变速器(英文版文献)

变速器(英文版文献)
变速器(英文版文献)

Transmission (mechanics)

A transmission or gearbox provides speed and torque conversions from a rotating power source to another device using gear ratios. In British English the term transmission refers to the whole drive train, including gearbox, clutch, prop shaft (for rear-wheel drive), differential and final drive shafts. The most common use is in motor vehicles, where the transmission adapts the output of the internal combustion engine to the drive wheels. Such engines need to operate at a relatively high rotational speed, which is inappropriate for starting, stopping, and slower travel. The transmission reduces the higher engine speed to the slower wheel speed, increasing torque in the process. Transmissions are also used on pedal bicycles, fixed machines, and anywhere else rotational speed and torque needs to be adapted.

Often, a transmission will have multiple gear ratios (or simply "gears"), with the ability to switch between them as speed varies. This switching may be done manually (by the operator), or automatically. Directional (forward and reverse) control may also be provided. Single-ratio transmissions also

exist, which simply change the speed and torque (and sometimes direction) of motor output.

In motor vehicle applications, the transmission will generally be connected to the crankshaft of the engine. The output of the transmission is transmitted via driveshaft to one or more differentials, which in turn drive the wheels. While a differential may also provide gear reduction, its primary purpose is to change the direction of rotation.

Conventional gear/belt transmissions are not the only mechanism for speed/torque adaptation. Alternative mechanisms include torque converters and power transformation (e.g., diesel-electric transmission, hydraulic drive system, etc.). Hybrid configurations also exist.

Explanation

Early transmissions included the right-angle drives and other gearing in windmills, horse-powered devices, and steam engines, in support of pumping, milling, and hoisting.

Most modern gearboxes are used to increase torque while reducing the speed of a prime mover output shaft (e.g. a motor crankshaft). This means that the output shaft of a gearbox will

rotate at slower rate than the input shaft, and this reduction in speed will produce a mechanical advantage, causing an increase in torque. A gearbox can be setup to do the opposite and provide an increase in shaft speed with a reduction of torque. Some of the simplest gearboxes merely change the physical direction in which power is transmitted.

Many typical automobile transmissions include the ability to select one of several different gear ratios. In this case, most of the gear ratios (often simply called "gears") are used to slow down the output speed of the engine and increase torque. However, the highest gears may be "overdrive" types that increase the output speed.

Uses

Gearboxes have found use in a wide variety of different—often stationary—applications, such as wind turbines.

Transmissions are also used in agricultural, industrial, construction, mining and automotive equipment. In addition to ordinary transmission equipped with gears, such equipment makes extensive use of the hydrostatic drive and electrical adjustable-speed drives.

Simple

The simplest transmissions, often called gearboxes to reflect their simplicity (although complex systems are also called gearboxes in the vernacular), provide gear reduction (or, more rarely, an increase in speed), sometimes in conjunction with a right-angle change in direction of the shaft (typically in helicopters, see picture). These are often used on PTO-powered agricultural equipment, since the axial PTO shaft is at odds with the usual need for the driven shaft, which is either vertical (as with rotary mowers), or horizontally extending from one side of the implement to another (as with manure spreaders, flail mowers, and forage wagons). More complex equipment, such as silage choppers and snowblowers, have drives with outputs in more than one direction.

The gearbox in a wind turbine converts the slow, high-torque rotation of the turbine into much faster rotation of the electrical generator. These are much larger and more complicated than the PTO gearboxes in farm equipment. They weigh several tons and typically contain three stages to achieve an overall gear ratio from 40:1 to over 100:1, depending on the size of the turbine. (For aerodynamic and structural

reasons, larger turbines have to turn more slowly, but the generators all have to rotate at similar speeds of several thousand rpm.) The first stage of the gearbox is usually a planetary gear, for compactness, and to distribute the enormous torque of the turbine over more teeth of the low-speed shaft. Durability of these gearboxes has been a serious problem for a long time.

Regardless of where they are used, these simple transmissions all share an important feature: the gear ratio cannot be changed during use. It is fixed at the time the transmission is constructed.

For transmission types that overcome this issue, see Continuously Variable Transmission, also known as CVT.

Multi-ratio systems

Many applications require the availability of multiple gear ratios. Often, this is to ease the starting and stopping of a mechanical system, though another important need is that of maintaining good fuel efficiency.

Automotive basics

The need for a transmission in an automobile is a

consequence of the characteristics of the internal combustion engine. Engines typically operate over a range of 600 to about 7000 revolutions per minute (though this varies, and is typically less for diesel engines), while the car's wheels rotate between 0 rpm and around 1800 rpm.

Furthermore, the engine provides its highest torque outputs approximately in the middle of its range, while often the greatest torque is required when the vehicle is moving from rest or traveling slowly. Therefore, a system that transforms the engine's output so that it can supply high torque at low speeds, but also operate at highway speeds with the motor still operating within its limits, is required. Transmissions perform this transformation.

Many transmissions and gears used in automotive and truck applications are contained in a cast iron case, though more frequently aluminium is used for lower weight especially in cars. There are usually three shafts: a mainshaft, a countershaft, and an idler shaft.

The mainshaft extends outside the case in both directions: the input shaft towards the engine, and the output shaft towards the rear axle (on rear wheel drive cars- front wheel drives generally have the engine and transmission mounted

变速器论文中英文对照资料外文翻译文献

中英文对照外文翻译 汽车变速器设计 我们知道,汽车发动机在一定的转速下能够达到最好的状态,此时发出的功率比较大,燃油经济性也比较好。因此,我们希望发动机总是在最好的状态下工作。但是,汽车在使用的时候需要有不同的速度,这样就产生了矛盾。这个矛盾要通过变速器来解决。 汽车变速器的作用用一句话概括,就叫做变速变扭,即增速减扭或减速增扭。为什么减速可以增扭,而增速又要减扭呢?设发动机输出的功率不变,功率可以表示为 N = w T,其中w是转动的角速度,T 是扭距。当N固定的时候,w与T是成反比的。所以增速必减扭,减速必增扭。汽车变速器齿轮传动就根据变速变扭的原理,分成各个档位对应不同的传动比,以适应不同的运行状况。 一般的手动变速器内设置输入轴、中间轴和输出轴,又称三轴式,另外还有倒档轴。三轴式是变速器的主体结构,输入轴的转速也就是发动机的转速,输出轴转速则是中间轴与输出轴之间不同齿轮啮合所产生的转速。不同的齿轮啮合就有不同的传动比,也就有了不同的转速。例如郑州日产ZN6481W2G型SUV车手动变速器,它的传动比分别是:1档3.704:1;2档2.202:1;3档1.414:1;4档1:1;5档(超速档)0.802:1。 当汽车启动司机选择1档时,拨叉将1/2档同步器向后接合1档

齿轮并将它锁定输出轴上,动力经输入轴、中间轴和输出轴上的1档齿轮,1档齿轮带动输出轴,输出轴将动力传递到传动轴上(红色箭头)。典型1档变速齿轮传动比是3:1,也就是说输入轴转3圈,输出轴转1圈。 当汽车增速司机选择2档时,拨叉将1/2档同步器与1档分离后接合2档齿轮并锁定输出轴上,动力传递路线相似,所不同的是输出轴上的1档齿轮换成2档齿轮带动输出轴。典型2档变速齿轮传动比是2.2:1,输入轴转2.2圈,输出轴转1圈,比1档转速增加,扭矩降低。 当汽车加油增速司机选择3档时,拨叉使1/2档同步器回到空档位置,又使3/4档同步器移动直至将3档齿轮锁定在输出轴上,使动力可以从轴入轴—中间轴—输出轴上的3档变速齿轮,通过3档变速齿轮带动输出轴。典型3档传动比是1.7:1,输入轴转1.7圈,输出轴转1圈,是进一步的增速。 当汽车加油增速司机选择4档时,拨叉将3/4档同步器脱离3档齿轮直接与输入轴主动齿轮接合,动力直接从输入轴传递到输出轴,此时传动比1:1,即输出轴与输入轴转速一样。由于动力不经中间轴,又称直接档,该档传动比的传动效率最高。汽车多数运行时间都用直接档以达到最好的燃油经济性。 换档时要先进入空档,变速器处于空档时变速齿轮没有锁定在输出轴上,它们不能带动输出轴转动,没有动力输出。 一般汽车手动变速器传动比主要分上述1-4档,通常设计者首先确定最低(1档)与最高(4档)传动比后,中间各档传动比一

关于力的外文文献翻译、中英文翻译、外文翻译

五、外文资料翻译 Stress and Strain 1.Introduction to Mechanics of Materials Mechanics of materials is a branch of applied mechanics that deals with the behavior of solid bodies subjected to various types of loading. It is a field of study that i s known by a variety of names, including “strength of materials” and “mechanics of deformable bodies”. The solid bodies considered in this book include axially-loaded bars, shafts, beams, and columns, as well as structures that are assemblies of these components. Usually the objective of our analysis will be the determination of the stresses, strains, and deformations produced by the loads; if these quantities can be found for all values of load up to the failure load, then we will have obtained a complete picture of the mechanics behavior of the body. Theoretical analyses and experimental results have equally important roles in the study of mechanics of materials . On many occasion we will make logical derivations to obtain formulas and equations for predicting mechanics behavior, but at the same time we must recognize that these formulas cannot be used in a realistic way unless certain properties of the been made in the laboratory. Also , many problems of importance in engineering cannot be handled efficiently by theoretical means, and experimental measurements become a practical necessity. The historical development of mechanics of materials is a fascinating blend of both theory and experiment, with experiments pointing the way to useful results in some instances and with theory doing so in others①. Such famous men as Leonardo da Vinci(1452-1519) and Galileo Galilei (1564-1642) made experiments to adequate to determine the strength of wires , bars , and beams , although they did not develop any adequate theo ries (by today’s standards ) to explain their test results . By contrast , the famous mathematician Leonhard Euler(1707-1783) developed the mathematical theory any of columns and calculated the critical load of a column in 1744 , long before any experimental evidence existed to show the significance of his results ②. Thus , Euler’s theoretical results remained unused for many years, although today they form the basis of column theory. The importance of combining theoretical derivations with experimentally determined properties of materials will be evident theoretical derivations with experimentally determined properties of materials will be evident as we proceed with

文献综述 英文

文献综述 大学生时间管理研究——以郑州大学西亚斯国际学院为例 姓名:代永寒学号:20091211205 专业:工商管理班级:工本2班 史蒂芬?柯维的《要事第一》 “要事第一”,顾名思义是指重要的主要的事情要放在第一时间去完成。而在实际工作中我们往往是将认为急迫的紧要的事情放在第一时间完成; 本书通过四个象限来告诉我们如何区分事情的紧急性与重要性,从而告诉我们在平常的工作中应怎样去区分事情属轻属重,以及造成事情紧急性的原因,在平常工作中要注意哪些方面以避免出现紧急事件的情况。 第一象限包括四点:A危机 B 急迫的问题C最后期限迫近的项目 D 会议准备工作等。第一象限显得紧迫与重要,但我们要知道形成第一象限的紧迫与重要主要是因被延误及没有进行计划与预测及计划所致。第二象限包含准备工作、预防、价值、筹划、建立关系、真正的再创造与赋予能力。第二象限属于质量象限,属于重要但不紧迫的事情,但我们必须要去做,因只有这样才能避免出现第一象限包含的情况。第三象限包含干扰、电话;邮件、报告;某些会议;很多临近、急迫的事情及很多流行的活动。第三象限包括“紧急但不重要的事情”,而事实上它易给人造成假象,从而形成第一象限情况。第四象限包含琐事、打发时间的工作、某些电话,解闷,“逃避”行为、无关紧要的邮件及过多地看电视;第四象限属于既不紧急也不重要的事情,它是浪费象限,第四象限中的行为是堕落行为。这四个象限告诉我们如果在办事过程中不是以重要性而是以紧要性为出发点,就会出现第一第三甚至第四象限的情况,在平常的工作中,我们要加以区分,日常工作生活中往往事情越是紧迫,反而说明事情越不重要!像最近存货系统因急着想能早日上线,在运作过程中被卡住,故一心想着去解决软件中存在的问题,而忽略了与其他人员的沟通协调,存货上软件固然重要,但与公司整体运作相比就稍显其次,没合理分配其他人员手头事项,这样会导致其他问题的增多,从而会出现第一第三象限甚至于第四象限的浪费情况。 “要事第一”,告诉我们在日常的工作与生活中要从以下方面着手加以区分、

参考文献(Bibliography)格式的具体说明

参考文献(Bibliography)格式和要求的具体说明 一、总体格式和要求 1.本科毕业论文的参考文献页应该单独起页。 2.参考文献的数量不得少于10项,必须要有外文条目。 3.参考文献一般应包括尾注的所有条目,另外还可以列入自己读过的、对论文写作影响较大但未引用的文献。 4.参考文献中如兼有多语种条目,则应分开排列,先外语后中文。外语条目按照文献条目首词字母排序,中 文条目按照文献开头的拼音排序;如文献开头的字母或拼音相同,依序参照其后的字母或拼音排序。 5.参考文献同一个条目内部不可中英文夹杂,一般应与文献使用的语种一致,要么用英文,要么用中文书写。 6.英文文献字体是Times New Roman,使用英文标点符号;汉语文献字体是宋体,采用中文标点符号。 7.参考文献须悬挂缩进,即每一条目的第二行开始缩进5字符。 8.参考文献按1.5倍行距排列,不同条目之间空一行。 9.英文条目各部分的首字母需要大写,文献中的实词和超过5个字母的介词也需要首字母大写。 二、作者部分的写法 1. 英文参考文献中作者部分的写法: 作者姓氏, 首名中名. 如不是为了区别重名的不同作者,中名可省略。 例如:Shatzkin, Leonard. In Cold Type: Overcoming the Book Crisis. Boston: Houghton Mifflin, 1982. 首名、中名可用首字母加实心点缩略表示: Shatzkin, L.. In Cold Type: Overcoming the Book Crisis. Boston: Houghton Mifflin, 1982. 如有多个作者,从第二个作者开始姓、名不颠倒,即:作者1姓氏, 首名中名, and 作者2首名中名姓氏:Shatzkin, L., Stephen Crane, and Michael Jackson. In Cold Type: Overcoming the Book Crisis. Boston: Houghton Mifflin, 1982. 2.中文参考文献中作者部分的写法: 作者姓名,后接空格。 如:廖七一“庞德与胡适诗歌翻译的文化思考”,《外国语》2003(6),第54-59页。 多个作者:桂诗春、宁春岩《XXXXX》,北京:外语教学与研究出版社,1997。 编著:桂诗春、宁春岩主编《语言学方法论》,北京:外语教学与研究出版社,1997。 译著:尤金·奈达著,严久生译《语言文化与翻译》,呼和浩特:内蒙古大学出版社,1998。 3. 若著者为公司或机构时,直接将公司或机构作为作者: 英文文献: Sichuan International Studies University. In Cold Type: Overcoming the Book Crisis. Boston: Houghton Mifflin, 1982. 中文文献: 中国对外翻译出版公司《诗词翻译的艺术》,北京:中国对外翻译出版公司,1987。 三、英文参考文献的格式 1.专著

机械毕业设计英文外文翻译436手动变速器 (2)

附录 附录A. Manual Transmission It’s no secret that cars with manual transmissions are usually more fun to drive than the automatic-equipped counterparts. If you have even a passing interest in the act of driving, then chances are you also appreciate a fine-shifting manual gearbox. But how does a manual transmission actually work? A history hows that manual transmissions preceded automatics by several decades. In fact,up until General Motors offered an automatic in 1938, all cars were of the shift-it-yourself variety. While it’s logical for many types of today’s vehicles to be equipped with an automatic――such as a full-size sedan, SUV or pickup――the fact remains that nothing is more of a thrill to drive than a tautly suspended sport sedan, snort coupe or two-sealer equipped with a precise-shifting five-or six-speed gearbox. We know whicn types or cars have manual trannies. Now let’s take a look at how they work. From the most basic four-speed manual in a car from the’60s to the most high-tech six-speed one in a car of today, the principles of a manual gearbox are the same. The driver must shift from gear to gear. Normally, a manual transmission bolts to a clutch housing (or bell housing), in turn, bolts to the back of the engine. If the vehicle has front-wheel drive,

10kV小区供配电英文文献及中文翻译

在广州甚至广东的住宅小区电气设计中,一般都会涉及到小区的高低压供配电系统的设计.如10kV高压配电系统图,低压配电系统图等等图纸一大堆.然而在真正实施过程中,供电部门(尤其是供电公司指定的所谓电力设计小公司)根本将这些图纸作为一回事,按其电脑里原有的电子档图纸将数据稍作改动以及断路器按其所好换个厂家名称便美其名曰设计(可笑不?),拿出来的图纸根本无法满足电气设计的设计意图,致使严重存在以下问题:(也不知道是职业道德问题还是根本一窍不通) 1.跟原设计的电气系统货不对板,存在与低压开关柜后出线回路严重冲突,对实际施工造成严重阻碍,经常要求设计单位改动原有电气系统图才能满足它的要求(垄断的没话说). 2.对消防负荷和非消防负荷的供电(主要在高层建筑里)应严格分回路(从母线段)都不清楚,将消防负荷和非消防负荷按一个回路出线(尤其是将电梯和消防电梯,地下室的动力合在一起等等,有的甚至将楼顶消防风机和梯间照明合在一个回路,以一个表计量). 3.系统接地保护接地型式由原设计的TN-S系统竟曲解成"TN-S-C-S"系统(室内的还需要做TN-C,好玩吧?),严格的按照所谓的"三相四线制"再做重复接地来实施,导致后续施工中存在重复浪费资源以及安全隐患等等问题.. ............................(违反建筑电气设计规范等等问题实在不好意思一一例举,给那帮人留点混饭吃的面子算了) 总之吧,在通过图纸审查后的电气设计图纸在这帮人的眼里根本不知何物,经常是完工后的高低压供配电系统已是面目全非了,能有百分之五十的保留已经是谢天谢地了. 所以.我觉得:住宅建筑电气设计,让供电部门走!大不了留点位置,让他供几个必需回路的电,爱怎么折腾让他自个怎么折腾去.. Guangzhou, Guangdong, even in the electrical design of residential quarters, generally involving high-low cell power supply system design. 10kV power distribution systems, such as maps, drawings, etc. low-voltage distribution system map a lot. But in the real implementation of the process, the power sector (especially the so-called power supply design company appointed a small company) did these drawings for one thing, according to computer drawings of the original electronic file data to make a little change, and circuit breakers by their the name of another manufacturer will be sounding good design (ridiculously?), drawing out the design simply can not meet the electrical design intent, resulting in a serious following problems: (do not know or not know nothing about ethical issues) 1. With the original design of the electrical system not meeting board, the existence and low voltage switchgear circuit after qualifying serious conflicts seriously hinder the actual construction, often require changes to the original design unit plans to meet its electrical system requirements (monopoly impress ). 2. On the fire load and fire load of non-supply (mainly in high-rise building in) should be strictly sub-loop (from the bus segment) are not clear, the fire load and fire load of non-qualifying press of a circuit (especially the elevator and fire elevator, basement, etc.

中英文参考文献格式

中文参考文献格式 参考文献(即引文出处)的类型以单字母方式标识: M——专著,C——论文集,N——报纸文章,J——期刊文章,D——学位论文,R——报告,S——标准,P——专利;对于不属于上述的文献类型,采用字母“Z”标识。 参考文献一律置于文末。其格式为: (一)专著 示例 [1] 张志建.严复思想研究[M]. 桂林:广西师范大学出版社,1989. [2] 马克思恩格斯全集:第1卷[M]. 北京:人民出版社,1956. [3] [英]蔼理士.性心理学[M]. 潘光旦译注.北京:商务印书馆,1997. (二)论文集 示例 [1] 伍蠡甫.西方文论选[C]. 上海:上海译文出版社,1979. [2] 别林斯基.论俄国中篇小说和果戈里君的中篇小说[A]. 伍蠡甫.西方文论选:下册[C]. 上海:上海译文出版社,1979. 凡引专著的页码,加圆括号置于文中序号之后。 (三)报纸文章 示例 [1] 李大伦.经济全球化的重要性[N]. 光明日报,1998-12-27,(3) (四)期刊文章 示例 [1] 郭英德.元明文学史观散论[J]. 北京师范大学学报(社会科学版),1995(3). (五)学位论文 示例 [1] 刘伟.汉字不同视觉识别方式的理论和实证研究[D]. 北京:北京师范大学心理系,1998. (六)报告 示例 [1] 白秀水,刘敢,任保平. 西安金融、人才、技术三大要素市场培育与发展研究[R]. 西安:陕西师范大学西北经济发展研究中心,1998. (七)、对论文正文中某一特定内容的进一步解释或补充说明性的注释,置于本页地脚,前面用圈码标识。 参考文献的类型 根据GB3469-83《文献类型与文献载体代码》规定,以单字母标识: M——专著(含古籍中的史、志论著) C——论文集 N——报纸文章 J——期刊文章 D——学位论文 R——研究报告 S——标准 P——专利 A——专著、论文集中的析出文献 Z——其他未说明的文献类型 电子文献类型以双字母作为标识: DB——数据库 CP——计算机程序 EB——电子公告

二轴式手动变速器外文翻译

外文翻译 文章出处《Tribology International》, 2009, 42(5):714-723 译文: 有限元热分析的陶瓷离合器 1 引言 磨料空转车辆离合器是力封闭联轴器。扭矩和高速传输被压紧表面之间产生的摩擦力所保证。应用陶瓷是因为它作为摩擦介质具有好耐热和耐磨损性能,提供了机会以驱动更高的压力,以及一个低的密度。因此,一个提功率密度启用了一个平行的最小化建筑空间。 测量使用陶瓷饰面离合器盘的第一个原型在卡尔斯鲁厄大学的一个实验室专门从事客车驱动系统进行了测试执行。在分析过程中的有限元(FE)模型是将与测量数据和测量条件的知识所构成。计算的目的是要确定在离合器盘上温度的分布以及环境中的在每一时刻的及时测量目。至关重要的是熟悉的温度范围,为了检验该系统的耐磨特性。因此,重要信息从测量数据中得出。在临界负载的情况下,预计最高温度必须在时间和空间上进行预测,为保护接近发热体的位置测量工具的。 本研究的目的是分析和修改该离合器系统通过改进,以提供更好的工作条件热传导和系统或增加转化成摩擦热的能量的对流。此外,人们希望找到更有效的更好的离合器系统设计方案。 计算是由宇宙星空的设计的软件进行的。在模型开发阶段,非常谨慎,必须采取几何元素,选择适当的简化尺寸,并且由于正确调整的时间步长大量的硬件要求瞬态计算。热物性参数的改变,如表面热对流化系数和热负荷,必须考虑到到在一个持续的基础上在时间和地点方面。离合器系统的分析测试这两方面,只能通过加热隔板连接的两个独立的模型来管理,根据该假说认为,接触温度必须是在两个相同的双方,同时他们要有适当接触,其价值需通过迭代来进行调整。计算显示,该热分区按周期变化,它沿不同的内,外接触环。在不同的冷却特性下,在陶瓷和钢之间的结果是不同的,热流从陶瓷侧面向钢侧流动。此热流也通过迭代确定;它的价值也改变了周期和不同沿着所述内和外接触环。 2 采用工程陶瓷作为摩擦材料的第一个原型机 这款检查过的离合器盘是根据“特定的陶瓷”产品而开发的,此材料的研发过程在流程在卡尔斯鲁厄大学的Institute for Product Development (IPEK)杂志上发表过。此开发过程已经具有的可能性,用于连接到一个真实的传动轴;甚至,它为面板有一个好的初始行为起到一个很好的缓冲作用。磨料配件必须符合以下基本要求:

英文论文及中文翻译

International Journal of Minerals, Metallurgy and Materials Volume 17, Number 4, August 2010, Page 500 DOI: 10.1007/s12613-010-0348-y Corresponding author: Zhuan Li E-mail: li_zhuan@https://www.360docs.net/doc/5114684030.html, ? University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2010 Preparation and properties of C/C-SiC brake composites fabricated by warm compacted-in situ reaction Zhuan Li, Peng Xiao, and Xiang Xiong State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China (Received: 12 August 2009; revised: 28 August 2009; accepted: 2 September 2009) Abstract: Carbon fibre reinforced carbon and silicon carbide dual matrix composites (C/C-SiC) were fabricated by the warm compacted-in situ reaction. The microstructure, mechanical properties, tribological properties, and wear mechanism of C/C-SiC composites at different brake speeds were investigated. The results indicate that the composites are composed of 58wt% C, 37wt% SiC, and 5wt% Si. The density and open porosity are 2.0 g·cm–3 and 10%, respectively. The C/C-SiC brake composites exhibit good mechanical properties. The flexural strength can reach up to 160 MPa, and the impact strength can reach 2.5 kJ·m–2. The C/C-SiC brake composites show excellent tribological performances. The friction coefficient is between 0.57 and 0.67 at the brake speeds from 8 to 24 m·s?1. The brake is stable, and the wear rate is less than 2.02×10?6 cm3·J?1. These results show that the C/C-SiC brake composites are the promising candidates for advanced brake and clutch systems. Keywords: C/C-SiC; ceramic matrix composites; tribological properties; microstructure [This work was financially supported by the National High-Tech Research and Development Program of China (No.2006AA03Z560) and the Graduate Degree Thesis Innovation Foundation of Central South University (No.2008yb019).] 温压-原位反应法制备C / C-SiC刹车复合材料的工艺和性能 李专,肖鹏,熊翔 粉末冶金国家重点实验室,中南大学,湖南长沙410083,中国(收稿日期:2009年8月12日修订:2009年8月28日;接受日期:2009年9月2日) 摘要:采用温压?原位反应法制备炭纤维增强炭和碳化硅双基体(C/C-SiC)复合材

文献综述英文版

Title :Magnetic motor shell stamping process and die design Author:yu Department of Materials "Magnetic motor shell stamping process and die design" literature review Abstract摘要 By read these references and documents, in-depth understanding of the contemporary mold of advanced manufacturing technology and metal forming technology, a number of instances of mold design and the understanding and learning, to further study the method of stamping die design, die design and thus have a directionalguidance.As used in this design and drawing die punching die and so on, through the design of the book related to mold in-depth study, this drawing die and the punching die and so the design methods have shape.These references and documents, the design of low-cost high-accuracy die with directional guidance. Keywords: Mold advanced manufacturing technology Mold Manufacturing Trends Drawing Punching CAE Die Materials Prices Preface前言 As China's economic integration with the world economy, the rapid development of basic industries, mold manufacturing industry is also developing fast.In the current economic situation, people pay more attention to efficiency, product quality, cost, and new product development capabilities.The innovation and development of mold manufacturing concern. 1.1 The history of the development of mold Archaeological discoveries in China, as early as 2,000 years ago, China has been used to make bronze stamping dies to prove that in ancient China stamping die stamping and achievements to the world's leading.In 1953, the Changchun First Automobile Works in China for the first time established a stamping plants, the plant began manufacturing cars in 1958, cover mold.60 years of the 20th century began producing fine blanking dies.In walked a long path of development temperature, the present, China has formed more than 300 billion yuan (not including Hong Kong, Macao and Taiwan statistics) the production capacity of various types of stamping dies. 1.2 Development Status and Trends Die Since reform and opening, with the rapid development of the national economy, the market demand of mold growing.In recent years, the mold industry has been the growth rate of about 15% of the rapid development of industrial enterprises in the ownership of the mold components also changed dramatically, in addition to professional mold factory outside of state-owned, collective, joint ventures, wholly-owned and private has been a rapid development.

英语毕业论文引用和参考文献格式

英语毕业论文引用和参考文献格式 英语专业毕业论文引用和参考文献格式采用APA格式及规。 一、文中夹注格式 英语学位论文引用别人的观点、方法、言论必须注明出处,注明出处时使用括号夹注的方法(一般不使用脚注或者尾注),且一般应在正文后面的参考文献中列出。关于夹注,采用APA格式。 (一)引用整篇文献的观点 引用整篇文献(即全书或全文)观点时有两种情况: 1.作者的姓氏在正文中没有出现,如: Charlotte and Emily Bronte were polar opposites, not only in their personalities but in their sources of inspiration for writing (Taylor, 1990). 2. 作者的姓氏已在正文同一句中出现,如: Taylor claims that Charlotte and Emily Bronte were polar opposites, not only in their personalities but in their sources of inspiration for writing (1990). 3. 如果作者的姓氏和文献出版年份均已在正文同一句中出现,按APA的规不需使用括号夹注,如: In a 1990 article, Taylor claims that Charlotte and Emily Bronte were polar opposites, not only in their personalities but in their sources of inspiration for writing. 4. 在英文撰写的论文中引用中文著作或者期刊,括号夹注中只需用汉语拼音标明作者的姓氏,不得使用汉字,如:(Zhang, 2005) (二)引用文献中具体观点或文字 引用文献中某一具体观点或文字时必须注明该观点或者该段文字出现的页码出版年份,没有页码是文献引用不规的表现。 1.引用一位作者的文献 (1)引用容在一页,如: Emily Bronte “expressed increasing hostility for the world of human relationships, whether sexual or social” (Taylor, 1988:11). (2)引用容在多页上,如: Newmark (1988:39-40) notes three characteristically expressive text-types: (a) serious imaginative literature (e.g. lyrical poetry); (b) authoritative statements (political speeches and documents, statutes and legal documents, philosophical and academic works by acknowledged authorities); (c) autobiography, essays, personal correspondence (when these are personal effusions).

汽车变速器外文翻译

外文翻译 Auto Transmission First, an overview of automotive transmission and the development trend Automobile available more than a century, especially from the mass production of motor vehicles and the automotive industry since the development of large, Car has been the economic development of the world for mankind to enter the modern life and have had a tremendous impact on the immeasurable, The progress of human society has made indelible contributions to the great, epoch-making set off arevolution. From From the vehicle as a power plant using internal combustion engine to start, auto transmission has become an important component. Is Generation is widely used in automotive reciprocating piston internal combustion engine with a small size, light weight, reliable operation and the use of The advantages of convenience, but its torque and speed range of smaller changes, and complex condition requires the use of motor vehicles Traction and the speed can be considerable changes in the scope. Therefore, its performance and vehicle dynamics and economy of There are large inter-contradictions, which contradictions of modern automotive internal combustion engine by itself is insoluble. Because Here, in the automotive power train set up the transmission and main reducer in order to achieve the purpose of deceleration by moment. Speed The main function of performance: ⑴ change gear ratio of motor vehicles, and expand the wheel drive torque and rotational speed of the Fan Wai, in order to adapt to constantly changing driving cycle, while the engine in the most favorable conditions within the scope of work; ⑵no change in the direction of engine rotation, under the premise of the realization of cars driving back; ⑶the realization of the free, temporary Interruption of power transmission, in order to be able to start the engine, idling, etc.. V ariable-speed drive transmission by the manipulation of institutions and agencies. Change the transmission ratio by way of transmission is divided into There are class-type, non-stage and multi-purpose three. Have class most widely used transmission. It uses gear drive, with a number of transmission ratio setting. Stepless transmission Continuously V ariable Transmission (CVT) transmission ratio of a certain The framework of multi-level changes may be unlimited, there is a common type of power and torque (dynamic fluid-type) and so on. Continuously V ariable Transmission Transmission development is the ultimate goal, because only it can make the most economical engine in working condition Can provide the best vehicle fuel economy and optimal power in order to provide the most comfortable By the feeling. Today's CVT is a typical representative of the CVT

相关文档
最新文档