空气动力场试验

空气动力场试验
空气动力场试验

锅炉冷态通风试验措施

1 目的和编制依据

1.1目的

在锅炉点火前检查设备安装质量,发现安装缺陷,了解炉内流场及风箱配风特性,并为热态运行提供调整依据,需进行风烟系统的冷态检查及通风试验。1.2编制依据

1.2.1《火电工程启动调试工作规定》电力工业部建设协调司(1996年版)。

1.2.2《火力发电厂基本建设工程启动及竣工验收规程》电力工业部(1996年版)。

1.2.3《火电工程调整试运质量检验及评定标准》电力工业部建设协调司(1996版)。

1.2.4《火电机组达标投产考核及相关规定》 (2001年版)。

1.2.5《电力建设施工及验收技术规范》 (1996年版)。

1.2.6《HG1065/17.5-YM24型锅炉说明书第Ⅵ卷锅炉运行》哈尔滨锅炉有限责任公司(2007.5)。

1.2.7《HG1065/17.5-YM24型锅炉说明书第Ⅱ卷燃烧系统、炉墙》哈尔滨锅炉有限责任公司(2007.5)。

2. 调试范围及其主要设备的规范

2.1锅炉风烟系统检查

2.1.1风机动叶开度指示与实际开度值一致,开关灵活。风量、风压变化正常。

2.1.2一、二次风压表指示正确、反应灵敏。

2.1.3烟风道系统严密性检查。

2.1.4风机挡板以及烟风道各风门、挡板,经检查调校位置正确,开关灵活,实际开度与指示一致。

2.1.5风机工作正常。

2.1.6空预器各风门、挡板经检查调校位置正确,开关灵活。就地开度与表盘指示一致。

2.1.7二次小风门开关灵活,位置正确。就地开度与指示一致。

2.1.8手动摆动喷燃器操作灵活,角度符合设计角度要求。就地角度与表盘指示一致。

2.1.9配合热工专业标定一次风风量测量装置及二次风风量测量装置。

2.1.10检查风机并列性能。

2.1.11检查风机表计指示正确性,并记录原始工况值。

2.2冷态试验内容

2.2.1复测各喷口截面的实际尺寸。

2.2.2测量每组喷燃器安装倾角及垂直度。

2.2.3测量假想几何切圆大小。

2.2.4二次风特性试验。

2.2.5一次风速调平。

2.2.6炉膛内部检查油枪、点火枪安装尺寸正确。

2.2.7实测炉膛出口气流分布。

3 组织与分工

b.冷态通风检查试验由调试单位指挥,安装单位牵头,生产单位参加。生产单位负责进行设备的运行操作,安装单位负责设备消缺。

3.2 炉膛内试验用试验平台、脚手架及试验用测点由建设单位安排,安装单位实施。

4 调试应具备的条件

4.1锅炉安装工作完毕,转动机械分部试运转合格,试运转记录完整,有关资料齐全。

4.2试验场地所有沟道盖板齐全,杂物清除干净,炉膛外脚手架拆除。

4.3所有的风门、挡板电动或气动执行机构均应安装完毕且动作试验结束。

4.4计算机DCS系统和报警系统等调试完毕,可以投入使用。

4.5烟风系统、制粉系统所有风压、风温、流量表计均可正常投入。

4.6炉膛试验平台、脚手架搭设完毕,平台上清理干净,经检查验收合格(见附图1)。

4.7锅炉消防水系统试运完毕,试验时能正常投运。

4.8炉膛照明灯要求可以照亮平台及脚手架,满足试验要求。

4.9 试验用测点及中心线安装完毕,验收合格。

4.10油枪、点火枪安装完毕,进退自如,尺寸正确。

4.11试验所需主要仪器。

电子微压计: 2台标准毕托管: 2支对讲机: 4部

水平仪: 2只线垂: 4个卷尺: 1把角尺:1把

5 调试的步骤及方法

5.1在炉内测量喷燃器的垂直度、喷口尺寸及几何形状,拉线测量切圆直径和几何中心位置。

5.2逐个检查和校正各风门、挡板,要求实际开度与指示开度一致,开关灵活、到位,无卡涩现象。

5.3根据运行规程要求,对空气预热器、引风机、送风机、一次风机进行启动前检查,发现问题向有关人员汇报,并进行处理。

5.4待检查完毕,具备启动条件后,启动二台空气预热器、二台引风机、二台送风机、二台一次风机。

5.5检查风机并列性能。

5.5.1引风机并列性能试验:由送风机维持炉膛负压50 Pa,同时将二台引风机的静叶逐渐开大,直至电流至额定值,并记录各开度下引风机入口负压和电流,然后同时将二台引风机的静叶关小至全关,并记录各开度下引风机入口负压和电流。

5.5.2送风机并列性能试验:由引风机维持炉膛负压50 Pa,同时将二台送风机的动叶逐渐开大,直至电流至额定值,并记录各开度下送风机出口风压和电流,然后同时将二台送风机的动叶关小至全关,并记录各开度下送风机出口风压和电流。

5.5.3一次风机并列性能试验:由引风机、送风机维持炉膛负压 50 Pa,同时将二台一次风机的入口挡板逐渐开大,直至电流至额定值,并记录各开度下一次风机出口风压和电流,然后同时将二台一次风机的入口挡板关小至全关,并记录各开度下送风机出口风压和电流。

5.6维持炉膛负压50 Pa,在接近额定工况下,标定二次风风量测量装置,校核DAS系统的送风机风量。

5.7实测一次风喷口风速,对一次风风量测量装置进行标定。

5.8对四角一次风速进行偏差计算,通过调整一次风管的可调缩孔,进行一次风调平。一次风模化风速选定为30 m/s。(20 ℃)。

5.9实测二次风速,记录二次风风箱静压,校核二次风大风箱特性。二次风模化风速选定为30m/s。(△Pm/△Po≈1.0)。

5.10实测炉膛出口气流分布。

5.11炉膛内部检查油枪、点火枪安装尺寸正确,动作可靠。

6 质量检验标准/记录表格

6.1 燃烧器喷口中心轴线与燃烧切圆的切线偏差不大于0.5度。

6.2 燃烧器喷口不垂直度不大于5 mm为合格。

6.3 烟风系统通风检查符合设计要求。

6.4 同层一次风调平四角风速偏差小于5 % 。

6.5 记录表格

6.5.1附表1为锅炉切圆直径测量记录表。

6.5.2附表2为燃烧器垂直度测量记录表。

6.5.3附表3为燃烧器水平角度测量记录表。

6.5.4附表4为风机并列特性试验记录表。

6.5.5附表5为表盘参数记录表。

6.5.6附表6为烟风、制粉系统风门挡板检查记录表。

6.5.7附表7为汽水系统阀门检查记录表。

6.5.8附表8为一二次风风速测量及油枪点火枪安装尺寸检查用甘肃电力科学研究院现场测试通用记录表。

7 调试的安全措施

7.1试验期间,炉膛内部及烟、风道内停止一切施工作业。

7.2烟、风道上的各人孔门、检查孔应关闭,捞渣机水封应投入。

7.3风机运行期间,就地应有专人负责监视。如发现异常应立即通知有关人员,

如有危及人身或设备安全的可能,应立即停机,然后通知有关人员处理。

7.4进行炉内试验时,试验人员应戴安全帽。高空作业时必须系好安全带。

空气动力学拉法尔结构实验

空气动力实验 报告 拉阀尔喷管沿程M数分布试验及 二维斜激波前后气流参数测量试验 北京航空航天大学流体力学研究所 2008年8月

拉法尔喷管沿程M 数分布试验指导书 一. 实验目的: 了解暂冲式超音速风洞的基本工作原理,掌握拉伐尔喷管产生超音速的流动特性,根据沿拉法尔喷管各截面静压的测量值,确定沿喷管的M 数分布。 二. G1超音速风洞系统工作原理: 图1为G1超音速风洞系统原理图,G1超音速风洞是由气源和洞体两大部分组成。 气源部分由空气压缩机、油水分离器、单向阀、纯化器和储气罐组成。特别需要指出的是,气体经拉阀尔喷管到实验段是一个膨胀加速过程,气体到达实验段时的温度和密度会很低,此时若空气中含有水分和油的话,水汽就会凝结从而影响试验的精确性,而油分会增加这种凝结的危险性。所以油水分离器是超音速风洞致关重要的一个装置。 G1超音速风洞洞体部分由调压阀、稳定段、拉阀尔喷管、实验段、第二喉道和扩压段组成。 1. 调压阀:由于压缩空气不断的从储气罐中流出,气罐内的压力就要不断地下降,为了保证稳定 段内的总压P 0不变,使用调压阀调节气流的流通面积,使其逐步开大来满足稳定段总压的恒定。 2. 稳定段:经调压阀进入稳定段的气流是及不均匀的,气流中有许多旋涡存在。稳定段的作用就 是对这些不均匀气流进行调整。由于稳定段的截面尺寸是风洞洞体中最大的,因此气流进入稳定段后流速降低,另外稳定段内还装有蜂窝器和阻尼网,其作用是粉碎气流中的大旋涡从而使气流均匀。 3. 拉阀尔喷管:拉阀尔喷管是超音速风洞产生超音速气流的关键部件,见图1,它是一个先渐缩后 渐扩的管道装置,喷管的最小截面称为喉道,在喉道处气流达到音速。对于定常管流,流过任一个截面的流体质量都是相等的,即,)(常数C vA =ρ,式中密度ρ、速度v 和截面A 处于流 管同一截面内,对C vA =ρ式取对数,再微分,得: 0=++ A dA v dv d ρρ , (2-1) 由定常一维流动的欧拉运动方程: ρ/dp vdv -= (2-2)

锅炉冷态空气动力场试验..

1、设备系统概述 天津国投津能发电有限公司一期工程#2机组锅炉为上海锅炉厂引进美国ALSTOM公司的技术生产的超超临界参数变压运行螺旋管圈直流锅炉,型号为SG-3102/27.46-M532,单炉膛双切圆燃烧方式、一次中间再热、平衡通风、固态排渣、全钢架悬吊结构、半露天Π型布置。设计煤种为平朔安太堡煤,校核煤种I为晋北烟煤,校核煤种II为云峰混煤。采用中速磨冷一次风正压直吹式制粉系统,配6台MPS275辊盘式磨煤机,正常运行,5运1备,其中A磨采用微油点火方式。燃烧方式采用低NOx同轴燃烧系统(LNCFS),48只直流燃烧器分6层布置于炉膛下部四角和中部,在炉膛中呈双切圆方式燃烧。 炉膛宽度34290mm,深度15544.8mm。炉膛由膜式壁组成,炉底冷灰斗角度为55°,从炉膛冷灰斗进口集箱(标高7500mm)到标高51996.5mm处炉膛四周采用螺旋管圈,在此上方为垂直管圈。螺旋管圈与垂直管圈过渡采用中间混合集箱。炉膛上部及水平烟道从前至后分别布置分隔屏过热器、后屏过热器、末级过热器、末级再热器,后烟井分成前后两个分隔烟道,前烟道布置有低温再热器和省煤器,后烟道布置有低温过热器和省煤器,在前后烟道中省煤器下部布置调温挡板,用于调节再热汽温。锅炉采用机械干式出渣系统。 锅炉启动系统采用带循环泵的内置式启动系统,锅炉炉前沿宽度方向垂直布置4只汽水分离器和2个贮水箱。当机组启动,锅炉负荷低于最低直流负荷30%BMCR时,蒸发受热面出口的介质流经分离器进行汽水分离,蒸汽通过分离器上部管接头进入炉顶过热器,而饱和水则通过每个分离器下方连接管道进入贮水箱中,贮水箱上设有水位控制。贮水箱下疏水管道引至一个三通,一路疏水至炉水循环泵入口,另一路接至大气扩容器疏水系统中。 过热器汽温通过煤水比调节和三级喷水来控制,第一级喷水布置在低温过热器出口管道上,第二级喷水布置在分隔屏过热器出口管道上,第三级喷水布置在后屏过热器出口管道上,过热器喷水取自省煤器进口管道。再热器汽温采用尾部挡板调节,燃烧器摆动仅作为辅助调节手段,另外低温再热器出口管道上设置微量喷水,微量喷水取自给水泵中间抽头。 锅炉一次汽系统采用100%高压旁路(三用阀)+65%低压旁路配置,过热器系统不设安全阀,再热器出口设有4只带有控制安全功能的安全阀。

空气动力学实验之二元翼型测压实验

空气动力学实验之 二元翼型测压实验 班级 姓名 实验日期 指导教师

一、实验目的 1.了解低速风动的基本结构和熟悉风洞实验的基本原理。 2.熟悉测定物体表面压强分布的方法。 3.复习巩固空气动力学的相关知识。 3.测定NACA0012翼型的压力分布并计算其升力系数Cy ,掌握获得机翼气动特性曲线的实验方法。 二、实验设备及工作原理简介 1.测定翼型表面压力 在翼型表面上各测点垂直钻一小孔,各孔成锯齿状分布,小孔底与埋置在模型内部的细金属管相通,小管的一伸出物体外,然后再通过细橡皮管与多管压力计上各支管相接,各测压孔与多管压力计上各支管都编有号码,上表面为1号-14号,下表面为15号-27号,于是根据各支管内的液面升降高度,立刻就可判断出各测点的压强分布。 2.压力系数的计算 通过测压,可以得到翼型在给定迎角下的压力分布,(采用无黏流理论)根据伯努利方程: 2 22 121∞∞+=+v p v p i ρρ 可得压力系数q p p C p ∞-= ,其中2 2 1∞∞=v q ρ 本实验利用水排测压得 h g p p p ?=-=?∞ρ

3.升力系数计算 根据计算得出压力系数Cp,利用Matlab做出压力系数Cp与测压点分布位移X的图像,并分别拟合上下表面的压力分布曲线,通过对上下表面的压力分布曲线的所夹面积进行积分,其值除以弦长L可得出翼型的升力系数Cy。在不同的迎角α下,可分别求出翼型的升力系数,由此绘制翼型NACA0012的升力系数分布图,再与标准升力系数图比较,分析实验结果。 三.实验步骤 1.检查实验设备并进行人员分工。 2.记录实验环境下的温度与大气压。 3.安装翼型模型,并调整迎角为 ?0。 4.调整多管压力计液柱的高低,记下初读数0 h。 5.开风洞调到所需的风速,本实验对应的来流风速为25m/s。 6.当多管压力计稳定后,记下液柱末读数i h。 7.关闭风机等待测压液柱回复,依次将翼型迎角调整到 ? 1? 3? 5和? 7重复实验。 8. 关闭风洞,整理实验场地,将记录交老师检查。 9. 整理实验数据,写好实验报告。 四.实验数据及处理 1.实验环境数据: 实验室温度(C?)大气压强(Pa)空气密度(kg/3m) 12 98010 1.225

锅炉空气动力场试验方案

YDY.ZY.JJ(ZX1-GL)-09 云南华电镇雄电厂新建2×600MW机组工程 锅炉空气动力场试验方案 2011-06-25 发布 2011-06-25 实施

云南电力试验研究院(集团)有限公司电力研究院发布

编制:年月日 审核:年月日 会审: 建设单位年月日生产单位年月日施工单位年月日监理单位年月日设计单位年月日质保:年月日审定:年月日批准:年月日 ·本方案由云南电力试验研究院(集团)有限公司电力研究院提出 ·本方案由云南电力试验研究院(集团)有限公司电力研究院质保部归口管理 ·本方案由云南华电镇雄电厂试运主管副总经理批准

目录 1、概述 (1) 1.1系统概述 (1) 1.2主要设备及技术参数 (1) 2、技术措施 (4) 2.1依据和标准 (4) 2.2试验目的 (4) 2.3目标、指标 (4) 2.4仪器仪表、设备 (4) 2.5应具备的条件 (5) 2.6试验内容、程序、步骤 (5) 3、组织措施 (7) 4、安全措施 (8) 4.1危害危险源识别及相应预防措施 (8) 4.2安全注意事项 (8) 附件 (9) (1)交底记录 (9) (2)试验前应具备条件检查确认表 (10) (3)危险危害因素辨识及控制措施 (11)

1、概述 1.1系统概述 镇雄电厂新建工程2×600MW超临界燃煤汽轮发电机组,锅炉是由哈尔滨锅炉厂有限责任公司设计制造的型号为:HG-1900/25.4-WM10型一次中间再热、超临界压力变压运行带内置式再循环泵启动系统的直流锅炉,单炉膛、平衡通风、固态排渣、全钢构架、全悬吊结构、Π型布置、露天布置。 本工程煤源为滇东北,东源煤业集团下属朱家湾煤矿和长岭1号煤矿、2号煤矿,燃煤为低挥发份无烟煤,低位发热量 23.04MJ/Kg;点火及助燃油为0号轻柴油,发热量 41.8M J/Kg。 锅炉采用W火焰燃烧方式方式,配有6台BBD4062(MSG4060A)型双进双出钢球磨煤机,每台磨煤机引出4根煤粉管道,分别与旋风分离器相连,共24个分离器。每个分离器对应一个燃烧器,为燃烧器提供一浓一淡两股煤粉气流。前后墙拱上分别布置12组燃烧器,每组燃烧器包含2组浓煤粉喷口,2组淡煤粉喷口,每组浓煤粉喷口两边各有两组二次风喷口,在两个浓煤粉喷口之间的二次风喷口中安装油枪及火检。 锅炉设置了燃烧器风箱、三次风箱、燃烧器连接风道。在锅炉的前拱、后拱设置了两个燃烧器风箱,每个风箱内又通过隔板分隔成6个独立的小风箱,共计12个小风箱,这些风箱内各布置一组燃烧器且每个小风箱均设有独立的挡板风门;在锅炉的拱下前后墙各设置了6个三次风箱,共计12个,与拱上风箱一一对应,这些风箱也设有独立的挡板风门,负责三次风的分配。给燃烧器风箱与三次风箱配风的是燃烧器连接风道,在锅炉的前后布置了两个燃烧器连接风道,每个风道又分三个小风道,共计6个小风道,每个小风道各自对应两个燃烧器小风箱和两个三次风箱,其对应规则是一个小风道对应一台磨煤机。 烟风系统共配两台引风机、两台送风机、两台一次风机、两台密封风机。 1.2主要设备及技术参数 1.2.1引风机 本锅炉共配有两台引风机,型号为YU17056-02,动叶可调轴流风机,由成都电力机械

冷态空气动力场试验方案

UG-160/9.8-M3 动力场试验方案 编写: 张虎平 审核: 批准: 内蒙古中煤蒙大新能源化工有限公司 热电车间 二〇一二年四月一日

一、试车的组织机构及参加人员 试车总指挥: 调试指挥人: 车间主任调试单位负责人 现场技术负责人: 安全员设备技术员工艺技术员调试单位技术人员调试验收负责人: 安环部,生产部 参加人员: 工艺试车组成员,施工安装人员,电气仪表人员. 二、试验目的 对锅炉进行冷态空气动力场试验,目的是检验系统及转机整体运行情况,掌握转机及系统中挡板、液力耦合器的调节特性,标定压力、流量测量仪表,测试及调整进入燃烧室的一、二次风速,测试流化床的布风板阻力和料层阻力特性,找出临界流化风量及灰循环系统的特性,为锅炉的启动运行及燃烧调整提供参考资料。 通过对这些参数的调整、测量、试验,并对结果进行分析,确定锅炉燃烧系统最佳运行方式,从而保证锅炉燃烧稳定、完全、炉内温度场、速度场及热负荷分布均匀,防止结焦和燃烧设备损坏,降低有害气体排放,保证汽温、汽压稳定,以适应机组负荷变化的要求,在一定范围内自由调节。为运行中料层厚度提高参考值等。 三、风量标定 启动引风机、一次风机,高压风机、二次风机,调定各试验项目所需工况,保持稳定运行。标定和测试如下项目: 1、二次风机风量标定 按照下表测试:

2、标定二次风风量测量装置 在风量测量装置前或后一直段上进行测试标定。按照下表测试: 3、在炉膛内二次风口测试二次风速,检查各风口气流的方向、调整各风口气流的均匀性。同时,检查炉膛内各播煤风口气流状况。 4、一次风机风量标定 按照下表测试:

5、对总一次风风量测量装置标定 调节一次风机的挡板开度,在风量测量装置前一直段进行测试标定。 按照下表测试: 6、对上一次风风量测量装置标定 调节一次风机的挡板开度,在测风装置前一直段进行测试标定。 按照下表测试: 7、在炉膛内一次风口测试一次风速,检查各风口气流的方向、调整各风口 气流的均匀性。 三、测定布风板阻力及测定不同料层厚度风量与阻力关系。 1、空板阻力特性试验 在布风板不铺床料(空床)的情况下,全开风室入口各风挡板,改变一

锅炉空气动力场试验调试方案

目录 1 编制目的 (02) 2 编制依据 (02) 3 设备及系统简介 (02) 4 调试内容及验评标准 (04) 5 组织分工 (04) 6 使用设备仪器 (05) 7 调试应具备的条件 (06) 8 调试步骤 (06) 9 优化措施及建议 (07) 10 安全健康及环境要求 (07)

1 编制目的 通过锅炉冷态通风试验,检查燃烧器和烟风道的安装是否符合规范;检查烟风系统和制粉系统的严密性;对锅炉机组中的风烟、燃烧系统有关测点进行检查,并对一次风和二次风的测量元件进行标定;检查并调平每台磨组出口4根一次风管的风速;冷态模拟炉内燃烧动力工况,观察一次风喷口射流情况和炉内空气动力状况,为下一步整个锅炉燃烧调整提供依据,确保锅炉燃烧充分,从而达到安全、经济运行的目的。 2 编制依据 2.1 《火力发电建设工程启动试运及验收规程》(DL/T5437-2009); 2.2 《火电工程启动调试工作规定》(建质[1996]40号); 2.3 《火电工程调整试运质量检验及评定标准》(建质[1996]111号); 2.4 《电力建设施工及验收技术规范(锅炉机组篇)》; 2.5 《防止电力生产重大事故的二十五项重点要求》(国电发[2000]589号) 2.6 《电力建设安全健康与环境管理工作规定》(国家电网工[2003]168号) 2.7 《锅炉启动调试导则》DL/T852-2004; 2.8 《新疆天富东热电联产技改工程2×135MW机组调试大纲》; 2.9 设计院有关锅炉专业的图纸。 3 设备及系统简介 3.1 锅炉概括 本工程装设3台由四川川锅锅炉有限公司制造的CG-480/9.81-M4型高温高压自然循环汽包、单炉膛四角切圆燃烧、平衡通风、固态排渣、全钢构架紧身封闭、管式空预器、悬吊煤粉锅炉。 燃烧及制粉系统采用中速磨正压冷一次风机直吹式制粉系统,每台锅炉配4套中速磨煤机,脱硫采用生石灰半干法烟气脱硫工艺,预留烟气脱硝系统。 3.2 制粉系统 本期工程制粉采用正压直吹冷一次风机制粉系统,每台锅炉配4台中速磨煤机,其中1台备用。每台锅炉配置4台能适应中速磨煤机正压直吹式制粉系统运行的耐压计量式给煤机,每台给煤机出力为2-40t/h。3台磨煤机可满足锅炉设计煤种额定工况运行的要求,由每台磨煤机引出四根煤粉管道连接到锅炉同一层燃烧器,根据锅炉负荷的变化可以停用任何1台磨煤机。 磨煤机密封系统采用每台锅炉配2台离心式密封风机,一用一备。每台锅炉配2台单吸离心式一次风机。 3.3 燃烧系统 本锅炉燃烧器采用四角切圆布置,假象切圆大小为φ580 mm。制粉系统采用中速磨冷一次风正压直吹送粉系统,每台锅炉配置4台中速磨煤机(HP743),其中一台备用,煤粉细度R90=20%。燃烧器采用大风箱结构,每角燃烧器有4个一次风口,6个二次风口,从下至上布

土耳其空气动力场试验方案-正式版

1 锅炉基本参数 1.1型式及型号 本期工程装设两台600MW超(超)临界参数燃煤汽轮发电机组,锅炉为超临界参数变压直流炉、一次再热、平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构Π型锅炉。型号为DG1827/25.4-Ⅱ4型。 1.2参数 锅炉主要参数表 2 设计燃料条件 2.1煤种煤质一览表

2.2点火和助燃用油油种 采用6号油,油质的特性数据见下表:

3. 烟、风系统主要设备及流程 3.1 主要设备 锅炉配有2台成都电力机械厂生产的AN33(19)型静叶可调轴流式引风机、2台上海鼓风机厂有限公司生产的FAF25—12.5—1动叶可调轴流式送风机和2台上海鼓风机厂有限公司生产的PAF18-13.2-2动叶可调式一次风机。 3.1.1 引风机设计参数如下:

型式 AN33(19)静叶可调轴流式 台数(台) 2 出力(m3/S) 494.0(T.B) 全压(Pa)6435 (T.B) 转向顺气流方向看叶轮逆时针旋转 工作转速(r/min) 990 叶片调整范围 -70°~+30° 轴功率(KW) 2547 (BMCR) 电机功率(KW) 4000 出力调节方式进口导叶调节 .4.5A 冷却风机 9-19N O 3.1.2 送风机参数如下: 型号 FAF25—12.5—1 动叶可调轴流式 台数(台) 2 出力(m3/s) 230.6 (T.B) 全压(Pa) 4241 (T.B) 工作转速(r/min) 990 出力调节方式导向挡板调节装置 导向叶片角度调节范围-25°~+15° 叶轮直径mm 2512 电动机功率KW 1200 3.1.3 一次风机设计参数如下: 型号 PAF18-13.2-2 设计转数(r/min) 1490 全压(Pa) 16819 风量 (m3/s) 93.88 转向从电机端看逆时针 导向叶片角度调节范围-25°~+15° 电机功率(k W) 1900 3.2 系统主要流程 送风机将空气送往两台三分仓空预器,锅炉的热烟气将其热量传送给进入的空气,受热的一次风与部份冷一次风混合后进入磨煤机,然后进入布置在前后墙的煤粉燃烧器,受热的二次风进入燃烧器风箱,并通过各调节挡板而进入每个燃烧器二次风、三

空气动力学

空气动力学 科技名词定义 中文名称:空气动力学 英文名称:acerodynamics;aerodynamics 定义1:流体力学的分支学科,主要研究空气运动以及空气与物体相对运动时相互作用的规律,特别是飞行器在大气中飞行的原理。 所属学科:大气科学(一级学科);动力气象学(二级学科) 定义2:研究空气和其他气体的运动以及它们与物体相对运动时相互作用规律的科学。 所属学科:航空科技(一级学科);飞行原理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片

同名书籍 空气动力学是力学的一个分支,它主要研究物体在同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。 目录

编辑本段 1.动量理论 推导出作用在风机叶轮上的功率P和推力T(忽略摩擦阻力)。 由于受到风轮的影响,上游自由风速V0逐渐减小,在风轮平面内速度减小为U1。上游大气压力为P0,随着向叶轮的推进,压力逐渐增加,通过叶轮后,压力降低了ΔP,然后有又逐渐增加到P0(当速度为U1时)。 根据伯努力方程 H=1/2(ρv2)+P (1) ρ—空气密度 H—总压 根据公式(1), ρV02/2+P0=ρu2/2+p1 ρu12/2+P0=ρu2/2+p2 P1-p2=ΔP 由上式可得ΔP=ρ(V02- u12)/2 (2) 运用动量方程,可得作用在风轮上的推力为: T=m(V1-V2) 式中m=ρSV,是单位时间内的质量流量 所以:T=ρSu(V0-u1) 所以:压力差ΔP=T/S=ρu(V0-u1) 由(2)和(3)式可得: u=1/2[(V0-u1)] (4) 由(4)式可见叶轮平面内的风速u是上游风速和下游风速的平均值,因此,如果我们用下式来表示u。 u=(1-a)*V0 (5) a 称为轴向诱导因子,则u1可表示为: u1=(1-2a)*V0 (6)

标准飞机模型空气动力测量实验指导书

《低速风洞标准飞机模型测力实验》 实验指导书 空气动力学与风洞实验室 2007年6月

低速风洞标准飞机模型测力实验 一.实验目的: 标准飞机模型测力实验是测量作用在标准飞机模型上的空气动力和力矩,为确定飞机气动特性提供原始数据。本次实验仅做标准飞机模型纵向实验,即实验时侧滑角β=0?。改变攻角,测量纵向三个分量(升力、阻力和俯仰力矩)系数C L、C D和M Z随攻角α的变化规律。 二.实验设备及其工作原理简介: 1)风洞:是产生人工气流的设备,本次实验所用风洞为开口回流式风洞,如下图所示。 其主要组成部分为实验段、扩压段、拐角和 导流片、稳定段、收缩段以及动力段。 实验段截面为椭圆面,其入口长轴为102cm,短轴为76cm,出口处长轴为107cm,短轴为81cm;实验段全长2m;实验段的最大流速为40m/s;紊流度为0.3%;实验段模型安装区内,速压不均匀度'3%。其上游收缩段的收缩比为8.4。 D1风洞采用可控硅控制无级调速;配置有尾撑式α—β机构及内式六分量应变天平。2)六分量应变天平:是是一种专用的测力传感器。用于测量作用在模型上的空气动力 的大小。所谓六分量是指该天平能测量升力、阻力、侧力、俯仰力矩、偏航力矩和滚转力矩。它由应变片、弹性元件、天平体和一些附件组成。 应变天平是一种将机械量转变为电量输出的专用设备。它是运用位移测量原理,利

用天平的变形来测量外力大小。将应变片贴在天平弹性元件上,弹性元件上的应变与外力大小成比例,应变片连接组成测量电桥,接入测量线路中,即可测出力的大小。应变天平在测量过程中的参量变化过程如下: → →ε ? → ? V U R → P? 其中: P—天平弹性元件上承受的气动力。 ε—在气动力P的作用下弹性元件上的应变。 ?—贴在弹性元件上的应变片在弹性元件 R 产生应变ε的情况下产生的电阻增量。 ?而引起的 ?—由应变片产生的电阻增量R U 测量电桥产生的输出电压增量(mV)。 ?—检测仪器所指示的读数增量(V)。 V 右图为一六分量应变天平测量电桥示意图。图中 标有号码处为粘贴有电阻应变片的天平元件。例 如号码1、2、3、4为天平升力元件的四个电阻 阻值相等的应变片,它们构成了一个全桥电路。 当天平升力元件受载后,在电桥AC端将会有电 压信号?U输出,该信号?U将被引入信号放大器。 3)信号放大器(GDA—10): 其功用是将来自于天平各分量电桥的微小电压输出放大到能被计算机接受的电压值。 4)A/D模数转换数据采集板:由于计算机只能处理数字信号,而天平各分量的输出信号是模拟信号,因此须先用A/D模数转换数据采集板将天平输出的模拟信号转换成数字信号,方能由计算机对采集的信号数据进行处理。 5)计算机:通过已有程序软件对标准飞机模型的测力进行过程控制、数据采集和后处理。 6)标准飞机模型:机翼面积S=0.0184688(m2);翼弦b=0.09133(m);翼展l=0.2875(m);

空气动力学试验指导书

空气动力学实验指导书 零质量射流形成机理实验 一实验目的 1)学习和了解零质量射流的流场结构和形成机理 2)学习和掌握粒子图像激光测速仪的测试技术 二实验仪器和设备 1)零质量射流发生装置 由信号发生器、功率放大器、扬声器或压电陶瓷片、共振空腔和射流出口组成,实验中可研究驱动信号的波形、频率、射流出口形状对零质量射流形成的影响等。信号发生器具有波形任意给定,相位、频率、幅值精确可调的特点,输出信号经功率放大器放大来驱动扬声器振动膜或压电陶瓷片产生有规律的振动,将共振空腔内的空气吸入和挤出射流出口形成一系列涡环,从而产生单方向的射流。共振空腔和射流出口的几何参数设计和振动膜振动的规律决定了零质量射流的流场特性。可针对不同的教学目的设计制作两到三种形式的零质量射流发生器,以期获得最佳的实验效果。 2)二维粒子图像激光测速仪 由高分辨率的PIV-CCD(1K×1K)、图象采集板、同步器、50mJ的双脉冲激光器、片光发生组件、激光传输导臂、基于Windows NT操作平台的控制和测试软件组成。为了使该测速仪适合测试零质量射流流场,需要更换和购置的设备有:消球差变焦光学MICRO-CCD镜头(F-Mount);数字示波器用来实时监视和测量驱动信号波形和相位并配合同步器进行锁相位流场测试实验;激光传输导臂可以灵活的传输和改变激光片光的入射点以及片光的扩散角,并可空间旋转片光平面以满足瞬态流场测试的需要。 三实验原理与方法 应用现代先进的瞬态流场测试技术粒子图像激光测速系统(PIV)可以在极短的时间内(可小于1个微秒)“冻结”流场结构;测得零质量射流的非定常瞬态流场,以及不同时刻流场的发展和演化过程。验证和演示零质量射流由一系列涡环组成,涡环之间的相互诱导作用是形成零质量射流的机理。 四实验步骤 1)开启零质量射流激振器; 2)开启脉冲激光器,调整激光片光平面在射流出口的中心位置上; 3)在射流出口附近播撒烟雾粒子; 4)调整CCD相机的聚焦平面在激光平面上以得到清晰的粒子图像;

300MW锅炉炉内空气动力场试验分析

300MW锅炉炉内空气动力场试验分析 发表时间:2018-10-17T10:33:56.670Z 来源:《电力设备》2018年第19期作者:马巍巍1 贺毅2 [导读] 摘要:本次研究采用现场试验和数学模拟两种手段综合分析A厂300MW锅炉炉内空气动力场,初步分析了锅炉燃烧的空气动力场的分布情况。 (中国能源建设集团西北电力试验研究院有限公司 710000)摘要:本次研究采用现场试验和数学模拟两种手段综合分析A厂300MW锅炉炉内空气动力场,初步分析了锅炉燃烧的空气动力场的分布情况。 关键词:数学模拟;空气动力场;锅炉以往采用炉内动力场所进行的试验主要有采用两种方法,分别是中试研究法和全尺寸测试法。但由于炉膛内部空间较大,所采用的冷态试验需要投入大量的财力、人力与时间,所得出的结论存在着一定的局限性与经验性,同时也受限于测试手段,致使大量数据无法有效获取。 1.锅炉概况 本次研究以A厂两台300MW锅炉炉为研究对象,HG-1025/18.2-WM10型号,是一种自然循环、一次中间再热、亚临界压汽包锅炉,借助尾部烟气挡板调节再热汽温,采用中储式热风送粉系统。设计燃用无烟煤与贫煤的混煤,锅炉保证效率在91.5%以上,设计效率为91.6%。 2.全尺寸现场试验 2.1炉内空气动力场试验 标定一、三次风管测速靠背管,调整一次可调缩孔,在调平各一次风管速度后,对缩腰配风、倒宝塔配风、均匀配风等工况进行测试和观察,经过配风工况试验后有以下发现,在各配风状态下,根据长飘带和十字架飘带可知,炉内无明显涡流区和死区,切圆在旋转过程中呈逆时钟方向,未出现水冷避受到一次风气流冲刷的现象。 2.2双通道燃烧器射流误差特性实验 本次研究在均匀配网状态下,对A1双通道燃烧器的回流区大小、一次风气流衰减特性进行了速度测量和飘带观测。一次风气流衰减特性如表2-1所示。 经实验研究后得出以下几点结论:(1)双通道燃烧器射流会出现快速衰减,一次风气流刚性较弱,在1.5m位置时已衰减50%;(2)双通道燃烧器两喷口之间存在充斥着不对称回流,不断增加的风速也促进了回流速度的增加,但回流区面积并未出来明显的变化; (3)一次风气流刚性在腰部风的作用下出现了一定程度的增强,但并未对回流区造成明显的影响,回流区面积随着腰部风的逐渐开大而降低。 (4)一次风气流刚性几乎没有受到周围界风的影响。表格 2 1一次风气流衰减特性 2.3三次风反切消旋冷态试验 基于已经完成的缩腰配风炉内空气动力场试验,固定各一、二次风风量,单纯提升排粉机数据。经试验后发现:在未设置排粉机的情况下,炉膛出口左右平均法向速度偏差较大。在设置排粉机的情况下,逐渐降低了这种偏差。由此可知,三次风反切对于炉膛出口左右速度念头的消除效果十分显著。 3.锅炉冷态空气动力场的模拟试验 3.1数学模型 锅炉炉内存在着三维湍流反应流形式的气体流动环境,可以将其看作是一种稳态流,其描述方法通常为守恒方程。本次研究通过湍流模型的标准形式对湍流进行描述。所涉及到的气体流动模型包含湍流运通耗散率的2个运输方程、湍流动能及动量方程、以及三维的连续性方程。具体的表达形式如下: (1)(1)式将全部气相变量记为,比如耗散率、湍流动能、压力P以及三个分量ω、ν、μ等。代表气体的汇项或源项。扩散系数与源项系数如表3-1所示。 表 3 1所相守恒方程中的扩散和源项系数 表3-1中、表表达式分别如下: ;

空气动力学实验报告

NACA0012翼型气动特性分析报告 报告人: 一、引言 现在,无论是我国还是世界上其他国家,都把航天事业的发展放到了重要的 位置,因此航天事业的发展可以说是非常的火热的,在这样的大背景下,我国更 应该加大发展力度,要保持在世界上的先进,将就必须从航天领域的大学生抓起。 因此老师知道我们进行了这次NACA0012翼型气动特性的实验,从大处说是为 了国家,从小处说也是为了我们莘莘学子,因此这次的实验是非常有意义的。 这份报告主要研究的是NACA0012翼型的气动特性,包括理论分析求出一 份气动特性,实验又得出一份气动特性,并将这两者比较观察实验值和理论值之 间是否有差异,差别有多大,并分析其中的原因,得出结论。 在具体进行之前首先要引入翼型的定义,翼型就是平行于机翼根部的剖面线 剖切机翼得到的剖面。而翼型的气动特性主要包括翼型表面压强分布,升力系数, 力矩系数。 这份报告的主要目的是,1、通过翼型求流函数和验证翼型本身是一条流线。2、通过理论分析求出翼型的气动特性。3、通过实验数据求翼型的气动特性。4、 分析这其中的差距及其原因。5、通过这次报告的写作,体验数据处理的具体过程。 二、实验过程: 该实验是在风洞中,用20m/s的速度吹NACA0012翼型,在翼型上布置27 个点,用管子将这27个点连接到排管上,通过排管中水柱的高度可得出各点处 的压强分布。变换不同的迎角(0 2 4 6 8 10 20),分别进行实验,记录排管中水 柱的高度。实验过程中的图片如下: 本来这儿有四张实验过程的图片,但加入图片后是文件过大无法发送,所以 将图片删除。 实验数据: hb=[3.8 4 3.8 3.78 3.8 4.05 3.82 3.88 3.85 3.9 3.85 3.8 3.95 3.8 3.82 3.95 3.85 3.9 3.8 3.85 3.85 3.8 3.8 3.87 3.89 3.81 3.9 3.85];静止时各点水柱高度。 h0=[4.2 4.58 7.32 7.68 7.7 7.78 7.6 7.3 7.4 7.3 7.1 6.95 6.72 6.7 6.52 6.6 6.8 6.81 6.85 6.92 7.22 7.42 7.5 7.61 7.65 7.52 7.5 6.48];有速度迎角为0时水柱高度(以下相同)。 h2=[4.15 5.5 8.7 8.8 8.65 8.3 8.28 7.85 7.7 7.65 7.35 7.28 6.85 6.75 6.62 6.55 6.62 6.7 6.71 6.8 7 7.1 7.12 7.15 6.98 6.55 6.25 5.15]; h4=[4.15 7.1 10.7 10.15 9.5 9 8.7 8.35 8 7.75 7.45 7.22 6.92 6.82 6.6 6.5 6.6 6.62 6.7 6.85 6.8 6.88 6.8 6.7 6.4 6 5.2 4.3]; h6=[4.1 8.7 12.1 11.2 10.3 9.68 9 8.6 8.18 7.7 7.48 7.22 6.9 6.7 6.6 6.55 6.6 6.6 6.62 6.65 6.7 6.68 6.52 6.35 6.05

空气动力场试验措施

山东寿光晨鸣热电厂 (三期工程) 锅炉冷态空气动力特性试验 华东电力试验研究院 电力建设调整试验所 二00六年八月

目录 1、设备概况 2、冷态空气动力特性试验 编写:崔振达 审核:王买传 批准:

1.设备概况: 山东晨鸣热电厂三期扩建工程装有二台YG-600/9.8-M型高压、高温单汽包自然循环流化床锅炉,是山东济南锅炉厂制造,模式水冷壁悬吊结构,装有二只蜗壳式绝热高温旋风分离器。 密封返料装置位于分离器下部与炉膛下部燃烧室连接,将未燃尽物料送入炉膛实现循环再燃烧。 锅炉点火方式为床下四只油燃烧器动态启动,床上布置四支辅助油枪协助升温之用,主油枪耗油量为1200kg/h,辅助油枪耗油量为1000kg/h,燃油压力3.0MPa,机械雾化,0号轻柴油。 装有二台引风机,二台一次风机、二台二次风机、二台高压风机、六台给煤机,四台水冷排渣机。 2.冷态空气动力特性试验: 2.1试验目的: 新机组投产前,为检查锅炉机组在设计、制造、安装等方面是否符合设计要求,检查在正常通风情况下所有的风机及烟、风道的风门和挡板是否完好,对有关风量的测量装置进行标定,并对布风板的均匀性,料层厚度的阻力,最低流化风量的确定作全面测试,便于在热态燃烧调整时提供相应的数据。 2.2 试验必备条件: 2.2.1 锅炉本体及风烟系统管道安装结束。 2.2.2 锅炉床层及旋风分离器内浇注料已完成,风帽孔内等杂物已清除结束。 2.2.3 所有一次风道、二次风道、给煤管及返料装置内(包括返料器内的小风帽)的杂物已清除结束。 2.2.4 关闭锅炉本体及风烟系统上的所有检查门及人孔门。 2.2.5 电除尘器安装基本结束,所有检查孔、人孔都已关闭。 2.2.6 锅炉大联锁静态校验合格,通过验收和签证。 2.2.7 所有电动风门及挡板都能远控操作,在CRT上的显示开关方向、开度指示与实际的开关方向、开度一致。 2.2.8 手动风门挡板都能操作,指示清晰,内外开度正确。 2.2.9 给煤机、一次风机、二次风机、高压风机及引风机试转合格并通过验收。 2.2.10 循环流化床底料准备好,底料应采用流化床炉渣,含碳量<3%,粒度为0~6mm,底料应进行筛分,确保颗粒度满足试验要求(或按制造厂要求)。 2.2.11 试验所需的热工、电气仪表(特别是风机的风压、风量和电流指示)安装结束并调试合格,在CRT上能显示数据,有关的传压管应用压缩空气吹扫过。 2.2.12 一、二次风的热风道上在风量测量装置前或后直段处加装2寸内螺纹缩节供试验之用,(只数和位置现场确定)安装验收结束。 2.2.13 试验临时脚手架及临时照明按要求敷设完毕,验收合格。 2.2.14 主控室内照明及事故照明能投用完好,调试合格。 2.2.15 锅炉现场照明投用完好。 2.2.16 锅炉现场、特别是主要通道、平台和扶梯的垃圾应清理完毕,保持畅通。 2.2.17 有关运行人员经培训合格上岗并熟悉本方案。 2.2.18 全厂生产通讯系统投入运行。 2.3 试验内容:

空气动力场试验

锅炉冷态通风试验措施 1 目的和编制依据 1.1目的 在锅炉点火前检查设备安装质量,发现安装缺陷,了解炉内流场及风箱配风特性,并为热态运行提供调整依据,需进行风烟系统的冷态检查及通风试验。1.2编制依据 1.2.1《火电工程启动调试工作规定》电力工业部建设协调司(1996年版)。 1.2.2《火力发电厂基本建设工程启动及竣工验收规程》电力工业部(1996年版)。 1.2.3《火电工程调整试运质量检验及评定标准》电力工业部建设协调司(1996版)。 1.2.4《火电机组达标投产考核及相关规定》 (2001年版)。 1.2.5《电力建设施工及验收技术规范》 (1996年版)。 1.2.6《HG1065/17.5-YM24型锅炉说明书第Ⅵ卷锅炉运行》哈尔滨锅炉有限责任公司(2007.5)。 1.2.7《HG1065/17.5-YM24型锅炉说明书第Ⅱ卷燃烧系统、炉墙》哈尔滨锅炉有限责任公司(2007.5)。 2. 调试范围及其主要设备的规范 2.1锅炉风烟系统检查 2.1.1风机动叶开度指示与实际开度值一致,开关灵活。风量、风压变化正常。 2.1.2一、二次风压表指示正确、反应灵敏。 2.1.3烟风道系统严密性检查。 2.1.4风机挡板以及烟风道各风门、挡板,经检查调校位置正确,开关灵活,实际开度与指示一致。 2.1.5风机工作正常。 2.1.6空预器各风门、挡板经检查调校位置正确,开关灵活。就地开度与表盘指示一致。 2.1.7二次小风门开关灵活,位置正确。就地开度与指示一致。 2.1.8手动摆动喷燃器操作灵活,角度符合设计角度要求。就地角度与表盘指示一致。 2.1.9配合热工专业标定一次风风量测量装置及二次风风量测量装置。 2.1.10检查风机并列性能。 2.1.11检查风机表计指示正确性,并记录原始工况值。 2.2冷态试验内容 2.2.1复测各喷口截面的实际尺寸。 2.2.2测量每组喷燃器安装倾角及垂直度。 2.2.3测量假想几何切圆大小。 2.2.4二次风特性试验。 2.2.5一次风速调平。 2.2.6炉膛内部检查油枪、点火枪安装尺寸正确。 2.2.7实测炉膛出口气流分布。

02j01锅炉冷态空气动力场试验作业指导书

目录 1目的 2适用范围 3引用标准 4术语/定义 5职责 6作业程序 7报告和记录 8 危险源 9 危险源控制 修改记录

1 目的 检查燃烧器制造、安装质量。掌握炉内空气动力场特性,找出存在的问题,为热态运行、燃烧调整提供依据。进行一、二次风风门档板试验,掌握其特性。对送风机、引风机、一次风机和排粉风机进行运行考验。 2 适用范围 火力发电厂煤粉锅炉。 3 引用标准 3.1 GB/T19001-2000 idt ISO9001:2000《质量管理体系——要求》 3.2 GB10184—88《电站锅炉性能试验规程》 3.3锅炉制造厂有关技术标准。 4 术语/定义 4.1 本要求采用GB/T19000—2000 idt ISO 9000:2000《质量管理体系——基础和术语》中的术语及其定义。 4.2 必要时指顾客、总工、总公司领导要求时。 5 职责 5.1 本所热动室锅炉技术岗位工作人员为本作业的承担者。 5.2 工作负责人的职责:必要时编写试验方案,现场试验人员的安排、试验测点安装验收与试验场所安全监督、试验指挥与协调、现场结果的确认和必要时最终试验报告的编写。 5.3 试验参加人员的职责:负责试验仪器的准备、监督试验测点安全、试验测试与记录、数据分析和整理,配合负责人搜集资料。 6 作业程序 6.1 本作业承担者的基本要求 6.1.1 本作业承担者应熟悉锅炉主、辅机结构性能及其运行的专业知识。 6.1.2 本作业一般为5—8人,其中工作负责人1名。工作负责人应具有本岗初级及以上技术职称,并具有两年以上工作经验。参加者应从事本专业或相关专业的人员。 6.2 试验方案的制定 6.2.1 工作负责人接到任务后应立即收集试验机组锅炉的有关资料,必要时制定

空气动力学试验指导书-南京航空航天大学精品课程

空气动力学实验指导书 大攻角飞行器侧向力产生机理实验 一实验目的 1)大攻角细长旋成体前体非对称涡系及其侧向力控制,是航空航天领域中的重要而经典的研究课题。作为飞行器设计和流体力学专业的学生,学习和了解本学科的前沿课题是十分必要的。通过实验,了解细长旋成体在大攻角时侧向力的变化特性,特别是要明白侧向力产生的物理机制以及如何控制侧向力等重要问题。 2)学习和掌握风洞模型测力实验 二实验仪器和设备 1)1米低速风洞回流风洞 细长旋成体模型的试验,是在南京航空航天大学空气动力学系非定常回流低速风洞进行。该风洞是国内首座非定常风洞,通过水平并列旁路加上非定常流动控制机构实现试验段的非定常流场。在作为定常风洞使用时具有低湍流度(0.05%)、低噪声(75dB)等特点。开口实验段为矩形1.5×1米,实7验段长度1.7米,湍流度0.5‰,最大风速是30米/秒,最低稳定风速为0.5米/秒。风洞整体布局见图-1。 2)模型姿态角控制系统 模型姿态角控制系统由系统底盘、水平圆盘转台、弯刀支架、齿轮减速箱、步进电机和驱动器以及控制计算机组成。由步进电机通过齿轮减速箱驱动圆盘转台、弯刀支架做旋转运动,两者的旋转中心与天平的校心重合。该系统可分别和同时改变迎角α和侧滑角β,其控制精度优于2′,迎角α可做360o旋转,侧滑角β变化范围在-8o~30o。内置式天平通过天平杆固定在弯刀支架上,如图-2所示。 3)细长旋成体模型(小模型,用于1米低速风洞试验) 低速风洞测力模型的前段为尖拱型的锥柱体,长细比为2,后段为等直径段圆柱体(D=62mm),模型全长L=700mm,长细比L/D=11.3,模型采用硬铝材料加工。模型采用尾支撑方式,模型后段内部装有外径为24mm的六分量测力天平及天平尾撑杆,并通过弯刀支架安装在圆盘转台上,转台由步进电机驱动可做360o水平旋转,用来改变模型的攻角。 4)压力传感器 在模型X/D=3.2,周向角φ=±120o处开了两个内径为1mm的静压孔。在模型内部装

空气动力学

基于空气动力学的车身设计方法 14车辆卓越雷方龙1408032214 现如今工业技术急速进步,为汽车工业发展创造了良好的契机,汽车变得越来越普及、越来越高速,由此车身空气动力学曲线问题得到诸多研究人员的热点关注。 众所周知,车速越快阻力越大,空气阻力与汽车速度的平方成正比。如果空气阻力占汽车行驶阻力的比率很大,会增加汽车燃油消耗量或严重影响汽车的动力性能。据测试,一辆以100km/h速度行驶的汽车,发动机输出功率的80%将被用来克服空气阻力,减少空气阻力,就能有效地改善汽车的行驶经济性。如图1为空气流动对汽车的各方面影响。 图1 自卡尔·本次在1886年发明生产出世界上第一辆汽车起,汽车已有了百年的发展历史。从汽车造型角度而言,自最初的马车型汽车(无空气动力学阶段),到现如今的复合型汽车(空气动力学高度化阶段),车身空气动力学曲线发展收获了显著的成效[1]。车身空气动力学一方面重要影响着汽车的各式各样关键性能,好比动力性能、安全性能、环保性能以及经济性能等,另一方面也重要影响着汽车的外观转变及审美发展潮流。随着社会经济发展,人们生活水平日益改善,人们对于出行必备交通工具汽车的性能要求愈来愈高,汽车生产商对于车辆的气动特征也越来越关注,气动性能的好坏以转变成汽车行业竞争的关键因素。 汽车在行驶中由于空气阻力的作用,围绕着汽车重心同时产生纵向,侧向和垂直等三个方向的空气动力量,对高速行驶的汽车都会产生不同的影响,其中纵向空气力量是最大的空气阻力,大约占整体空气阻力的80%以上。

一、在研究汽车空气动力学的过程中的三种方法。 (1)、理论研究方法理论研究方法通过抓住所分析问题的主要影响因素,抽象出合理的简化理论模型,并根据总结出来的相关物理定律和有关介质性质的试验公式来建立描述介质运动规律的积分或微分方程。然后利用各种数学工具及相应的初始、边界条件解出方程组,通过对解分析来揭示各种物理量的变化规律,包括将它与实验或观察资料对照,确定解的准确度和适用范围。 (2)、数值计算研究方法由于数学发展水平的局限,理论研究只能建立较为简单的近似模型,无法完全满足研究更复杂更符合实际的气流的要求。于是近年来出现了依托快速电子计算机进行有效数值计算的方法CFD,其中包括有限元法、有限差分法等,它属于汽车计算机辅助空气动力学CAA的设计范畴,并已成为与理论分析和实验并列或具有同等重要性的研究方法。其优点是能够用来预测或解决一些理论及实验无法处理的复杂流动问题,取代部分实验环节,省时省工。但它要求事前对问题的物理特性有足够的理解,提炼出较精确的数学方程及相应的初始、边界条件等。但这些都离不开试验和理论方法的支持,并且数值方法通常无法直接反映同类问题中有普遍指导意义的结论或规律。 (3)、试验研究方法试验研究方法在空气动力学研究中占有重要地位,如风洞试验法、道路试验法。它使人们能在与所研究问题相同或相近条件下进行观测,提供建立运动规律及理论模型的依据,检验理论或计算结果的准确性、可靠性和适用范围,其作用是不可替代的。但试验方法受限于试验手段、设备和经费等物质条件,甚至有些问题尚无法在实验室中进行研究。 理论、数值计算和试验三种方法相互促进,彼此影响,取长补短从而推动汽车空气动力学的不断发展。 二、轿车外形设计的两种方法 (1)、局部最优化方法。基本思路是在满足功能、工艺学、人机工程学、安全法规以及美学造型等方面的要求下设计出汽车车身造型,然后再进行空气设计程序。此方法的优点是:操作简单,在流线型较差的车上有较好的效果。通过对原始模型仿真,从结果中得出某细节修改的模型,再重新进行仿真分析。像这样循环反复,最终达到自己预期的目标。这种方法在现实设计中运用广泛。 (2)、整体最优化方法。整体最优化是基于空气动力学原理,在汽车造型设计初期获得极佳的气动特性的理想外形,接着再根据功能结构需求,调整集合的局部外形,使其满足人机工程学、国家安全法规等各个必要因素的汽车[1]。所以,对于这种汽车的空气动力学设

相关文档
最新文档