风冷散热器研究设计

风冷散热器研究设计
风冷散热器研究设计

风冷散热器研究设计

前言

所谓风冷散热器,其散热原理即通过与发热物体(一般为CPU、GPU等半导体芯片)紧密接触的金属散热片,将发热物体产生的热量传导至具有更大热容量与散热面积的散热片上,再利用风扇的导流作用令空气快速通过散热片表面,加快散热片与空气之间的热对流,即强制对流散热。

风冷散热器分解图:

一款优秀的风冷散热器必须具备三个条件:

1、采用做工精良,设计合理。材料合适的散热片。

2、配有性能强劲,工作稳定,长寿命的风扇。

3、以及出色的整体结构与安装设计。

然而要设计出一款优良的散热片,我们就必须对热力学、散热器的部件及其结构有所了解,那么我们就将风冷散热器的讲解分为热力学、散热片、风扇、扣具结构等几个部分,及其风冷散热器的各项指标以及现行技术进行浅要的分析与介绍。

第一章

热力学基本知识

首先来说说相关的热力学方面:物理学认为,热主要通过三种途径来传递,它们分别是热传导、热对流、热辐射。为了保证良好的散热器性能,就要已符合上述三种途径的要求来设计产品,于是在材料的热传导率、比热值;散热器整体的热阻、风阻;风扇的风量、风压等等方面都提出了要求。

热传导

定义:通过物体的直接接触,热从温度高的部位传到温度低的部位。

热能的传递速度和能力取决于:

1.物质的性质。有的物质导热性能差,如棉絮,有的物质导热性能强,如钢铁。这样就有了采用不同材质的散热器,铝、铜、银。它们的散热性能依次递增,价钱当然也就成正比。

2.物体之间的温度差。热是从温度高的部位传向温度低的部位,温差越大热的传导越快。

热传导是散热的最主要方式,也是散热技术需要解决的核心问题之一。所以我们通常都能看到,几乎所有散热在与CPU相接触的部分都采用热传导性能良好的材料。许多厂商都在于CPU接触的部分采用塞铜柱或铜片的工艺,就是为了将热量尽快传导出来。

热对流

热通过流动介质(气体或液体)将热量由空间中的一处传到另一处,即由受热物质微粒的流动来传播热能的现象。根据流动介质的不同,可分为气体对流和液体对流。影响热对流的因素主要有:

1.通风孔洞面积和高度

2.温度差:原因还是因为热是由高到低方向传导。

3.通风孔洞所处位置的高度:越高对流越快。

4.液体对流:导热效果比较好,因为液体比热要大些,所以温差大,导热快。

之所以在CPU散热器安装的风扇,也就是为了产生强制热对流而加强散热性能。理论上说,只要散热器表面积足够大,是无需强制热对流的,但实际应用中,由于空间与结构的原因,散热器不可能做的无限大,所以采用风扇的主动散热器是最常见的,并且可以根据散热的需求而采用不同转速和大小规格的风扇。少数散热器也能采用被动散热的方式,比如下图中的产品,但散热器已经覆盖了大半个主板。

热辐射

是一种可以在没有任何介质(空气)的情况下,不依靠分子之间的碰撞,又不依靠气体或者液体的流动就能够达成热交换的传递方式。影响热辐射的因素主要有:

1、热源的材料。材料的比热越小相外辐射能量越快,反之就越慢。

2、表面的颜色。一般来说,色光亮的(如白色或泫色)物体表面吸收和释放辐射能量的速率较慢。深颜色(黑色)的物体表面吸收和释放辐射能量的速率较快,有趣的是物体释放电磁波的能量越高,其吸收能力也高,反之亦然。

当然,在普通应用环境中,比起热传导与热对流,热辐射起到的散热作用微乎其微,因此在此方面不必太在意。

以上三个概念是热力学的基础知识。具体到材料上的特点,就需要引入热传到系数与比热值两个概念。材料的导热性能

热传导系数

由于热传导是散热器有效运作的两大方式之一,因此,散热片材料的热传递速度就是其中最关键的技术指标,理论上称作热传导系数。

定义:每单位长度、每度K,可以传送多少瓦数的能量,单位为W/mK。即截面积为1平方米的柱体沿

轴向1米距离的温差为1开尔文(1K=1℃)时的热传导功率。热传导系数值越大,表明该材料的热传递速度越快。

由上表可以得知,银、铜的热传导系数最好。但是很显然,这两种材料的成本较高,不利于大规模量产。因此在目前的市场中,我们见到的最常用散热器材料就是铝合金与铜。

比热容

热传递的速度很重要,但是吸收热量能力低也不利于散热,这里又引入了比热容的概念。

定义:单位质量下需要输入多少能量才能使温度上升一摄氏度,单位为卡/(千克×°C),数值越大代表物体容纳热量的能力越大。

根据上表得知,水比热容最高,比金属有更强的热容能力,这也是水冷散热器赖以生存的根本。值得注意的是,铝的比热容低于于铜,这就是为什么纯铜散热器的散热效能并没有大幅超出铝质散热器的原因。

热传导系数与比热值体现的是材料本身的特性。但是一款散热器散热性能的好坏,也要受到自身设计结构的影响。而体现这方面整体性能的参数,就要依靠热阻与风阻两个概念了。同时,散热器的体积与重量也不可忽视。

热阻

热阻,英文名称为thermal resistance,即物体对热量传导的阻碍效果。热阻的概念与电阻非常类似,单位也与之相仿——℃/W,即物体持续传热功率为1W时,导热路径两端的温差。以散热器而言,导热路径的两端分别是发热物体(如CPU等)与环境空气。

散热器热阻=(发热物体温度-环境温度)÷导热功率。

散热器的热阻显然是越低越好——相同的环境温度与导热功率下,热阻越低,发热物体的温度就越低。但是,决定热阻高低的参数非常多,与散热器所用材料、结构设计都有关系。

必须注意:上述公式中为“导热功率”,而非“发热功率”。因为无法保证发热物体所产生的热量全部通过散热器一条路径传导、散失,任何与发热物体接触的低温物体(包括空气)都可能成为其散热路径,甚至还可以通过热辐射的方式散失热量。所以,当环境或发热物体温度改变时,即使发热功率不变,由于通过其它途径散失的热量改变,散热器的导热功率也可能发生较大变化。如果以发热功率计算,就会出现散热器在不同环境温度下热阻值不同的现象。

散热器(不仅限于风冷散热器,还可包括被动空冷散热片、液冷、压缩机等)所标注的热阻值根据测

试环境与方法的不同可能存在较大差异,而与用户实际使用中的效果也必然存在一定差异,不可一概而论,应根据具体情况分析。

散热公式:

下面为一个基本的热转换方程式:

H = Cp×W×△T

其中

H = 热转换量

Cp = 空气比热

△T = 设备上升的温度

W = 流动空气重量

即: H热转换量= Cp空气比热×W流动空气重量×△T设备上升的温度

我们已知W = CFM×D

(CFM)=移除热量所需的风量

其中D = 空气密度

Q:所需冷却的热量

经由代换后,我们得到:

Q(CFM)=Q/(Cp×D×△T)

即:Q(CFM)移除热量所需的风量= 所需冷却热量/{ Cp空气比热×D空气密度×△T设备上升的温度 }

再由转换因子(conversion factors)与代入海平面空气的比热与密度,可得到以下的散热方程式:

CFM = 3160×千瓦/△℉

然后得到下列方程式:

Q(CFM)={3.16×P}/{△Tf=1.76×P/△Tc}

Q(M3/Min)={0.09×P}/{△Tf=0.05×P/△Tc}

其中

Q(CFM):移除热量所需的风量

P:设备部散热量(即设备消耗的电功率)

Tf:允许部温升(华氏)

Tc:允许部温升(摄氏)

DT = DT1 与DT2 之温差

明白了上述的公式后,我们就该了解下面对散热器产生风量的FAN风扇部分:

第二章

FAN散热风扇:

DC 风扇运转原理:

根据安培右手定则,导体通过电流,周围会产生磁场,若将此导体置于另一固定磁场中,则将产生吸力或斥力,造成物体移动。在直流风扇的扇叶部,附着一事先充有磁性之橡胶磁铁。环绕着硅钢片,轴心部份缠绕两组线圈,并使用霍尔感应组件作为同步侦测装置,控制一组电路,该电路使缠绕轴心的两组线圈轮流工作。硅钢片产生不同磁极,此磁极与橡胶磁铁产生吸斥力。当吸斥力大于虱扇的静摩擦力时,扇叶自然转动。由于霍尔感应组件提供同步信号,扇叶因此得以持续运转,至于其运转方向,可依佛莱明右手定则决定。

要详细了解风扇,就要了解风扇的各个参数:风速、风量、风压、转速、噪音、寿命、功率等,然后还要了解风扇的各个部件:扇叶、扇框、轴承、定子等

风扇的各项参数:

风速:风速是风扇重要的性能指标之一,与最重要的两项性能指标之一风量关系密切。风速即风扇出

风口或进风口的空气流动速度,单位一般为m/s;仅是某一位置的速度数值,不能完全体现风扇的性能。风速在不同位置数值可能有较大差异,且平均值难以计算,一般不用来表示风扇的性能,仅在详细设计分析中才会使用。

相关元素:风速的高低主要取决于扇叶的形状、面积、高度以及转速。

扇叶形状设计、面积、高度的影响较为复杂,将在后文说明;风扇转速越快,风速越快,则是显而易见的常识。风速的高低会影响到风量以及噪音的大小。同样的过风面积,风速越高,风量越大;气流之间、空气与扇叶、外框、散热片之间的摩擦都会产生噪音,同样的风扇、散热片设计,噪音必然会随着风速的提升而增大。

风量:风量是风扇最重要的两项性能指标之一。风量即单位时间通过风扇出风口(或进风口)截面的

散热器方案设计

“铭昊欣”散热器设计方案 一、散热方案概述 随着电子设备不断将更强大的功能集成到更小组件中,温度控制已经成为设计中至关重要的挑战之一,即在架构紧缩,操作空间越来越小的情况下,如何有效地带走更大单位功率所产生的更多热量。因此,必须加快散热速度,有效地控制产品的工作温度,使其不超过极限范围,以提高产品的可靠性并延长寿命。 二、散热原理 散热就是热量传递,而热的传递方式有三种:传导、对流和辐射。传导是由能量较低的粒子和能量较高的粒子直接接触碰撞来传递能量的方式,CPU和散热片之间的热量传递主要是采用这种方式,这也是最普遍的一种热传递方式。对流是指气体或液体中较热部分和较冷部分通过循环将温度均匀化,目前的散热器在散热片上添加风扇便是一种强制对流法,电脑机箱中的散热风扇带动气体的流动也属于"强制热对流"散热方式。辐射顾名思义就是将热能从热源直接向外界发散出去,该过程与热源表面颜色、材质及温度有关,辐射的速度较慢,因此在散热器散热中所起到的作用十分有限(辐射可以在真空中进行)。这三种散热方式都不是孤立的,在日常的热量传递中,这三种散热方式都是同时发生,共同发挥作用的。

三、散热方案设计 对于CPU散热器,依照从散热器带走热量的方式,可以将散热器分为主动散热和被动散热。前者常见的是风冷散热器,而后者常见的就是散热片。进一步细分散热方式,可以分为风冷,液冷,半导体制冷,压缩机制冷,液氮制冷等等。 其中风冷散热器是最常见的,而且简单易用,就是使用风扇带走散热器所吸收的热量。具有价格相对较低,安装方便等优点。但对环境依赖比较高,例如气温升高以及超频时其散热性能就会大受影响。 风扇是风冷散热器中必不可少的一部分,对散热效果起着重要的作用,同时,也对散热器的工作噪音有着决定性的影响。风扇在风冷散热器中的职责为:凭借自身的导热作用,令空气以一定的加速度、一定的方式通过散热片表面,利用空气与散热片表面的热交换从而带走散热片上堆积的热量,从而实现“强制对流“的散热方式。 1.参数: 一款风扇的品质,最重要的两个方面为性能与寿命,其次便是越来越受到关注的工作噪音;此外,还必须注意风扇的其他电气要求规格与功率。 2.风量: 风量是风扇最重要的两项性能指标之一。

可控硅风冷散热器的选配

风冷散热器的选配 功率半导体元件在工作时,自身必然要产生热损耗。但若发热量太大,且又来不及向周围媒质消散,元件就会因超过其正常工作的保证温度而失效。因此,选配合适的散热器,是元件可靠工作的重要条件之一。概念 1、元件工作结温Tj:即元件允许的最高工作温度极限。 本参数由制造厂提供,或产品标准强制给出要求。 2、元件的损耗功率P:元件在工作时自身产生的平均稳态功率消耗,定义为有效值输出电流与有效值电压降的乘积。 3、耗散功率Q:特定散热结构的散热能力。 4、热阻R:热量在媒质之间传递时,单位功耗所产生的温升。 R=ΔT/Q 一、散热器的选配 设环境温度为Ta。散热器的配置目的,是必须保证它能将元件的热损耗有效地传导至周围环境,并使其热源_即结点的温度不超过Tj。用公式表示为 P

Rsa:散热器至空气的热阻。 其中,Rjc与元件的工艺水平和结构有很大关系,由制造商给出。Rcs与管壳和散热器之间的填隙介质(通常为空气)、接触面的粗糙度、平面度以及安装的压力等密切相关。介质的导热性能越好,或者接触越紧密,则Rcs越小。 (参考值:我厂凸台元件的风冷安装,一般可考虑Rcs≈0.1Rjc) Rsa是散热器选择的重要参数。它与材质、材料的形状和表面积、体积、以及空气流速等参量有关。 综合①和②,可得 Rsa<〔(Tj-Ta)/P〕-Rjc-Rcs ③ 上式③即散热器选配的基本原则。 一般散热器厂商应提供特定散热器材料的形状参数和热阻特性曲线,据此设计人员可计算出所需散热器的表面积、长度、重量,并进一步求得散热器的热阻值Rsa。 二、注意事项 上面的理论分析是一个普适原则,在实际设计中应留出足够余量。因为提供数据的准确性、由元件到散热器的安装状况、散热器表面的空气对流状态、热量的非稳态分布等,都是非理想化的因素,应予考虑。另外,散热器表面向空气的热辐射,也是一种热耗散方式。在自冷设计中广泛应用的阳极氧化发黑和打毛处理工艺,即是增加热辐射的有效办法。但该办法明显不适用要求强迫风冷的以对流传导为主要方式的设计,因为散热器表面越光亮则热阻越低,这是要特别提示设计人

暖气片如何选型及计算

暖气片报价如何选型及计算 机械循环热水采暖系统,摩擦阻力损失占50%,局部阻力损失占50%; 换热器按0.1-0.15MPa估算; 设计裕量:10-20%。 1MPa=10KGF/CM2=100MH2O 1MMH2O=10Pa 循环水泵如何选择? 应根据计算所得的水量G及总循环阻力H来选择水泵.与外网连接的系统应换算外网在本楼接口处的供回水压差,是否够用(城市热网一般预留压差≥5MH2O)。 金旗舰散热器的工作压力定多少是合适的? 我国暖通空调设计规范规定,采暖系统高度超过50M时就应分区设置.这时系统的静压约为55MH2O。而采暖系统的动压(推动水循环,包括换热器等)约为20M-30M H2O,动压和静压的总和约为70-90MH2O (即0.7-0.9MPa)。所以散热器的工作压力取1.0MPa已够用了。关于个别城市热网直连的情况可作特殊处理。 系统运行前的压力测试如何进行? 在系统或系数的某部分投入运行前,必须对其进行压力测试.首先,所测系统应排出空气并充满处理过的水,然后用泵将压力升到至少为工作压力的1.5倍。这一压力应该至少保持10分钟,压力下降

不超过0.02 Mpa才为合格,在压力测试过程中,应对接头,连接处和设备进行目测检查以确保无泄漏。测试人员应进行记录,该记录应包括时间、地点、观测设备以及测试的初始和终了压力等信息,也应包括注意到的可能渗漏.最后测试人员在测试记录上签字。具体测点位置及系统试压的压力值均应按施工验收规范要求确定。 热水供暖系统设计应强调哪些问题? 应从以下6方面考虑: 1、必须保证满水条件下的闭式循环,最好实现密闭式热水采暖系统; 2、必须强调供暖水质的处理及控制; 3、必须保证有足够的水量,足够的资用压头; 4、必须有良好的排气,保证水循环畅通; 5、必须考虑水力平衡,保证各组散热器均能通水; 6、对较长的直管段,必须考虑热补偿。 三散热器选择与比较 购房要注意有关供暖系统的哪些问题? 可以从7个方面加以考虑: 1、注意散热器的热负荷,即每平方米的散热量.华北地区的砖混结构住宅,一般配置70W/㎡;节能型保温建筑配置50W/㎡;华中及华东地区的独立供暖住宅,一般配置120~130W/㎡。 2、看散热器类型是否安全舒适.面积很大的房间最好选用R021B 1800的散热器,散热均匀又安全舒适;

散热器设计的基本计算(最新整理)

散热器设计的基本计算 一、概念 1、热路:由热源出发,向外传播热量的路径。在每个路径上,必定经过一些不同的介质, 热路中任何两点之间的温度差,都等于器件的功率乘以这两点之间的热阻,就像电路中的欧姆定律,与电路等效关系如下。 热路电路 热耗P (W)电流V ab I (A) 温差△T=T1-T2 (℃)电压V ab=V a-V b(V) 热阻R th=△T/P (℃/ W)电阻R=V ab/I (Ω) 热阻串联R th=R th1+R th2+…电阻串联R=R1+R2+… 热阻并联1/R th=1/R th1+1/R th2+…电阻并联1/R=1/R1+1/R2+… 2、热阻:在热路中,各种介质及接触状态,对热量的传递表现出的不同阻碍作用—— 在热路中产生温度差,形成对热路中两点间指标性的评价。 符号——Rth 单位——℃/W。 ?稳态热传递的热阻计算: R th= (T1-T2)/P T1——热源温度(无其他热源)(℃) T2——导热系统端点温度(℃) ?热路中材料热阻的计算: R th=L/(K·S) L——材料厚度(m) S——传热接触面积(m2) 3、导热率:是指当温度垂直向下梯度为1℃/m时,单位时间内通过单位水平截面积所 传递的热量。 符号——K or λ单位——W/m-K,

铝合金10702261900平面 铝合金1050209硅胶垫佳日丰泰 5.0铝合金6063201矽胶套帽佳日丰泰 1.0铝合金6061160相变基膜佳日丰泰 1.4铝合金7075 130矽硅膜鑫鑫顺源0.9铁80导热膏KDS-2 0.84不锈钢17 空气 0.04 二、热设计的目标 1、确保任何元器件不超过其最大工作结温(T jmax ) ?推荐:器件选型时应达到如下标准 民用等级:T jmax ≤150℃ 工业等级:T jmax ≤135℃军品等级:T jmax ≤125℃ 航天等级:T jmax ≤105℃ ?以电路设计提供的,来自于器件手册的参数为设计目标2、温升限值 器件、内部环境、外壳: △T ≤60℃ 器件每升高2℃,可靠性下降10%;器件温升为50℃时,寿命只有温升25℃的1/6,电解电容温升超过10℃,寿命下降1/2。三、计算 1、TO220封装+散热器 1)结温计算?热路分析 热传递通道:管芯j →功率外壳c →散热器 s →环境空气a

设备散热器、风扇的选型和设计计算

散热、吸热,还是绝热重要? ________________________________________ 在这儿之前,有一个很重要的问题要问各位,您知道什么是"热"吗?在您选择一项产品之前.您得先知道您用钞票换得手中的宝贝要解决的是什么物理现象,千万别当了冤大头!"热(He at)"是能量吗? 严格来说它不算是能量,应该说是一种传递能量的形式.就好象作功一样.微观来看,就是区域分子受到外界能量冲击后,由能量高的分子传递至能量低的区域分子(就像是一种扩散 效应),必须将能量转嫁释放出来.所以能量的传递,就是热.而大自然界最根本的热产生方式,就是剧烈的摩擦(所谓摩擦生热如是说!).从电子(量子力学)学的角度而言,当电子束滑过电子信道时,会因为与导线(trace)剧烈摩擦而产生热,它形成一股阻力,阻止电子流到达另一端(就像汽车煞车的效果是一样的).我们统称作"废热". 所以当CPU的速度越高,表示它的I/O(Inp ut/Output)数越高,线路布局越复杂.就好比一块同样面积的土地上.您不断的增加道路面积; 不断的膨胀车流量,下场是道路越来越窄,而车子越来越多,不踩煞车,能不出车祸吗?当然热 量越来越高.信不信,冷飕飕的冬天,关在房里打计算机,你会爱死它,又有得杀时间,又暖和!只是不巧,炎炎夏日又悄悄的接近了…… "传热(Heat Transfer)":既然说热是一种传递能量的形式.那就不能不谈传递的方法了.总的来说整个大自然界能量传递的方式被我们聪明的老祖先(请记住.热力学Thermal Dynami c是古典力学的一种!)概分为三种,接下来我用最浅显易懂的方式分别介绍这门神功的三大基本奥义让各位知道: 1.)热传导(Conduction) 物质本身或当物质与物质接触时,能量传递的最基本形式(这里所说的物质包括气体,液体,与固体).当然气体与液体(我们统称为流体)本身因为结构不似固体紧密.我们又有另外一个专有名词来形容它,叫做热扩散(Diffusion).若诸位看官真有兴趣的话,不妨把下面的公式熟记,对以后您专业素养的养成,抑或是将来更深入的技术,探讨彼此的沟通都非常有帮助(这可是入门的第一招式,千万别放弃您当专业消费者的权益了!).另外,为了避免您一开始走火入魔,请容我先将所有的单位(Unit)都拿掉. Q = K*A*ΔT/ΔL 其中Q为热量;就是热传导所能带走的热量. K为材料的热传导系数值(Conductivity);请记住,它代表材料的热传导特性,就像是出生证明一样.若是纯铜,就是396.4;若是纯铝,就是240;而我们都是人,所以我们的皮肤是0.38,记住! 数值越高,代表传热越好.(详细的材料表我将于日后择篇幅再补述!) A代表传热的面积(或是两物体的接触面积.) ΔT代表两端的温度差;ΔL则是两端的距离. 让我们来看一下图标,更加深您的印象! 热传导后温度分布 铜材的导热系数高,经过热传导后,温度在铜材中分布就非常均匀,相反的,木材的导热系数偏低,于是相同的传导距离,木材的温度分布就明显的不均匀(温度颜色衰减的非常快;表示热量传导性不良.) 从上述的第一招式我们可以知道.热传导的热传量.跟传导系数,接触面积成正比关系(越大,则传热越好!)而跟厚度(距离)成反比.好,有了这个观念,现在让我们把焦点转到散热片身上,当散热片与热源接触,我们需要的是"吸热",能够大量的把热吸走,越多越好.各位可以到市面上看看最近有一些散热片的底部会加一块铜板不是吗?或甚至干脆用铜当散热片底板.就是

散热器的选型与计算

散热器的选型与计算 以7805为例说明问题. 设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出. 正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-T a)/Pd Tjmax :芯组最大结温150℃ Ta :环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率-输出功率 ={24×0.75+(-24)×(-0.25)}-9.8×0.25×2 =5.5℃/W

总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d:散热器厚度cm A:散热器面积cm2 C:修正因子取1 按现有散热器考虑,d=1.0A=17.6×7+17.6×1×13 算得散热器热阻RQd-a=4.1℃/W, 散热器选择及散热计算 目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散

设计散热系统时风扇选型的计算

足够的冷空气与散热片进行热交换,也会造成散热效果不好。一般铝质鳍片的散热片要求风扇的风压足够大,而铜质鳍片的散热片则要求风扇的风量足够大;鳍片较密的散热片相比鳍片较疏的散热片,需要更大风压的风扇,否则空气在鳍片间流动不畅,散热效果会大打折扣。所以说不同的散热器,厂商会根据需要配合适当风量、风压的风扇,而并不是单一追求大风量或者高风压的风扇。 无论 Intel 还是 AMD 的CPU 都已经到了与散热器不可分割、甚至丝毫也不能马虎的程度。 CPU 的风扇和散热片可以说是目前最实效、最方便、最常用的 CPU 降温的方法,因此选购一款好的 CPU 散热器是十分必要的。根据空气散热三要素的原理,热源物体表面的面积、空气流动速度以及热源物体与外界的温差是影响散热速度的最重要因素,其实所有 CPU 散热器的设计也都是围绕更好地解决这三个问题而进行的。下面就为大家介绍一些有关 CPU 散热器的性能参数,希望能对大家有所帮助。 风扇功率 风扇功率是影响风扇散热效果的一个很重要的条件,功率越大通常风扇的风力也越强劲,散热的效果也越好。而风扇的功率与转速又是直接联系在一起的,也就是说风扇的转速越高,风扇也就越强劲有力。目前一般电脑市场上出售的都是直流 12V 的,功率则从 0.x 瓦到 2.x 瓦不等,购买时需要根据你的 CPU 发热量来选择,理论上是功率略大一些的更好一些,不过,也不能片面地强调高功率,如果功率过大可能会加重计算机电源的工作负荷,从而对整体稳定性产生负面影响。风扇口径该性能参数对风扇的出风量也有直接的影响。在允许的范围之内,风扇的口径越大出风量也就越大,风力作用面也就越大。通常在主机箱内预留位置是安装 8cm×8cm 的轴流风扇。对于该指标,笔者认为应选择的风扇口径一定要与自己计算机中的机箱结构相协调,保证风扇不影响计算机其他设备的正常工作,以及保证计算机机箱中有足够的自由空间来方便拆卸其他配件。 风扇转速 风扇的转速与功率是密不可分的,转速的大小直接影响到风扇功率的大小。通常在一定的范围内,风扇的转速越高,它向 CPU 传送的进风量就越大, CPU 获得的冷

散热器如何选型及计算

散热器如何选型及计算 散热器如何选型及计算;【1】散热器基础;1、散热量计量单位的W是什么?;散热器技术性能中的W是热功率计量单位;金属热强度Q(W/KG.℃):是指金属散热器内热;各种散热器的金属热强度比较表;3、什么是散热器的传热系数?;散热器的传热系数K(W/㎡.℃):是指散热器内热;4、散热器的散热过程是什么样的?;当温度较高的热媒在散热器内流过时,热媒所携带的热;1、散热器如何选型及计算【1】散热器基础 1、散热量计量单位的W 是什么? 散热器技术性能中的W 是热功率计量单位。是指每米或每片(柱)散热器在不同工况下每小时的散热量(瓦)。 2、什么是金属热强度?其在工程中的实际意义是什么? 金属热强度Q(W/KG .℃):是指金属散热器内热媒的平均温度与室内空气温度相差1℃时,每公斤质量的金属单位时间所散出的热量. Q值越大,说明散出同样的热量所耗用金属越少.这个指标是衡量散热器节能和经济性的一个指标。 各种散热器的金属热强度比较表 3、什么是散热器的传热系数? 散热器的传热系数K(W/㎡.℃):是指散热器内热媒的平均温度与室内气温相差为1度时,每平方米散热面积所传出的热量.该值与散 热面积的乘积,再乘标准传热温差(64.5℃)就是该散热器的标准散热 量.即Q=K.F.64.5,在散热面积一定的情况下,K值越大,则散热器的

散热量就越大.K值为整个传热过程的综合系数(包括对流传热和辐射传热),与散热器本身的特点和使用条件有关,如水流情况,内外表面 情况等。 4、散热器的散热过程是什么样的? 当温度较高的热媒在散热器内流过时,热媒所携带的热量通过散 热器不断地传给温度较低的室内空气,其散热过程为: 1、金旗舰铜铝复合散热器88/95散热器内的热媒通过对流换热把热量传给散热器内壁面(内表面放热系数) 2、内壁面靠导热把热量传给外壁; 3、外壁靠对流换热把大部分热量传给空气,又靠辐射把一小部分热量传给室内的物体和人. 5、散热器的水容量对采暖的影响如何? 散热器水容量对采暖的影响: 1、散热器的水容量大,采暖系统热惰性比较大,在锅炉间断供热时,水冷却时间稍长一些,采暖房间仍可以保持相当长时间的一定温度. 但再供水时,水升温也比较慢.大水容量的系统调节反映速度较慢.在连续供热时,对供暖质量无影响; 2、散热器的水容量小,启动时间短,温度调节灵敏,居室升温快, 便于分户计量供热,既省钱又方便; 3、热量是靠流动的水携带和运输的,水容量大小对热量无直接影响,只是调节时间有长短分别。

散热器的选型与计算..

散热器的选型与计算 以7805 为例说明问题. 设I=350mA,Vin=12V, 则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θ JA=54℃/W,温升是132℃, 设室温25℃,那么将会达到7805的热保护点150℃,7805 会断开输出. 正确的设计方法是: 首先确定最高的环境温度, 比如60℃, 查出7805 的最高结温TJMAX=125℃ , 那么允许的温升是65℃. 要求的热阻是65℃ /2.45W=26℃/W.再查7805 的热阻,TO-220 封装的热阻θ JA=54℃/W, 均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候, 应该加上4℃/W 的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单, 与电阻的并联一样, 即 54//x=26,x=50 ℃/W.其实这个值非常大, 只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-Ta)/Pd Tjmax : 芯组最大结温150℃ Ta : 环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率- 输出功率 ={24×0.75+(-24) ×(-0.25)}-9.8 ×0.25 ×2

=5.5 ℃ /W 总热阻由两部分构成,其一是管芯到环境的热阻RQj-a, 其中包括结壳热阻RQj-C 和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻. 管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a 应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d: 散热器厚度cm A: 散热器面积cm2 C: 修正因子取1 按现有散热器考虑,d=1.0 A=17.6×7+17.6 ×1×13 算得散热器热阻RQd-a=4.1℃ /W, 散热器选择及散热计算目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏。因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利

采暖散热器的选择和设计

采暖散热器的选择品牌和设计 1. 散热方法 安装金旗舰散热器的基本目的是把功率半导体器件中产生的热量传递出去。热量从一种介质传递到另一种介质中去的方法,可以是下述三种方法中的一种或几种。这三种方法为: (1) 暖气片十大品牌金旗舰暖气片,一线明星代言,暖通O2O第一品牌。 热传导热传导是指热量通过直接接触的物体从高温区传向低温区。它是功率半导体器件的结到壳和外壳到散热器散热的最有效方法。 (2) 热对流发热物体周围的热空气密度比其附近的冷空气密度低,因此,热空气和冷空气之间自然就会形成对流。利用流动的气体或液体流过导热体表面把热量带走的方法称为热对流。 (3) 热辐射由于导热体和邻近物体或空间存在温度差,所以导热体就会以辐射的形式向外发射热量。这种散热方法称为热辐射。 根据黑体辐射原理,散热器的表面温度越高,表面越粗糙,表面发黑率越高,散热器辐射热量的能力就越强。因此,多数散热器都经氧化发黑处理,以增大其辐射散热的能力。功率半导体器件的散热器向周围环境的散热,主要是靠对流散热和辐射散热,但传导散热也起作用。 2. 散热器的材料

制造散热器的材料用得最多的是铜和铝。虽然铜的导热能力比铝强,但它价格比铝贵,为此,制作散热器的理想材料是铝。 在功率晶体管中,为了便于散热,通常都将其集电极和外壳管座焊在一起,如外壳为F2型的功率晶体管就属于这一类型。由于铜的导电性比铝好,加上铜比铝易于焊接,所以晶体管的金属外壳一般都用铜来制作。 3. 绝缘垫片 当晶体管的外壳和散热器之间要求绝缘时,可用0.07~0.12mm 厚的云母绝缘垫片或聚四氟乙烯绝缘垫片来将它们隔开。这样做当然会增大一些壳到散热器的热阻,但若在垫片的每边涂上一些硅脂,就能使其壳到散热器的热阻R(th)cs增加得小一些。氧化铍绝缘垫片的导热性虽然比云母片好,但是它的粉末以及烟雾都是有毒的,因此通常不用。 4. 安装散热器的注意事项 在安装散热器时,为了能得到良好的散热效果,需注意以下几点: ①要使散热器和器件外壳之间的接触面很平,并保持接触良好。接触面越大的散热器要做到这一点就越困难。为了提高散热效果,可在散热器和器件外壳相接触的接触面上均匀地涂上一层硅脂。 ②使用的紧固力矩要合适。力矩过小,会增大热阻;过大,又会使器件变形,产生应力。严重时,甚至会使芯片产生裂缝或引线折断。一般F1和F2型外壳的器件,其紧固力矩可在6~10kg ·cm范围内选择。

散热与风量的计算

风扇总热量=空气比热X空气重量X温差,这里的温差是指,你进风的温度与最终加热片的温度的差值,照你说 的,250-80(最加热片的温度)-25(进风空气的温度)=145度,你给的倏件还一样,就是热量不知道,或者电器做的 总功不知道,电器做的总功/4.2=风扇排出的总热量知道的话就可以根空气重量=风量/60X空气密度逆推出风量 . 设:半导体发热芯片平均温度T1(工作时的温度上限,也就是说改芯片能承受的最高温度,取决你的设计要 求了),散热片平均温度T2,散热片出口处空气温度T3 简化问题,假设: 1.散热片为热的良导体,达到热平衡时间忽略,则有T1=T2; 2.只考虑热传导,对流和辐射不予考虑。 又因为半导体发出的热量最终用来加热空气,则有: 880W=40CFM*空气比热*(T3-38°C)注意单位统一,至于空气的比热用定容的吧。。。上式可以求出(实际上也就是估算而已)出口处空气温度T3, 根据散热片的散热公式(也是估算),有: P=λ*【T2-0.5(T3+38°C)】*A 其中:P为散热功率,λ为散热系数,A为与空气的接触面积,【T2-0.5(T3+38°C)】为温差; 其中:λ可以通过对照试验求(好吧,还是估算)出来, 这样就能大概估算出需要的散热器面积A了。。。 P.S. 误差来源1:散热器温度和芯片温度肯定不相等,热传导需要时间,而且散热片不同位置的温度也不严格相同 ,只是处在动态平衡; 误差来源2:散热片的散热公式是凭感觉写的。。。应该没大错,但肯定很粗糙。。自己修正吧 能想到的就这么多了。。。 轴流风机风量散热器的信息讲解2011-06-02 17:06

散热器简化设计计算方法

壁挂散热器价格简化设计计算方法 一. 金旗舰散热量Q的计算 1.基本计算公式: Q=S×W×K×4.1868÷3600 (Kw) 式中: ①.Q —散热器散热量(KW)=发动机水套发热量×(1.1~1.3) ②.S —散热器散热面积(㎡)=散热器冷却管的表面积+2×散热带 的表面积。 ③.W —散热器进出水、进出风的算术或对数平均液气温差(℃), 设计标准工况分为:60℃、55℃、45℃、35℃、25℃。它们分别对应散热器允许适用的不同环境大气压和自然温度工况条件。④.K —散热系数(Kcal/m.h.℃)。它对应关联为:散热器冷却管、散热带、钎焊材料选用的热传导性能质量的优劣;冷却管与散热带钎焊接合率的质量水平的优劣;产品内外表面焊接氧化质量水平的优劣;冷却管内水阻值(通水断面积与水流量的对应关联—水与金属的摩擦流体力学),散热带风阻值(散热带波数、波距、百叶窗开窗的翼宽、角度的对应关联—空气与金属的摩擦流体阻力学)质量水平的优劣。总体讲:K值是代表散热器综合质量水平的关键参数,它包容了散热器从经营管理理念、设计、工装设备、物料的选用、采购供应、制造管理控制全过程的综合质量水平。根据多年的经验以及

数据收集,铜软钎焊散热器的K值为:65~95 Kcal/m2.h.℃;改良的簿型双波浪带铜软钎焊散热器的K值为:85~105 Kcal/m2.h.℃;铝硬钎焊带电子风扇系统的散热器的K值为:120~150 Kcal/m2.h.℃。充分认识了解掌握利用K值的内涵,可科学合理的控制降低散热器的设计和制造成本。准确的K值需作散热器风洞试验来获取。 ⑤.4.1868和3600 —均为热能系数单位与热功率单位系数换算值⑥.发动机水套散热量=发动机台架性能检测获取或根据发动机升功 率、气门结构×经验单位系数值来获取。 二、计算程序及方法 1. 散热面积S(㎡) S=冷却管表面积F1+2×散热带表面积F2 F1={ [2×(冷却管宽-冷却管两端园孤半径)]+2π冷却管两端园孤半径}×冷却管有效长度×冷却管根数×10 F2=散热带一个波峰的展开长度×一根散热带的波峰数×散热带的 宽度×散热带的根数×2×10 2. 算术平均液气温差W(℃) W=[(进水温度+出水温度)÷2]-[(进风温度+出风温度)÷2] 常用标准工况散热器W值取60℃,55℃,增强型取45℃,35℃。这要根据散热器在什么工况环境使用条件下来选取。 3. 散热系数K

关于风冷散热器的性能研究

关于风冷散热器的性能研究专题(都是分析风冷散热器) 主要是分析散热器的哪些构造影响散热性能,涉及到底座、热管、鳍片、风扇、工艺、大小和形状。 散热器主要功能是:把cpu表面的热快速传递到鳍片,再散发到空气中,起到降温的作用。从降温效率角度,涉及到以下几个方面: (1)cpu表面温度-->热管上端温度,温差越小传热速度越快; (2)热管温度-->鳍片温度,温差越小传热速度越快; (3)鳍片温度-->空气温度,温差越大传热速度越快,鳍片面积越大散热越快。 所以,选择、安装或制造散热器,在不考虑大小、重量和成本的理想前提下,: (1)尽量使cpu表面热量快速到达热管上端。 这需要底座平整如镜: 或使热管直接接触cpu表面:

或采用铜底座: 安装时不要过分挤压两端,导致底座拱起变形,不能与cpu表面完全吻合; 导热硅脂要均匀涂抹。 热管热量要快速到达鳍片: 可采用增加热管数目,采用较粗热管等办法。 (2)尽快使热管上的热量到达鳍片,并分布到鳍片的所有表面上。 --好的工艺使鳍片紧扣热管,不留间隙,尽快导出热管上的热量。 --采用导热更好的材料做鳍片,让热量快速分布到整个表面。目前基本都是铝质鳍片,少量铜质鳍片。--合理排列热管位置,让导热更有效。 (3)尽快把鳍片上的热量导入空气中。 保持适当风速。风速太低太高都不行,低了导热不够快,高了...摩擦生热,还有噪音。 尽量增大鳍片面积。越大越好。

保持机箱风道通畅,使空气保持低温。 利用工艺改变鳍片形状,使空气流动效率更高,如图所示: 下面分类详谈。 先谈谈热管,到底几根热管够用?是否越多越粗越好? 一般都是6mm粗的热管,粗的有8mm的,如果热管数量多,底座挤满了。对高发热量(如125W)的cpu来说,1根2根的是少了点,3根可能刚好足够,4根比3根有提高是肯定的,但随着根数的增加,从热管传热角度看,效率提升会越来越少。所以中低端散热器基本是3根4根。 对5根6根甚至8根热管的散热器来说,增加热管对进一步降低cpu表面与热管上端温差的效果不明显,多热管的作用更多在第二个环节:让热管更快向鳍片传热。4根和5根的热管,与鳍片的接触面积相差25%,传热速度也快了25%,这才是超过4根热管的目的。 不考虑鳍片端,对cpu端来说,多少根热管合适? 如果我们计算出一根热管传导热量的能力,那么多少瓦的cpu需要多少根热管就一清二楚了。 以一根6mm热管计算,取长度为10cm,这样好计算些,一根热管分两侧延伸,相当于两根在散热。 热管的导热能力随着温度提升而增加,是铜导热能力的8-25倍,我们计算一下cpu表面到热管与鳍片接触处的温差:

铝材散热器设计规范11

铝材散热器设计规范 热器挤压模设计 1 前言 由于铝合金型材,的导热性能较好,因此,在铝合金的挤压型材中,各种类型的散热器型材巳被广泛地应用在电器、机械等行业中。 散热器型材其结构均是由多个齿形组成,为了提高散热效率,增大散热面积,在每个齿上大都布有多个尖牙,这种结构虽然有效地提高了散热效率,改善了散热效果,增加了散热面积,但是却给型材挤压带来了很大的阻力。 对于如图1所示的每个齿形的悬臂较小、其舌比小于3的散热器型材,采用普通平模的设计结构即可实现正常的型材挤压。而对于如图2所示的带有大悬臂的散热能型材,山于其舌比大于3,采用普通的平模设计结构,在型材挤爪时极易造成模只从齿根部断裂,致使模具报废。因此,对于大悬臂的散热器型材,必须改变常用的设计方案,以避免上述断裂现象的发生。 2 截面分析 图2为某带有大悬臂的散热器型材的截面设计图。从图中可知,此散热器型材其截面外形长度为170mm,高度为45mm,设计有14个35mm高的齿形,两齿间距为1Omm,,在每个齿形的两侧布有0.5mm高,1mm间距的尖牙。从其标注的尺寸上可计算出此散热器型材悬臂处舌比为:(45-10)/(10-3):4.69>3,在各齿间存在着危险断面。特别是该截面的底部壁厚较厚(达1Omm),而齿部最薄处的壁厚仅有1.5mm,截面壁厚相差悬殊,更增大了危险断面的断裂系数。

另外,从图中的技术要求巾得知,挤压此型材的挤压筒内径仅为∮170mm,而此型材截面的外接圆直径却达∮175.8mm,大于挤压筒内径尺寸,要实现此型材的正常挤压难度极大。 纯铝散热器是最为常见的散热器。纯铝散热器制造工艺简单,成本低,目前仍然占据着相当一部分市场。最常用的加工手段是铝挤压技术。评价一款纯铝散热器的主要指标是散热器底部的厚度和现Pin-Fin比。Pin是指散热片的鳍片的高度,Fin是指相邻的两枚鳍片之间的距离。Pin-Fin比是用Pin的高度(不含底座厚度)除以Fin,Pin-Fin 比越大意味着散热器的有效散热面积越大。代表铝挤压技术越先进。 纯铜散热器 纯铝散热器是最为常见的散热器。纯铝散热器制造工艺简单,成本低,目前仍然占据着相当一部分市场。最常用的加工手段是铝挤压技术。评价一款纯铝散热器的主要指标是散热器底部的厚度和现Pin-Fin比,Pin是指散热片的鳍片的高度,Fin是指相邻的两枚鳍片之间的距离。Pin-Fin比是用Pin的高度(不含底座厚度)除以Fin,Pin-Fin 比越大意味着散热器的有效散热面积越大。代表铝挤压技术越先进。目前纯铝散热器的这个比值的最高的值是20。一般这个比值能达到15~17,散热器本体的品质就很不错了。Pin-Fin比高于18,则表明散热器是一款高档产品。目前处理器发热使得纯铝散热器已经很难再适应,但这只是一种观念。纯铝散热器真的不行了吗?我们将通过测试来评价这一结论。 散热片的制造工艺有很多,效果也各有千秋。其中最常见的就是铝挤压工艺(Extruded)。 铝挤压的技术相对简单,适合大批量制作散热器。

两种散热方式设计原理及计算

两种散热方式设计原理及计算 2008-3-10 15:10:00 推荐 一、自冷式热设计原理及计算 在自然对流和辐射情况下,平板散热器垂直安装,型材散热器沟道应该是垂直的。叶片的表面应该涂漆或处理以使其有良好的辐射率,例如铝应该进行氧化处理。 至于强制对流下的散热器,其放置方向并没有硬性的规定,当然仍然是要使冷却空气能通过散热器叶片之间的沟道自由流动为原则。 (一)自冷式热设计公式 由于散热器装上后会使热阻大大减小,而热量总是趋向于向热阻最小的方向流动,因此当电源模块装上散热器后,可以认为,电源模块产生的热量基本上都是通过散热器而散发出去的。只有很少(小于10%)的热量是从电源模块的外壳底板与侧面壁通过热交换而散发出去的。由前面几节的公式我们能求出电源模块所消耗的热量Pd及模块外壳与周围流体(空气)的温差△T。这样散热器所需要的热阻Rth为 下面的任务就是查散热器的产品目录或手册,从中找出与电源模块基板尺寸相当的、在合适环境温度及自然对流与辐射下的热阻值小于Rth的散热器即可。 (二)常用散热器热阻 常用的散热器有平板散热器、型材散热器和叉指形散热器等。又指形散热器由于散热叉指之问的“烟囱效应”利于热对流,所以在相同热阻下,叉指形散热器比其他散热器体积小、重量轻。国产的叉指形散热器型号为SRZ系列。国产的型材散热器型号为XC系列、DXC系列、XSF系列等。表10—3和表10—4分别为国产型材散热器和国产叉指形散热器的型号及其对应的热阻阻值表。

从表10—3和表10—4可见,散热器到环境的热阻随加到散热器上的耗散功率Pd值的增大而略有下降。这是因为当加于散热器上的耗散功率Pd增大时,散热器上的温升△T也随之增大。散热器和环境之间的温差一旦增大,散热器的辐射散热和对流散热的散热能力增强,所以其热阻呈现略有下降的趋势。 如手头一时无型材散热器、叉指形散热器而准备采用铝平板作为散热器时,可查图10—5、图10—6散热器的热阻曲线图,从中选择符合要求的铝平板散热器的尺寸。

散热片设计准则(参考)

散热片设计一般准则 一、自然对流散热片设计 ——散热片的设计可就包络体积做初步的设计,然后再就散热片的细部如鳍片及底部尺寸 做详细设计 1、包络体积 2、散热片底部厚度 良好的底部厚度设计必须由热源部分厚而向边缘部份变薄,如此可使散热片由热源部份吸收足够的热向周围较薄的部份迅速传递。 底部之厚度关系底部厚度和输入功率的关系 3、鳍片形状 空气层的厚度约2mm,鳍片间格需在4mm以上才能确保自然对流顺利。但是却会造成鳍片数目减少而减少散热片面积。 A、鳍片间格变狭窄-自然对流发生减低,降低散热效率。 鳍片间格变大-鳍片变少,表面积减少。 B、鳍片角度鳍片角度约三度。

鳍片形状

鳍片形状参考值 C、鳍片厚度 当鳍片的形状固定,厚度及高度的平衡变得很重要,特别是鳍片厚度薄高的情况,会造成前端传热的困难,使得散热片即使体积增加也无法增加效率 鳍片变薄-鳍片传热到顶端能力变弱 鳍片变厚-鳍片数目减少(表面积减少) 鳍片增高-鳍片传到顶端能力变弱(体积效率变弱) 鳍片变短-表面积减少 4、散热片表面处理 散热片表面做耐酸铝(Alumite)或阳极处理可以增加辐射性能而增加散热片的散热效能,一般而言,和颜色是白色或黑色关系不大。表面突起的处理可增加散热面积,但是在自然对流的场合,反而可能造成空气层的阻碍,降低效率。 二、强制对流散热片设计 ——增加热传导系数 (1)增加空气流速这个是很直接的方法,可以配合风速高的风扇来达成目的, (2)平板型鳍片做横切将平板鳍片切成多个短的部分,这样虽然会减少散热片面,但是 却增加了热传导系数,同时也会增加压。当风向为不定方向时,此种设计较为适当。 (如摩托车上的散热片)

如何计算散热器的散热功率

如何计算散热器的散热功率 Calculation Corner Estimating Parallel Plate-Fin Heat Sink Thermal Resistance Robert E. Simons, Associate Editor, IBM Corporation As noted previously in this column, the trend of increasing electronic module power is making it more and more difficult to cool electronic packages with air. As a result there are an increasing number of applications that require the use of forced convection air-cooled heat sinks to control module temperature. An example of a widely used type of heat sink is the parallel plate configuration shown in Figure 1. Figure 1. Parallel plate fin heat sink configuration. In order to select the appropriate heat sink, the thermal designer must first determine the maximum allowable heat sink thermal resistance. To do this it is necessary to know the maximum allowable module case temperature, T case , the module power dissipation, P mod , and the thermal resistance at the module-to-heat sink interface, R int . The maximum allowable temperature at the heat sink attachment surface, T base , is given by

换热器设计软件介绍与入门

第1章换热器设计软件介绍与入门 孙兰义 2014-11-2

主要内容 1 ASPEN EDR软件 1.1 Aspen EDR简介 1.2 Aspen EDR图形界面 1.3 Aspen EDR功能特点 1.4 Aspen EDR主要输入页面 1.5 Aspen EDR简单示例应用 2 HTRI软件 2.1 HTRI简介 2.2 HTRI图形界面 2.3 HTRI功能特点 2.4 HTRI主要输入页面 2.5 HTRI简单示例应用

Aspen Exchanger Design and Rating(Aspen EDR)是美国AspenTech 公司推出的一款传热计算工程软件套件,包含在AspenONE产品之中。 Aspen EDR能够为用户用户提供较优的换热器设计方案,AspenTech 将工艺流程模拟软件和综合工具进行整合,最大限度地保证了数据的一致性,提高了计算结果的可信度,有效地减少了错误操作。 Aspen7.0以后的版本已经实现了Aspen Plus、Aspen HYSYS和Aspen EDR的对接,即Aspen Plus可以在流程模拟工艺计算之后直接无缝集成转入换热器的设计计算,使Aspen Plus、Aspen HYSYS流程计算与换热器详细设计一体化,不必单独地将Aspen Plus计算的数据导出再导入给换热器计算软件,用户可以很方便地进行数据传递并对换热器详细尺寸在流程中带来的影响进行分析。

Aspen EDR的主要设计程序有: ①Aspen Shell & Tube Exchanger:能够设计、校核和模拟管壳式换热器的传热过程 ②Aspen Shell & Tube Mechanical:能够为管壳式换热器和基础压力容器提供完整的机械设计和校核 ③HTFS Research Network:用于在线访问HTFS的设计报告、研究报告、用户手册和数据库 ④Aspen Air Cooled Exchanger :能够设计、校核和模拟空气冷却器 ⑤Aspen Fired Heater:能够模拟和校核包括辐射和对流的完整加热系统,排除操作故障,最大限度的提高效率或者找出潜在的炉管烧毁或过度焦化 ⑥Aspen Plate Exchanger :能够设计、校核和模拟板式换热器; ⑦Aspen Plate Fin Exchanger:能够设计、校核和模拟多股流板翅式换热器

相关文档
最新文档