泛应用,是因为它具有下列优点 1.测量灵敏度和精度高。其分辨率达1微应变(με),1微应变=10-6应变(ε)。 2.测量范围广。可从1微应变测量到2万微应变。 3.电阻应变片尺寸小,最小的应变片栅长为毫米;重量轻、安装方便,对构件无附加力,不会影响构件的应力状态,并可用于应力梯度变化较大的应变的测量。 4.频率响应好。可从静态应变测量到数十万赫的动态应变。 5.由于在测量过程中输出的是电信号,易于实现数字化、自动化及无线电遥测。 6.可在高温、低温、高速旋转及强磁场等环境下进行测量。 7.可制成各种高精度传感器,测量力、位移、加速度等物理量。 图1 用电阻应变片测量应变的过程

低应变检测原理及波形初步判识

低应变检测原理及波形初步判识 一、低应变动测原理 1、低应变反射波法源于应力波理论,基本原理是在桩顶进行竖向激振,使桩中产生应力波,弹性波沿着桩身向下传播,当桩身存在明显波阻抗界面(如桩底、断裂或离析、夹泥等部位)或桩身截面积变化(如缩颈或扩径)部位,将产生反射波,利用特定的仪器设备经接收、放大、滤波和数据处理,可识别来自桩身不同部位的反射信息。通过对反射信息进行分析计算,来判断桩身完整性,判定桩身缺陷的程度及其位置。 2、桩判定标准 在《建筑基桩检测技术规范》JGJ106-2003(以下简称《规范》)中,桩身完整性定义为:反映桩身截面尺寸相对变化、桩身材料密实性和连续性的综合定性指标;桩身缺陷定义为:使桩身完整性恶化,在一定程度上引起桩身结构强度和耐久性降低的桩身断裂、裂缝、缩颈、夹泥(杂物)、空洞、蜂窝、松散等现象的统称。注意,桩身完整性不是严格的定量指标,对不同的桩身完整性检测方法,具体的判定特征各异,但为了便于采用,应有一个统—的分类标准。所以,桩身完整性类别是按缺陷对桩身结构承载力的影响程度,统一划分为四类的:Ⅰ类——桩身完整。 Ⅱ类——桩身有轻微缺陷.不会影响桩身结构承载力的发挥。 Ⅲ类——桩身有明显缺陷,对桩身结构承载力有影响。一般应采用其他方法验证其可用性,或根据具体情况进行设计复核或补强处理。 Ⅳ类——桩身存在严重缺陷,—般应进行补强处理。 二、低应变动力测桩法的分类 低应变动力测桩以所采用的激振方式及所观测的振动响应的不同分为两类,即瞬态法和稳态法。 (一)、瞬态法 所谓瞬态法就是采用激振方式并观测橇的瞬态振动响应的方法,是对桩顶面施以轴向瞬时冲击力或施以一冲量来激发桩的振动的方式,就是桩在瞬时冲击力或冲量的作用下,桩的振动随时间的变化过程,振动时间的持续时间一般不会超过1S。

基桩检测考题带答案..

基桩检测考题 一、填空题 1.《建筑基桩检测技术规范》JGJ106-2003范适用于建筑工程基桩的承载力和桩身完整性的检 测与评价。 2.基桩检测开始时间应符合下列规定:当采用低应变法或声波透射法检测时,受检桩混凝土强度至少达到设计强度的70%,且不小于15MPa 。当采用钻芯法检测时,受检桩的混凝土龄期达到28d 或预留同条件养护试块强度达到设计强度。承载力检测前的休止时间除应达到本题第2 句规定的混凝土强度外,当无成熟的地区经验时,尚不应少于下述规定的时间:砂土7 d、粉土10 d、非饱和粘性土 15 d、饱和粘性土25 d,对于泥浆护壁灌注桩,宜适当延长休止时间。 3.基桩施工后,宜先进行工程桩的桩身完整性检测,后进行承载力检测。当基础埋深较大时,桩身完整性检测应在基坑开挖至基底标高后进行。 4.当设计有要求或满足下列条件之一时,施工前应采用静载试验确定单桩竖向抗压承载力特征值:设计等级为甲级、乙级的桩基;地质条件复杂、桩施工质量可靠性低;本地区采用的新桩型或新工艺。检测数量在同一条件下不应少于3 根,且不宜少于总桩数的1%;当工程桩总数在50 根以内时,不应少于2 根。 5.打入式预制桩有下列条件要求之一时,应采用高应变法进行试打桩的打桩过程监测:(1)控制打桩过程中的桩身应力;(2)选择沉桩设备和确定工艺参数;(3 )选择桩端持力层。在相同施工工艺和相近地质条件下,试打桩数量不应少于3 根。 6.当满足采用高应变法进行单桩竖向抗压承载力验收检测条件时,抽检数量不宜少于总桩数的5%,且不得少于5 根。 7.对于端承型大直径灌注桩,当受设备或现场条件限制无法检测单桩竖向抗压承载力时,可采用钻芯法测定桩底沉渣厚度并钻取桩端持力层岩土芯样检验桩端持力层。抽检数量不应少于总桩数的10%,且不应少于10 根。 8、单孔钻芯检测发现桩身混凝土质量问题时,宜在同一基桩增加钻孔验证。对低应变法检测中不能明确完整性类别的桩或Ⅲ类桩,可根据实际情况采用静载法、钻芯法、高应变法、开挖等适宜的方法验证检测。 9.当采用低应变法、高应变法和声波透射法抽检桩身完整性所发现的Ⅲ、Ⅳ类桩之和大于抽检桩数的20%时,宜采用原检测方法(声波透射法可改用钻芯法),在未检桩中继续扩大抽检。 10. 对于桩身完整性判别为Ⅳ类桩应进行工程处理。 11. 若单桩竖向抗压静载试验是为设计提供依据的试验桩,应加载至破坏;当桩的承载力以桩身强度控制时,可按设计要求的加载量进行。当采用单桩竖向抗压静载试验对工程桩抽样检测时,加载量不应小于设计要求的单桩承载力特征值的2.0 倍。 12.单桩竖向抗压静载试验的加载反力装置可根据现场条件选择锚桩横梁反力装置、压重平台反力装置、锚桩压重联合反力装置、地锚反力装置四种。当采用工程桩作锚桩时,锚桩数量不应少于4 根,并应监测锚桩上拔量。 13. 荷载测量可用放置在千斤顶上的荷重传感器直接测定;或采用并联于千斤顶油路的压力表或压力传感器测定油压,根据千斤顶率定曲线换算荷载。传感器的测量误差不应大于1%,压力表精度应优于或等于0.4 级。试验用压力表、油泵、油管在最大加载时的压力不应超过规定工作压力的80%。 14、沉降测量宜采用位移传感器或大量程百分表,并应符合下列规定:测量误差不大于0.1% FS,分辨力优于或等于0.01mm 。直径或边宽大于500 mm 的桩,应在其两个方向对称安置4 个位移测试仪表,直径或边宽小于等于500mm 的桩可对称安置2 个位移测试仪表。沉降测定平面宜在桩顶200mm 以下位置,测点应牢固地固定于桩身。 15.采用锚桩横梁反力装置时,试桩中心于锚桩中心距离、试桩中心与基准桩中心距离、基准桩中

经典低应变反射波法的基本原理

的1/3乃至1/5以下。以加速度计为例,如其安装谐振频率为14kh,则频率上限只能达到3-4kh。由于桩基动测对幅值的定量要求不高,可以放宽限度,但也绝不能使谐振频率接近甚至位于要求的频率范围内。然而,地震检波器的使用者却不同程度地犯了这个错误,以28hz和38hz的速度检波器为例,研究表明,当锥形杆被手按于混凝土表面,且用铁锤激发时,谐振频率在830hz左右;通过钻孔方式将锥形杆紧紧地全部插入孔中或取下锥形杆用石膏粘固在混凝土表面时,如用铁锤敲击,谐振频率多在1200hz以上,此时如用尼龙锤或铁锤垫橡皮等低频锤敲击则可完全排除安装谐振频率的影响。显而易见,正确安装方式应以后者为宜。 理论推导表明,传感器的安装谐振频率与传感器的安装刚度和传感器底座质量有关。一般可以减化理解为:安装刚度越高,基座质量越小,安装谐振频率就越高,而安装刚度与安装的松紧程度、传递杆(锥形杆)长短有关。正因如此,一般要求取消锥形杆(或全部埋入被测连续介质中),也要求传感器基座越轻越好。 对于位移型惯性传感器而言(如速度计),安装谐振频率有f1,f2两个,f1比传感器的自然谐振频率还低,在40Hz以内,一般对测试没有影响;f2即是所讲安装谐振,处理较好时应在1200Hz以上。加速度型惯性传感器也有两个安装谐振频率,但均位于高频段,引起我们关注的是第一谐振频率,处理较好时在大几千赫兹至几万赫兹变化,但是,如用弹性较好的橡皮泥安装将只有1-2kHz。 在对基桩进行低应变反射波法测试时选用速度或加速度传感器。其中速度计在低频段的幅频特性和相频特性较差,在信号采集过程中,因击振激发其安装谐振频率,而产生寄生振荡,容易采集到具有振荡的波形曲线,对浅层缺陷反应不是很明显。同速度计相比,加速度计无论是在频响特性还是输出特性方面均具有巨大优势,并且它还具有高灵敏度的优点,因此用高灵敏度加速度计测试所采集到的波形曲线,没有振荡,缺陷反应明显。所以建议在对基桩进行低应变反射波法测试时选用高灵敏度加速度计检测。 理论上讲位移计型惯性传感器包括速度计(所谓高阻尼速度计和地震检波器)的高频部分是完全满足应力波反射法测试要求的,但由于生产工艺等方面的原因,其高频部分往往受到很大的限制,有的仅几百赫兹,最高一般亦在2kHz左右会掉下来。在现场测桩时,传感器的安装刚度又会导致安装谐振的出现,进一步使传感器的可测范围变窄,那么怎样判断传感器的优劣呢? 利用牙膏、石膏、黄油、橡皮泥等粘接剂将不含锥形杆的速度计紧紧地粘贴在被正确清理干净,满足测试要求的桩头上或用冲击电锤打孔,将有锥形杆的速度计牢牢地插入孔中,确保安装方法正确后,利用小铁锤直接敲击砼表面,仪器的模拟滤波档置2.5kHz以上。对被测信号进行谱分析,如果此桩两米内没有毛病,其幅值谱最高峰(一般为传感器的安装谐振峰)频率大于1200Hz,此传感器即可满足测试要求。频率越高在以后的测试过程中浅部测试效果将越好;分析幅值谱的低频部分(固有频率以下)还可判断出低频特性的好坏。换用低频锤,如力棒、尼龙锤(桩头再垫层橡皮更好)或铁锤+汽车外胎垫测试,如无振荡或振荡很小,这类传感器将更好。如果传感器的谐振峰仅几百赫兹,用低频锤时又不能消振,那么这种传感器是满足不了测试要求的。 需要指出的是,这种测试方法与桩头强度、砼龄期、浅部缺陷以及安装紧凑程度很有关系,以预制桩桩头测试效果最好,而如果在素混凝土上测试,效果将最差,最不能说明问题。速度计是自生电动势型的,虽然价格低廉,但也应注意保护,一般的保护方法是将其输出端短路或两个传感器对接。开路贮放将减少传感器寿命,是不合适的。测桩界较流行的速度计:灵敏度大约为280mV/cm/s,固有频率:10~28Hz,阻尼系数ξ=0.6~1.0。 如果判断速度计测试效果的好坏?从传感器频响,特别是安装后的频响特性来考虑,速度计用于测桩是应当慎重的,因此从某种意义上讲,提高速度计的安装刚度,降低安装质量

最新低应变考试题目及答案.pdf

2012.11.低应变现场考试提问题目及答案 1、低应变采样时间间隔应根据什么合理选择? 答:采样时间间隔应根据桩长、桩身波速、和频域分辨率合理选择。时域信号采样点数不宜少于1024点。 2、低应变数据采集时,设置采样间隔时要如何估算? 按照规范“时域信号分析的时间段长度应在2L/c时刻后延续不少于5ms;”的要求及一般仪器采集点数为1024的实际情况。(如仪器采集点数不同,应根据情况变化)采样间隔估计应由下式估算: {[(2L/V)*1000ms+5ms]/1024}*1000us其中L为桩长,V为估计桩的波速。 3、反射波法检测中,用加速度计测得的原始信号是什么曲线,实际显示的曲线是什 么曲线?。 答:实际测得的是加速度时程曲线,实际显示的是经过积分的速度时程曲线。 4、低应变完整性检测时,对于浅部缺陷一般要求什么样的锤击激振能量?什么 样的激振频率? 答:低应变完整性检测时,对于浅部缺陷一般要求小的锤击激振能量和高的激振频 率。 5、低应变完整性检测时,有利于桩底信号的获取时需要什么样的锤击能量?什么样 的激振频率? 答:低应变完整性检测时,有利于桩底信号获取时需要大的锤击能量和低的激振频 率。 6、通俗一点的说法,在选择低应变完整性检测激振锤时有什么原则? 答:小桩用小锤,打桩用大锤,小桩用硬锤大桩用软锤。实际上,小锤产生小的激 振能量,大锤桩产生大的激振能量,同时,硬的锤子产生较高的激振频率,软的锤 子产生较低的激振频率。

7、实心桩进行低应变完整性检测时,激振位置及传感器安装部位主要有什么要求?答:实心桩的激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心2/3半径处。 8、空心桩(管桩)进行低应变完整性检测时,激振位置及传感器安装部位主要有什么要求? 空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的 夹角宜为90°,激振点和测量传感器安装位置宜为桩壁厚的1/2处。 9、低应变完整性检测时,信号采集和筛选有什么主要要求? 答:根据桩径大小,桩心对称布置2~4个检测点;每个检测点记录的有效信号数不 宜少于3个。 10、对于锤击式预应力管桩,在进行低应变完整性检测时,除了常规需要收集的信 息外,尚应特别注意收集哪些信息便于对采集数据进行分析认识? 答:尚应特别注意收集接桩情况,收锤情况,总锤击数等此工艺特有的数据信息以 及观察管桩是否有开裂现象等,为以后分析低应变检测数据提供参考依据。 11、简述应力波反射法的原理。 答:用小扰动激振桩顶,使产生的应力波沿桩身传播,用仪器记录桩顶传感器安装 部位振动时程曲线,利用一维波动理论,根据桩身各阻抗变化界面反射信号,对桩 身完整性进行分析。 12、在低应变完整性检测时,如果根据桩底信号判断,桩的波速明显偏高,且超出 常识范围。这时,这个桩的实际桩长可能有什么样的偏差? 答:偏短了。 13、对于砼实心桩,当检测点距桩中心点多远处时,所受干扰相对较小;对空心桩, 当检测点与激振点平面夹角约为多少度时也有类似效果? 答:对于砼实心桩,检测点位于距桩中心2/3处所受干扰最少;对于空心桩,当检测点与激振点平面夹角为90度时也有类似效果。

低应变法检测桩身完整性

低应变反射波法 目前国内外普遍采用瞬态冲击方式,实测桩顶加速度或速度响应时域曲线。籍一维波动理论分析来判定基桩得桩身完整性,这种方法称之为反射波法(或瞬态时域分析法)。 传感器得安装方法: 实心桩得激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心 2/3 半径处; 空心桩得激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连 线形成得夹角宜为90 度,激振点与测量传感器安装位置宜为桩壁厚得1/2 处。

传感器藕合: 把藕合剂抹在传感器底部,再把传感器放入桩顶部,松手后传感器不会移动与侧斜为佳。传感器安装地点,一点要平整。不然会影响采集效果,藕合可以用牙膏,黄油,口香糖,但不可用泥巴。 敲击: 敲击以力棒自由落体来敲击桩头,力棒落到桩头反弹后,立马抓住力棒。落距为5cm—15cm 为佳。视桩得长度而定,桩稍长可稍加大落距。长桩用得锤头最好为橡胶头,短桩用铝合金头。 波形分析完整桩:入射波与反 射波同相

也有桩底反射与初始入射波先反相再同相得扩底桩 下图为,某小区得住宅楼,长7、2 米人工挖孔桩,设计砼强度为C25。V=3675,经检测桩底反射明显,底部扩底属完整桩 缩径桩:在时程曲线上反映比较规则,缩径部位与缺陷呈先同相再反相,或仅现其同相反射信号,视严重程度,可能有多次反射,此类缺陷 桩一般可见桩底信号

离析:由于离析部位得混凝土松散,对应力波能量吸收较大,形成缺 陷波不规则,后续信号杂乱,而且频率较低,波速偏小,通常很难瞧到 桩底反射。 断桩:测试曲线呈等距多次同相反射。上部断裂往往趾呈高频多次同 时反射,反射幅值较高,衰减较慢,中部断裂反映为多次同相反射, 缺 陷得反射波幅值较低,而深部断裂波形反映下,类就是摩擦桩桩底反射,但算得得波速明显高于正常桩得波速。

低应变考精彩试题

低应变考试 一、单项选择题 1、低应变检测时,幅频信号分析的频率围上限不应小于( D )Hz。 A、800 B、1000 C、1500 D、2000 4、在低应变检测中,对于桩底反射不太明显的信号,应选用锤头材料相对( B )的敲锤。 A、硬的 B、中等的 C、软的 D、无所谓 2、对某一工地确定桩身波速平均值时,应选取同条件下不少于( D )根Ⅰ类桩的桩身波速参与平均波速的计算。 A、2个 B、3个 C、4个 D、5个 3、低应变方法不适用于判定( D)。 A、桩身完整性 B、桩身缺陷的程度 C、桩身缺陷位置 D、承载力 4、低应变法检测要求受检桩的混凝土强度至少达到( B)。 A、设计强度的70%,且不小于20MPa B、设计强度的70%,且不小于15MPa C、设计强度的50%,且不小于20MPa D、设计强度的50%,且不小于15MPa 5、低应变测试参数设定中时域信号记录的时间段长度应在2L/c时刻后延续不少于 ( B )。 A、3ms B、5ms C、10ms D、15ms 6、低应变测试参数设定中的时域信号采样点数不宜少于(C)。 A、256点 B、512点 C、1024点 D、2048点 7、实心桩的激振点位置应选择在(A)。 A、桩中心 B、距桩中心1/3半径处 C、距桩中心1/2半径处 D、距桩中心2/3半径处

8、以下哪种类型的桩低应变法检测不适用(A)。 A、薄壁钢管桩 B、预制混凝土方桩 C、预制混凝土管桩 D、等截面的混凝土灌注桩 9、低应变法采集信号时,每个检测点记录的有效信号数不宜少于(C)。 A、1个 B、2个 C、3个 D、4个 10、桩身完整性类别为II类的时域信号特征为(C)。 A、波形呈低频大振幅衰减振动,无桩底反射波 B、2L/c时刻前无缺陷反射波,有桩底反射波 C、2L/c时刻前出现轻微缺陷反射波,有桩底反射波 D、2L/c时刻前出现轻微缺陷反射波,无桩底反射波 11、JGJ106规中特别强调的低应变检测报告应包括(C)。 A、地质条件描述 B、受检桩的桩号、桩位和相关施工记录 C、桩身完整性检测的实测信号曲线 D、桩身完整性描述、缺陷的位置及桩身完整性类别 12、当截面扩大时,透射波的速度或应力的幅值(C)入射波。 A、大于 B、等于 C、小于 D、不确定 13、当在桩顶检测出的反射波与入射波信号极性一致,假定桩弹性波波速和截面面积不变,则表明在相应位置可能(A)。 A、密度变小 B、密度变大 C、密度不变 D、不确定 14、当在桩顶检测出的反射波与入射波信号极性相反,假定桩弹性波波速和密度不变,则表明在相应位置可能( B)。 A、截面缩小 B、截面扩大 C、截面不变 D、不确定 15、低应变检测仪器应具有以下哪些功能(C)。

(完整版)低应变检测题目及答案

第一部分客观题部分 一、单项选择题(每题2分,共40分) 1、《江苏省建设工程质量检测行业职业道德准则》第十五条:热情服务,维护权益。下列不属于该条规定的内容是。 A.维护委托方的合法权益; B.不做假试验,不出假报告; C.树立为社会服务意识;D.对委托方提供的样品按规定严格保密 2、透射波的速度或应力在缩颈或扩颈处均()。 A 不改变方向或符号; B 改变方向不改变符号; C 不改变方向改变符号 D 改变方向改变符号 3、低应变检测时,实测桩长小于施工记录桩长,按桩身完整性定义中连续性的涵义,应判为()类桩。 A Ⅰ; B Ⅱ; C Ⅲ; D Ⅳ 4、按JGJ106-2003规范,设计等级为甲级的钻孔混凝土桩,柱下三桩或三桩一下的承台为100个,施工总数量为330根,则桩身完整性检测的抽检数量至少应为()根。 A 100; B 99; C 20; D 165 5、某工程地基采用C30的钻孔灌注桩,当采用低应变检测时,受检桩混凝土强度至少达到设计强度的(),且不小于()。 A 75%、15MPa; B 70%、15 MPa; C 75%、22.5 MPa ; D 70%、22.5 MPa 6、当采用低应变法抽检桩身完整性所发现的Ⅲ、Ⅳ类桩之和大于抽检桩数的(),宜在未检测桩中继续扩大检测。 A 10%; B 20%; C 30%; D 50% 7、低应变检测时,时域信号出现周期性反射波,且无桩底反射波,则该桩应判为()类桩。 A Ⅰ; B Ⅱ; C Ⅲ; D Ⅳ 8、低应变法的理论基础以一维线弹性杆件模型为依据。据此请选择下列哪种桩型不宜使用低应变法进行桩身完整性检测。

UASB反应器的原理

U A S B反应器的原理升流式厌氧污泥床(UASB)反应器是由Lettinga在七十年代开发的。图2是UASB反应器及其设备的示意图。废水被尽可能均匀的引入到UASB反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。厌氧反应发生在废水与污泥颗粒的接触过程,反应产生的沼气引起了内部的循环。附着和没有附着在污泥上的沼气向反应器顶部上升,碰击到三相分离器气体发射板,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,气体被收集到反应器顶部的三相分离器的集气室。一些污泥颗粒会经过分离器缝隙进入沉淀区。UASB反应器包括以下几个部分:进水和配水系统、反应器的池体和三相分离器(图2)。如果考虑整个厌氧系统还应该包括沼气收集和利用系统。在UASB反应器中最重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。 2、反应器的池体几何形状 第一个生产性的UASB反应器(200m3)和在圣保罗CETESB处理生活污水的中试厂(1 20m3)具有特殊的形状,即上部的(沉淀池的)截面积大于下部反应区的截面积(图3a)。较大表面积的沉淀器的水力负荷较低,有利于保持反应器内的污泥,对于低浓度污水尤为重要。但是对于高浓度污水,有机负荷比水力负荷更重要,因此沉淀池截面没有必要设计为较大的表面积(图3b)。但是实际上不论是在建的或已投入运转的大部分生产规模的UASB反应器,在反应器的反应和沉淀部分是等面积的(图3c所示)。建筑直壁的反应器比斜壁的具有较大(或较小)沉淀池的反应器在结构上更加有利。因此,以下仅讨论直壁的UASB反应器。 从反应器的形状有矩形和圆形这两种反应器,已大量应用于实际中。圆形反应器具有结构较稳定的优点,同时对于圆形反应器在同样的面积下,其周长比正方形的少12%。所

低应变检测考试试题与答案

一、填空题 1、基桩的定义为。 2、低应变检测的目的是与。 3、定应变法检测时,受检桩桩身混凝土强度应达到设计强度的,且不小于 。 4、低应变信号时域时间长度应在2L/c时刻后延续不少于,幅频信号分析 的频率范围上限不应小于。 5、低应变检测时,激振方向应桩轴线方向。 6、低应变检测时,应保证桩顶面、。 7、低应变检测时受检桩宜布置到个测点,每个测点记录有效信号不宜少于个。 8、某桩低应变检测不同检测点多次实测时域信号一致性较差,应。 9、当桩长已知、桩底反射信号明确时,应在地基条件、桩型、成桩工艺相同的 基桩中选取不少于根Ⅰ类桩的桩身波速值计算平均值。 10、低应变桩身完整性是反应、以及 的综合定性指标。 11、低应变完整性检测可以判定桩身缺陷的与。 12、低应变检测时,实心桩的激振点位置应选择在,测量传感器安装位 置宜选为距桩中心半径处。 13、低应变检测时,空心桩的激振点位置与传感器位置宜在,且 与桩中心形成夹角宜为。 14、为获得较长桩桩底或深部缺陷信号,激振锤质量宜,锤头刚度宜。 15、低应变桩身完整性判定可采用时域分析与频域分析,以为主。 16、对低应变检测,“波形呈现低频大振幅衰减振动,无桩底反射波”描述的是 类桩。 17、低应变完整性类别划分除需考虑缺陷位置、程度以外,还需要考虑 、、、。 18、低应变检测时,发现多次反射现象出现,一般表明缺陷在。 19、为保证基桩检测数据的与,检测所用计量器具必须送至

法定计量检测单位进行定期检定。 二、简答题 1、简述低应变反射波法的基本原理。 2、现有一钻孔灌注桩需要进行低应变检测,请简述现场检测步骤。 3、请简述进行低应变检测的桩应满足哪些基本现场条件。、 三、计算题 1、某工程有两种桩型,A桩为钻孔灌注桩,C20,桩径为,桩长为20m,波速为3500m/s;B桩为混凝土预制桩,C40,桩长32m,波速为4000m/s。请分析这两根桩缺陷深度与严重程度。 2、某工程灌注桩施工记录桩长为28m,混凝土等级为C30,波速为3500m/s,该桩波形如下图,t1=4ms、t2=10ms,试分析该桩完整性。(1ms=)

试验检测人员继续教育低应变检测技术自测答案

试验检测人员继续教育低应变检测技术自测答 案 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

试验检测人员继续教育低应变检测技术自测答案 第1题 空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为 答案:B 第2题 低应变反射波法检测中,用加速度计测得的原始信号是,实际分析的曲线是 A.加速度加速度 B.加速度速度 C.速度加速度 D.速度速度 答案:B 第3题 低应变反射波法检测时,每个检测点有效信号数不宜少于个,通过叠加平均提高信噪比 答案:C 第4题 当桩进入硬夹层时,在实测曲线上将产生一个与入射波的反射波 A.反向 B.奇数次反射反向,偶数次反射同向 C.同向 D.奇数次反射同向,偶数次反射反向 答案:A 第5题

低应变反射波法检测中,桩身完整性类别分为类 答案:D 第6题 低应变反射波法所针对的检测对象,下列哪个说法不正确 A.工程桩 B.桩基 C.基桩 D.试桩 答案:B 第7题 对某一工地确定桩身波速平均值时,应选取同条件下不少于几根Ⅰ类桩的桩身波速参于平均波速的计算 答案:D 第8题 低应变反射波法计算桩身平均波速的必要条件是 A.测点下桩长、桩径 B.测点下桩长、桩顶相应时间、桩底反射时间 C.测点下桩长、成桩时间 D.桩径、桩顶相应时间、桩底反射时间 答案:B 第9题 低应变反射波法在测试桩浅部缺陷时,激振的能量和频率要求 A.能量小,频率低 B.能量大,频率高 C.能量小,频率高 D.能量大,频率低答案:C 第10题 港口工程桩基动力检测规程中,“检测波波形有小畸变、波速基本正常、桩身有轻微缺陷、对桩的使用没有影响”描述,应判为桩

基桩低应变检测方案

基桩低应变检测方案 工程名称: 联系人员及电话: 编制: 批准: 宁波蓝海工程检测有限公司 邮编:315016 电话:5 地址:宁波望春工业园春华路885号2号楼 2016年月日

一.工程概况 1.工程名称: 2.工程地点: 3.建设单位: 4.委托单位: 5.勘察单位: 6.监理单位: 7.施工单位: 8.设计单位: 设计参数:桩型/桩径/桩长/砼强度:/ / / 总桩数/检测桩数:/ 结构形式/层数: 9.试验标准:《建筑基桩检测技术规范》(JGJ106-2003) 10.试验内容:低应变动力检测确定桩身结构完整性 二.抽样方式及检测数量 1.抽样方式:□建设(监理)□设计□质监部门□委托方 2.抽检数量及桩号:详见选桩表 三.基桩检测主要设备 四.检测原理、方法 1、检测原理 采用反射波法检测桩身完整性。该法以一维波动理论为基础,应用应力波特征法来检验桩身质量。用力锤对桩作瞬态激振,以产生脉冲应力波,应力波沿桩身往下传播,到达桩底后发生反射,再向上传播返回桩顶。当桩身存在缺陷时,波阻抗变化也会使应力波产生反射,该反射波传播至桩顶由传感器接收,

性质、程度不同的缺陷引起反射波在振幅、相位与频率上不同程度的改变,当阻抗减少时,此反射波为负;当阻抗增加时,此反射波为正;阻抗变化大,反射波就大。根据这种变化的波形,结合工程地质和施工等有关资料,可以判断缺陷的性质、程度与位置。 2、检测方法 用力锤击桩顶部,产生脉冲应力波,并由设置在桩顶的加速度(或速度)传感器接收信号,信号经电荷放大器放大后送基桩分析系统处理。 3、试桩等级说明: ⑴桩身结构质量分类代号: Ⅰ类桩:波形规则衰减,无缺陷反射波存在,桩底清晰,波速正常,桩身完好。 Ⅱ类桩:波形规则衰减,存在轻度缺陷反射波,桩身有小缺陷,桩底可分辨,波速正常。可以作为工程桩使用。 Ⅲ类桩:波形存在严重的缺陷反射波,桩底反射不易识别,波速偏低,砼质量较差。作为工程桩使用需采取处理措施。 Ⅳ类桩:波形存在严重的缺陷反射波,且多次重复反射,波无法向下传播,无桩底反射。 ⑵检测结果中缺陷的距离是指检测面到缺陷的距离。 五.试桩的桩头处理 1、试桩桩顶不能有积水,宜保持干燥; 2、试桩桩顶应完整、无破损;如有破损,则将破损处破除至好的混凝土面。 六.现场检测用电 1、动测一般有自备电源。如检测桩数较多时,仪器电池不够用,在场地50m范围内应有(220V)电源; 2、场地应避免有强烈震动。 注:以上二条需建设方积极协调配合 七.被检测桩的龄期 受检测桩的混凝土龄期至少达到设计强度的70%,且不小于15Mpa。 八.扩大检测要求

2017年建筑基桩低应变法检测理论考试试题

2017年建筑基桩低应变法检测理论考试试题 一、单选题 1.低应变检测的目的是 A. 通过桩身内力及变形测试,测定桩身弯矩 B. 通过桩身内力及变形测试、测定桩侧、桩端阻力 C. 检测桩身缺陷及其位置,判定桩身完整性类别 D. 检测灌注桩桩身缺陷及其位置,判定桩身完整性类别 答案:C(JGJ106-2003第3.1.2) 2. 当采用低应变法或声波透射法检测时,受检桩混凝土强度至少达到 A.设计强度的70%,且不小于15MPa B.设计强度的30%,且不小于12MPa C.设计强度的70%,且不小于12MPa D.设计强度的30%,且不小于15MPa 答案:A(JGJ106-2003第3.2.6) 3.反射波法的理论基础是一维线弹性杆件模型,受检基桩的长细比应满足 A.>10 B.≥10 C.≥5 D.>5 答案:D(非规范) 4. 稳态激振设备应包括激振力可调、扫频范围为的电磁式稳态激振器 A. 10~2000Hz B. 10~1500Hz C. 100~2000Hz D. 100~1500Hz 答案:A(JGJ106-2003第8.2.2) 5. 时域信号记录的时间段长度应在2L/c 时刻后延续;幅频信号分析的频

率范围上限。 A. 少于5ms,小于2000Hz B. 不少于5ms, 不应小于2000Hz C. 不少于10ms, 不应小于2000Hz D. 少于10ms,小于2000Hz 答案:B(JGJ106-2003第8.3.2) 6. 时域信号采样点数不宜点。 A. 大于512 B. 大于1024 C. 少于512 D. 少于1024 答案:D(JGJ106-2003第8.3.2) 7.加速度传感器的电荷灵敏度为 A.30-100PC/g B. 10-100PC/g C. 30-1000PC/g D. 10-1000PC/g 答案:A(非规范) 8实心桩的激振点位置应选择在,测量传感器安装位置宜为 A. 桩中心; 距桩中心2/3 半径处 B. 距桩中心1/3 半径处; 距桩中心2/3 半径处 C. 桩中心; 距桩中心1/3 半径处 D. 距桩中心2/3 半径处; 距桩中心1/3 半径处 答案:C(JGJ106-2003第8.3.3) 9. 空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为,激振点和测量传感器安装位置宜为桩壁厚的处。 A. 45°; 1/2 B. 90°; 1/3 C. 45°; 1/3

应变测试方法

应变测试方法 电阻应变测试 1.电阻应变测量技术是用电阻应变片测量构件的表面应变,再根据应力—应变关系确定构件表面应力状态的一种实验应力分析方法。 用电阻应变片测量应变的过程: 2.分类: (1)静态测量:对永远恒定的载荷或短时间稳定的载荷的测量。(2)动态测量:对载荷在2~1200HZ范围内变化的测量。 3.电阻应变测量方法的优点 (1)测量灵敏度和精度高。其最小应变读数为1με(微应变,1με=10-6 ε)在常温测量时精度可达1~2%。 (2)测量范围广。可测1με~20000με。 (3)频率响应好。可以测量从静态到数十万赫的动态应变。(4)应变片尺寸小,重量轻。最小的应变片栅长可短到0.178毫米,安装方便,不会影响构件的应力状态。 (5)测量过程中输出电信号,可制成各种传感器。 (6)可在各种复杂环境下测量。如高、低温、高速旋转、强磁

场等环境测量。 4.电阻应变测量方法的缺点 (1)只能测量构件的表面应变,而不能测构件的内部应变。 (2)一个应变片只能测构件表面一个点沿某个方向的应变,而不能进行全域性测量。 电阻应变片 1.电阻应变片的工作原理 由物理学可知:金属导线的电阻率为 当金属导线沿其轴线方向受力变形时(伸长或缩短),电阻值会随之发生变化(增大或减小),这种现象就称为电阻应变效应。 将上式取对数并微分,得: 2.电阻应变片的构造 电阻应变片由敏感栅、引线、基底、盖层、粘结剂组成。其构造如图所示 L R=A ρdR d dL dA R L A ρρ=+-dR d (12)R ρμερ =++

3.电阻应变片的分类 电阻应变片按敏感栅材料不同可分为金属电阻应变片和半导体应变片。其中金属电阻应变片分为: (1)丝绕式应变片:敏感栅是用直径为0.01~0.05 毫米的铜镍合金或镍铬绕制而成。 优点:基底、盖层均为纸做成,价格便宜,易安装。 缺点:其横向效应大,测量精度较差,应变片性能分散。 (2)短接式应变片:将金属丝平行排成栅状, 端部用粗丝焊接而成。 优点:横向效应小,制造时敏感栅形状易保证,测量精度高。缺点:焊点多,疲劳寿命较低。 (3)箔式应变片:敏感栅采用的是0.002~0.005毫米的铜镍合金或镍铬合金的金属箔,采用刻图制板、光刻及腐蚀等工艺制作。 优点: ①制造技术能保证敏感栅尺寸准确、线条均匀,可以制成任意形状,以适应不同的测量要求; ②敏感栅截面为薄而宽的矩形,其表面积即粘合面积大,传递试件应变性能好; ③横向效应好,可忽略;

低应变考试题目及答案

低应变考试题目及答案

2012.11.低应变现场考试提问题目及答案 1、低应变采样时间间隔应根据什么合理选择? 答:采样时间间隔应根据桩长、桩身波速、和频域分辨率合理选择。时域信号采样点数不宜少于1024点。 2、低应变数据采集时,设置采样间隔时要如何估算? 按照规范“时域信号分析的时间段长度应在2L/c时刻后延续不少于5ms;”的要求及一般仪器采集点数为1024的实际情况。(如仪器采集点数不同,应根据情况变化)采样间隔估计应由下式估算: {[(2L/V)*1000ms+5ms]/1024}*1000us其中L为桩长,V为估计桩的波速。 3、反射波法检测中,用加速度计测得的原始信号是什么曲线,实际显示的曲线是什么曲线?。 答:实际测得的是加速度时程曲线,实际显示的是经过积分的速度时程曲线。 4、低应变完整性检测时,对于浅部缺陷一般要求什么样的锤击激振能 量?什么样的激振频率? 答:低应变完整性检测时,对于浅部缺陷一般要求小的锤击激振能量和高的激振频率。 5、低应变完整性检测时,有利于桩底信号的获取时需要什么样的锤击能量?什么样的激振频率? 答:低应变完整性检测时,有利于桩底信号获取时需要大的锤击能量和低的激振频率。 6、通俗一点的说法,在选择低应变完整性检测激振锤时有什么原则? 答:小桩用小锤,打桩用大锤,小桩用硬锤大桩用软锤。实际上,小锤产生小的激振能量,大锤桩产生大的激振能量,同时,硬的锤子产生较高的激振频率,软的锤子产生较低的激振频率。

7、实心桩进行低应变完整性检测时,激振位置及传感器安装部位主要有什么要求?答:实心桩的激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心2/3半径处。 8、空心桩(管桩)进行低应变完整性检测时,激振位置及传感器安装部位主要有什么要求? 空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为90°,激振点和测量传感器安装位置宜为桩壁厚的1/2处。 9、低应变完整性检测时,信号采集和筛选有什么主要要求? 答:根据桩径大小,桩心对称布置2~4个检测点;每个检测点记录的有效信号数不宜少于3个。 10、对于锤击式预应力管桩,在进行低应变完整性检测时,除了常规需要收集的信息外,尚应特别注意收集哪些信息便于对采集数据进行分析认识? 答:尚应特别注意收集接桩情况,收锤情况,总锤击数等此工艺特有的数据信息以及观察管桩是否有开裂现象等,为以后分析低应变检测数据提供参考依据。 11、简述应力波反射法的原理。 答:用小扰动激振桩顶,使产生的应力波沿桩身传播,用仪器记录桩顶传感器安装部位振动时程曲线,利用一维波动理论,根据桩身各阻抗变化界面反射信号,对桩身完整性进行分析。 12、在低应变完整性检测时,如果根据桩底信号判断,桩的波速明显偏高,且超出常识范围。这时,这个桩的实际桩长可能有什么样的偏差? 答:偏短了。 13、对于砼实心桩,当检测点距桩中心点多远处时,所受干扰相对较小;对空心桩,当检测点与激振点平面夹角约为多少度时也有类似效果? 答:对于砼实心桩,检测点位于距桩中心2/3处所受干扰最少;对于空心桩,当检测点与激振点平面夹角为90度时也有类似效果。

应变测量原理

应变片原理 敏感元件的种类很多,其中以电阻应变片(简称电阻片或应变片)最简单、应用最广泛。 电阻片的应变-电性能(图1、图2) 电阻片分丝式和箔式两大类。丝绕式电阻片是用0.003mm‐0.01mm的合金丝绕成栅状制成的;箔式应变片则是用0.003mm‐0.01mm厚的箔材经化学腐蚀制成栅状的,其主体敏感栅实际上是一个电阻。金属丝的电阻随机械变形而发生变化的现象称为应变‐电性能。电阻片在感受构件的应变时(称作工作片),其电阻同时发生变化。实验表明,构件被测量部位的应变ΔL/L与电阻变化率ΔR/R成正比关系,即: ? ? 比例系数 称为电阻片的灵敏系数。 由于电阻片的敏感栅不是一根直丝,所以 不能直接计算,需要在标准应变梁上通过抽样标定来确定。 的数值一般约在2.0左右。 温度补偿片 温度改变时,金属丝的长度也会发生变化,从而引起电阻的变化。因此在温度环境下进行测量,应变片的电阻变化由两部分组成,即: ? ? ? ? ——由构件机械变形引起的电阻变化。 ? ——由温度变化引起的电阻变化。 要准确地测量构件因变形引起的应变,就要排除温度对电阻变化的影响。方法之一是,采用温度能够自己补偿的专用电阻片;另一种方法是,把普通应变片,贴在材质与构件相同、但不参与机械变形的材料上,然后和工作片在同一温度条件下组桥。电阻变化只与温度有关的电阻片称作温度补偿片。利用电桥原理,让补偿片和工作片一起合理组桥,就可以消除温

度给应力测量带来的影响。 应变花(图3) 为同时测定一点几个方向的应变,常把几个不同方向的敏感栅固定在同一个基底上,这种应变片称作应变花。应变花的各敏感栅之间由不同的角度α组成。它适用于平面应力状态下的应变测量。应变花的角度α可根据需要进行选择。 电阻片的粘贴方法 粘贴电阻片是电测法的一个重要环节,它直接影响测量精度。粘贴时,首先必须保证被测表面的清洁、平整、光滑、无油污、无锈迹。二要保证粘贴位置的准确、 并选用专用的粘接剂。三、应变片引线的焊接和导线的固定要牢靠,以保证测量时导线不会扯坏应变片。为满足上述要求,粘贴的大致过程如下:打磨测量表面→在测量位置准确画线→清洗测量表面→在画线位置上准确地粘贴应变片→焊接导线并牢靠固定。 电桥工作原理 应变仪测量电路的作用,就是把电阻片的电阻变化率ΔR/ R转换成电压输出,然后提供给放大电路放大后进行测量。 电桥原理

相关文档
最新文档