先进的车辆控制系统简介

先进的车辆控制系统简介
先进的车辆控制系统简介

先进的车辆控制系统简介 Prepared on 24 November 2020

先进的车辆控制系统简介

摘要:现如今车辆的普及以及交通的发展,造就了我们对于车辆的要求越来越高,越来越严,在车辆更新换代如此频繁的时代,也造成了车辆品种多,繁杂等特点,针对市场如此多的车,我着重讲述车辆的控制系统,它就如同车的灵魂。

关键词:车辆,控制系统。

先进的车辆控制系统是指借助车载设备以及路测,路标的检测设备周围形势环境的变化情况,自动控制驾驶已达到行车安全和增加道路通行能力目的的系统。该系统的本质就是在车辆与道路系统中将现代化的通信技术,控制技术和交通流理论加以集中,提供一个良好的辅助驾驶环境,在特点的条件下,车辆将在自动控制下安全行驶。其目的是开发帮助驾驶员实行车辆控制的各种技术,从而使汽车安全高效行驶。

它是ITS的一个子系统,又可以称之为先进的车辆安全系统,是借助于车载设备及基础设施或其协调系统中的检测设备,来检测周围行驶环境对驾驶员和车辆产生影响的各种因素,进行部分或完全自动驾驶,使行车安全高效并增加道路通行能力的系统。它由自适应巡航控制系统,胎压监控系统,车道偏离警告系统,盲区探测系统,事故自动通报系统,汽车导航和定位系统,道路环境警告资讯系统,自适应前照灯系统构成。

自适应巡航控制系统的功能:该系统可以通过安装在车辆前方的雷达探测自车与前车之间的距离和相对速度,然后根据预先设定的跟车模型,对车辆运行状况进行判断,自动的调节自车与前车之间的距离,当车辆处于危险状况时,对驾驶员进行提醒或采取紧急制动。前方碰撞预警系统是该系统的一个子系

统,自车与前方车辆或障碍物之间的距离小于最小安全跟车距离时,给驾驶员警告,丰田汽车把该子系统称之为预碰撞系统,采用激光雷达。应用技术:利用毫米波雷达或激光雷达进行车辆距离的探测,并根据逻辑判断,达到警告的作用或进行辅助驾驶。

胎压监控系统的功能:通过在每一个轮胎上安装高灵敏度的传感器,在行车或静止的状态下实时监视轮胎的压力、温度等数据,并通过无线方式发射到接收器,在显示器上显示各种数据变化或以蜂鸣等形式提醒驾车者,并在轮胎漏气和压力变化超过设定值进行报警,以保障行车安全。应用技术:胎压传感器和无线通讯技术。

车道偏离警告系统功能:车辆若能维持在该行驶的车道中行驶,可降低交通事故发生的机率。此系统利用安装车辆前部的视频系统采集车道信息,当车辆发生车道偏离,而驾驶员并没有采取任何应对措施时,发出警告,以降低事故发生的机率。应用技术:利用CCD取得摄象头或利用道路路面与车辆间的磁性信号用,采集车辆行驶时的位置信息,然后利用图象识别技术及逻辑判断,将可能发生的事故预先加以警告,以达到车道偏离警示的作用。

盲区探测系统功能:车辆在行驶、转向或倒车过程中,该系统实时探测车辆盲区内的环境情况,把车辆盲区的信息以声音或者图像的形式传递给驾驶员,提醒驾驶员在盲区内是否有车辆或者其他物体出现,一旦发现有潜在的危险,便会通过警示音,或者后视镜闪烁,甚至座椅振动来提醒驾驶员。应用技术:对于测后方盲区探测一般是在后视频上安装CCD或CMOS装置,在车辆先进过程中,给驾驶员提供驾驶员死角处的环境资讯。对于后方一般安装超声波传感器或者是CCD装置进行实时探测,为驾驶员提供后方盲区环境资讯。

事故自动通报系统功能:当车辆发生事故时,系统向紧急救援中心或交通管理部门发出事故通报,内容包括:事故的车辆位置、事故及乘员受伤害的主要情况,通知有关部门及人员及时前往事故地点,进行救援工作。应用技术:利用事故传感器进行车辆事故发生的判断,利用GPS进行准确定位,然后把相应信息利用专用无线网络或GPRS发出求救信息。

汽车导航和定位系统功能:汽车导航系统由GPS技术、GSM技术、网络技术、GIS、咨询诱导系统组成,通过它可以寻找最佳行驶路线,避开交通拥挤和发生事故的路段。以减轻驾驶人员心理负担,提供安全、舒适的行车环境。汽车定位主要利用GPS进行定位,然后经GSM发送相关信息,由GIS系统显示在电子地图上面,方便控制中心进行定位或对汽

车进行停机控制。

道路环境警告资讯系统功能:道路上的突发事故,常为造成交通事故的主要因素之一。因为在快速行驶过程中,驾驶员对于事故即将发生所做出的反应动作时间会比车辆碰撞发生的时间要慢得很多,因此若可以将道路上的突发事故提早告知道路使用者,便可以提早采取措施,避免事故的发生。应用技术:利用路边资讯设备,提供可以利用判断用的前方道路相关资讯,以提醒驾驶员提前采取措施,避名发生交通事故。

自适应前照灯系统功能:在车辆行进弯道,汽车前照灯自动的将灯光的角度随着道路曲线的变化,提高驾驶的可视范围;在车辆快速进入黑暗隧道时,可以自动将所需要的前照灯灯光强度提高;会车时可以利用前照灯内的光感器,去判断前方车辆的远近和灯光强度进行自动灯光强度的调整,以降低交通事故发生的机会。应用技术:利用灯光强度感知器、可变式前照灯和车辆配置的陀

缧仪,判断车辆行驶状态、车辆转弯时所产生的侧倾角以及前车照明情况,以决定是否启动自适应配光系统,并且调整所需要地灯光强度。

先进的公共交通系统(APTS)

先进的公共交通系统(APTS) 学生:程昱班级:控制1班学号: 20100210 学院:电信工程学院专业:智能控制工程

摘要 先进的公共交通系统(Advanced Public Transportation System) 是在公交网络分配、公交调度等基础理论的前提下,利用系统工程的理论和方法,将现代通信、信息、电子、控制、GPS等高科技集成应用于公共交通系统而建立的。 通过公共交通智能化调度系统、公共交通信息服务系统、公交电子收费系统等实现 关键词:ITS,公共交通

目录一绪论 1.1先进的公共交通系统体系结构 1.2先进的公共交通系统应用的典型技术二智能化调度系统 2.1智能化公共交通系统构成 2.2智能化调度方法 2.3案例:深圳公交的智能化 参考文献

一绪论 智能交通系统是目前国际上公认的全面有效解决交通运输领域问题的根本途径,它是在现代科学技术充分发展进步的背景下产生的。智能运输系统利用现代科学技术在道路,车辆和驾驶员之间建立起智能的联系。 优化和调整道路交通流量的时空分布,充分利用现有道路资源,实现人,车,路的和谐统一。ITS在极大的提高运输效率的同时,充分保障交通安全,改善环境质量和提高能源利用率。 作为ITS研究的一项重要内容,先进的公共交通系统(以下简称APTS)主要以出行者和公共车辆为服务对象。对于出行者而言,APTS通过采集和处理动态和静态交通信息,通过多种媒体为出行者提供动态和静态的公共交通信息,从而达到规划出行,最优路线选择,避免交通拥挤,节约出行时间的目的。对于公共车辆而言,APTS主要实现对其动态监控,实时调度,科学管理等功能,从而达到提高公共服务水平的目的。 1.1先进的公共交通系统体系结构 目标:高效的公交客运组织模式、快速灵活的应变能力、完善的乘客信息服务,从而在信息、价格、速度、效率、舒适性等方面提高公交吸引力。 功能子系统: 1 公共运输辅助管理系统 2 公共运输信息系统 3 满足个人需要的非定线或准定线公共运输 4 公共运输安全系统

稳定平台系统设计要点

技术论文学校:南京理工大学队伍:7046 指导老师:李军 成员1:雷杨成员2:陈舒思成员3:邝平作品名称:高精度稳定平台控制系统

摘要 稳定平台能够隔离载体角运动,在载体机动状态下建立稳定基准面,使安装在平台上的光电设备不会因载体运动产生的抖动和滚动而丢失目标,保证光电设备准确瞄准和跟踪目标,因此广泛应用于民用和军事领域。 设计的高精度稳定平台控制系统是以动力调谐陀螺仪为速度敏感元件,旋转变压器为角度测量元件,DSP控制器TMS320F28335为主控芯片,直流力矩电机为被控对象的闭环控制系统。根据所需关键器件的选型设计了系统的硬件电路,包括速度和角度信号采样电路、电机驱动电路、通信电路等。采用电流环和位置环的双闭环控制方式实现系统载体静止时的伺服控制;采用电流环、速度环和位置环的三闭环控制方式实现系统在载体运动时的稳定控制。以上两种控制模式下的角度控制精度都能够达到0.05mrad,载体运动时系统稳定控制模式下隔离扰动效果很好。 实测结果表明,该系统硬件结构简单,稳定性好,实时性强,具有良好的稳态和动态性能,能够满足稳定平台系统的性能要求。 关键词:稳定平台DSP 陀螺仪伺服控制

目录 1. 作品创意 (1) 2. 方案设计与论证 (1) 2.1 主控芯片的选择与论证 (2) 2.2陀螺的选择与论证 (3) 2.3 力矩电机的选择与论证 (3) 2.4 位置检测元件的选择与论证 (3) 3. 系统硬件与原理图设计 (4) 3.1 最小系统外围电路 (4) 3.2 旋转变压器-数字转换器电路 (5) 3.3 滤波采样电路 (6) 3.4 电机驱动电路 (7) 3.5 通信电路 (8) 3.6 闭锁电路 (9) 3.7 电源隔离电路 (9) 4. 软件设计与流程 (10) 4.1 主程序框架 (10) 4.2中断程序设计 (10) 5. 系统测试与分析 (13) 5.1 系统调试环境 (13) 5.2 系统静止状态下伺服控制调试结果 (13) 5.3 系统运动状态下稳定控制调试结果 (15) 6.作品难点与创新 (18) 6.1难点 (18) 6.2创新点 (18)

混动汽车动力系统控制策略设计

4.1控制系统的各状况分析 1.一键启动,车门解锁; 2.进人;由车门传感器检测:车门开启 →进人动作→车门关闭→车门锁死 3.设置路径;由语音提示,根据情况分析最优路径,最短距离,最短时间; 4.开始旅行 (1)判断蓄电池能否正常行驶 当SOC (剩余电量)≥0.4 将由蓄电池启动; 当SOC (剩余电量)≤0.4全程发动机驱动; (2)平地行驶 ①首先蓄电池驱动,然后由车速传感器和扭矩传感器检测分析是否满足下列任 意条件 Tre (汽车需求转矩 ) V (行驶速度) 满足则启动点火装置→发动机启动; ②此时由发动机驱动,后由车速传感器和扭矩传感器检测分析是否 满足下 列所有条件 Tm 满足则关闭发动机,由蓄电池驱动; ③制动 由加速度传感器和节气门位置传感器 (3) 爬坡 ①用坡度传感器检测坡度,同时满足下列时 α≤10% Tre≤Tm

α(坡度) 由蓄电池驱动 ②用坡度传感器检测坡度,满足下列任一项时 Tre≥Tm 发动机启动; ③爬坡制动时 车速传感器和加速度传感器检测车轮的旋转方向当旋转方向与实际方向相反紧 急制动 同时启动电动机发电机; (4)泥泞及高低不平路段 根据转矩传感器检测数据,启动发动机; (5)大风及恶劣天气行驶时 根据转矩传感器检测数据,启动发动机; 5.到达目的地旅行结束 电动机缓慢驱动汽车制动,解锁车门; 4.2控制系统的各个流程图 1.由SOC电量判断启动方式

2.由需求转矩和速度判断工作模式 (1).若由发动机驱动 (2)若由蓄电池驱动 4.0>soc

3制动工况 1)若由蓄电池驱动时发生制动时由加速度传感器和节气门位置传感器 2)若由发动机驱动时发生制动时由加速度传感器和节气门位置传感器 4.0>soc h km V /40<4 .0>soc h km V /40<

智能车辆管理系统技术方案

智能车辆管理系统技术方案

第一章系统概述 随着社会可持续发展对环境保护、节约能源要求的不断提高,减少环境污染和缓解能源短缺两大问题对汽车产业的发展提出了新的更高要求。压缩天然气(简称CNG)汽车在降低大气污染、调整能源结构、提高经济效益等方面发挥了积极作用。目前我国的CNG汽车总数约10万辆,且据专家预测CNG汽车在5-10年内更有猛增10-15倍的趋势,预计在15年内将达到国内汽车数量的50%。随着使用CNG气瓶的汽车迅猛增长,废气瓶冒充新气瓶装上私家车、私自改装气瓶,加气站对报废气瓶或过期未检气瓶加气等等现象越来越多,大大增加CNG加气站的车辆安全管理难度,这些不合格车辆也成为引发CNG加气站爆炸事故的主要诱因之一。 为有效地管理加气车辆,提高CNG加气站的安全管理水平,使加气人员快速判别不合格车辆,及时处理安全隐患。我公司在基于对数码相机和视频摄像机的充分了解下,经过对数码相机控制和视频控制的巧妙技术融合,采用一体化高清抓拍设备构建CNG智能车辆管理系统(以下简称系统)。 系统对每个进入加气站的车辆的车牌号码进行拍摄,通过网络传输到后台计算机中的数据库,和数据库中存放的合格车辆的车牌号码进行比对。比对成功,证明该车辆为安全合格车辆,可以加气,并把该车辆加气的时间存储到计算机中,便于车辆管理查询。比对不成功,则视为不合格车辆,系统通过设置在加气站的显示屏显示该车的车牌号码,并报警通知加气人员不予加气。 系统采用先进光电技术,数字高清晰成像技术,高性能DSP处理技术、图像模式识别技术对通过机动车进行图像采集,获取机动车的号牌等要素,号牌自动识别、记录以及车辆号牌不合格时报警和显示功能,并满足CNG加气站对于通过的机动车实时捕捉、存储,查询等管理功能,对加强加气站安全防爆工作具有十分重要的意义。 1.1设计原则 系统具有实用性、可靠性、先进性、开放性、安全性、兼容性、可维护性、可拓展性。具有良好的升级、扩展能力,具有一定的容量,为保持系统的先进性留下充分的发展余地。 坚持从实际出发,注重系统的实用性和实战性,合理配置资源,服务、服从于业务

先进的车辆控制系统简介

先进的车辆控制系统简 介 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

先进的车辆控制系统简介 摘要:现如今车辆的普及以及交通的发展,造就了我们对于车辆的要求越来越高,越来越严,在车辆更新换代如此频繁的时代,也造成了车辆品种多,繁杂等特点,针对市场如此多的车,我着重讲述车辆的控制系统,它就如同车的灵魂。 关键词:车辆,控制系统。 先进的车辆控制系统是指借助车载设备以及路测,路标的检测设备周围形势环境的变化情况,自动控制驾驶已达到行车安全和增加道路通行能力目的的系统。该系统的本质就是在车辆与道路系统中将现代化的通信技术,控制技术和交通流理论加以集中,提供一个良好的辅助驾驶环境,在特点的条件下,车辆将在自动控制下安全行驶。其目的是开发帮助驾驶员实行车辆控制的各种技术,从而使汽车安全高效行驶。 它是ITS的一个子系统,又可以称之为先进的车辆安全系统,是借助于车载设备及基础设施或其协调系统中的检测设备,来检测周围行驶环境对驾驶员和车辆产生影响的各种因素,进行部分或完全自动驾驶,使行车安全高效并增加道路通行能力的系统。它由自适应巡航控制系统,胎压监控系统,车道偏离警告系统,盲区探测系统,事故自动通报系统,汽车导航和定位系统,道路环境警告资讯系统,自适应前照灯系统构成。 自适应巡航控制系统的功能:该系统可以通过安装在车辆前方的雷达探测自车与前车之间的距离和相对速度,然后根据预先设定的跟车模型,对车辆运行状况进行判断,自动的调节自车与前车之间的距离,当车辆处于危险状况时,对驾驶员进行提醒或采取紧急制动。前方碰撞预警系统是该系统的一个子系

智能车辆控制系统研究的目的意义及技术发展现状与趋势

智能车辆控制系统研究的目的意义及技术发展现状与趋势 1研究的目的及意义 (1) 2 技术发展现状与趋势 (1) 1研究的目的及意义 随着汽车工业的迅速发展,关于汽车及汽车电子的研究也就越来越受人关注。全国各高校也都很重视该题目的研究,可见其研究意义很大。本课题就是在这样的背景下提出的。其专业知识涉及控制、模式识别、传感技术、汽车电子、电气、计算机、机械等多个学科,对高等学校控制及汽车电子学科学术水平的提高,具有良好的长期的推动作用。智能汽车系统的研究发展,必将推动汽车产业的快速发展,提高人们的生活质量,通过计算机控制、人工智能和通信技术实现更好的通行能力和更安全的行驶。同时智能汽车的发展将大幅度提高公路的通行能力,大量减少公路交通堵塞、拥挤, 降低汽车油耗, 可使城市交通堵塞和拥挤造成的损失减少25% ~40% 左右, 大大提高了公路交通的安全性。 2 技术发展现状与趋势 智能车辆也叫无人车辆,是一个集环境感知、规划决策和多等级辅助驾驶等功能于一体的综合系统。它集中运用了计算机、现代传感、信息融合、通讯、人工智能及自动控制等技术,是典型的高新技术综合体。智能车辆在原车辆系统基础上主要由计算机处理系统、摄像机和一些传感器组成。摄像机用来获得道路图像信息,车速传感器用来获得车速,障碍物传感器用来获得前方、侧方、后方障碍物信息等,然后由计算机处理系统来完成对所获图像、信息的预处理、增强与分析识别工作,并对车辆的行驶状况做出控制。智能车有着十分广泛的应用前景,许多国家都在积极进行智能车辆的研究,最典型的运用就是在智能运输系统ITS 上的应用。智能车辆在物流、军事等众多领域都有很广的应用前景。 智能车辆的研究主要是基于模糊控制理论、人工神经网络技术和神经模糊技术等人工智能的最新理论和技术而开展研究的,同时,现代控制理论,自主导航技术等先进技术在智能车辆的研究中也开始逐渐发挥作用。 现阶段智能小车系统主要由信息采集模块、信息处理模块和执行模块组成。系统框图如图1所示:

汽车电子控制系统英文缩写汇总

汽车电子控制系统英文缩写 AFM 空气流量计 AIC 空气喷射控制 AIS 空气喷射系统 ALT 海拔开关 A/M 自动—手动 ASC 自动稳定性控制 AT(A/T) 自动变速器 ATS 空气温度传感器 B+ 蓄电池正极 BPA 旁通空气 BPS 大气压力传感器 BTSC 上止点前 CCS 巡航控制系统 CFI 中央燃油喷射 CFI 连续燃油喷射 CID 判缸传感器 CIS (燃油)连续喷射系统 CIS气缸识别传感器(判缸传感器) CNG 天然气 CNGV 天然气汽车 CPS 轮轴位置传感器 CPS 曲轴位置传感器 CPU 中央处理器 CTP 节气门关闭位置

CTS 冷却液温度传感器CYL 气缸(传感器)DC 直流电 DI 分电器点火 DIS 无分电器点火系统DIAGN 诊断 DLC 数据线接 DLI 无分电器点火DTC 诊断故障码ECA 电子控制点火提前ECCA发动机集中控制系统ECD 电子控制柴油机ECM 发动机控制模块ECT 电控变速器ECT 发动机机冷却液温度ECU 电子控制单元(电脑) EDS 柴油机电控系EEC 发动机电子控制EFI 电控燃油喷射EGI 电控汽油喷射EGR 废气再循环EIS 电子点火系统EPA 环保机构 ER 发动机运转ESA 电子点火提前

EST 电子点火正时 EUT 电子控制燃油喷射系统 EVAP燃油蒸气排放控制装置 FP 燃油泵 FTMP 燃油温度 FFM 热膜式空气质量流量计 HAC 海拔(高度)补偿阀 HEI 高能点火 HEUI液压电子控制燃油喷射系统HIC 热怠速空气补偿阀 HO2S 加热型氧传感器 HZ 故障灯 IAA 怠速空气调整 IAB 进气旁通控制系统 IAC 进气控制 IACV 进气控制阀 常用汽车英文缩写含义全攻略Quattro-全时四轮驱动系统 Tiptronic-轻触子-自动变速器 Multitronic-多极子-无级自动变速器 控制系统 ABC-车身主动控制系统 DSC-车身稳定控制系统 VSC-车身稳定控制系统 TRC-牵引力控制系统 TCS-牵引力控制系统 ABS-防抱死制动系统 ASR-加速防滑系统 BAS-制动辅助系统 DCS-车身动态控制系统 EBA-紧急制动辅助系统

汽车整车车门电子控制系统

指导教师评定成绩: 审定成绩: 重庆XXXXX 学 现代汽车电控课程设计报告 设计题目:汽车车门控制系统设计与实现(硬件) 单位(系部): 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:年月

目录 第一章设计方法简介 (2) 第二章车门ECU硬件设计 (3) 2.1 整体结构图 (3) 2.2 芯片TLE8201 (4) 2.2.1 芯片TLE8201结构 (4) 2.2.2 TLE8201应用电路 (5) 2.2.3 电源 (6) 2.2.4 SPI (7) 2.2.5 PWM输入 (7) 2.2.6 电流感应 (7) 2.2.7 输出级 (8) 2.3芯片BTS781及其TLE6250 (8) 2.4 电路设计 (8) 第三章设计小结 (9) 3.1致谢 (9) 3.2 心得体会 (10) 3.3 对设计的建议及可探讨问题 (10) 参考文献 (10)

【摘要】:提出了一种“总体分布、局部集中式”的轿车车门ECU设计,ECU 之间以CAN总线方式通信。以英飞凌公司XC164CS微控制器和TLE8201、BTS781功率驱动芯片为核心设计了车门ECU的硬件电路;在XC164CS上移植了μC/OS-Ⅱ实时操作系统,在此基础上进行了任务划分和应用软件设计,最后搭建了整个车门控制系统的实验台架。试验结果表明,该系统运行稳定可靠,达到了设计性能。随着科技的飞速发展,为了提高行车的舒适性,针对轿车的车门控制系统,人们已经设计了基于CAN、LIN等总线系统的完全分布式控制方案。轿车车门电子控制器是每一辆现代轿车都必须安装的模块。轿车车门的基本配置包括电动车窗和中控锁(门锁)、前车门后视镜、转向信号灯、礼貌灯等,这些功能可相对独立配置,具有可裁剪性,可按用户需求增减。由于电子技术的进步和集成电路制造工艺的发展,目前车门模块电子控制器的主流是采用高集成度的芯片控制方式。本文基于英飞凌公司生产的高集成度专用门控芯片TLE8201和BTS781,给出了一种新的车门控制解决方案。 【关键字】:车门ECU设计、硬件电路、XC164CS、TLE8201 第一章设计方法简介 目前流行两款车门ECU方案,即集中式控制方案和分布式控制方案。其中,集中式控制是将电动车窗、后视镜、门锁等负载的控制集中由车身中央控制器完成,这样可降低整体成本,但增加了控制器的复杂性;而且控制过于集中、尺寸偏大,不利于安装、布线和散热。 而分布式控制方案为奥迪、大众等汽车公司所采用,每个车门内的负载由各自的ECU模块单独控制,也可由驾驶员侧ECU通过CAN总线控制。在这种方案中,两个前门ECU连接到CAN总线网络,后面两个车门的ECU可通过CAN 总线或LIN总线方式相互通信,或直接由车身中央控制器模块驱动。分布式方案控制简单,但成本偏高。 本课题组设计了一种“总体分布,局部集中式”的控制方案,其框图如图1所示,即将左侧前后两个车门的控制作为一个ECU模块,右侧前后两个车门的控制作为另一个ECU模块,两个模块之间以及模块与中央控制器之间均以CAN 总线方式连接。

智能汽车自主驾驶控制系统方案

智能汽车自主驾驶控制系统 文献综述 :久州班级:机电一班学号:20137631 前言 20 世纪末以来,随着世界智能交通系统(ITS)和无人化武器装备系统的发展,共同对新一代智能交通工具提出了迫切的需求。智能车辆技术迅速成为具有前瞻性的高新技术研究课题,受到了学术界和企业界的广泛关注。目前,智能交通系统(ITS)作为一个能够较好地解决世界性的交通拥堵、大量的燃油消耗和污染问题的先进体系吸引了大量学者的关注。一般来说,ITS 由智能车辆、运营车辆管理系统、旅行信息系统和交通监控系统组成,智能车辆作为其核心部分,扮演着至关重要的角色。没有高度发达的智能车辆技术,就不能实现真正意义上的智能交通系统。 智能车辆(Intelligent Automotive),又称自主车辆(Autonomous Vehicle)或无人地面车辆(UGV),集成了车辆技术、传感技术、人工智能、自动控制技术、机电一体化和计算机技术等多学科强交叉科学技术,它的发展水平反映了一个国家的工业实力。在近十年间,智能车辆技术的研究吸引了世界围大量高校、企业以及相关科学家的关注,各国政府和军事部门也对其表现出强烈的兴趣,智能车辆技术因此在短期得到了飞跃性的发展。 1.智能汽车自主驾驶技术的发展现状 汽车自主驾驶技术研究是从两个不同研究领域发展起来的。 从1%0年开始,为了改善汽车的操控性能,美国ohio大学的一些研究工作者开始进行汽车侧向跟踪控制和纵向跟踪控制研究,该项研究持续了二十多年,取得了一系列研究成果。 另一方面,二十世纪六十年代美国stanfoul研究所在进行人工智能研究中,开发了Shakey移动机器人,作为人工智能研究工作的试验平台。1973一1981年间由Hans.Moravec在Stanford研究所领导的stanford。art工程则第一次实现了自主驾驶。 进入二十世纪八十年代以后,军方和一些大型汽车公司对自主驾驶技术表现

船舶稳定平台解决方案

船舶稳定平台解决方案 陀螺稳定平台(gyroscope-stabilized platform)利用陀螺仪特性保持平台台体方位稳定的装置。简称陀螺平台、惯性平台。用来测量运动载体姿态,并为测量载体线加速度建立参考坐标系,或用于稳定载体上的某些设备。它是导弹、航天器、飞机和舰船等的惯性制导系统和惯性导航系统的主要装置。 稳定平台作为一种安放在运动物体上的设备,具有隔离运动物体扰动的功能。稳定平台在航空航天、工业控制、军用及商用船舶中都有比较广泛的用途,例如航拍、舰载导弹发射台、船载卫星接收天线等。船舶上工作面或者平台姿态检测,船载天线稳定平台系统,会应用倾角传感器定时(较长时间)读取数值,通过计算后,对稳定平台进行校正。平台的实际运动由单片机控制外部机械装置以达到对稳定水平平台进行修正,以保证其始终处于水平状态。某些倾角传感器作为船体液压调平系统中的反馈元件,提供高精度的倾角信号。既可用于水下钻进也可用于水下开采等。 在国外,陀螺稳定跟踪装置被广泛应用于地基、车载、舰载、机载、弹载以及各种航天设备中。20世纪40年代末,为了减少车体振动对行进间射击的影响,在坦克上开始安装火炮稳定器,从50年代起,双稳定器在坦克中得到了广泛的应用。在英、美等国的先进武器系统中,基于微惯性传感器的稳定跟踪平台得到了广泛的应用,如美国的M1坦克、英国“挑战者”坦克、俄罗斯T-82坦克、英国“标枪”导弹海上发射平台和“海枭”船用红外跟踪稳定平台等,都采用了不同类型的稳定跟踪平台。美国海军采用BEI电子公司生产的QRS-10型石英音叉陀螺,研制出WSC-6型卫星通讯系统的舰载天线稳定系统,工作12万小时尚未出现故障;Honeywell公司以红外传感器平台稳定为应用背景,研制的以GG1320环形激光陀螺为基础的惯性姿态控制装置,很好的满足了稳瞄跟踪系统的要求。美军配装的Honeywell公司采用激光陀螺技术研制的自行榴弹炮组件式方位位置惯性系统(MAPS6000) ,在工作时可连续提供高精度的方位基准、高程、纵摇、横摇、角速率、经度和纬度输出,性能大大高于美军MAPS系统规范的要求。在导弹制导方面,俄罗斯的X-29T、美国的“幼畜”AGM-65、以色列的“突眼”等成像制导导引头中,都采用了陀螺稳定跟踪平台。在机载设备中,陀螺稳定平台在机载光-电火控系统和机载光电侦察平台中也得到极其广泛的应用,美国、以色列、加拿大、南非、法国、英国、俄罗斯等国家都已研制出多种型号产品装备部队。如以色列的ESP-600C型无人机载光电侦察平台采用两轴平台,其方位转动范围360o×N、俯仰+10o----10o、最大角速度50o/s、最大角加速度60o/s2,其稳定精度达到15μrad,所达精度代表了国际先进水平。 国内对陀螺稳定平台的研究起步较晚,20世纪80年代开始研制瞄准具稳定平台,而90 年代初才开始陀螺稳定平台的研制。虽有不少单位,如北京电子3所、长春光机所、中科院成都光电所、西安应用光学研究所、华中光电技术研究所和清华大学等都在开展该应用领域的研究工作,但在稳定跟踪平台技术的研究上与国外相比仍有较大差距,由于惯性元件的技术不过关,成本较高,致使该项技术的研究始终没有取得突破性的进展。 一、船用红外/可见光陀螺稳定平台 近年来,随着精密机械、电子技术、数字信号处理技术和模式识别技术的飞速发展,陀螺伺服稳定跟踪系统的性能也有了很大的提高。陀螺伺服稳定跟踪系统,其主要任务是完成

汽车发动机电子控制系统开发现状及趋势

汽车发动机电子控制系统开发现状及趋势 丁志盛叶挺宁 摘要:介绍了汽车发动机电子控制系统相关技术背景、开发现状及发展趋势。 关键词:EECS,ECU汽车发动机电喷 一、汽车发动机电子控制系统概述 汽车发动机电子控制系统(Engine Electronic Control System,简称EECS)通过电子控制手段对发动机点火、喷油、空气与燃油的比率、排放废气等进行优化控制,使发动机工作在最佳工况,达到提高性能、安全、节能、降低废气排放的目的。汽车发动机电子控制系统主要包括: - 燃油喷射控制; - 点火系统控制; - 怠速控制; - 尾气排放控制; - 进气控制; - 增压控制; - 失效保护; - 后备系统; - 诊断系统等功能。 另外,随着网络、集成控制技术的广泛应用,作为汽车控制主要单元的EMS系统通过 CAN(Controllers Area Network)总线与其他控制系统,例如:安全系统(如ABS、牵引力电子稳定装置ESP (Electronic Stability Program))、底盘系统(如主动悬挂ABC(Active Body Control))、巡航控制系统(Speed Control System或Cruse Control System)以及空调、防盗、音响等系统实现网络互联,实现信息共享并实施集成优化统一控制。在不久的将来,车载通讯平台将利用现有无线通讯网络为汽车驾驶提供更广泛的咨询、娱乐等增值服务(如GPS全球定位系统的应用)。 汽车发动机电子控制系统的开发主要涉及以下技术内容: - 传感器

主要包括空气流量传感器、空气温度传感器、节气门位置传感器、冷却液温度传感器、转速传感器、曲轴位置传感器、凸轮轴位置传感器、爆燃传感器、车速传感器、氧传感器等。 - 执行器 主要包括喷油器、点火控制模块、怠速空气控制阀以及各种电磁阀等。 - 电控单元ECU(Electronic Control Unit) 和控制算法程序软件其作用是通过采集各种传感器输入信号并将信号进行调理,根据发动机管理控制算法进行运算,然后输出控制信号并进行功率放大给执行器。同时检测传感器信号正常状态,出现故障时报警。 图1描述了汽车发动机电子控制系统示意图。 图1 另外,为了应对汽车产业产品作为多种产品链状集成开发的特点以及快速更新的市场需求,高性能的发动机试验台架、集成开发环境工具以及测试产品耐环境性能的设备为快速开发高质量面向不同汽车发动机的管理系统产品提供保障:

车辆智能控制技术的研究与应用

车辆智能控制技术的研究与应用 车辆1003 20104043 李琳

车辆智能控制技术的研究与应用 自从汽车被发明以来,人类对于驾驶汽车的看法就一直存在分歧,一部分人热衷于让汽车变得越来越好开,强调驾驶乐趣,让你的双手舍不得离开方向盘;然而另一部分人则更热衷于让汽车变得越来越“傻瓜化”,甚至要将驾驶者的双手从方向盘上解放出来……上世纪80年代开始热播的美剧《霹雳游侠》当中的KITT,正是后者思想的集大成者。正在读这篇文章的您也许就曾经被无敌的KITT 所深深吸引吧?当然人类的科技还根本无法达到科幻电视剧当中的效果,KITT 无与伦比的人工智能、让主人公高枕无忧的自动驾驶、车身超级耐打击的能力以及几乎不用加油的动力科技看上去几乎都是天方夜谭。然而随着汽车技术的发展,现实版“KITT”正在向人们走来,近些年来许多厂商都致力于无人自动驾驶技术的研发,宝马在这领域走在时代的前边。 现阶段的技术成果虽然无法实现《霹雳游侠》或者《钢铁侠》里面那样强大的技术,但是让车子短暂脱离驾驶员的控制而自主驾驶,还是已经成功实现了。宝马将一系列最先进的无人驾驶技术设备集成到了一辆看似非常普通的5系轿车里,这些设备能够在高速公路行驶时,接管驾驶员的所有操作,自主进行油门、刹车甚至超车的动作。 车辆自主变线超车 借助布置在车身四周的传感器,它甚至可以发现从辅路匝道进入主干道的车辆,自主采取加减速或者变道的措施,而具体选择那种操作,也是通过计算当时的行驶条件而决定的,也就是说它具备了自主判断交通状况的能力。而这一切,目前都能够在130km/h以下的车速来完成。

其实这些对于驾驶员来说再容易不过的驾驶操作,对于自动驾驶系统来说可是超级复杂的一件事情。车辆不仅需要随时准确侦测出自己处于道路中的哪一条车道上,更要认出车身周边的车辆或者物体。实现这样的感知,不仅需要普通雷达,更需要激光、超声波以及摄像头的辅助。 若要精确做出判断,上述的集中探测装置至少需要两种协同作用。目前这辆能够自主驾驶的宝马5系轿车已经在驾驶员极少干预的前提下,安全行驶了3000英里。这都要归功于全车所有精良的设备。再有一点就是,这项技术的应用普及速度可能远超过你的想象,有消息称该技术在2014年的宝马i3上就会开始搭载,届时你可要分清路上开车的到底是人还是车自己了。然而一向强调给驾驶者带去驾驶乐趣的宝马开发这么一个产品,缺失会让人觉得有些意外,宝马官方给出的解释是,这项技术并不会完全将驾驶者从眼观六路耳听八方中抽离开来,所以不要指望你能在开车上班的路上睡上一觉…… 1 悬架的研究方法 (1)理论研究[1] 悬架系统的理论研究具有前瞻性和探索性,为智能悬架系统的物理实现奠定理论基础。其主要研究内容: a.悬架力学模型理论研究。悬架力学模型是振动理论中的隔振和减振理论的实际应用,通过振动理论的深入研究,全面综合研究悬架的减振和隔振性能、悬挂系统的非线性特性。 未来几年中,动力学、振动与控制领域的下述研究前沿值重视:①高维非

汽车智能控制系统安装指导说明书

一键启动主机/无钥匙进入/关窗器的找线方法 1、常电电源线:正12V,在任何情况下都是12V,用万用表黑笔接地,红笔测,是12V的是常电线。 2、接地线:负-,在任何情况下都是负极,简称车身搭铁线。 3、ACC:用万用表黑笔接地,红笔测,钥匙打到ACC时是12V的是ACC线。关闭钥匙后,这条线没任何反 应为0V。 4、ON1线:用万用表黑笔接地,红笔测,钥匙打到ON挡时是12V的是ON1线。(此线在点火过程中也是 12V)。关闭钥匙后,这条线没任何反应为0V。 5、ON2线:用万用表黑笔接地,红笔测,钥匙打到ON挡时是12V,点火时是0V的是ON2线。(此线在点 火过程中0V,点火启动后也是12V)。关闭钥匙后,这条线没任何反应为0V。 6、点火启动线:用万用表黑笔接地,红笔测,钥匙打到ON时是0V,点火时是12V,点火成功后是0V。 关闭钥匙后,这条线没任何反应为0V。 7、发电机输出信号线:用万用表黑笔接地,红笔测,钥匙打到ON时是0-3V,点火成功后是12V。关闭钥 匙熄火后,这条线没任何反应为0V。 8、刹车线:在不插钥匙的情况下,用万用表黑笔接地,红笔测,踩刹车时有12V,松开刹车0V。有些车 要插钥匙才有信号,此种车请改接一年刹车开关的输入线到常电12V线。 9、中控锁触发方式及连线的判断: 9.1负触发方式的判断:用测试笔固定夹一端接地(搭铁)。触笔一端触试中控锁的两条控制线,中控锁若工作,该两条线是中控锁的负触发控制线。 9.2正触发方式的判断:用测试笔固定夹一端接电源,触笔一端触中控锁的两条控制线,中控锁若工作,该两条线是中控锁的正触发控制线。 9.3 正、负触发方式的判断:若用上面两种方法去判断中控锁都正作,这是正负触发方式。 9.4 单线串联负触发方式的判断:用电笔测只有一条线下锁,再找没有开锁线,而且剪断这根线会开锁。 9.5正负触发和正电回路判断都是一样的,有人说。正负触发的不一定能用上正电回路。它们判断方法都是在开锁或关锁时分别有两跟带正电的线,断开这两个可以接正负触发,但是不一定要用正电回路。在断开线后,然后在给锁分别一个正电,这时看锁是不是开或者关,这才确定是不是正电回路。 9.6双电位触发:他是同一条线在高电压和低电压的时候会有两个动作(试电笔一头夹负,一头试中控盒,如果一根线出现开或关,再碰一次,出现关或开,就有双电位负触) 9.7 单线负触发(判断方法就是同一条线反复动作,给一次电就动一次) 9.8 单线串联负触发和单线负触发区别:,单线串联负触发就是把中控线断开给主机供电和正电回路的供电相反单线负触发。(单线串联负触发判断方法找到一条中控线给负电动作一次剪断动作一次) 9.9开关串联负触发:说白了就是负触发,只是这负电不是用的我们产品的负电而是原车中控的负电,你就是负触发也能装,为什么?要是原车中控的负了,我个人认为是他的中是需要特定的电压和电流来控制(判断方法和负触发一样),至于怎么配线,防盗器的说明书里有。 9.10正电回路的接法及条件: 1) 正电回路是用防盗器控制主门马达的运动来完成对整个中控系统的控制。所以能不能用正电回路必须先确认原车主门内是不是有驱动马达,如果没有马达则不可用,再要看马达是不是能够对中控完成控制,拉动马达,看中控是否一起动作,必须所有门锁能够一起动作才可以,只是主门动作不可用。2) 正电回路查线方法,电笔搭铁,点住被测线,用手拉动马达,在马达开时亮的一根线是马达开锁线,在马达关时亮的一根线是马达锁线,查线位置在主门内或者主门通往车内的线束中。 专用关窗器找线方法: 1、常电电源12V线:在任何情况下都是12V,用试电卡灯一接端地,另一端触碰此线时灯试电卡灯灯泡亮。 2、ACC/0N线:用测试卡灯一头搭铁,另一端触碰时测试灯会亮(一定要车钥匙打到ACC/ON,仪表灯亮的情况下),关闭钥匙后,这条线没任何反应。 3、中控马达关锁信号线:按遥控关锁键时,中控马达线瞬间输出正电12V,用测电卡灯一头搭铁,另一端触碰这条线按下遥控关锁键时,测试灯会闪亮一下。 4、升窗控制线:接中控开关负触发,用测试卡灯一头搭铁,另一端触碰这条线时四个中控门锁会同时上锁,在保持3-5秒后,四个玻璃窗会自动升起来。 大众全系列、本田雅阁、奥德赛、比亚迪F6、老皇冠、老锐志、荣威350、750 装车前,先把车窗玻璃降下来,熄火拔下钥匙,下车并关好全部车门,用车钥匙插入左前门钥匙孔,向锁车方向拧一下,中控锁上锁,接着钥匙回正并再次向锁车方向拧下去并停留3到五秒,此时车窗玻璃可以上升的就可以安装自动升窗器;否则安装不了。 升窗控制线找线方法:在左前门中控门锁线束里,用测试卡灯一头搭铁,另一端触碰到升窗控制线时,四个门锁同时上锁,如果测试卡灯保持在3-5秒后,四个车窗就会同时升起。 荣威5501.8T车型左前门辅助升窗控制线找线方法:在左前门中控门锁线束里,用测试卡灯一头搭铁,另一端触碰左前门升窗控制线,长按原车遥控关锁键5秒,四会车窗会同时升起,在升窗的同时,左前门升窗控制线输出正电12V,车窗停止升时,此线没有正电输出。 备注:以上车型升窗原理是控制原车车身电脑,而不是控制升降开关。

稳定平台关键技术综述

稳定平台关键技术综述 0引言 从科索沃战争、伊拉克战争到最近的利比亚战争,局部战争成为主要的作战模式。与以往的区域攻击不同,现代局部战争的主要特点是快速反应、精确打击。为应对未来局部战争,做到敢打必胜,改进与研制武器装备,提高部队作战能力成为首要任务。 在我军车载陆战装备中,战术导弹、坦克、火炮等武器系统近些年来有了很大发展,射击范围和精度都有了很大提高。但与外军先进装备相比,行进间射击精度尚有较大差距,甚至大多装配的武器系统还无法实现行进间射击。行进间射击作为提高部队作战效率,增强武器装备自我防护能力的重要指标,已成为未来陆战装备的主要发展方向,同时这也使得对武器系统的改进与研制迫在眉睫。 瞄准线稳定技术是实现行进间射击、提高行进间射击精度的主要环节。它采用稳定平台对车体的航向、纵摇和横滚运动进行有效的隔离,使瞄准线在惯性坐标系下保持稳定。为提高陆战装备快速反应与精确打击能力,急需提高稳定瞄准的快速性、精确性、自适应性,因此本课题的研究具有重要意义。 1稳定平台国内外研究现状 在光电稳定平台中,陀螺稳定平台迄今得到了广泛的应用,它是采用一个环架系统作为光电传感器的光学平台,在平台上放置陀螺来测量平台的运动,陀螺敏感姿态角的变化经过放大以后驱动环架的力矩电机,通过力矩电机驱动平台使光电传感器保持稳定。在国外起初应用于手持式望远镜和瞄准具中,并在八十年代装备部队,现已广泛应用于地基、车载、舰载、机载、弹载、天基等各种观测、摄像系统中。1996年,美国的航空红外制造商前视红外系统公司以电子新闻采集市场为目标推出了一种双传感器系统,它包括一个用于低照度的高分辨率红外摄像机和用于白天的标准广播摄像机,这两台摄像机一起被安装在一个紧凑的三轴陀螺稳定的万向架中,能够提供50rad μ的图像稳定精度,意大利的Caselle-Torinese 公司生产的11072Caselle-Torinese 光轴稳定平台的旋转范围可以做到高低方位均为??360~0,最大旋转速度为?60/s ,稳定精度为0.4mrad 。英国的Ferranti Electro-optics 公司生产的FIN1155用于坦克的陆地导弹/稳定平台,其瞄准线的稳定精度达到了0.1mrad 。法国的SAGEM 公司研制的舰载对空红外全景监视系统可以在?+?-30~30的摇摆,?+?-10~10的纵摇时的稳定精度达到0.5mrad 。1994年法国生产的“唯吉-105”型周视光电火控红外系统,在方位为??360~0,俯仰角为??-65~25范围内稳定精度为0.1mrad 。以色列研制的ESP-1H 采用两轴陀螺稳定平台,在方位角为??360~0,俯仰角在?+?-110~10的范围内,最大旋转速度为?50/s 的稳定精度高达50rad μ,而ESO-600C 的稳定精度高达15rad μ。 国内上世纪80年代开始研制瞄准具稳定平台,90年代逐渐展开了陀螺稳定平台的研制。北京618所90年代初期研制了机载陀螺稳定平台,其稳定精度可达到0.1mrad ,中科院成都光电所承担的863子课题——快速反射镜成像跟踪系统,采用了二级稳定技术,并于1994年通过评审。华中光电技术研究所研制的舰载红外稳定平台的稳定精度为1mrad ,清华大学精密机械与机械学系惯性导航研究室于1997年研制出机载瞄准线稳定跟踪系统,并交付部队使用。 车载稳定平台的研究开始于80年代后期,最初用于坦克炮长镜上以稳定瞄准线,其原理是在框架陀螺的转子上安装导光棱镜,以达到稳定瞄准线的目的,其稳定精度可达到0.2mrad ,但瞄准范围仅仅是方位?±4、俯仰?+?-20~10,加之人机工程差,使用受到了

SoC解决方案:专门为车辆系统中的先进控制和接口技术设计的解决方案

SoC解决方案:专门为车辆系统中的先进控制和接口技术设计的解决方案随着汽车部件电子化程度的不断提高,汽车工程师们正积极地寻求车辆系统中的先进控制和接口技术解决方案。目前,汽车系统中用来嵌入这些功能单元的空间和能源十分有限,汽车工程师们正借助于新颖的高压混合信号技术将复杂的——截至目前还不兼容的元件功能集成到一块芯片上。现在,应用与42V车载电压兼容的I3T高电压技术已经可以将复杂的数字电路(如传感器)、嵌入式微处理器以及功率电路(如激励源或开关驱动器)集成到一起。 一、LIN总线系统由于其相对较低的造价,LIN总线正被广泛应用于汽车的分布式电气控制系统中,如控制电动车窗、调节后视镜和车前灯等部位的步进马达和直流电源,或管理传感器采集到的关于气温或座位位置的信息等。LIN总线的传输字节高达20kbps。基于单主节点、多个从节点的结构,通常,从节点安装在收发器、微控制器、传感器的接口或由分立元件组成的激励驱动器的周围。最近研制出了一种带有LIN总线异步收发装置(UART)的微控制器,这种微控制器可同集成有其它从节点模块(如LIN总线收发器、电压调节器、看门狗定时器、激励驱动器和传感器接口)的附件一起配套使用。目前,AMI 半导体(AMIS)公司利用混合信号技术将关键的从节点模块全部集成在了一个功能专一、功耗低、符合标准IP模块的芯片上,将LIN总线的发展又推进了一步。该方案的特点有:集成RC振荡器,误差≤15%; 专用IP模块(如DC或微型步进马达驱动器); 遵守LIN总线V1.3协议; 传输速率高达20kbps(特殊的结构设计); 低频收发; 睡眠/旁路模式中的低电流损耗; 满足潜在的市场需求。 图1为一个集成有LIN总线的从节点中主要元件的结构框图。AMIS的方案提供了应用层

陀螺稳定平台伺服控制系统研究

工学硕士学位论文 陀螺稳定平台伺服控制系统研究 王石静 哈尔滨工业大学 2008年6月

图内图书分类号:TP273 国际图书分类号:621.3 工学硕士学位论文 陀螺稳定平台伺服控制系统研究 硕 士 研究生:王石静 导 师:杨 明教授 副 导 师:霍 炬讲师 申 请 学 位:工学硕士 学 科、专 业:控制科学与工程 所 在 单 位:控制与仿真中心 答 辩 日 期:2008年6月 授予学位单位:哈尔滨工业大学

Classified Index: TP273 U.D.C.: 621.3 Dissertation for the Master Degree in Engineering RESEARCH ON SERVO CONTROL SYSTEM OF GYRO-STABILIZED PLATFORM Candidate: Supervisor: Associate Supervisor: Academic Degree Applied for: Speciality: Affiliation: Date of Defence: Degree-Conferring-Institution:Wang Shijing Prof. Yang Ming Lecturer Huo Ju Master of Engineering Control Science and Engineering Control and Simulation Center June, 2008 Harbin Institute of Technology

哈尔滨工业大学工学硕士学位论文 摘 要 陀螺稳定平台能够隔离载体扰动,保持平台上探测设备的视轴在惯性空间的稳定,从而保证探测设备对目标的精确跟踪,在现代武器系统中得到了广泛的应用。本文针对项目需求,研究了陀螺稳定平台工作原理,建立了数学模型,对影响系统精度的摩擦力矩和陀螺噪声这两大主要因素进行了深入研究,并分析和研究了解决这两大问题的方法。 首先,在了解了陀螺平台系统工作原理的基础上,建立了系统的各组成部分模型,并根据载体扰动传递机制完善了模型。其中,非线性摩擦对系统精度的影响很大,所以,本文建立了适用于仿真分析的摩擦模型,这对分析扰动对系统精度的影响情况以及研究控制器控制效果奠定了基础。 其次,测量元件陀螺的噪声是影响系统精度的另一个重要因素。本文用IEEE公认的陀螺参数分析的标准方法——Allan方差法分析了陀螺信号噪声;研究了三种滤波方法——数字低通滤波、小波变换阈值滤波、自适应滤波,并将这三种方法直接用于处理陀螺信号;仿真分析比较了滤波效果。此外,分析了滤波前后陀螺信号的幅度谱,利用Allan方差法并通过最小二乘拟合得到了滤波前后陀螺信号中各误差源的幅度,从不同的角度进一步证实了:三种方法中,自适应滤波效果最佳。 最后,设计了平台伺服系统控制器,主要研究了传统的超前滞后控制和滑模变结构控制。并对这两种控制器的控制效果进行了系统稳定仿真实验分析,结果表明变结构控制效果远远优于超前滞后控制。此外,进行了系统位置跟踪的仿真实验,结果表明变结构控制下系统可以较精确地跟踪一般的低频运动目标,满足一定的跟踪精度要求。 关键词陀螺稳定平台;非线性摩擦;陀螺噪声;滤波方法;控制器 - I -

先进的车辆控制系统简介

先进的车辆控制系统简介 摘要:现如今车辆的普及以及交通的发展,造就了我们对于车辆的要求越来越高,越来越严,在车辆更新换代如此频繁的时代,也造成了车辆品种多,繁杂等特点,针对市场如此多的车,我着重讲述车辆的控制系统,它就如同车的灵魂。 关键词:车辆,控制系统。 先进的车辆控制系统是指借助车载设备以及路测,路标的检测设备周围形势环境的变化情况,自动控制驾驶已达到行车安全和增加道路通行能力目的的系统。该系统的本质就是在车辆与道路系统中将现代化的通信技术,控制技术和交通流理论加以集中,提供一个良好的辅助驾驶环境,在特点的条件下,车辆将在自动控制下安全行驶。其目的是开发帮助驾驶员实行车辆控制的各种技术,从而使汽车安全高效行驶。 它是ITS的一个子系统,又可以称之为先进的车辆安全系统,是借助于车载设备及基础设施或其协调系统中的检测设备,来检测周围行驶环境对驾驶员和车辆产生影响的各种因素,进行部分或完全自动驾驶,使行车安全高效并增加道路通行能力的系统。它由自适应巡航控制系统,胎压监控系统,车道偏离警告系统,盲区探测系统,事故自动通报系统,汽车导航和定位系统,道路环境警告资讯系统,自适应前照灯系统构成。 自适应巡航控制系统的功能:该系统可以通过安装在车辆前方的雷达探测自车与前车之间的距离和相对速度,然后根据预先设定的跟车模型,对车辆运行状况进行判断,自动的调节自车与前车之间的距离,当车辆处于危险状况时,对驾驶员进行提醒或采取紧急制动。前方碰撞预警系统是该系统的一个子系统,自车与前方车辆或障碍物之间的距离小于最小安全跟车距离时,给驾驶员警告,丰田汽车把该子系统称之为预碰撞系统,采用激光雷达。应用技术:利用毫米波雷达或激光雷达进行车辆距离的探测,并根据逻辑判断,达到警告的作用或进行辅助驾驶。 胎压监控系统的功能:通过在每一个轮胎上安装高灵敏度的传感器,在行车或静止的状态下实时监视轮胎的压力、温度等数据,并通过无线方式发射到接收器,在显示器上显示各种数据变化或以蜂鸣等形式提醒驾车者,并在轮胎漏气和压力变化超过设定值进行报警,以保障行车安全。应用技术:胎压传感器和无线通讯技术。 车道偏离警告系统功能:车辆若能维持在该行驶的车道中行驶,可降低交通事故发生的机率。此系统利用安装车辆前部的视频系统采集车道信息,当车辆发生车道偏离,而驾驶员并没有采取任何应对措施时,发出警告,以降低事故发生的机率。应用技术:利用CCD取得摄象头或利用道路路面与车辆间的磁性信号用,采集车辆行驶时的位置信息,然后利用图象识别技术及逻辑判断,将可能发生的事故预先加以警告,以达到车道偏离警示的作用。 盲区探测系统功能:车辆在行驶、转向或倒车过程中,该系统实时探测车辆盲区内的环境情况,把车辆盲区的信息以声音或者图像的形式传递给驾驶员,提醒驾驶员在盲区内是否有车辆或者其他物体出现,一旦发现有潜在的危险,便会通过警示音,或者后视镜闪烁,甚至座椅振动来提醒驾驶员。应用技术:对于测后方盲区探测一般是在后视频上安装CCD或CMOS装置,在车辆先进过程中,给驾驶员提供驾驶员死角处的环境资讯。对于后方一般安装超声波传感器或者是CCD装置进行实时探测,为驾驶员提供后方盲区环境资讯。 事故自动通报系统功能:当车辆发生事故时,系统向紧急救援中心或交通管理部门发出事故通报,内容包括:事故的车辆位置、事故及乘员受伤害的主要情况,通知有关部门及人员及时前往事故地点,进行救援工作。应用技术:利用事故传感器进行车辆事故发生的判断,利用GPS进行准确定位,然后把相应信息利用专用无线网络或GPRS发出求救信息。 汽车导航和定位系统功能:汽车导航系统由GPS技术、GSM技术、网络技术、GIS、咨询诱导系统组成,通过它可以寻找最佳行驶路线,避开交通拥挤和发生事故的路段。以减

相关文档
最新文档