设备焊接与热处理方案设计

因现在,身边无图纸及有关资料,本方案仅供参考,请修改完善,多。

目录

一、概述

二、编制依据

三、施工程序

四、施工方法、技术措施、

4.1.施工准备

4.2.分段设备组对检验

4.3. 焊接坡口制备

4.4设备组对要求

4.5.设备组对焊接

4.6.焊接检验

4.7.焊缝热处理加固

4.8.焊缝热处理

五、工程质量目标及质保措施、质量控制点

六、劳动力需用计划及技术能要求

七、主要机具、计量工具一览表

八、雨季、暑季施工技术措施

九、职业安全卫生与环境管理

十、文明施工措施

设备组对焊接与热处理方案

一、概述

1.1股份公司分公司化肥原料结构调整及炼油化工资源优化工程,按照大件设备吊装组对方案分段数据统计如下表所示:

1.2.根据设计图纸要求现场组对焊缝焊后需进行消除应力热处理。

二、编制依据

2.1《石油化工钢制塔、容器现场组焊施工工艺标准》SH3524-1999 2.2《钢制压力容器》GB150-1998

2.3《钢制塔式容器》JB4710-92

2.4《钢制压力容器焊接工艺评定》JB4708-2000

2.5《钢制压力容器焊接工艺规程》JB/T4709-2000

2.6《压力容器安全技术监察规程》

2.7《压力容器无损检测》JB4730-94

2.8设计提供的设备图纸及技术资料

三、施工程序

制作安装临时平台→按照大件设备吊装方案将分段设备在空中就位→组对卡具制作安装→对口方位调整→用经纬仪(或细钢丝)检查铅直度并调整→用组对卡具调整对口间隙及错边→组对固定后检查→点焊→正式焊接→焊缝外观检查→无损检验→ 750T吊车稳固热处理焊缝上段→稳固检查→焊缝热处理→焊缝硬度检测

四、施工方法、技术措施、

4.1.施工准备

4.1.1焊接工艺评定

焊接工艺评定试验在于测定焊件具有要求的使用性能。本工程中设备材质:20R 、09MnNiD R按《钢制压力容器焊接工艺评定》JB4708-2000进行评定。

4.1.2.焊工技能评定

焊工技能评定在于测定焊工具有熔敷优质焊缝金属的能力。施工单位选派具有相应合格项目的焊工,这些焊工均获得国家质量技术监督局颁发的锅炉压力容器压力管道特种设备焊工操作。

4.1.3焊材的验收、保管、烘烤、发放管理

4.1.4严格按照公司有关焊接材料管理的专项规定进行焊材管理。

4.1.5焊材应符合相应标准要求,焊材质量证明书中应包括以下容:

焊材型号、牌号、规格;

(1)批号、数量及生产日期;

(2)熔敷金属化学成份检验结果;

(3)熔敷金属对接接头各项性能检验结果;

(4)制造厂名、地址;

(5)制造厂技术检验部门与检验人员签章。

4.1.6分别设置焊材一、二级库,并配置专职保管员,保管员在进入现场前必需接

受材料责任师、焊接责任师的培训考核,应熟知焊接材料入库、保管、发放、回收等一系列管理程序,并熟知本工程中使用的焊接材料的一般性能和要求。4.1.7焊接设备

设备责任师应组织相关人员对进入施工现场的焊接设备进行全面检查,所有进入现场的焊接设备均应保持完好。并严格执行定人、定机、定岗的“三定”使用责任制和操作证制。对用于低温钢、不锈钢或业主有特殊要求的较重要部位焊接的焊机应根据焊接工艺的要求,选用性能满足要求的机况良好的焊接设备。

4.2.分段设备组对检验

分段设备组对前应对其结构尺寸进行检查,对检查不合格者,应提交建设单位作出处理意见,

分段设备组对的各项允许偏差值见下表:(单位:mm)

4.3. 焊接坡口制备

3.3 坡口宜采用机械方法加工;当采用火焰切割时,应采用机械方法清除热影响区和谵硬层,并将表面打磨光滑,火焰切割时的环境温度不得低于0℃。

3.4 坡口表面应按JB4730-1994《压力容器无损检测》进行100%磁粉检测,Ι级合格。

3.5 容器施焊前应按JB4708-2000《钢制压力容器焊接工艺评定》进行焊接工艺评

定试验。焊接工艺评定包括焊缝和热影响区的低温夏比(V型缺口)冲击试验,试验温度为-70℃;当板厚≤40mm时,焊缝和热影响区各一组,每组三个冲击试样;当板厚>40mm时,冲击试样的数量和位置按JB4744-2000《钢制压力容量产品焊接试板的力学性能检验》中表1及图8和图9的规定,即焊缝两组,热影响区一组,每组三个试样;冲击试验时,每组三个试样(试样尺寸为10*10*55)的冲击功平均值必须≥24 J,其中只允许有一个试样的冲击功低于规定值,但不得低于规定值的70%。

3.9 引弧须采用引弧板或在坡口引弧,不得在非焊接部位引弧。因引弧或电弧擦伤所产生的弧坑和疤痕要打磨平滑,并用磁粉检测。

3.13 焊接接头厚度大于16mm的容器或部件,应进行焊后消除应力热处理,所有预焊件均应在热处理前焊于容器上,热处理后不得再进行施焊。

3.14 每台低温容器都应制备产品焊接试板,试板的尺寸、试样截取、检验项目、试验方法以及合格指标等,均按JB4744-2000《钢制压力容量产品焊接试板的力学性能检验》的规定。试板必须做焊缝金属及热影响区的低温夏比(V型缺口)冲击试验,试验温度为-70℃,每组三个冲击试样(试样尺寸为10*10*55)的冲击功平均值必须≥24 J,其中只允许有一个试样的冲击功低于规定值,但不得低于规定值的70%。当材料因受截面尺寸限制,无法截取标准试样时,允许取小试样(7.5*10*55、5*10*55),其冲击功指标根据试样宽度按比例缩减。有焊后热处理要求的容器,其产品焊接试板应随炉进行焊后消除应力热处理。

3.15容器A、B类焊接接头应按JB4730-1994《压力容器无损检测》进行100%射线检测,其透照质量不低于AB级,合格级别为Π级,对于容器厚度大于38mm的A、B类焊接接头,除进行100%射线检测外,每条焊缝还应按JB4730-1994《压力容器无损检测》附加20%超声检测合格级别为Ι级。

坡口尺寸符合图样要求,坡口面上不得有裂纹、分层、夹渣等缺陷.

对于坡口形式,若设计文件有规定时,可按设计文件执行,若设计文件无规定时如下图所示:

Δ=16 对接坡口型式为V型单面坡口,坡口各部分尺寸

Δ=38、50 对接坡口型式为U型单面坡口,坡口各部分尺寸如下图所示:R=6mm

4.4设备组对要求

4.4.1设备组对时,其环焊缝的对口错边量应≤1/8δ。

4.4.2.圆筒对接环向焊缝接头形成的棱角E,用长度不小于300mm钢直尺检查,其E值不得大于5mm。

4.4.3.组对后的检查

设备组对完毕后,应进行筒体不直度、不圆度检查:

a、筒体不直度检查,通过中心线的铅直度即沿周围00 900 1800 2700四个部位拉φ0.5mm细钢丝进行测量,测量的位置离纵缝的距离不小于100mm;当筒体厚度不

同时,计算不直度应减去厚度差。允许偏差见上表

b、筒体不圆度允许偏差见上表。

4.5.设备组对焊接

4.5.1焊接采用氩电联焊。

4.5.2焊条选用见附表。

4.5.3.焊接时应按焊接工艺规程(WPS)规定的焊接参数焊接。焊接工艺规程依据

相应的焊接工艺评定报告(PQR)进行的焊接工艺试验。

4.5.4焊接基本要求:

a. 所有焊工必须持证作业,合格证项目能满足于本工程使用且在有效期之。

b. 坡口及其外侧表面不小于100mm围的氧化铁、水、锈、油等杂质清理干净,且不得有裂纹、夹层等缺陷,且将影响焊接质量的凹凸不平处打磨平整。

c. 焊条、焊丝包装完好,产品说明书、合格证明书和质量保证书齐全。

d、焊工领用焊条要使用焊条保温筒。

e、筒体对接焊缝的焊接方法采用手工电弧焊,焊接过程中应保证起弧和收弧的质量,收弧是应将弧坑填满。多层焊的层间接头应错开。在保证焊透和熔合的良好条件下,采用小电流、短电弧、快焊速和多层多道焊工艺。手工电孤焊时注意层间清渣,以防止产生气孔、夹渣等缺陷,如有缺陷应立即铲除重焊。

f、焊接环境出现下列任一情况,需要采取措施,否则停止焊接工作。

手工焊时风速大于10m/s;相对湿度大于90%;雨、雪环境。

g、塔组装时的点固焊,应符合下列规定:

○1点固焊应在基层坡口进行;

○2点固焊的焊接工艺应与正式焊接的要求相同;

○3点固焊的焊道长度应为30-50 mm,焊道应有足够的强度,点固焊焊接宜采用

回焊法,使引弧和熄弧点均在焊道

○4组对卡具及吊耳的焊接工艺应与正式焊接要求相同,卡具及吊耳拆除后,应对其焊缝的残留痕迹进行打磨修整。

4.5.5焊接顺序

焊工A从1#向4#施焊;焊工B从下1#向2#方向施焊;

焊工C从4#向3#施焊。焊工D从2#向3#施焊。

4.5.6.低温钢的焊接要点

?焊条使用前于350~400℃保温2h烘干,焊丝去除油污。

?制造过程中,还应从其他各方面尽量防止接头中的过热组织和工件上的应力集中。

?返修工艺的制定及实施应特别严格;不得在非焊接部位任意打弧;可在焊缝或坡口引弧,但引弧处应受到重熔,弧坑应填满;焊缝应成形良好,避免咬边;

?应注意避免焊接缺陷(如弧坑、未焊透、咬边和焊缝成形不良等)产生应力集中源,并应及时修补缺陷,以防止在长期低温操作条件下产生裂纹倾向。焊缝表面应打磨圆滑过渡,不能留有尖角。

4.5.7.焊接返修

①缺陷返修前应采用无损检测方法进行缺陷准确定位。缺陷消除采用砂轮打磨方

法,磨槽需修整成适合补焊的形状,并经检查或无损检测确认缺陷已被清除后方可补焊。

②返修补焊应严格执行焊接工艺指导书,对特殊情况下的返修应根据要求编制返

修方案(含焊补工艺)。

③补焊方法采用钨极氩弧焊或手工电弧焊,且与正式焊接相同的焊接工艺。

④对有焊后热处理要求的焊缝,返修工作应在热处理前完成,否则返修后应重新

进行热处理。

⑤返修部位应按原探伤方法进行检验。同一部位的返修次数不宜超过两次。若超

次返修应分析原因、制定超次返修措施,并经项目技术负责人批准后方可实施。

⑥应在设备焊缝布置图上和返修记录中标注焊缝返修位置、返修次数和返修结果。

4.6.焊接检验

4.6.1. 设备组焊完毕后,应对其外观检查,表面不得有裂纹、气孔、弧坑、和夹渣

等缺陷,熔渣、飞溅应及时清干净。焊接接头咬边的连续长度不得大于100mm,焊接接头两侧咬边的总长不得超过该焊接接头总长的10%。咬边深度不得大于

0.5mm。焊缝高度:单面坡口时e1=0-10%δ且≤3mm、e2≤1.5mm

4.6.2.设备焊接后应及时进行焊缝的射线照相检验,焊缝检测比例按图纸要求。

4.6.3.所有焊缝随时接受甲方代表的检查。

4.6.4.当抽样检验未发现需要返修的焊缝缺陷时,则该次抽样代表的一批焊缝应认为

全部合格;当抽样检验发现需要返修的焊缝缺陷时,除返修该焊缝外,还应采取原规定方法按下列规定进一步检验:

A、每出现一道不合格焊缝应再检验两道该焊工所焊的同一批焊缝。

B、当这两道焊缝又出现不合格时,每道不合格焊缝应再检验两道该焊工的同一

批焊缝。

C、当再次检验均合格时,可认为检验所代表的这一批焊缝合格。

D、当再次检验又出现不合格时,应对该焊工所焊的同一批焊缝全部进行检验。

4.6.

5.焊缝需抽样进行射线探伤时,其检验位置应由建设单位和施工单位的质检人员

共同确定。

4.6.6.对不合格焊缝的返修,返修前应进行质量分析,当同一部位的返修次数超过两

次时,应制订返修措施并经焊接技术负责人审批后方可进行返修。

4.7.焊缝热处理加固

4.7.1搭设作业平台

①在组对焊缝下段离焊缝1.2米左右设备圆周上,均匀布置临时作业平台牛

腿预焊件(圆周上圆弧间距1m左右),考虑到牛腿预焊件与设备需要焊接及焊后热处理。建议由设备制造厂设备出厂前完成。

②在设备预留牛腿预焊件上安装牛腿、搭设作业平台。组对焊接热处理等工作完成后拆除。

4.7.2 设置加固支撑点

①在组对焊缝上下200mm处设备圆周上,对称均匀布置加固支撑点预焊件(不少于8-12处,每处受力合计为上段设备重量的1.5倍),考虑到加固支撑点预焊件与设

备需要焊接及焊后热处理。建议由设备制造厂设备出厂前完成。

②自制组对胎具,按吊装方案安装、组对、找正、固定上段设备,直至满足技术要求。

③在设备焊缝上下加固支撑点预焊件上临时安装焊接20#槽钢并加固支撑板,按照焊接规验收合格。

④按4.5条焊接组对焊缝并经焊接检验合格。

⑤按4.6条对焊缝进行热处理并经硬度检验合格。

拆除临时安装焊接的20#槽钢及加固支撑板。

现场高空焊缝热处理不需加固可行性分析:

现场高空焊缝进行热处理时要考虑的影响因素主要有:风载荷、地震载荷、偏心载荷和壳体本身的重量等。现分别对C2202塔上段对接环焊缝,C2204上段对接环焊缝进行可行性分析。此环焊缝不仅具有代表性,而且是本次热处理过程中最危险的,故以此为例。

图一图二

C2202,44.912上段环焊缝C2204,25.823上段环焊缝

控制重量155T 控制重量65T

一、C2202塔核算:

1、上段重量对环焊缝的压应力为:

σ1=155000×9.8/(3.14×4×0.055)=2.199 Mpa

2、风载荷的影响:

风载荷对热处理过程的影响最大,是计算的重点。根据《钢制焊接常压容器》(JB/T4735-1997)第一节筒体的水平压力为:

P i=K1·K1i·q。·f i·L i·d0i

式中:

K1:体形系数(取0.7)

q。:该地方基本风压力值

f i:风压高度变化值

L i:第一节计算高度

K1i:计算段的风振系数,当高度H≤20m时取1.7

H>20m时取1.85

根据上段体形特点将其分为二节,计算风压及其弯距。见图一

3、第一节筒体:(44.912 m~55.912m)

L1=11m d0i =4.11m H1=5.5m 其顶横截面离地面高度为55.912m根据《钢制焊接常压容器》中表14-4(选B项)得此节筒体的f i=1.73 故

风压:P i= K1·K1i·q。·f i·L i·d0i = 0.7×1.7×450×1.73×11×4.11=41883 N

风对环焊缝的弯距M1=P1·H1= 41883×5.5=230356.5 (N·M)

4、第二节筒体(55.912~66.54m)

L2=11.428m d0i =4.11m H2=16.714m其顶横截面离地面高度为66.54m。根据《钢制焊接常压容器》中表14-4(选B项)得筒体的f i=1.83

风压P2=0.7×1.7×450×1.83×11.428×4.11=46028 N

风对环焊缝的弯距M2=P2·H2= 46028×16.714= 769312 N·M

5、风对环焊缝总弯距M风=M1+M2=999668.5 N·M

6、由于偏心引起的弯距M偏=155000×9.8×0.02=30380 (N·M)(假设中心偏移20mm)

7、环焊缝横截面惯性距I和抗弯距截面系数W为:

I=3.14×(D4 - d4)/64=1.43m4

W =I/e=1.43/2.055=0.7m4

8、假设风弯距和偏心弯距是同心的,则有弯距产生的最大压力为

σ2=(M风+M偏)/W=1.471 Mpa

因此环焊缝实际承受的压应力为

=σ1+σ2=1.471+2.199=3.67 Mpa

σ

二、C2204塔核算

根据上段体形特点将其分为三节,计算风压及其弯距。见图二

1、上段重量对环焊缝的压应力为:

σ1=65000×9.8/(3.14×3.9×0.016)=3.25Mpa

2、第一节筒体:(45.823m~57.223m)

L1=11.4m d0i =3.916m H1=5.7m 其顶横截面离地面高度为57.223m根据《钢制焊接常压容器》中表14-4(选B项)得此节筒体的f i=1.74 故

风压:P i= K1·K1i·q。·f i·L i·d0i = 0.7×1.7×450×1.74×11.4×3.916=41596 N 风对环焊缝的弯距M1=P1·H1=41596×5.7=237100 (N·M)

3、第二节筒体(57.223 m~66.223m)

L2=9m d0i =2.624m H2=15.9m其顶横截面离地面高度为66.223m。根据《钢制焊接常压容器》中表14-4(选B项)得筒体的f i=1.82

风压P2=0.7×1.7×450×1.82×9×2.624=23016 N

风对环焊缝的弯距M2=P2·H2=23016×15.9=365961 N·M

4、第三节筒体(75.48 m~66.223m)

L3=9.257m d0i =2.624m H3=25.03m其顶横截面离地面高度为75.48m。根据《钢制焊接常压容器》中表14-4(选B项)得筒体的f i=1.91

风压P3=0.7×1.85×450×1.91×9.257×2.624=27036 N

风对环焊缝的弯距M3=P3·H3= 27036×25.03=676722 N·M

6、风对环焊缝总弯距M风=M1+M2+M3 =1279783 N·M

7、由于偏心引起的弯距M偏=65000×9.8×0.02= 12740 (N·M)(假设中心偏移20mm)

8、环焊缝横截面惯性距I和抗弯距截面系数W为:

I=3.14×(D4 - d4)/64=0.1125m4

W=I/e=0.1125/1.316= 0.0855m4

9、假设风弯距和偏心弯距是同心的,则有弯距产生的最大压力为

σ2=(M风+M偏)/W=15.12 Mpa

因此环焊缝实际承受的压应力为

σ

=σ1+σ2=15.12+3.25=18.37Mpa

三、根据JB/T4735-1997《钢制焊接常压容器》中许用应力:

σ0.2取最小值

B=2/3AE t

其中:A=0.09δ

e /R

e

式中δ

e

—圆筒的有效厚度,R

e

--圆筒的外半径,

E

t

—温度t时的弹性横量。

上述公式的关键是E

t

值,而从有关的规、资料中一般查不到该值,根据20R焊接接头,在620℃时的高温试验,计算出其B=57.17mPa,而09MnNiRD材料性能比20R好,许用应力较大(热处理前再做09MnNiRD焊接接头试验,计算出准确的B 值。),而环焊接实际可受的压应力

C2202上段环焊缝为mPa,则安全系数K=B/σ压=

C2204上段环焊缝为mPa,则安全系数K=B/σ压=

根据以上计算可知,C2202筒体在进行高温热处理时,无须采用加固等措施。而C2204筒体在进行高温热处理时由于其细长、壁薄、抗弯截面系数较小,环焊缝承受弯矩产生的最大压应力大,安全系数小,不能满足要求,故必须采用措施。本方案确是用750T吊车稳固环焊缝上段后,进行高温热处理,直到热处理完成。

四、其它塔环焊缝横截面惯性矩I,和抗弯截面系数W为:

C2201 I=3.14×(3.4964-3.44)/64=0.7724 m4

W=I/e=0.7724/1.748=0.442 m4

C2205 I=3.14×(3.7324-3.74)/64=0.322 m4

W=I/e=0.322/1.866=0.173 m4

C2201塔高47.51m,上段环焊缝▽31.1m,上段重90t;

C2205塔高54.41m,上段环焊缝▽35.55m,上段重65t;

C2202塔高66.24m,上段环焊缝▽44.912m,上段重90t;

C2204塔高75.18m,上段环焊缝▽ m,上段重 t。

4.8.焊缝热处理

4.8.1.焊后热处理为焊缝已经射线探伤合格后进行。

4.8.2.低温钢焊后应及时进行焊后热处理,当不能及时进行焊后热处理时,应在焊后

立即均匀加热至250-300℃、30分钟,并进行保温缓冷。

4.8.3.热处理方法:采用电阻丝加热或电感应加热。

4.8.4.焊后热处理的加热围,每侧为焊缝宽度的3倍,加热带以部分进行保温。

4.8.

5.热处理过程中应准确控制加热温度、恒温时间、升温和降温速度,且使焊件温

度分布均匀。测温采用热电偶,并用自动记录仪记录热处理曲线。当发现温度异常波动时,应及时处理,保证温度升降平稳。当意外发生断电或温度控制失控时,应采取紧急措施保证降温过程符合要求。

4.8.6.焊后热处理温度为600℃-650℃。当温度升至300℃以上时,焊后热处理的加

热速率,不大于5000/δs ℃/h。焊后热处理的恒温时间每25mm壁厚为1h,恒温期间最高与最低温差不低于65℃。恒温后冷却速率不大于6500/δs℃/h,400℃以下可自然冷却。

4.8.7.测温点均匀布置在筒体表面,焊缝热处理测温点设置大于25个均匀布置。相

邻两个测温点的温差不大于120℃。

热处理曲线如下:

600-650℃

≤300℃℃自然冷却

4.8.8.通过检测焊缝及热影响区的硬度来检查热处理效果。对硬度检查超过规定要求的焊缝和热处理后进行返修的焊缝应重新进行热处理。

五、工程质量目标及质保措施、质量控制点

5.1质量目标

力争在工期短,施工难度较大等不利条件下,严格按设计要求及规精心组织施工,质量达到优良。

5.2质保措施

5.2.1在公司质量保证手册的指导下,建立完整的质量保证体系,确保各级质量保证体系人员到位,职责明确,质保体系运行有效。

5.2.2加强职工教育,提高职工质量意识。

5.2.3建立质量奖惩制度,把工程质量与施工人员的经济收入挂钩,充分调动施工人员保证质量的自觉性。

5.3质量控制点

5.3.1压力容器现场组焊质保体系

总质保师:家明高工 AR

2、AR

3

工艺质保师:

焊接责任师:程继进高工

热处理责任师:

无损检测责任师:

设备责任师:

材料责任师:

质量责任师:

5.3.2现场组焊质量控制点

六、劳动力需用计划及技术能要求

6.1设备组焊施工管理人员表:

6.2劳动力需用量计划表:

6.3技能要求:

①、所有施工人员必须有相应岗位的操作合格证。

②、所有焊工必须有相应施焊项目的合格证。

七、主要机具、计量工具一览表

7.1 施工机具使用计划

7.2 计量工具使用计划

7.3 手段用料计划

八、雨季、暑季施工技术措施

8.1 露天起重作业及高空施工,遇有大雪、大雨、大雾及六级以上大风时应停止作业,夜间作业应有足够照明。

8.2 雷电时,应停止露天作业。

8.3 道路、脚手架等处应有防滑措施。道路应经常排除积水、清除泥泞。

8.4 雨季前,应对施工现场和生活区临时建筑物进行检查维护。采用竹结构或钢管

制小型活动防雨棚,作为小型机具防雨用。

8.5 雨季施工进行焊接作业时,要特别注意焊口的干燥状况,否则用氧乙炔火焰烘

干,以免产生气孔。

8.6 做好暑季防暑降温,饮食卫生工作。

8.7 在容器等场所进行高温工作时,应采取通风、降温等措施。

8.8 暑季施工,应适当避开中午前后的高温作业时间。

8.9 氧气瓶、乙炔瓶,应有防晒设施,不得在烈日下曝晒。

8.10 现场应使用的配电箱、配电柜必须安装漏电保护器,配电柜、开关箱应安装在干燥、通风、不易碰撞和淋雨的地方,移动式配电箱应安装在坚固的支架上,开关箱与地面的距离大于0.6m小于1.5m,确保雨水不会侵入配电箱。

8.11配电箱的引出线应在箱体下底面,接头处无破损漏电现象,箱体应保持清洁,箱外应有防雨措施,工作完毕应锁好箱门。

8.12 雨天在露天工作环境下,尽可能的避免施工电动工具。

九、职业安全卫生与环境管理

9.1安全及环保

9.1.1 一般要求

①认真贯切执行我公司的《安全卫生与环保管理受册》及《安全卫生与环保管

理标准》,并结合本工程现场的具体情况,在开工前制定本工程安全工作计划。

②严格遵守国家及当地政府的安全法规,严格执行业主有关安全管理的规章制

度。

③电工、电气焊工、起重工等特种作业人员必须持证上岗,新招聘的民工未经

安全教育不得进入岗位作业。

④工程开工前技术人员要认真向操作人员进行安全技术交底,并填写《安全技

术措施交底卡》。

⑤认真学习公司1号文,加强现场的安全管理与协调,对任何违反现场安全管

理规定的行为,安全员有权随时制止,并书面通知有关责任人进行整改。

9.1.2施工现场管理规定

①进入现场的施工机械、设备和材料必须按施工总图合理布置,堆放整齐,符合安全、文明、卫生的要求。

9.1.3 施工用电规定

①施工用电必须从业主指定的电源接出,严禁直接从生产用电系统接线。

②不得在高、低压线下方施工,不得在高、低压线下方搭设作业棚、生活设施或堆放材料及其它杂物。

③施工用电设施的安装及接线均应由专业电工施工,严禁非专业电工进行施工用电的安装和接线。

④每台用电设备应实行“一机一闸一漏一箱”,严禁“一闸多用”。

9.1.4 个人防护规定

①进入现场的工作人员必须按规定穿戴好个人劳保防护用品。

②在工作时间或工作场所严禁打闹、严禁酒后作业。

③凡在2米高空作业必须系挂安全带,安全带要高挂低用。

9.1.5 施工现场应急准备与响应

①事故或紧急情况发生时,发现人员应采取相应的急救措施,同时迅速将此信息传递给应急小组。应急小组接到信息后应立即组织进行救援工作。

②联络调度人员负责救灾情况的联络及指令的传达,完成调度、汇报、通告和救援工作。

③应急小组负责事故或紧急情况中心地带的救灾工作。

④医疗抢救人员负责应急现场伤员的抢救和临时处置,安全部门负责组织将重伤人员转送医院或通知医院赶赴现场进行紧急救护。

⑤警戒保卫人员负责隔离灾区、保护现场、维护秩序和疏通交通工作。

⑥应急物资调配人员负责各种应急物资的供应、组织和调集工作。

9.2 焊接的危害因素及劳动保护

焊后热处理基本知识

焊接接头焊后热处理基本知识培训 一、焊后热处理的概念 1.1后热处理(消氢处理):焊接完成后对冷裂纹敏感性较大的低合金钢和拘束度较大的焊件加热至200℃~350℃保温缓冷的措施。 目的、作用:减小焊缝中氢的有害影响、降低焊接残余应力、避免焊缝接头中出现马氏体组织,从而防止氢致裂纹的产生。 后热温度:200℃~350℃ 保温时间:即焊缝在200℃~350℃温度区间的维持时间,与后热温度、焊缝厚度有关,一般不少于30min 加热方法:火焰加热、电加热 保温后的措施:用保温棉覆盖让其缓慢冷却至室温 NB/T47015-2011关于后热的规定: 1.2焊后热处理(PWHT):广义上:焊后热处理就是在工件焊完之后对焊接区域或焊接构件进行的热处理,内容包括消除应力退火、完全退火、固熔、正火、正火加回火、回火、低温消除应力等。狭义上:焊后热处理仅指消除应力退火,即为了改善焊接区的性能和消除焊接残余应力等有害影响。 1.3压力容器及压力管道焊接中所说的焊后热处理是指焊后消除应力的热处理。焊后消除应力热处理过程:将焊件缓慢均匀加热至一定温度后保温一定的时间,然后缓慢降温冷却至室温。

目的、作用: (1)降低或消除由于焊接而产生的残余焊接应力。 (2)降低焊缝、热影响区硬度。 (3)降低焊缝中的扩散氢含量。 (4)提高焊接接头的塑性。 (5)提高焊接接头冲击韧性和断裂韧性。 (6)提高抗应力腐蚀能力。 (7)提高组织稳定性。 热处理的方式:整体热处理、局部热处理 1.4焊接应力的危害和降低焊接应力的措施 焊接应力是在焊接过程中由于温度场的变化(热涨冷缩)及焊件间的约束而产生的滞留在焊件中的残余应力。 1.4.1焊接应力只能降低,不可能完全消除,焊接残余应力形成的的危害:1)影响构件承受静载的能力;2)会造成构件的脆性断裂;3)影响结构的疲劳强度;4)影响构件的刚度和稳定性;5)应力区易产生应力腐蚀开裂;6)影响构件的精度和尺寸的稳定性。 1.4.2降低焊接应力的措施 1)设计措施: (1)构件设计时经量减少焊缝的尺寸和数量,可减少焊接变形,同时降低焊接应力 (2)构件设计时避免焊缝过于集中,从而避免焊接应力叠加 (3)优化结构设计,例将如容器的接管口设计成翻边式,少用承插式 2)工艺措施

焊后热处理管理规定

焊后热处理管理规定 (QB/SAR0308-2005) 1.0总则 1.1目的:对公司制造的压力容器产品(或泵压部件)焊后热处理过程实施有效监督和控制,确保产品(或承压部件)焊后热处理质量符合设计、使用和相关标准规定要求。 1.2编制依据 1.2.1《压力容器安全技术监察规程》; 1.2.2《锅炉压力容器制造监督管理办法》; 1.2.3《钢制压力容器》(GB150-1998); 1.2.4《锅炉压力容器产品安全性能监督检验规则》; 1.2.5本公司相关的管理规定。 1.3适用范围 本规程适用于公司制造的压力容器产品(或承压部件)的焊后热处理过程的监督和控制。主要包括以下内容: 1.3.1本公司自行进行的产品(或承压部件)局部(焊缝、热影响区)焊后热处理。 1.3.2本公司暂无能力实施需委托分包单位进行的产品(承压部件)整体焊后热处理。 2.0局部焊后热处理 2.1局部热处理范围 2.1.1压力容器产品的B、C、D类焊接接头,球形封头与圆角相连的A类焊接接头及缺陷补焊部位。 2.1.2局部热处理时,焊缝每侧加热宽度不小于钢材厚度的2倍;接管与壳体相焊时加热宽度不得小于钢材厚度的6倍。 2.1.3靠近加热区的部位应采取保温措施,使温度梯度不致影响材料的组织和性能。 2.2局部热处理控制 2.2.1由热处理工艺员编制热处理过程工艺卡,经热处理责任师审批后实施。 2.2.2由热处理签发热处理任务单,对需进行焊后热处理内容向热处理人员进行安排,必要时还应附有示意简图,并对热处理开始时间作出要求。 2.2.3热处理人员按接受的热处理任务单和工艺卡的规定要求,实施过程参数控制,确保热处理过程和质量符合规定要求。

焊接、热处理工艺卡

焊接热处理工艺卡 精品

工艺曲线图: 注意事项: 1. 在加热范围内任意两点的温差应小于 50℃; 2. 保温厚度以40~60mm 为宜; 3. 升、降温时,300℃以下可不控温; 4. 焊后热处理必须在焊接完毕后24h 内进行。 编制 日期 审批 日期 焊接施工工艺卡 企业名称:安徽电力建设第二工程公司 设计卡编号:APCC-GD-WPS-001 产品名称:P91中大口径管焊接工艺卡 所依据的工艺评定报告编号:APCC-PQR-115 焊接位置:2G 、5G 、6G 自动化程度:手工焊 母 材 坡 口 简 类号 B 级号 Ⅲ 与 类号 B 级号 Ⅲ 钢号 SA335-P91 与 母材厚度范围:√对接接头 角接接头 70mm 焊缝金属厚度范围:δ≤h ≤δ+4mm 管子直径范围:√对接接头 角接接头 φ406 其 他: / 坡口检查 √外观检查VT √着色PT 磁粉MT 装配点焊 √手工焊Ds 氩弧焊Ws 二氧化碳气体焊Rb 焊材要求 √焊丝清洁 √焊条烘焙 焊剂温度 焊前预热: 火焰预热 √电阻预热 预热温度:150~200℃ 层间温度:200~300℃ 焊嘴尺寸: M10×L65×φ6 钨极型号/尺寸: Wce-20,φ2.5 焊接技术: 导电嘴与工件距离: / 清理方法: 机械法清理 无摆动或摆动焊: 略摆动 焊接方向: 由左至右、由下至上 工 艺 参 数 层 道 次 焊接方法 焊材 极 性 焊接参数 焊剂或 气体 保护气体流量L/Min 背面保护气体流 量L/Min 气体后拖 保护时间S 牌号 规 格 (mm ) 电流(A ) A 电压 (V ) 焊速 mm/Min 150~250 200~300 ≤300℃ 温度(℃) 时间 6(h ) 80~100℃/2 ≤90℃/h ≤90℃/h 750~770℃

钢制管道焊后热处理工艺规程完整

锅炉管焊接热处理工艺规程 1 总则 本工艺规程适用于低碳和低合金钢锅炉管道焊接接头消除残余应力的焊后热处理,不涉及发生相变和改变金相组织的其他热处理方法。 2 、引用标准及参考文献 NB/T47015—2011 《压力容器焊接规程》 SH3501—2011 《石油化工有毒可燃介质管道工程施工及验收规》 GB50236—2011 《现场设备、工业管道焊接工程施工及验收规程》 3、焊前预热 3.1材料性能分析 部分锅炉管道采用低合金耐热钢,材料具有良好的热稳定性能,是高温热管道的常用材料,由于材料中存在铬、钼合金成分,材料的淬硬倾向大,施工中采用焊前预热、焊后热处理的工艺措施,来获得性能合格的焊接接头。 3.2管道组成件焊前预热应按表1的规定进行,中断焊接后需要继续焊接时,应重新预热,焊接是保持层间温度不小于150℃。 3.3 当环境温度低于10℃时,在始焊处100mm围,应预热到50℃以上。 表1 管道组成件焊接前预热要求

4 设备和器材 4.1焊后热处理必须采用自动控制记录的“热处理控制柜”控制温度。4.2“热处理控制柜”需满足下列要求: 4.2.1能自动控制、记录热处理温度。 4.2.2控制柜、热电偶和补偿导线组合后的温度误差≤±10℃。 4.2.3柜所有仪表、仪器需经法定计量单位校验合格,使用时校验合格证须在有效期。 4.3热电偶 4.3.1焊接接头焊后热处理须采用热电偶测温控温。 4.3.2热电偶需满足如下要求: 4.3.2.1量程为热处理最高温度的1.5倍,精度等级为1.0;控温柜和补偿导线的组合温差波动围≤±10℃。 4.3.2.1按校验周期进行强制校验,使用时校验合格证须在有效期。 4.4加热器 4.4.1焊后热处理必须采用可实现自动指示控制记录的电加热绳或履带加热板加热。 4.4.2管壁厚大于25mm的焊接接头宜采用感应法加热。 4.5热处理设备由经培训合格的专人管理和调试,使用时应放置在防雨防潮的台架上。 4.6保温材料 热处理所用保温材料应为绝缘无碱超细玻璃棉或复合硅酸盐毡,且应有质量证明及合格证。

焊后热处理(PWHT)和焊后消除应力热处理的区别

焊后热处理(PWHT)和焊后消除应力热处理的区别 内容来源网络,由深圳机械展收集整理! 后热处理(PWHT)工艺是指焊接工作完成后,将焊件加热到一定的温度,保温一定的时间,使焊件缓慢冷却下来,以改善焊接接头的金相组织和性能或消除残余应力的一种焊接热处理工艺。焊后热处理工艺一般包括加热、保温、冷却三个过程,这些过程相互衔接,不可间断。广义的焊后热处理包括下列各类热处理:消除应力;完全退火;固溶强化热处理;正火;正火加回火;淬火加回火;回火;低温消除应力;析出热处理等;另外,在避免焊接区急速冷却或者是去氢的处理方法中,采取后热处理也是焊后热处理的一种。 焊后热处理可采取炉内热处理,整体炉外热处理或局部热处理的方法进行。 焊后热处理 1、焊接残余应力是由于焊接引起焊件不均匀的温度分布,焊缝金属的热胀冷缩等原因造成的,所以伴随焊接施工必然会产生残余应力。 消除残余应力的最通用的方法是高温回火,即将焊件放在热处理炉内加热到一定温度和保温一定时间,利用材料在高温下屈服极限的降低,使内应力高的地方产生塑性流动,弹性变形逐渐减少,塑性变形逐渐增加而使应力降低。焊后热处理对金属抗拉强度、蠕变极限的影响与热处理的温度和保温时间有关。焊后热

处理对焊缝金属冲击韧性的影响随钢种不同而不同。 2、热处理方法的选择焊后热处理一般选用单一高温回火或正火加高温回火处理。对于气焊焊口采用正火加高温回火热处理。这是因为气焊的焊缝及热影响区的晶粒粗大,需要细化晶粒,故采用正火处理。然而单一的正火不能消除残余应力,故需再加高温回火以消除应力。单一的中温回火只适用于工地拼装的大型普通低碳钢容器的组装焊接,其目的是为了达到部分消除残余应力和去氢。绝大多数场合是选用单一的高温回火。热处理的加热和冷却不宜过快,力求内外壁均匀。 3、焊后热处理的加热方法⑴感应加热。钢材在交变磁场中产生感应电势,因涡流和磁滞的作用使钢材发热,即感应加热。现在工程上多采用设备简单的工频感应加热。 ⑵辐射加热。辐射加热由热源把热量辐射到金属表面,再由金属表面把热量向其他方向传导。所以,辐射加热时金属内外壁温度差别大,其加热效果较感应加热为差。辐射加热常用火焰加热法、电阻炉加热法、红外线加热法。 焊后消除应力处理: 1、整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。另外还有爆炸消除应力。

管道焊后热处理方案

管道焊后热处理方案

陕西陕化煤化工节能减排技改项目管道焊缝热处理方案 施工单位:陕西化建 编制人: 审核人: 批准人: 陕西化建陕西陕化煤化工有限公司节能减排技改项目项目经理部 2011-05-25

目录 1.适用范围。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 2.编制目的.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 3.编制依据。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 4.工程概况。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 5.责任和义务。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 6.施工准备。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 7.热处理施工流程。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 8. 质量保证措施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 9. 安全注意事项。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 10.劳动力安排。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 11主要施工措施用料一览表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 12主要施工机械设备。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10

焊前预热与焊后热处理的重要性

焊前预热与焊后热处理的重要性 焊前预热 焊前预热及焊后热处理对于保证焊接质量非常重要。重要构件的焊接、合金钢的焊接及厚部件的焊接,都要求在焊前必须预热。焊前预热的主要作用如下:(1)预热能减缓焊后的冷却速度,有利于焊缝金属中扩散氢的逸出,避免产生氢致裂纹。同时也减少焊缝及热影响区的淬硬程度,提高了焊接接头的抗裂性。 (2)预热可降低焊接应力。均匀地局部预热或整体预热,可以减少焊接区域被焊工件之间的温度差(也称为温度梯度)。这样,一方面降低了焊接应力,另一方面,降低了焊接应变速率,有利于避免产生焊接裂纹。 (3)预热可以降低焊接结构的拘束度,对降低角接接头的拘束度尤为明显,随着预热温度的提高,裂纹发生率下降。 预热温度和层间温度的选择不仅与钢材和焊条的化学成分有关,还与焊接结构的刚性、焊接方法、环境温度等有关,应综合考虑这些因素后确定。另外,预热温度在钢材板厚方向的均匀性和在焊缝区域的均匀性,对降低焊接应力有着重要的影响。局部预热的宽度,应根据被焊工件的拘束度情况而定,一般应为焊缝区周围各三倍壁厚,且不得少于150-200毫米。如果预热不均匀,不但不减少焊接应力,反而会出现增大焊接应力的情况。 2焊后热处理 焊后热处理的目的有三个:消氢、消除焊接应力、改善焊缝组织和综合性能。

焊后消氢处理,是指在焊接完成以后,焊缝尚未冷却至100℃以下时,进行的低温热处理。一般规范为加热到200~350℃,保温2-6小时。焊后消氢处理的主要作用是加快焊缝及热影响区中氢的逸出,对于防止低合金钢焊接时产生焊接裂纹的效果极为显著。 在焊接过程中,由于加热和冷却的不均匀性,以及构件本身产生拘束或外加拘束,在焊接工作结束后,在构件中总会产生焊接应力。焊接应力在构件中的存在,会降低焊接接头区的实际承载能力,产生塑性变形,严重时,还会导致构件的破坏。 消应力热处理是使焊好的工件在高温状态下,其屈服强度下降,来达到松弛焊接应力的目的。常用的方法有两种:一是整体高温回火,即把焊件整体放入加热炉内,缓慢加热到一定温度,然后保温一段时间,最后在空气中或炉内冷却。用这种方法可以消除80%-90%的焊接应力。另一种方法是局部高温回火,即只对焊缝及其附近区域进行加热,然后缓慢冷却,降低焊接应力的峰值,使应力分布比较平缓,起到部分消除焊接应力的目的。 有些合金钢材料在焊接以后,其焊接接头会出现淬硬组织,使材料的机械性能变坏。此外,这种淬硬组织在焊接应力及氢的作用下,可能导致接头的破坏。如果经过热处理以后,接头的金相组织得到改善,提高了焊接接头的塑性、韧性,从而改善了焊接接头的综合机械性能。

铬钼管道焊接及热处理方案

中原石化乙烯原料路线改造(MTO)项目厂际外管工程热处理工程施工技术方案 编制: 审核: 审批: 濮阳市中原石化工程有限公司 2011年6月15日

目录

一、工程概述 本工程是中原乙烯从国电新敷设一条DN400中压蒸汽管线(材质20#,长度约900m),一条DN300高压蒸汽管线(材质P11,长度约900m;从MTO界区引一条DN25仪表风管线(材质:镀锌无缝钢管20#,长度约70m)到中、高压蒸汽的调节阀处;从龙宇化工一条氮气管线从中原乙烯南围墙引入,均沿厂际外管廊(第五段管廊)作为MTO项目厂外公用工程管线。本方案仅适用于厂际外管项目高压蒸汽(铬钼钢P11)管道焊接工程,施工的焊接及热处理工作。 二、编制依据 2.1、厂际外管Y-10035项目设计图纸; 2.2、《工业金属管道工程施工及验收规范》GB50235-97; 2.3、《现场设备工业管道焊接工程施工及验收规范》GB50236-98; 2.4、《石油化工有毒、可燃介质管道施工及验收规范》SH3501-2002; 2.5、《石油化工铬钼耐热钢焊接规程》SH/T3520-2004; 2.6、《石油化工金属管道工程施工质量验收规范》GB50517-2010; 2.7、《石油化工建设工程施工安全技术规范》GB5048-2008; 2.8、《工程建设交工技术文件规定》SH/T 3503-2007; 2.9、《工程建设交工过程技术文件规定》SH/T 3543-2007; 三、焊接施工准备 3.1材料要求:

3.1.1施工现场应配有符合要求的固定焊条库或流动焊条库; 3.1.2焊材必须具有质量证明书或材质合格证,焊材的保管、烘干、发放、回收严格按《压力管道质量手册》中有关规定执行,焊条的烘干工艺按生产厂家说明书提供的参数进行,如无则按焊接工艺指导书给定的参数执行(焊接作业指导书11PQR-ZYSH-03;)3.1.3焊丝使用前,应去除表面的油脂、锈等杂物; 3.1.4保温材料性能应符合预热及其处理要求。 3.2机具要求: 3.2.1焊机为直流焊机,焊机完好、性能可靠,双表指示灵敏,且在校准周期内; 3.2.2预热及热处理的设备完好,性能可靠,检测仪表在校准周期内,且符合《压力管道质保手册》中的计量要求; 3.2.3焊工所用的焊条保温筒,刨锤、钢丝刷齐全。 3.3作业条件 3.3.1人员资格: 焊工必须持有有效期内相应材质(A355 P11)、相应位置的《锅炉压力容器压力管道焊工考试与管理规则》合格证或《现场设备、工业管道焊接施工及验收规范》合格证或设计规定的其它合格证及MTO项目合格焊工证。 3.3.2环境条件: 施焊前应确认环境符合下列要求: 风速:手弧焊小于8m/s;氩弧焊小于2m/s; 相对湿度:相对湿度小于90%;无雨、雪天气。 当环境条件不符合上述要求时,必须采取挡风、防雨等有效防护措施。

(热处理及焊后 热处理程序)

Heat Treatment and PWHT Procedures 热处理及焊后热处理程序

TABLE OF CONTENTS 目录 1.0SCOPE范围 (1) 2.0REFERENCES参考文件 (1) 3.0EQUIPMENT设备 (1) 4.0HEATING METHODS加热方法 (1) 5.0HEATING AND COOLING RATES加热和冷却速率 (1) 6.0HOLDING TEMPERATURES AND ALLOWABLE RANGES保温温度和容许范围 (2) 7.0INTERRUPTED POSTWELD HEAT TREATMENTS不规则的焊后热处理 (2) 8.0TEMPERATURE CONTROL AND RECORDING温度控制和记录 (3) 9.0RECORDING POSTWELD HEAT TREATMENT CYCLE焊后热处理记录周期 (4) 10.0HARDNESS TESTED REQUIRMENTS AFTER PWHT热处理后的硬度测试要求 (5) 11.0PRETECT DEFORMATION DURING HEAT TREATMENT热处理期间的防变形 (5) 12.0RECORDS记录 (5) Attachment and Appendix List 附件附录清单 ATTACHMENT1:PWHT REPORT附件1:焊后热处理报告 (5)

1.0S C O P E范围 1.1This procedure specifies detailed requirements for performing post weld heat treatment(PWHT) 该程序规定了进行焊后热处理的详细要求。 1.2This procedure was written to meet the requirements of ASME B31.3for heat treat temperatures,holding times,heating and cooling rates,and permissible heat treating methods when PWHT is required. 该程序是根据ASME B31.3中针对焊后热处理的处理温度、保温时间、加热和冷却速率以及允许的加热方法来拟写的。 2.0R E F E R E N C E S参考文件 Doc.No.Document Title ASME B31.3-2012Process Piping工艺管道 3.0E Q U I P M E N T设备 3.1Certification of equipment shall be provided upon request. 应当根据需要提供设备的证书。 3.2Calibration certificate of temperature indicator shall be submitted and approved before use. 使用温度指示器之前应当提交校准证书并获得批准。 3.3Recalibration reference paragraph9.2. 参考段落9.2中关于重校的内容。 4.0H E A T I N G M E T H O D S加热方法 4.1Gas heating method be utilized to perform PWHT 利用燃气加热法来进行焊后热处理。 4.2Any other PWHT method requires prior approval of customer before use. 使用任何其它焊后热处理方法之前都要客户的批准。 5.0H E A T I N G A N D C O O L I N G R A T E S加热和冷却速率 5.1.The rate of the heating at the temperature above300Deg.C(572°F)shall not exceed220Deg.C(428°F)/Hr.for pipe wall thickness up to and including25mm(0.984in)/T maximum.For maximum pipe wall thickness more than25mm(0.984in)/T,the heating rate shall be(5588/T Where T=pipe wall thickness in mm). 对于最大壁厚为25mm(0.984in)的管道,300℃(572°F)之后的加热速度不应超过220℃(428°F)/小时。对于最大壁厚超过25mm(0.984in)的管道,加热速度为5588/T(T=管道壁厚mm数)。 5.2The rate of Cooling from the Soak temperature to a temperature above300Deg.C(572°F)shall not exceed275Deg.C(527°F)/ Hr.For pipe wall thickness up to and including25mm(0.984in)/T in maximum.For maximum pipe wall thickness over than25mm (0.984in)/T,the Cooling shall be(6985/T Where T=pipe wall thickness in mm).

设备焊接与热处理方案

设备焊接与热处理方案 目录一、概述二、编制依据三、施工程序四、施工方法、技术措施、施工准备分段设备组对检验焊接坡口制备设备组对要求设备组对焊接焊接检验焊缝热处理加固焊缝热处理五、工程质量目标及质保措施、质量控制点六、劳动力需用计划及技术能要求七、主要机具、计量工具一览表八、雨季、暑季施工技术措施九、职业安全卫生与环境管理十、文明施工措施设备组对焊接与热处理方案设备组对焊接与热处理方案 1

一、概述中国石化股份公司安庆分公司化肥原料结构调整及炼油化工资源优化工程,按照大件设备吊装组对方案分段数据统计如下表所示:设备位号设备名称第一段C2201 H2S吸收塔第二段第三段第一段C2202 CO2吸收塔第二段第三段第一段C2204 再吸收塔第二段第三段第一段C2205 热再吸收塔第二段第三段根据设计图纸要求现场组对焊缝焊后需进行消除应力热处理。二、编制依据《石油化工钢制塔、容器现场组焊施工工艺标准》SH3524-1999 《钢制压力容器》GB150-1998 《钢制塔式容器》JB4710-92 《钢制压力容器焊接工艺评定》

JB4708-2000 《钢制压力容器焊接工艺规程》JB/T4709-2000 设备组对焊接与热处理方案 2 公称直径φ3400 φ3400 φ3400 φ4000 φ4000 φ4000 φ3900 φ3900 φ3900/φ2600 φ3700 φ3700 φ3700 壁厚δ=48 δ=48 δ=48 δ=55 δ=55 δ=55 长度材质控制重量90000 90000 90000 165000 150000 155000 90000 70000 65000 65000 55000 65000 15400 09MnNiDR 15400 09MnNiDR 16700 09MnNiDR 25781 09MnNiDR 18831 09MnNiDR 21628 09MnNiDR δ=24/20 25010 09MnNiDR δ=20/16 20513 09MnNiDR δ=16/12 29658 09MnNiDR δ=16 δ=16 18550 17000 20R 20R 20R

焊后热处理的缺陷及预防

焊后热处理的缺陷及预防 [摘要] 热处理工艺在热处理技术规程中已有了较为完善的说明,但有关实际操作中的资料较少,本文主要介绍了在电 力建设施工中由于热处理不正确出现的缺陷以及在实际操作中怎样避免这些缺陷。 [关键词] 热处理缺陷热处理实际操作热电偶固定 随着机组向越来越大容量的发展,合金钢大量应用,对焊接热处理的要求越来越高,越来越严格。焊件经不正确的焊后热处理,会产生各种缺陷,有些缺陷可以经过重新热处理予以纠正,但有些缺陷却无法补救而造成废品。常见的缺陷有以下几种: 1、过热 1)特征:焊件在退火状态下的断口上呈现特别粗大的晶粒,在淬火的断口上呈现粗大的马氏体针状结构 2)产生原因:在加热过程中,不严格控制加热工艺所致,如加热温度过高或在高温下的停留时间过长,一般在正火或 高温退火工艺中易出现。 3)危害性:粗化的结构,极易出现裂纹,即使不出现裂纹,也会使焊件的强度、塑性、韧性大大降低。 4)预防及纠正:为预防过热,加热温度必须严格控制,同时在高温的停留时间尽量缩短。对过热程度严重的焊件可重 复二次退火或正火来纠正。 2、过烧 1)特征:除断口呈现粗大晶粒外,在晶粒间的边界处有熔化或氧化现象,即在晶间集聚着低熔点的杂质或氧化物。 2)产生原因:加热温度过高(大于1300℃)或在高温下保温时间过长。 3)危害性:产生过烧后会使焊件的强度、塑性、韧性急剧降低。 4)预防:必须严格执行热处理规范,且不允许氧化性火焰直接与焊件接触。产生过烧后,焊件无法补救。 3、变形与裂纹 1)特征:焊件的变形与宏观裂纹一般用肉眼可见。 2)产生原因:一是由于焊件的内应力产生,内应力的产生是由于焊件的加热冷却时内外温度不均匀造成体积膨胀或收 缩不一致而引起的热应力。二是由于内部A向M转变时体积变化的不均匀性引起的结构应力,当应力超过焊件的屈服极限时 发生变形。当超过焊件的强度极限时发生裂纹。 3)危害性:造成返工,增加生产工序,提高了成本,有时还造成焊件的报废。 4)预防:采取措施降低内应力。 4、硬度升高

焊接热处理技术要求【大全】

不锈钢焊接热处理技术要求 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 不锈钢在进行激光焊接的过程中,一般需要进行焊后热处理,特别是马氏体、铁素体不锈钢,选择正确的焊前预热和焊后处理是保证激光焊接机焊接质量的必要条件。那么到底不锈钢焊后热处理工艺是怎样的? 焊后热处理对不锈钢抗拉强度、蠕变极限的影响与热处理的温度和保温时间有关。焊后热处理对不锈钢冲击韧性的影响随钢种不同而不同,一般不锈钢焊后热处理工艺选用单一高温回火或正火加高温回火处理: 1、正火加高温回火 对于气焊焊口采用正火加高温回火热处理。这是因为气焊的焊缝及热影响区的晶粒粗大,需要细化晶粒,故采用正火处理。 2、单一高温回火 然而单一的正火不能消除残余应力,故需再加高温回火以消除应力。单一的中温回火只适用于工地拼装的大型普通低碳钢容器的组装焊接,其目的是为了达到部分消除残余应力和

去氢。绝大多数场合是选用单一的高温回火。热处理的加热和冷却不宜过快,力求内外壁均匀。 焊后热处理能够消除不锈钢松弛焊接残余应力;稳定结构的形状和尺寸,减少畸变;提高焊缝金属的塑性;改善疲劳强度;提高抗应力腐蚀的能力;防止延迟裂纹的发生等等,因此不锈钢焊后热处理是非常重要的。 (1)麻田散铁类不锈钢:此类不锈钢体心立方之结构(BCC)可将磁铁吸引,将其从奥斯田温度急冷而得,此之耐蚀性能最好,但材质硬则脆,接著加以回火可以增加延展性,但耐蚀性会降低,特别是在摄氏450度到650度之间回火,会使在结晶格间隙内之碳原子扩散析出与铬形成网状之碳化铬造成临近区域铬元素之消耗使铬成份降低,无法形成保护膜,而丧失耐蚀性,故需特别注意。以下是各种麻田散铁类不锈钢材之热处理温度。(a)403,410,416se之温度在650-750℃。 (b)414之温度在650-730℃。 (c)431之温度在6.(d)440-A,440-B,440-C,420之温度在680-750℃。(2)肥粒铁类不锈钢:此种不锈钢体心立方结构(BCC)可将磁铁吸引通常用在汽车工业或化学工业上,强度不会因热处理而改变,但可以冷加工方式增加强度。 (3)奥斯田铁类不锈钢:此种不锈钢面心立方结构(FCC)对磁铁不起作用,如前面所论此类材料易加工,故其加工后消除材料之残应力而可施予不同之热处理。 (4)析出硬化型不锈钢:此种不锈钢由高温淬火后在低温热处理,由於材料中含之铝,或铜元素析出沿著差排之滑面或晶界形成化合物(inter-metalliccompounds)而可以提高

焊接后热处理的工艺及作用

焊接后热处理的工艺及作用 阅读(42)次 2011-11-25 20:38:47 后热处理(PWHT)工艺是指焊接工作完成后,将焊件加热到一定的温度,保温一定的时间,使焊件缓慢冷却下来,以改善焊接接头的金相组织和性能或消除残余应力的一种焊接热处理工艺。焊后热处理工艺一般包括加热、保温、冷却三个过程,这些过程相互衔接,不可间断。 广义的焊后热处理包括下列各类热处理:消除应力;完全退火;固溶强化热处理;正火;正火加回火;淬火加回火;回火;低温消除应力;析出热处理等;另外,在避免焊接区急速冷却或者是去氢的处理方法中,采取后热处理也是焊后热处理的一种。 焊后热处理可采取炉内热处理,整体炉外热处理或局部热处理的方法进行。 焊后热处理 1、焊接残余应力是由于焊接引起焊件不均匀的温度分布,焊缝金属的热胀冷缩等原因造成的,所以伴随焊接施工必然会产生残余应力。 消除残余应力的最通用的方法是高温回火,即将焊件放在热处理炉内加热到一定温度和保温一定时间,利用材料在高温下屈服极限的降低,使内应力高的地方产生塑性流动,弹性变形逐渐减少,塑性变形逐渐增加而使应力降低。 焊后热处理对金属抗拉强度、蠕变极限的影响与热处理的温度和保温时间有关。焊后热处理对焊缝金属冲击韧性的影响随钢种不同而不同。 2、热处理方法的选择 焊后热处理一般选用单一高温回火或正火加高温回火处理。对于气焊焊口采用正火加高温回火热处理。这是因为气焊的焊缝及热影响区的晶粒粗大,需要细化晶粒,故采用正火处理。然而单一的正火不能消除残余应力,故需再加高温回火以消除应力。单一的中温回火只适用于工地拼装的大型普通低碳钢容器的组装焊接,其目的是为了达到部分消除残余应力和去氢。绝大多数场合是选用单一的高温回火。热处理的加热和冷却不宜过快,力求内外壁均匀。 3、焊后热处理的加热方法 ⑴感应加热。钢材在交变磁场中产生感应电势,因涡流和磁滞的作用使钢材发热,即感应加热。现在工程上多采用设备简单的工频感应加热。 ⑵辐射加热。辐射加热由热源把热量辐射到金属表面,再由金属表面把热量向其他方向传导。所以,辐射加热时金属内外壁温度差别大,其加热效果较感应加热为差。辐射加热常用火焰加热法、电阻炉加热法、红外线加热法。

管道焊接及焊后热处理作业指导书

焊接及焊后热处理作业指导书 1 适用范围 本规程适用于工业管道或公用管道中材质为碳素钢、合金钢、低温钢、耐热钢、不锈钢和异种钢等压力管道的手工电弧焊、氩弧焊、二氧化碳气体保护焊及其焊后的热处理施工。 2 主要编制依据 2.1 GB50236-98《现场设备、工业管道焊接工程施工及验收规范》。 2.2 DL5007-92《电力建设施工及验收技术规范(火力发电厂焊接篇)》。 2.3 SH3501-2002《石油化工剧毒、可燃介质管道工程施工及验收规范》。 2.4 其他现行有关标准、规范、技术文件。 3 施工准备 3.1 技术准备 3.1.1 压力管道焊接施工前,应依据设计文件及其引用的标准、规范,并依据我公司焊接工艺评定报告编制出焊接工艺技术文件(焊接工艺卡或作业指导书)。如果属本公司首次焊接的钢种,则首先要制定焊接工艺评定指导书,然后对该种材料进行工艺评定试验,合格后做出焊接工艺评定报告。 3.1.2 编制的焊接工艺技术文件(焊接工艺卡或作业指导书)必须针对工程实际,详细写明管道的设计材质、选用的焊接方法、焊接材料、接头型式、具体的焊接施工工艺、焊缝的质量要求、检验要求及焊后热处理工艺(有要求时)等。 3.1.3 压力管道施焊前,根据焊接作业指导书应对焊工及相关人员进行技术交底,并做好技术交底记录。 3.1.4 对于高温、高压、剧毒、易燃、易爆的压力管道,在焊接施工前应画出焊口位置示意图,以便在焊接施工中进行质量监控。 3.2 对材料的要求 3.2.1 被焊管子(件)必须具有质量证明书,且其质量符合国家现行标准(或部颁标准)的要求;进口材料应符合该国家标准或合同规定的技术条件。 3.2.2 焊接材料(焊条、焊丝、钨棒、氩气、二氧化碳气、氧气、乙炔气等)的质量必须符合国家标准(或行业标准),且具有质量证明书。对焊接材料的具体要求详见《压力管道组成件、支承件及相关材料检验试验规程》,其中钨棒宜采用铈钨棒;氩气纯度不应低于

钢结构焊接热处理工艺

京隆发电有限公司烟气脱硝改造工程 钢结构焊接热处理工艺 施工措施 批准: 审核: 编制: 南京龙源环保有限公司京隆项目部

目录 一、编制依据 (2) 二、材料介绍 (2) 三、焊接施工流程 (3) 四、焊接工艺参数的选择 (3) 五、现场焊接顺序: (4) 六、现场技术管理 (9) 七、作业的安全要求及措施 (9)

内蒙京隆电厂2×600MW机组烟气脱硝工程,SCR钢架的主立柱、梁、垂直支撑全部采用"H"型钢,母材材质为Q345(属低合金结构钢),钢架主立柱采用分段对接方式连成一体,其中"H"型钢的腹板采用高强螺栓连接,翼缘板之间的连接采用对接焊接方式。 一、编制依据 1.1《火电施工质量检验及评定标准》(焊接篇)1996年版。 1.2《火力发电厂焊接技术规程》DL/T869-2004。 1.3《电力建设安全工作规程》(第1部分:火力发电厂) DL5009.1—2002。1.4《火力发电厂焊接热处理技术规程》DL/T819-2002。 1.5《管道焊接超声波检验技术规程》DL/T820-2002。 1.6《焊接材料质量管理规程》JB/T3223-1996。 1.7京隆电厂脱硝钢架安装相关图纸 1.8《工程建设标准强制性条文》(电力工程部分)2006版。 二、材料介绍 1. Q345化学成分如下表(%): 2.Q345力学性能如下表(%): 其中壁厚介于16-35mm时,σs≥325Mpa;壁厚介于 35-50mm时,σs≥295Mpa

3. Q345钢的焊接特点 3.1 碳当量(Ceq) Ceq=0.49%,大于0.45%,可见Q345钢焊接性能不是很好,需要在焊接时制定严格的工艺措施。 3.2 Q345钢在焊接时易出现的问题 3.2.1 热影响区的淬硬倾向 Q345钢在焊接冷却过程中,热影响区容易形成淬火组织-马氏体,使近缝区的硬度提高,塑性下降。结果导致焊后发生裂纹。 3.2.2 冷裂纹敏感性 Q345钢的焊接裂纹主要是冷裂纹。 三、焊接施工流程 1、坡口清理准备→点固→焊前预热→焊接→施焊→自检/专检→焊后热处理→无损检验(合格)焊接材料的选用 2、由于Q345钢的冷裂纹倾向较大,应选用低氢型的焊接材料,同时考虑到焊接接头应与母材等强的原则,选用E5015 (J507)型电焊条。 3、对于要求焊接的部位严格按图纸要求施焊,注意坡口角度、间隙及焊角高度。 4、焊接过程应注意层间清理和层间检查,确保无裂纹、气孔、夹渣等缺陷,方可继续施焊。 5、焊接过程应注意接头和收弧质量,接头应熔合良好,收弧时弧坑应填满,以防弧坑裂纹。 6、焊接工作应一气呵成,更换焊条时应迅速,中途不应无故停顿,注意层间熔化,避免出现夹沟。焊接过程中途因故停止后重新焊接时,必须检查焊缝表面是否有裂纹、气孔、生锈、水迹等,发现问题及时处理。 四、焊接工艺参数的选择

焊接热处理作业指导书

热处理作业指导书 一、工程概况 1.1本工程为江苏常州中天钢铁集团有限公司热电厂一台240吨纯燃高炉煤气锅炉安装工程及相应的汽水、消防、电气、热控等配套系统。锅炉设备由上海锅炉厂有限公司设计制造。 二、编制依据 2.1西北电力设计院设计图纸 2.2《施工组织总设计》 2.3《小型火力发电厂设计规范》“GB50049-94” 2.4“DL5000-2000”《火力发电厂设计技术规程》及《火力发电厂施工图设计手册设计》 2.5《汽水管路支吊架手册》1983年版 2.6《电力建设安全操作规程》(火力发电厂部分)2002年版 2.7《电力建设施工及验收技术规范》(锅炉机组篇)1996年版 2.8《电力建设施工及验收技术规范》(焊接篇) 1996年版 2.9 《电力建设施工及验收技术规范》(管道篇) 1996年版 2.10《电力建设施工及验收技术规范》(DL/T821-2002射线篇、DL/T5048-95超声波篇) 2.11《火力发电厂焊接技术规程》DL/T869-2004 三、作业条件 3.1 技术准备 3.1.1焊接工艺经过评定,符合工艺要求。 3.1.2作业指导书编制并审批完成,开工报告审批完成。

3.1.3工程所用的材料到位并验收合格。 3.1.4施工人员及工机具设备到位(特殊工种持证上岗)。 3.1.5施工场地清洁无杂物,具备施工的条件。 3.1.6人员组织机构建立并开始行使职责。 3.1.7 检查该项作业的上道工序应具备的技术条件。 3.1.8 施工技术交底和安全交底完成,且交底与被交底人员进行了双签字 3.2热处理前先决条件 3.2.1热处理操作工必须经过专业培训,并具有相应资质的考核委员会签发的资格证书。 3.2.2所使用的热处理设备运转正常。 3.2.3检测、计量器具已经检查和校验,且在检定的有效期内。 3.2.4施工交底工作已经完成,所有操作和检验人员必须熟悉热处理程序和相应的施工措施中的各项规定和要求。 3.2.5焊后热处理应在施焊工作结束并完成焊接自检和专检合格后进行。 四、作业人员及机具配置 4.1作业人员配置、人员资格及职责:

设备焊接与热处理方案

因现在山西长治,身边无图纸及有关资料,本方案仅供参考,请修改完善,多谢。 目录 一、概述 二、编制依据 三、施工程序 四、施工方法、技术措施、 4.1.施工准备 4.2.分段设备组对检验 4.3. 焊接坡口制备 4.4设备组对要求 4.5.设备组对焊接 4.6.焊接检验 4.7.焊缝热处理加固 4.8.焊缝热处理 五、工程质量目标及质保措施、质量控制点 六、劳动力需用计划及技术能要求 七、主要机具、计量工具一览表 八、雨季、暑季施工技术措施 九、职业安全卫生与环境管理

十、文明施工措施 设备组对焊接与热处理方案 一、概述 1.1中国石化股份公司安庆分公司化肥原料结构调整及炼油化工资源优化工程, 按照大件设备吊装组对方案分段数据统计如下表所示:

1.2.根据设计图纸要求现场组对焊缝焊后需进行消除应力热处理。 二、编制依据 2.1《石油化工钢制塔、容器现场组焊施工工艺标准》SH3524-1999 2.2《钢制压力容器》GB150-1998 2.3《钢制塔式容器》JB4710-92 2.4《钢制压力容器焊接工艺评定》JB4708-2000 2.5《钢制压力容器焊接工艺规程》JB/T4709-2000 2.6《压力容器安全技术监察规程》 2.7《压力容器无损检测》JB4730-94 2.8设计提供的设备图纸及技术资料 三、施工程序 制作安装临时平台→按照大件设备吊装方案将分段设备在空中就位→组对卡具制作安装→对口方位调整→用经纬仪(或细钢丝)检查铅直度并调整→用组对卡具调整对口间隙及错边→组对固定后检查→点焊→正式焊接→焊缝外观检查→无损检验→750T吊车稳固热处理焊缝上段→稳固检查→焊缝热处理→焊缝硬度检测 四、施工方法、技术措施、 4.1.施工准备 4.1.1焊接工艺评定 焊接工艺评定试验在于测定焊件具有要求的使用性能。本工程中设备材质:20R 、09MnNiDR按《钢制压力容器焊接工艺评定》JB4708-2000进行评定。 4.1.2.焊工技能评定 焊工技能评定在于测定焊工具有熔敷优质焊缝金属的能力。施工单位选派具有相应合格项目的焊工,这些焊工均获得国家质量技术监督局颁发的锅炉压力容器压力管道特种设备焊工操作资格证。 4.1.3焊材的验收、保管、烘烤、发放管理 4.1.4严格按照公司有关焊接材料管理的专项规定进行焊材管理。 4.1.5焊材应符合相应标准要求,焊材质量证明书中应包括以下内容: 焊材型号、牌号、规格; (1)批号、数量及生产日期; (2)熔敷金属化学成份检验结果; (3)熔敷金属对接接头各项性能检验结果;

关于焊后消氢及热处理

重要构件的焊接、合金钢的焊接及厚部件的焊接,都要求在焊前必须预热。焊前预热的主要作用如下: (1)预热能减缓焊后的冷却速度,有利于焊缝金属中扩散氢的逸出,避免产生氢致裂纹。同时也减少焊缝及热影响区的淬硬程度,提高了焊接接头的抗裂性。 (2)预热可降低焊接应力。均匀地局部预热或整体预热,可以减少焊接区域被焊工件之间的温度差(也称为温度梯度)。这样,一方面降低了焊接应力,另一方面,降低了焊接应变速率,有利于避免产生焊接裂纹。 (3)预热可以降低焊接结构的拘束度,对降低角接接头的拘束度尤为明显,随着预热温度的提高,裂纹发生率下降。 预热温度和层间温度的选择不仅与钢材和焊条的化学成分有关,还与焊接结构的刚性、焊接方法、环境温度等有关,应综合考虑这些因素后确定。另外,预热温度在钢材板厚方向的均匀性和在焊缝区域的均匀性,对降低焊接应力有着重要的影响。局部预热的宽度,应根据被焊工件的拘束度情况而定,一般应为焊缝区周围各三倍壁厚,且不得少于150-200毫米。如果预热不均匀,不但不减少焊接应力,反而会出现增大焊接应力的情况。 焊后热处理的目的有三个:消氢、消除焊接应力、改善焊缝组织和综合性能。 焊后消氢处理,是指在焊接完成以后,焊缝尚未冷却至100℃以下时,进行的低温热处理。一般规范为加热到200~350℃,保温2-6小时。焊后消氢处理的主要作用是加快焊缝及热影响区中氢的逸出,对于防止低合金钢焊接时产生焊接裂纹的效果极为显著。 在焊接过程中,由于加热和冷却的不均匀性,以及构件本身产生拘束或外加拘束,在焊接工作结束后,在构件中总会产生焊接应力。焊接应力在构件中的存在,会降低焊接接头区的实际承载能力,产生塑性变形,严重时,还会导致构件的破坏。 消应力热处理是使焊好的工件在高温状态下,其屈服强度下降,来达到松弛焊接应力的目的。常用的方法有两种:一是整体高温回火,即把焊件整体放入加热炉内,缓慢加热到一定温度,然后保温一段时间,最后在空气中或炉内冷却。用这种方法可以消除80%-90%的焊接应力。另一种方法是局部高温回火,即只对焊缝及其附近区域进行加热,然后缓慢冷却,降低焊接应力的峰值,使应力分布比较平缓,起到部分消除焊接应力的目的。 有些合金钢材料在焊接以后,其焊接接头会出现淬硬组织,使材料的机械性能变坏。此外,这种淬硬组织在焊接应力及氢的作用下,可能导致接头的破坏。如果经过热处理以后,接头的金相组织得到改善,提高了焊接接头的塑性、韧性,从而改善了焊接接头的综合机械性能。 消氢处理是在300~400度加热温度范围内保温一段时间。目的是加速焊接接头中氢的逸出,消氢处理效果比低温后热更好。焊接后及焊后热处理,焊后及时后热及消氢处理是防止焊接冷裂纹的有效措施之一,对于厚度超过100mm的厚壁压力容器及其他重要的产品构件,焊接过程中,为防止因厚板多道多层焊氢的积聚而导致的氢致裂纹,应进行2到3次中间消氢处理。 压力容器设计中对热处理的考虑

相关文档
最新文档