导数应用的题型与方法

导数应用的题型与方法
导数应用的题型与方法

导数的综合应用题型及解法修订稿

导数的综合应用题型及 解法 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

导数的综合应用题型及解法 题型一:利用导数研究函数的极值、最值。 1.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ; 题型二:利用导数几何意义求切线方程 2.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 题型三:利用导数研究函数的单调性,极值、最值 3.已知函数 ))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 4.已知三次函数 32()f x x ax bx c =+++在1x =和1x =-时取极值,且(2)4f -=-. (1) 求函数()y f x =的表达式; (2) 求函数()y f x =的单调区间和极值; 5.设函数()()()f x x x a x b =--. (1)若()f x 的图象与直线580x y --=相切,切点横坐标为2,且()f x 在1x =处取极值,求实数,a b 的值; (2)当b=1时,试证明:不论a 取何实数,函数()f x 总有两个不同的极值点. 题型四:利用导数研究函数的图象 6.如右图:是f (x )的导函数, )(/x f 的图象如右图所示,则f (x )的图象只可能是( D ) (A ) (B ) (C ) (D ) 7.函数的图像为14313+-=x x y ( A ) x y o 4 -2 4 -2 - -x y o 4 -2 4 -2 --x y y 4 -2 4 -2 --6 6 6 6 y x -4 -2 o 4 2 2 4

高考数学 导数及其应用的典型例题

第二部分 导数、微分及其导数的应用 知识汇总 一、求导数方法 1.利用定义求导数 2.导数的四则运算法则 3.复合函数的求导法则 若)(u f y =与)(x u φ=均可导,则[])(x f y φ=也可导,且dx du du dy dx dy ? = 即 [])()(x x f y φφ'?'=' 4.反函数的求导法则 若)(x f y =与)(y x φ=互为反函数,且)(y φ单调、可导,则 )(1)(y x f φ'= ',即dy dx dx dy 1 = 5.隐函数求导法 求由方程0),(=y x F 确定的隐函数 )(x f y =的导数dx dy 。只需将方程0),(=y x F 两边同时对x 求导(注意其中变量y 是x 的函数),然后解出 dx dy 即可。 6.对数求导法 对数求导法是先取对数,然后按隐函数求导数的方法来求导数。对数求导法主要解决两类函数的求导数问题: (1)幂指数函数y=)()(x v x u ;(2)由若干个因子的乘积或商的显函数,如 y= 3 4 )3(52)2)(1(---++x x x x x ,3 ) 2)(53() 32)(1(--+-=x x x x y ,5 5 2 2 5 +-=x x y 等等。 7.由参数方程所确定函数的求导法则 设由参数方程 ? ? ?==)() (t y t x ?φ ),(βα∈t 确定的函数为y=f(x),其中)(),(t t ?φ

可导,且)(t φ'≠0,则y=f(x)可导,且 dt dx dt dy t t dx dy =''=)()(φ? 8.求高阶导数的方法 二、求导数公式 1.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 2.常见函数的高阶导数 (1) n n x n x -+-?-?-?=αα αααα)1()2()1()() ( (2) x n x e e =) () ( (3) ()()ln x n x n a a a = (4) () (sin ) sin 2n x x n π? ?=+? ??? (5) ??? ? ??+=2cos )(cos )(πn x x n (6) () 1 (1)!ln()(1) ()n n n n a x a x --+=-+ (7) 1 )() (!)1()1(++-=+n n n n b ax a n b ax

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

高三数学重点 导数应用题型与分析

导数应用 一.复习目标: 1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念. 2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, log x的导数)。 a 掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。 4.了解复合函数的概念。会将一个函数的复合过程进行分解或将几个函数进行复合。掌握复合函数的求导法则,并会用法则解决一些简单问题。 二.考试要求: ⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。 ⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, log x的导数)。掌 a 握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。 ⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和 充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。 三.教学过程: (Ⅰ)基础知识详析 导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面: 1.导数的常规问题: (1)刻画函数(比初等方法精确细微); (2)同几何中切线联系(导数方法可用于研究平面曲线的切线); (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。 2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。 3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 4.曲线的切线 在初中学过圆的切线,直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点叫做切点.圆是一种特殊的曲线,能不能将圆的切线的概念推广为一段曲线的切线,即直线和曲线有惟一公共点时,直线叫做曲线过该点的切线,显然这种推 l与曲线C有惟广是不妥当的.如图3—1中的曲线C是我们熟知的正弦曲线y=sinx.直线 1 本卷第1页(共22页)

导数及其应用多项选择题

导数及其应用 多项选择题(请将答案填写在各试题的答题区内) 1.(2019秋?滨州期末)已知定义在[0,)2π 上的函数()f x 的导函数为()f x ',且(0)0f =, ()cos ()sin 0f x x f x x '+<,则下列判断中正确的是( ) A .()()64 f f ππ< B .()03f ln π > C .()2()63 f f ππ> D .()()43 f ππ > 2.(2019秋?张店区校级期末)关于函数2 ()f x lnx x =+,下列判断正确的是( ) A .2x =是()f x 的极大值点 B .函数()y f x x =-有且只有1个零点 C .存在正实数k ,使得()f x kx >成立 D .对任意两个正实数1x ,2x ,且12x x >,若12()()f x f x =,则124x x +> 3.(2019秋?济宁期末)已知函数()f x 的定义域为R 且导函数为()f x ',如图是函数()y xf x '=的图象,则下列说法正确的是( ) A .函数()f x 的增区间是(2,0)-,(2,)+∞ B .函数()f x 的增区间是(,2)-∞-,(2,)+∞ C .2x =-是函数的极小值点 D .2x =是函数的极小值点 4.(2019秋?漳州期末)定义在区间1[,4]2 -上的函数()f x 的导函数()f x '图象如图所示,则下列结论正确的 是( )

A .函数()f x 在区间(0,4)单调递增 B .函数()f x 在区间1 (,0)2 -单调递减 C .函数()f x 在1x =处取得极大值 D .函数()f x 在0x =处取得极小值 5.(2019秋?临沂期末)已知函数()sin cos f x x x x x =+-的定义域为[2π-,2)π,则( ) A .()f x 为奇函数 B .()f x 在[0,)π上单调递增 C .()f x 恰有4个极大值点 D .()f x 有且仅有4个极值点 6.(2019秋?烟台期中)已知函数()f x xlnx =,若120x x <<,则下列结论正确的是( ) A .2112()()x f x x f x < B .1122()()x f x x f x +<+ C . 1212 ()() 0f x f x x x -<- D .当1lnx >-时,112221()()2()x f x x f x x f x +> 7.(2019秋?润州区校级期末)直线1 2 y x b =+能作为下列函数图象的切线的有( ) A .1 ()f x x = B .4()f x x = C .()sin f x x = D .()x f x e = 8.如果函数()y f x =的导函数()y f x '=的图象如图所示,则以下关于函数()y f x =的判断正确的是( ) A .在区间(2,4)内单调递减 B .在区间(2,3)内单调递增 C .3x =-是极小值点 D .4x =是极大值点

导数及其应用经典题型总结

《导数及其应用》经典题型总结 一、知识网络结构 题型一 求函数的导数及导数的几何意义 考 点一 导数的概念,物理意义的应用 例 1.(1)设函数()f x 在 2x =处可 导,且(2)f '=, 求 0(2)(2) lim 2h f h f h h →+--; (2)已知()(1)(2) (2008)f x x x x x =+++,求(0)f '. 考点二 导数的几何意义的应用 例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值 例3:已知曲线y=.3 43 13+x (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程. 题型二 函数单调性的应用 考点一 利用导函数的信息判断f(x)的大致形状 例1 如果函数y =f(x)的图象如图,那么导函数y =f(x)的图象可能是( ) 考点二 求函数的单调区间及逆向应用 例1 求函数522 4 +-=x x y 的单调区间.(不含参函数求单调区间) 例2 已知函数f (x )=1 2x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.(含参函数求单调区间) 练习:求函数x a x x f + =)(的单调区间。 例3 若函数f(x)=x 3 -ax 2 +1在(0,2)内单调递减,求实数a 的取值范围.(单调性的逆向应用) 练习1:已知函数0],1,0(,2)(3 >∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a 的取值范围。 2. 设a>0,函数ax x x f -=3 )(在(1,+∞)上是单调递增函数,求实数a 的取值范围。 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

导数的综合应用题型及解法(可编辑修改word版)

导数的综合应用题型及解法 题型一:利用导数研究函数的极值、最值。 x 2 处有极大值,则常数c= 6 ; 1.已知函数y f (x ) x(x c)2 个 题型二:利用导数几何意义求切线方程 2.求下列直线的方程: (1)曲线y x 3 x 2 1在P(-1,1)处的切线;(2)曲线y x2 过点P(3,5)的切线; 题型三:利用导数研究函数的单调性,极值、最值 f (x) =x3+ax 2+bx +c, 过曲线y = f (x)上的点P(1, f (1)) 的切线方程为 3.已知函数 y=3x+1 f (x)在x =-2 处有极值,求f (x) 的表达式; (Ⅰ)若函数 y =f (x) 在[-3,1]上的最大值; (Ⅱ)在(Ⅰ)的条件下,求函数 y =f (x) 在区间[-2,1]上单调递增,求实数 b 的取值范围(Ⅲ)若函数 4.已知三次函数f (x) =x3+ax2+bx +c 在x =1 和x =-1 时取极值,且f (-2) =-4 . (1)求函数y =f (x) 的表达式; (2)求函数y =f (x) 的单调区间和极值; 5.设函数f (x) =x(x -a)(x -b) . f(x)的图象与直线5x -y - 8 = 0 相切,切点横坐标为2,且f(x)在x = 1 处取极值,(1)若 a, b 的值; 求实数 f (x) 总有两个不同的极值 (2)当b=1 时,试证明:不论 a 取何实数,函数 点.题型四:利用导数研究函数的图象 f / ( x) 的图象如右图所示,则 f(x)的图象只可能是( 6.如右图:是 f(x)的导函数, D )

3 (A ) (B ) (C ) (D ) y 1 x 3 4x 1个个个个 7. 函数 3 ( A ) 6 4 2 -4 -2 y o 2 4 -2 -4 6 4 2 x -4 -2 y o 2 4 -2 -4 x -4 6 y 6 y 4 4 2 2 y 2 4 x o x -2 -2 -2 2 4 -4 -4 8.方程 2x 3 6x 2 7 0个 (0,2)个个个个个个 ( B ) A 、0 B 、1 C 、2 D 、3 题型五:利用单调性、极值、最值情况,求参数取值范围 f (x ) = - 1 x 3 + 2ax 2 - 3a 2 x + b ,0 < a < 1. 9. 设函数 3 (1)求函数 f (x ) 的单调区间、极值. (2)若当 x ∈[a + 1, a + 2] 时,恒有| f ' (x ) |≤ a ,试确定 a 的取值范围. 2 10. 已知函数 f (x )=x3+ax2+bx +c 在 x =- 3 与 x =1 时都取得极值(1)求 a 、b 的值与函数 f (x )的单调区间 (2)若对 x ∈〔-1,2〕,不等式 f (x ) 0,函数f (x ) = x 3 - ax 在[1,+∞) 上是单调函数. (1)求实数 a 的取值范围; (2)设 x 0 ≥1, f (x ) ≥1,且 f ( f (x 0 )) = x 0 ,求证: f (x 0 ) = x 0 .

最新导数及其应用知识点经典习题集

导数及其应用 1、函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111 212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数在0x x =处的瞬时变化率是 ,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即= . 3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。 )(x f y =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000)(x f y =0x )(x f y =0x )(0'x f 0|'x x y =)(0'x f x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000

6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有: 7.用导数求函数单调区间的步骤:①求函数f (x )的导数'()f x ②令'()f x >0,解不等式,得x 的范围就是递增区间.③令'()f x <0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。 8.求可导函数f (x )的极值的步骤:(1)确定函数的定义域。(2) 求函数f (x )的导数 '()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的点,顺次将函数的定义区 间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值 9.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点;

导数的概念和几何意义同步练习题(教师版)

导数的概念和几何意义同步练习题 一、选择题 1.若幂函数()y f x =的图像经过点11(,)42 A ,则它在A 点处的切线方程是( ) A. 4410x y ++= B. 4410x y -+= C .20x y -= D. 20x y += 【答案】B 【解析】试题分析:设()a f x x =,把11(,)42A 代入,得1142a =,得12 a =,所以1 2()f x x ==() f x '= ,1 ()14f '=,所以所求的切线方程为11 24 y x - =-即4410x y -+=,选B.考点:幂函数、曲线的切线. 2.函数()x e x f x cos =的图像在点()()0,0f 处的切线的倾斜角为( ) A 、 4π B 、0 C 、4 3π D 、1 【答案】A 【解析】试题分析:由)sin (cos )('x x e x f x -=,则在点()()0,0f 处的切线的斜率1)0('==f k , 1.利用导数求切线的斜率; 2.直线斜率与倾斜角的关系 3.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.2 e B.2 2e C.2 4e D.22 e 【答案】D 【解析】试题分析:∵点2 (2)e ,在曲线上,∴切线的斜率'22 2 x x x k y e e --===, ∴切线的方程为2 2 (2)y e e x -=-,即2 2 0e x y e --=,与两坐标轴的交点坐标为2 (0,)e -,(1,0), ∴22 1122 e S e =??=.考点:1.利用导数求切线方程;2.三角形面积公式. 4.函数2 ()f x x =在点(2,(2))f 处的切线方程为( ) A .44y x =- B .44y x =+ C .42y x =+ D .4y = 【答案】A 【解析】 试题分析:由x x f 2)(='得切线的斜率为4)2(='f ,又4)2(=f ,所以切线方程为)2(44-=-x y ,即44-=x y .也可以直接验证得到。考点:导数求法及几何意义 5.曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为( ) (A )() 11,e -- (B )()0,1 (C )()1,e (D )()0,2

导数应用题答案

16.如图,抛物线29y x =-+与x 轴交于两点,A B ,点,C D 在抛物线上(点C 在第一象限),CD ∥AB .记||2CD x =,梯形ABCD 面积为S . (Ⅰ)求面积S 以x 为自变量的函数式; (Ⅱ)若|| || CD k AB ≤,k 为常数,且01k <<,求S 的最大值. 值. (Ⅰ)解:依题意,点C 的横坐标为x ,点C 的纵坐标为29C y x =-+. …………1分 点B 的横坐标B x 满足方程2 90B x -+=,解得3B x =,舍去3B x =-. ………2分 所以2211 (||||)(223)(9)(3)(9)22 C S C D AB y x x x x = +?=+?-+=+-+. …4分 由点C 在第一象限,得03x <<. 所以S 关于x 的函数式为 2(3)(9)S x x =+-+,03x <<. …………5分 (Ⅱ)解:由 03,,3 x x k <

()f x ' + - ()f x ↗ 极大值 ↘ 所以,当1x =时,()f x 取得最大值,且最大值为(1)32f =. …………11分 ② 若13k ≥,即1 03 k <≤ 时,()0f x '>恒成立, 所以,()f x 的最大值为2(3)27(1)(1)f k k k =+- ………………13分 综上, 113k ≤<时,S 的最大值为32;1 03 k <<时,S 的最大值为227(1)(1)k k +-. 17. 统计表明,某种型号的汽车在匀速行驶中每小时的耗油量为y (升),关于行驶速度x (千米/小时)的函数解析式可以表示为: 313 8(0120). 12800080y x x x = -+<≤已知甲、乙两地相距100千米. (I )当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (II )当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 解:(I )当40x =时,汽车从甲地到乙地行驶了100 2.5 40=小时, 要耗油313(40408) 2.517.5 12800080?-?+?=(升). 答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升.

[数学]导数应用的题型与方法

导数应用的题型与方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数 两个函数的和、差、积、商的导数,复合函数的导数,基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值 二、考试要求 (1)了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。 x (2)熟记基本导数公式(c,x m (m为有理数),sin x, cos x, e x, a x,ln x, log a 的导数)。掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。 (3)了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。 三、复习目标 1.了解导数的概念,能利用导数定义求导数。掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。了解曲线的切线的概念。在了解瞬时速度的基础上抽象出变化率的概念。 x 2.熟记基本导数公式(c,x m (m为有理数),sin x, cos x, e x, a x, ln x, log a 的导数)。掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。 4.了解复合函数的概念。会将一个函数的复合过程进行分解或将几个函数进行复合。掌握复合函数的求导法则,并会用法则解决一些简单问题。 四、双基透视 导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导

导数及导数应用专题练习题

高二文科数学《变化率与导数及导数应用》专练(十) 一、选择题 1. 设函数f (x )存在导数且满足 ,则曲线y=f (x )在 点(2,f (2))处的切线斜率为( ) A .﹣1 B .﹣2 C .1 D .2 2. 函数()1x f x e =-的图像与x 轴相交于点P ,则曲线在点P 处的切线的方程为 ( ) A .1y e x =-?+ B .1y x =-+ C . y x =- D . y e x =-? 3. 曲线)0(1 )(3>-=x x x x f 上一动点))(,(00x f x P 处的切线斜率的最小值为() A .3 B .3 C. 32 D .6 4. 设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处的切线的倾斜角的取值范围为0,4π?????? ,则点P 的横坐标的取值范围为() A .[]0,1 B .[]1,0- C .11,2??--??? ? D .1,12?????? 5. 已知23 ()1(1)(1)(1)(1)n f x x x x x =+++++++ ++,则(0)f '=( ). A .n B .1n - C .(1)2 n n -D .1 (1)2n n + 6. 曲线y=2lnx 上的点到直线2x ﹣y+3=0的最短距离为( ) A . B .2 C .3 D .2 7. 过点(0,8)作曲线32()69f x x x x =-+的切线,则这样的切线条数为() A .0 B .1 C .2 D .3 8. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )= +6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2 B .3 C .4 D .5

导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

《导数及其应用》经典题型总结

《导数及其应用》 一、知识网络结构 题型一 求函数の导数及导数の几何意义 考点一 导数の概念,物理意义の应用 例1.(1)设函数()f x 在2x =处可导,且(2)1f '=,求0(2)(2)lim 2h f h f h h →+--; (2)已知()(1)(2)(2008)f x x x x x =+++,求(0)f '. 考点二 导数の几何意义の应用 例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c の值 例3:已知曲线y=.3 4313+x (1)求曲线在(2,4)处の切线方程;(2)求曲线过点(2,4)の切线方程. 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

题型二 函数单调性の应用 考点一 利用导函数の信息判断f(x)の大致形状 例1 如果函数y =f(x)の图象如图,那么导函数y =f(x)の图象可能是( ) 考点二 求函数の单调区间及逆向应用 例2 已知函数f (x )=12x 2+a ln x (a ∈R ,a ≠0),求f (x )の单调区间.(含参函数求单调区间) 例3 若函数f(x)=x 3-ax 2+1在(0,2)内单调递减,求实数a の取值范围.(单调性の逆向应用) 练习1:已知函数0],1,0(,2)(3>∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a の取值范围。

2. 设a>0,函数ax x x f -=3)(在(1,+∞)上存在单调递减区间,求实数a の取值范围。 3. 已知函数f (x )=ax 3+3x 2-x+1在R 上为减函数,求实数a の取值范围。 例3 已知x>1,证明x>ln(1+x).(证明不等式) 证明方法总结: 题型三 函数の极值与最值 例1 (1)求)f(x)=ln x +1x の极值(不含参函数求极值) (2)求函数[]2,2,14)(2-∈+=x x x x f の最大值与最小值。(不含参求最值) 例2 设a>0,求函数f(x)=x 2+a x (x>1)の单调区间,并且如果有极值时,求出极值. ( 含参函数求极值)

导数的应用 练习题

导数的应用 二、典型例题 题型一 未定式及其逆问题的求解 例1、求下列极限(∞∞): (1)0ln tan 2lim ln tan 3x x x +→ (2)0lim ln x x x +→  (3)arctan lim (1)x x x a x x a a x →∞->+ (4)ln(1)lim an n e n →∞+ (1)解:原式2'2002cot 2sec 22tan 3lim lim 13cot 3sec 33tan 2L H x x x x x x x x ++ →→===. (2)解:原式1'ln 1 lim lim 0t x L H t t t t t =→+∞→+∞-==-=. (3)提示:arctan 1()arctan lim lim 11() x x x x x x a x x x a x a x x a →+∞→+∞--==++; arctan ()arctan lim lim ()12 x x x x x x a x x a x x a x a x π →-∞→-∞--==++. (4)提示:0a ≤,原式0=;0a >,原式ln(1) lim an n an e a n -→∞++==(不能用'L H ). 注:ln (1),ln ,(1),ln()(1),ln ,,,x x x x x x x a b a x x a x ββαββα><+>无限增大之速渐快; ln (1),ln ,(1),ln()(1),ln ,,,!,n n n n n n n a b a n n a n n ββαββα><+>无限增大之速渐快. 例2、求下列极限(0 000,,1,,0∞ ?∞∞-∞∞,): (1)4301 sin sin lim tan x x x x x x →-+;(2)20(1)ln(1)lim 1 x x x x x e →-++-;(3)01lim(cot )1x x x e →--; (4)21lim[ln(1)]x x x x →∞-+;(5)2arctan lim ()x x x π→+∞;(6)101lim()x kx n x k e n →=∑; (7)2122lim()x x x a →∞+. (1)提示:原式3300 32000tan ~sin 11cos 1 lim lim sin lim 36 x x x x x x x x x x x x →→→--+==. (2)提示:解:原式2200 '2001~(1)ln(1)ln(1)1 lim lim 22x L H x x e x x x x x x x →→--++-+===-. (3)提示:原式2'20001tan 1tan sec 1 lim lim lim (1)tan 22x x x L H x x x x e x e x e x e x x x →→→-----====-. (4)提示:原式1'20ln(1)1 lim 2 t x L H t t t t =→-+==. (5)提示:原式22 2 2 ln arctan arctan 12[(1)]2 lim 1lim lim 111x x x x x x x x x e e e e ππ π π∞ →+∞ →+∞ →+∞ -+- -====(令 2 arctan 1x t π -=). (6)提示:原式1 1 00 11 ln( ) 11 1lim 1'lim lim 2 n n kx kx n kx k k x x x k e n e n n ke L H n x x e e e e ∞==→→→=-+∑∑ ∑ ====. (7)提示:原式0 ∞=22222ln()2() 'lim lim 21x x x a x x a L H x x e e →∞→∞++==. 注1 :对1n =,不能直接使用L’H 法则,先求0 1lim 1x x x ∞→+∞ =,而0 00 lim 1x x x + →=.

导数的应用练习题及详解

一、导数应用 1. 单调区间:一般地,设函数 )(x f y =在某个区间可导,如果'f )(x 0>,则)(x f 为增函数; 如果'f 0)('x f 与)(x f 为增函数的关系。 0)(>'x f 能推出)(x f 为增函数,但反之不一定。如函数3)(x x f =在),(+∞-∞上单调递增,但0)(≥'x f ,∴0)(>'x f 是)(x f 为增函数的充分不必要条件。 ㈡ 0)(≠'x f 时,0)(>'x f 与)(x f 为增函数的关系。 若将 0)(='x f 的根作为分界点,因为规定0)(≠'x f ,即抠去了分界点,此时)(x f 为增函数,就一定有0)(>'x f 。∴当 0)(≠'x f 时,0)(>'x f 是)(x f 为增函数的充分必要条件。 ㈢ 0)(≥'x f 与)(x f 为增函数的关系。 )(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定,因为0)(≥'x f ,即为0)(>'x f 或0)(='x f 。当函数在某个区间 内恒有 0)(='x f ,则)(x f 为常数,函数不具有单调性。∴0)(≥'x f 是)(x f 为增函数的必要不充分条件。 ㈣单调区间的求解过程,已知)(x f y = (1)分析 )(x f y =的定义域; (2)求导数 )(x f y '=' (3)解不等式0)(>'x f ,解集在定义域内的部分为增区间 (4)解不等式 0)(<'x f ,解集在定义域内的部分为减区间。 我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数 )(x f y =在某个区间内可导。 2、求极值、求最值。 用导数判别f (x 0)是极大、极小值的思路: 若0x 满足0)(0='x f , 且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是 )(x f 的极小值点,)(0x f 是极小值

导数及其应用》单元测试题(详细答案)

《导数及其应用》单元测试题(文科) (满分:150分 时间:120分钟) 一、选择题(本大题共10小题,共50分,只有一个答案正确) 1.函数()2 2)(x x f π=的导数是( ) (A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 2 8)(π=' (D) x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( ) (A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0 3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时, ()0()0f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4.若函数b bx x x f 33)(3 +-=在()1,0内有极小值,则( ) (A ) 10<b (D ) 2 1< b 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.2 94 e B.2 2e C.2 e D.2 2 e 7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )

高数导数的应用习题及答案

一、是非题: 1. 函 数 ()x f 在 []b a , 上 连 续 ,且()()b f a f =,则 至 少 存 在 一 点 ()b a ,∈ξ,使()0=ξ'f . 错误 ∵不满足罗尔定理的条件。 2.若函数()x f 在0x 的某邻域内处处可微,且()00='x f ,则函数()x f 必在0x 处取得 极值. 错误 ∵驻点不一定是极值点,如:3 x y =,0=x 是其驻点,但不是极值点。 3.若函数()x f 在0x 处取得极值,则曲线()x f y =在点()()00,x f x 处必有平 行 于x 轴 的切线. 错误 ∵曲线3 x y =在0=x 点有平行于x 轴的切线,但0=x 不是极值点。 4.函数x x y sin +=在()+∞∞-,内无极值. 正确 ∵0cos 1≥+='x y ,函数x x y sin +=在()+∞∞-,内单调增,无极值。 5.若函数()x f 在()b a ,内具有二阶导数,且()()0,0>''<'x f x f ,则曲线()x f y =在()b a ,内单调减少且是向上凹. 正确 二、填空: 1.设()x bx x a x f ++=2 ln (b a ,为常数)在2,121==x x 处有极值,则=a ( 23 - ),=b ( 16 - ). ∵()12++= 'bx x a x f ,当2,121==x x 时, 012=++b a ,0142 =++b a ,解之得6 1,32- =- =b a 2.函数()()1ln 2 +=x x f 的极值点是( 0=x ). ∵()x x x f 2112 ?+= ',令()0='x f ,得0=x 。又0>x ,()0>'x f ; 0x ,()0>''x f ;0

相关文档
最新文档