机车牵引单轨吊运输能力计算

机车牵引单轨吊运输能力计算
机车牵引单轨吊运输能力计算

机车牵引单轨吊运输能力可按下式计算:

Q =d d G f g F -+)

cos sin αα( =7.8)

9cos *3.09sin *8.9120-+( =7.8)9877.0*3.01564.0*8.9120-+( =7.8030.27-

=18.33

式中:d f __运行比阻力(KN/t );水平直道不大于300 N/t ,水平弯道不大于550 N/t Q __运输能力;g __重力加速度9.8;F __牵引力;d G __机车及配套设备自重 机车牵引单轨吊车运送物料、设备的机车台数可按下列公式计算:

1、机车往返一次运行时间可按下式计算:

y t =

v k L s 602 y t =0

.1*8.0*601500*2 y t =48

3000 y t =62.5

式中:v __运行速度(m/s )

s k ___速度速度影响系数,一般取0.8

2、每台机车每班往返次数可按下式计算:

P =d

y t t T +60 P =45

5.626*60+ P =3.35

式中:P __往返次数(次/台*班)

d t ___装载和调车辅助时间(min )

3、每班需用列车数可按下式计算:

n N =

y b ZG kQ n N =5

*43*33.18*2.1 =3.30

式中:n N __列车数(列/班)

k___运输不均衡系数,取1.2

3、单轨吊机车台数可按下式计算:

N =P

N n

无轨胶轮车运输

1、一般规定

1.1在下列条件下矿井井下的设备、材料和人员的运输,条件适宜时的矸石运输。要采用防爆无轨胶轮车:

1 地质条件简单,采用小倾斜角开拓或平硐开拓的近水平煤层的矿井。

2 全风压通风高瓦斯矿井进风的主要运输巷道。

3 瓦斯矿井中掘进岩石巷道、主要回风巷和采区进(回)风巷道。

1.2无轨胶轮车运行的倾斜巷道倾角不宜大于60,运行转弯半径应根据设备相应的技术恨不能选取。

1.3 立井开拓,条件适宜时井下辅助运输也可采用防爆型无轨胶轮车,在井底车场或就近合适地点应设置换装站。

2、无轨胶轮车选型计算

2.1 无轨胶轮车所需最大牵引力可按下式计算:

F =αωαcos )sin )1h i h i Q q g Q q g +++((

式中:1ω___胶轮与路面的滚动摩擦系数,混凝土路面取0.010~0.012;处理后的碎石路面取0.012~0.020;碎石、砂石路面取0.020~0.025。

2.2 无轨胶轮车运行速度应按照机车的牵引特性曲线选定。

2.3 无轨胶轮车往返一次运行时间可按下式计算:

y t =v

L k 602 式中:k___运输不均衡系数,取1.1~1.2;

2.4无轨胶轮车运输能力可按下式计算:

1 无轨胶轮车往返一次总时间可按下式计算:

t =y t t t t +++32

1 式中:t___往返一次总时间(min);

1t __装车时间(min);

1t __卸车时间(min),在正常情况下,取0.5min ~1.0min ; 1t __无轨胶轮车装车时间

1t __装车时间

2 无轨胶轮车台班运输能力可按下式计算:

2.5 无轨胶轮车台数可按下式计算:

2.6无轨胶轮车防滑条件应按下列公式确定:

单轨吊机车安全运输技术措施方案

XX煤矿 单轨吊机车运输安全技术措施单位负责人:

编制人: 施工单位: 编制日期: 执行日期: 矿审批意见 审批签字: 生产科:年月日机电科:年月日地测科:年月日通防科:年月日安监处: 年月日分管领导:年月日总工程师:年月日

单轨吊机车运输安全技术措施 为保证单轨吊机车在111082工作面安装设备过程中的运输安全且保质保量完成运输任务,特制订以下安全技术措施: 一、单轨吊机车司机岗位责任制和操作规定 1、单轨吊司机必须经过专门培训,持证上岗。 2、必须熟悉所使用单轨吊机车的结构、性能、工作原理和各种保护的原理及检查试验方法,进行日常的维护和保养,按照规程要求进行操作,并懂得一般性的保养、维修和故障处理。 3、熟悉有关安全规程,准确使用信号、通讯设施,具有一定的应变能力。 4、操作时,司机保持正确的自然姿势,坐在座位上,经常目视前方,注意观察轨道联接情况,严禁将头或身体探出车外。 5、司机不得擅自离开工作岗位,严禁在机车行驶中或尚未停稳前离开司机室。若司机必须暂时离开岗位时,不得关闭电动机或车灯,但必须把控制手把打到停车位置并关闭车控制电源。 6、起吊物件时,必须吊稳、吊平衡,货载不得超过规定,否则

严禁开车。鸣笛示警无关人员站在安全位置,否则严禁开车。 二、运输前的准备 1、检查专用的燃油、机油、液压油及冷却水,过滤水水位是否达到开车要求。 2、检查各部位的润滑油及机械联接情况,各承载轮及轴承有无损坏,否则必须更换。 3、检查各驱动轮及制动闸的磨损情况,磨损超限的必须及时更换,否则不得开车。 4、检查单轨吊各种指示仪表及电气设备是否正常。 5、检查各种液压管路,控制线路有无损伤、变形、接头是否漏液等。 6、检查发动机排烟阻燃板是否堵塞,否则必须清洗畅通。 7、检查各起吊梁是否完好,保护链是否完好有效。无保险链或保险链不完好不得运输。 8、起吊液压支架前对单轨吊梁的吊挂锚杆进行检查。单轨吊机车驱动承载重力按照液压支架全重验算: 根据机电科对单轨吊梁吊挂锚杆抽查的拉拔力平均为8吨验算,一架液压支架重约为29.5吨,驱动跨越最多为10根锚杆,每根锚杆承受重力平均为2.95吨,最少为8根锚杆,每根锚杆承受重力平均为3.68吨,根据每根锚杆承受最大重力3.68吨计算,小于8吨,满足运输液压支架要求。 三、启动机车 1、向上打开储能器开关,外拉气控总开关,迅速拉动启动马达按钮,启动机车。

单轨吊轨道选型安装规范标准

单轨吊轨道选型安装标准 (试行) Ⅰ、选型 单轨吊轨道型号、规格参照下表选择: 承担特别重型设备运输时应对轨道吊挂点强度进行校核: Ⅱ、安装一、吊具 单轨吊轨道吊具包括锚杆、吊挂板、高强度螺栓、圆环链、U 型索具等。其中锚杆不小于M22*2200,锚固力不小于80KN/ 根;连接螺栓为10.9 级以上高强度螺栓;圆环链规格为18*64mm或 18*90mm(T8),U型索具额定载荷在8.5t 以上。 二、吊挂形式 1、锚喷巷道

锚喷巷道采用锚杆+吊挂板+圆环链、锚杆+圆环链两种生 根形式 (1)单链吊挂方式 如图1 所示。此吊挂方式适应于10°以下的一般运输巷采掘工作面机风巷)使用。 图 1 单链单吊挂板吊挂方式 1. 锚杆 2. 专用吊挂板 3.高强螺栓M20× 100 4. 专用垫块 5. Φ18×64mm 6.U 型吊环 7. 高强螺栓M20× 120 8.I140E 轨道 (2)双链吊挂方式 ①双锚杆双链无吊挂板吊挂方式 如图2 所示,此吊挂方式适应于10°以上的一般运输巷(采掘工作面机风巷)使用。

②四锚杆双链双吊挂板轻轨吊挂方式 巷使用 如图 4 所示,四锚杆双链双吊挂板重轨吊挂形式一般选用 两根 Φ 18× 90mm 吊挂链,每根吊挂链采用一个吊挂板加两根 1. 锚杆 4.U 型吊环 5. 高强螺栓 M20× 120 3. Φ 18× 64mm 链环 6.I140E 轨道 如图 3 所示,此吊挂方式是适应于 10°以下的主要运输 图 2 双锚杆双链无吊挂板吊挂方式 2. 双螺帽 图 3 四锚杆双链双吊挂板吊挂方式 ③四锚杆双链双吊挂板重轨吊挂方式

《电力机车牵引计算》填空题与简答题

一、填空题: 1、《列车牵引计算》是专门研究铁路列车在外力的作用下,沿轨道运行及其相关问题的实用学科。它是以力学为基础,以科学实验和先进操纵经验为依据,分析列车运行过程中的各种现象和原理,并以此解算铁路运营和设计上的一些主要技术问题和技术经济问题。 2、机车牵引力(轮周牵引力)不得大于机车粘着牵引力,否则,车轮将发生空转。 3、机车牵引特性曲线是反映了机车的牵引力和速度之间的关系。在一定功率下,机车运行速度越低,机车牵引力越大。 4、列车运行阻力可分为基本阻力和附加阻力。(基本附加) 5、列车附加阻力可分为坡道附加阻力、曲线附加阻力和隧道空气附加阻力。 6、列车在6‰坡道上上坡运行时,则列车的单位坡道附加阻力为6N/kN 7、列车在2‰坡道上下坡运行时,则列车的单位坡道附加阻力为 -2N/KN 。 8、在计算列车的基本阻力时,当货车装载货物不足标记载重50%的车辆按空车计算;当达到标记载重50%的车辆按重车计算。 9、列车制动力是由制动装置引起的与列车运行方向相反的外力,它的大小可由司机控制,其作用是调节列车速度或使列车停车。 10、轮对的制动力不得大于轮轨间的粘着力,否则,就会发生闸瓦和车轮“抱死”滑行现象。 11、目前,我国机车、车辆上多数使用高磷闸瓦闸瓦。 12、列车制动一般分为紧急制动和常用制动。 13、列车制动力是由列车中各制动轮对产生的制动力的总和。 14、列车单位合力曲线是由牵引运行、惰性运行和制动运行三种曲线组成。 15、作用于列车上的合力的大小和方向,决定着列车的运动状态。在某种工况下,当合力大于零时,列车加速运行;当合力小于零时,列车减速运行;当合力等于零时,列车匀速运行。 16、加算坡道阻力与列车运行速度无关。(无关) 17、列车运行时间的长短取决于列车运行速度和作用在列车上单位合力的大小。 18、在某工况下,当列车所受单位合力为零时对应的运行速度,为列车的均衡速度。列车将匀速运行。 19、列车制动距离是自司机施行制动开始到列车完全停车为止,所运行的距离。 20、列车的制动距离是制动空走距离和制动有效距离之和。 21、我国普通列车紧急制动距离的限值为 800 米。 22、列车制动时间是制动空走时间和制动有效时间之和。 23、列车在长大下坡线路上施行紧急制动时,其最高允许速度必须有所限制,该速度称为列车紧急制动限速或称最大制动初速度。 24、列车换算制动率的大小,表示列车制动能力的大小。 25、列车牵引质量和列车运行速度是铁路运输工作中最重要的指标。对于一定功率的机车,在线路条件不变的情况下,若要列车运行速度快则牵引质量要相应地减少;若要增加列车牵引质量,则列车运行速度要相应地降低;因此,最有利的牵引质量和运行速度的确定,需要进行技术和经济等方面的分析比较。

单轨吊设计施工技术方案及措施

单轨吊设计施工技术方案及措施 山西忻州神达南岔煤业有限公司二0一八年一月二十五日

会审记录

副井单轨吊安装施工方案及措施学习会签表

单轨吊施工技术方案及措施 根据生产建设的需求,为加快我公司生产建设进度,我公司计划于2018年2月4日至2018年2月24日安装副井单轨吊。为确保本次安装工程的安全顺利进行,本次安装工程由双鸭山方圆建筑安装有限公司南岔项目部负责,我公司相关部门配合完成安装工程。 一、成立安装领导组 组长:张胜利(矿长)陈劲松(项目经理) 副组长:赵二忠(安全矿长) 张进忠(机电矿长) 邵有有(通风矿长) 王焕国(生产矿长) 王清水(总工程师) 尹文良(通风副总) 田春喜(安全副总) 李贤保(机电经理) (安装负责人) 成员:姬晋宁杨志弘贾心宽茹文明 二、职责 组长:全面组织本次安装工程,协调各部门积极配合项目部完成安装工程任务。 项目经理:全面组织本次安装工程,组织落实安装工程的各项措施,组织安装人员进行安装。

副组长: 机电矿长、机电科长负责安装期间机电设备的安全运行及相关配件的加工制作。监督机电设备、设施的安全使用情况。负责运输设施的安全使用监督。 总工程师、技术科长负责单轨吊安装的技术指导积极配合厂家完善技术服务工作。 安全矿长、安监科长负责安装期间的安全监督工作。 通风矿长、通风副总负责安全期间通风管理。 生产矿长、基建科长负责单轨吊安装的生产组织协调,监督安装工程中锚杆、锚索预紧力试验。 安装负责人负责组织安装人员,全面负责安装工程的现场安全监督,严格按技术要求进行工程施工,确保安全技术措施落实到位,合理组织安装工程人员,确保工程安全,保质完成。 工程安装完毕后,由组长组织,各部门参与进行安装工程验收。 三、安装工期 2018年2月4日至2018年2月24日 四、巷道基本情况概述及单轨吊布置图 1、单轨吊井下线路布置图见CAD版的单轨吊轨道运输线路图,单轨吊从地面开始直接吊运支架和物料,经副斜井进入各安装地点。 2、副斜井单轨吊布置 副斜井运输线路段见运输线路图1-2段,副井现状断面图如图一所示,副斜井长度733m,平均坡度14°,宽4.5m,管路离巷道帮0.5m,井口处巷道高度4m,其余巷段高度4.3m。吊挂点偏离巷道中心250mm。将来副井布置单轨吊

列车牵引计算课程设计

课程设计 课程名称机车车辆方向课程设计题目名称 SS4列车牵引计算 学院 _ 专业 班级__ 学号_____ __ 学生姓名______ __ 指导教师___

目录 摘要 (2) 0 引言 (3) 1.设计任务 (4) 2.机车基本参数 (4) 2.1计算牵引质量 (4) 2.2校验并确定区间牵引质量 (6) 2.3列车换算制动率的计算 (6) 3 合力图 (7) 3.1 机车各种工况的曲线 (7) 3.2绘制合力曲线 (11) 4计算制动距离和运行时间 (15) 4.1计算列车制动的距离 (15) 4.2运行时间 (19) 结束语 (27) 参考文献 (27)

摘要 本次课程设计主要进行了列车的计算牵引质量,校验了区段牵引质量,以及制动率。利用matlab画出了机车各工况的单位合力曲线。对化简的线路纵断面进行了运行时间计算及制动距离的计算。手绘出了绘制列车运行速度线和列车运行时间线。 关键词:列车;牵引;制动;计算

0 引言 提高列车牵引质量和运行速度,保证铁路行车安全和尽量节约机车能耗,是扩大铁路运输能力提高铁路工作效益的重要内容。为此,必须讲究科学管理和经济操纵,提高运输管理和列车操纵水平;很好的研究列车的牵引质量,运行速度,制动距离及机车能耗等与哪些因素有关,怎样在保证行车安全和节能的条件下“多拉快跑”;同时,要让铁路运输管理工作人员及其后备军都有这方面的知识,即会分析也会计算。列车牵引计算正是这方面必须有的,故进行本次课程设计。

1.设计任务 SS 4型电力机车牵引70辆货车,均为滚动轴承(牵引质量5000t ),其中标记载重50t ,装有GK 型制动机的重车48辆,空车5辆;标记载重25t ,装有120型制动机的重车12辆;标记载重25t ,装有120型制动机空车5辆。车辆按高磷闸瓦计算,列车管受空气压力为500KPa 。制动初速度为104Km/h 。SS 4型电力机车电功率6400KW ,轴式为2×(Bo —Bo ),轴重23t 。机车单位阻力 20'000320.00190.025.2v v ++=ω(N/KN ) 1.1求解 (1)计算牵引质量,校验并确定区段牵引质量;计算列车换算制动率等。 (2)绘制合力表,绘制合力曲线。 (3)化简线路纵断面的运行时间及制动距离等。 (4)绘制列车运行速度线和列车运行时间线。 (5)便知点算程序计算,并计算及绘图,编程语言不限。 2.机车基本参数 额度工作电压 单相交流50Hz 25kV ;传动方式 交—直流电传动;轴 式 2×(Bo —Bo );机 车 重 量 2×92 t ;轴 重 23t ;持 续 功 率 2×3200kW;最高运行速度 100 km/h ;持 续 速 度 51.5 km/h ;起动牵引力 628kN ;持 续 牵 引 力 450kN ;电制动方式 加馈电阻制动 电制动功率 5300kW ;电制动力 382kN (10~50km/h ); 传动方式 双边斜齿减速传动;传 动 比 88/21;

列车牵引计算工具dynamis及机车车辆计划管理工具(参考Word)

列车牵引计算工具(Dynamis)Dynamis是德国轨道交通管理咨询公司(RMCon)开发的专门用于轨道交通列车牵引计算的工具。该工具可实现高精度的轨道交通列车牵引计算过程,可与轨道交通综合设计验证平台无缝集成,进行数据交换。该工具可完成基于节时、定时、节能等多种策略的牵引计算过程,并进行策略对比分析,也可进行牵引能耗计算及节能操控计算等多种类型、多种目的的牵引计算过程,其计算结果已经过大量实际现场试验检验,是列车牵引计算科研及教学过程中良好辅助工具。利用本工具,还可完成认知、实践和提高等不同层次的列车牵引计算实验。 该软件还可与RailSys无缝集成,从RailSys中直接导出相关数据用于牵引计算。 软件主要功能包括: ●基于不同控制策略的牵引计算 ●不同控制策略效果对比分析 ●牵引能耗计算及节能操控计算 ●列车牵引计算结果展示 主要控制策略包括: ●定时 ●节时 ●节能 具体参数如右图所示。 计算结果如下图所示(绿色线为节能计算曲线)

车辆(动车组)运用优化工具(Dispo)Dispo是德国轨道交通管理咨询公司(RMCon)开发的专门用于轨道交通车辆或动车组运用计划优化的工具。模型可针对不同的运行图和运力资源配备情况,完成给定运行图中动车组和乘务短期及长期计划的优化编制,编制过程中还可同时考虑多种车型的运用条件等诸多约束条件。 Dispo可与RailSys无缝集成,从中导入基础设施、运行图等相关条件,并据此进行优化计算。 该软件主要功能如下: ●运用计划优化,软件可针对某一天、某一周或某个月,且考虑车底回送所需的运 行线的车辆使用计划优化; ●车底运用仿真,软件中包含仿真模块,可针对指定时间段进行仿真和评估; ●数据导出,Dispo产生的结果可直接被导出到RailSys中使用。

单轨吊选型计算

单轨吊选型计算 本矿现有一套DLZ110F型柴油动力单轨吊机车担负从副斜井井筒到采区的全部提升运输任务。其技术参数为驱动单元4+3(7驱),最高功率为81KW;气缸个数为4个;冷却方式为水冷却;自重为6000kg;驱动直径为355mm;最大迁移,最大牵引力为140KN;最高速度为2m/s;转弯半径水平为4m,垂直为8m;吊轨最大倾角30°,机车最大载荷为20吨;MHZZ-16DUO液压提吊梁,最大载重量32吨;单轨吊专用BTS型制动小车;SK-20型小车;小车自重200kg。经计算现有提升设备能满足该矿达0.90Mt / a生产能力后的辅助提升需要。 1.设计依据 1)矿井年产量:0.90Mt / a; 2)工作制度:330d,16h; 3)井筒特征:斜长:220m,倾角:0-25°; 一采区材料下山长度:650m,倾角:0-21°; 首采区工作面回风顺槽长度:850m,倾角:0-5°; 井底车场长度:200m; 最大输送距离:1920m,最大倾角25°;

4)提升方式:单轨吊车; 5)散矸容量:1.6t/m3; 6)最大班提升量: 材料及设备每班3箱; 矸石提升每班3箱; 每班下放炸药、雷管量各1箱; 每班其他作业人数:2箱/班; 配置4个3m3自卸式集装箱,每个集装箱重量860kg; 最大件为端头液压支架分体件,最大件重16t; 最大班下井人数:80; 2.单轨吊运输能力计算 1)列车牵引能力理论计算 列车在牵引状态时,机车的牵引力F(单位N)与列车的静阻力和惯性力是平衡的。 F=W o+W i+W a 式中: W o一基本阻力,N W i一坡道阻力,N;

单轨吊机车施工技术方案

单轨吊机车施工技术方案单轨吊设计施工技术方案及措施 山西忻州神达南岔煤业有限公司二0一八年一月二十五日

会审记录

副井单轨吊安装施工方案及措施学习会签表

单轨吊施工技术方案及措施 依照生产建设的需求,为加快我公司生产建设进度,我公司打算于2018年2月4日至2018年2月24日安装副井单轨吊。为确保本次安装工程的安全顺利进行,本次安装工程由双鸭山方圆建筑安装有限公司南岔项目部负责,我公司相关部门配合完成安装工程。 一、成立安装领导组 组长:张胜利(矿长)陈劲松(项目经理) 副组长:赵二忠(安全矿长) 张进忠(机电矿长) 邵有有(通风矿长) 王焕国(生产矿长) 王清水(总工程师) 尹文良(通风副总) 田春喜(安全副总) 李贤保(机电经理) (安装负责人) 成员:姬晋宁杨志弘贾心宽茹文明 二、职责 组长:全面组织本次安装工程,和谐各部门积极配合项目部完成安装工程任务。 项目经理:全面组织本次安装工程,组织落实安装工程的各项措施,组织安装人员进行安装。

副组长: 机电矿长、机电科长负责安装期间机电设备的安全运行及相关配件的加工制作。监督机电设备、设施的安全使用情形。负责运输设施的安全使用监督。 总工程师、技术科长负责单轨吊安装的技术指导积极配合厂家完善技术服务工作。 安全矿长、安监科长负责安装期间的安全监督工作。 通风矿长、通风副总负责安全期间通风治理。 生产矿长、基建科长负责单轨吊安装的生产组织和谐,监督安装工程中锚杆、锚索预紧力试验。 安装负责人负责组织安装人员,全面负责安装工程的现场安全监督,严格按技术要求进行工程施工,确保安全技术措施落实到位,合理组织安装工程人员,确保工程安全,保质完成。 工程安装完毕后,由组长组织,各部门参与进行安装工程验收。 三、安装工期 2018年2月4日至2018年2月24日 四、巷道差不多情形概述及单轨吊布置图 1、单轨吊井下线路布置图见CAD版的单轨吊轨道运输线路图,单轨吊从地面开始直截了当吊运支架和物料,经副斜井进入各安装地点。 2、副斜井单轨吊布置 副斜井运输线路段见运输线路图1-2段,副井现状断面图如图一所示,副斜井长度733m,平均坡度14°,宽4.5m,管路离巷道帮0.5m,井口处巷道高度4m,其余巷段高度4.3m。吊挂点偏离巷道中心250mm。今后副井布置单轨吊

204工作面单轨吊设计

陕西正通煤业204工作面单轨吊设计 一、作业环境及设备参数 (一)作业环境 为确保西区204工作面回采时综采配件、排水设备、物料等安全可靠、快速高效地运输,在204两顺槽、204撤面道、205回风顺槽安装单轨吊梁,巷道最大坡度8°最大长度1750m。 (二)设备参数 发动机型号: ZETOR1404-turbo(符合矿井使用条件) 发动机类型:直喷压燃式柴油机 最大输出功率: 81KW 额定转速: 2300min-1 发动机重量: 500kg 发动机起动器:液压式 最大载重量: 16t 联轴器:整体式弹性联轴器 传动:液压静压-可调节形式,液压马达 制动器:液压-机械钳式制动器 最大牵引力: 100KN 最大行驶速度: 4.3km/h 机车总重: 5200kg 水平转弯半径: 4000mm

垂直转弯半径: 8000mm 最大允许坡度: 30° 二、单轨吊选型设计 根据巷道实际情况,参照运输最大部件和单轨道机车最大运行坡度进行选型计算:(物料最大重量16t,最大件巷道坡度最大8°,满足单轨道运输要求最大30°要求) (一)设备选型计算 单轨道安装于204回风顺槽1750m,最大坡度8°。 1、列车牵引能力计算 列车在牵引状态的F与列车的静阻力阻力和惯性力是平衡的。 F=W o+W i+Wα 式中: W o-基本阻力,N; W i-坡道阻力,N; Wα-惯性力,N。 (1)W o=(P+Q)g.ω=4321.8N P-列车质量(机车自重5200kg+起吊梁自重2000kg+司机自重150kg+制动车500kg) Q-货物自重,(取最大件16000kg) g-重力加速度,9.8m/s2 ω-列车阻力。

列车牵引与制动复习题及参考答案

中南大学网络教育课程考试复习题及参考答案 列车牵引与制动 一、填空题: 1.列车制动一般分为紧急制动和常用制动。 2.常用制动是把正常情況下为调节或控制列车速度,包括进站停车所施行的制动。 3.紧急制动是指紧急情况下为使列车尽快停止而施行的制动。 4.按传动机构的配置,基础制动装置可分为散开式和单元式两种。 5.只要轮轨间粘着不被破杯,制动力将随闸瓦压力的增加而增大。 6.轨道涡流制动既不受钢轨黏着限制,也没有磨耗问题。 7.摩擦制动作用产生的要素为闸瓦、车轮、钢轨。 8.摩擦制动方法包括闸瓦和盘形制动两种。 9.空重车调整装置目前主要是二级人工调整。 10.我国货车列车管定压一般为500 kPa,客车一般为600 kPa 11.制动机的灵敏度分为制动灵敏度和缓解灵敏度。 12.列车管减压速度达到紧急灵敏度指标时必须起紧急制动,而不能是常用制动。 13.常用制动的安定性是常用制动列车管减压速度的下限。 14.制动作用沿列车长度方向的传播速度称为制动波速。 15.制动波速高,说明列车前后部制动作用的时间差小,既可减轻纵向冲动,又能缩短制动距离。 16.ST型闸调安装方式有推杆式和杠杆式两种,分别安装在基础制动装置的上拉杆和链接拉杆上。 17.具有二压力机构阀的自动制动机,在制动管与制动缸之间安装了三通阀和副风缸。 18.具有三压力机构阀的自动制动机,分配阀的动作由制动管、定压风缸和制动缸三种压力来控制。 19.我国目前铁路客车电空制动机主要型式为104型和_F-8 型。 20.我国目前铁路货车空气制动机型式为120型、GK型和103型。 21.为使每个三通阀都能实现紧急局部减压,在阀的下部加了一个紧总部。 22.103及104型分配阀中间体上的三个空腔分别是局减室、容积室、紧急室。 23.103型分配阀构造上由主阀、中间体、紧急阀三部分组成。 24.103及104型分配阀结构原理是二压力机构间接作用式。 25.F8阀转换盖板切断通路时,可形成阶段缓解作用。 26.F8型分配阀在构造上由主阀、辅助阀、中间体等几部分组成。 27.120型空气控制阀的结构原理是二压力机构直接作用式。 28.120型控制阀半自动缓解阀由手柄部和活塞部两部分组成。 29.F-8阀转换盖板连通通路时,可实现制动机一次性缓解作用。 30.F8型分配阀的限压阀的作用是限制制动缸的最高压力 31.当F-8型制动机与二压力制动机混编时,应将转换盖板转到一次缓解位。 32.JZ-7型空气制动机自阀手柄的几个不同位置是:过充位、运转位、制动位、过量减压位、 手柄取出位、紧急制动位。 33.JZ-7型空气制动机单阀阀体上装有三个阀件,分别为单缓柱塞阀、定位柱塞阀和调整阀。 34.JZ-7型分配阀副阀膜板左侧通制动管,右侧通降压风缸。 35.JZ-7型空气制动机自阀手柄在紧急制动位时,自阀的放风阀直接排列车管压力空气。 36.电空制动机的特点是制动作用的操纵控制用电,但制动作用的原动力还是压力空气。 37.DK-1型电空制动机分配阀安全阀的作用是防止容积室内压力过高而使机车出现滑行现象。 38DK-1型电空制动机分配阀在充气缓解位制动管向工作风缸充风。 39.DK-1型电空制动机分配阀主阀部的作用是控制机车的充气、制动、保压及紧急制动状态的形成。 40.DK-1型电空制动机制动缸的排风通路由分配阀的均衡阀控制。 41.DK-1型电空制动机空气位操作时应将空气制动阀上的转换键置空气。 42.DK-1型电空制动机空气制动阀在正常情况下用来单独控制机车的制动或缓解。 43.DK-1型电空制动机空气制动阀缓解位时,定位凸轮未压缩中联锁。 44.DK-1型电空制动机总风遮断阀受中立电空阀的控制。

电力机车牵引计算

一.客运机车 1.借助SS8型电力机车阻力公式 机车运行单位基本阻力: 列车阻力中难以确定的是列车基本运行阻力。列车基本运行阻力主要来源于机械阻力和空气阻力,基本运行阻力与速度之间的关系可用下式表示 2W A Bv Cv =++ 公式中,前两项是机械阻力(小部分为空气阻力),后一项是空气阻力 阻力的实际组成看,后两项阻力占极大部分,压差阻力仅占空气阻力较小部 分,影响较小。现在我们暂且用这些公式进行估算,最后确定机车的功率。 以电力机车SS 8作为计算 / 20 1.020.00350.000426v v ω=++ V =200时的/ 0ω=18.76N/KN V =220时的/ 0ω=22.4084N/KN V =200时的// 0ω=9.89N/KN V =220时的// 0ω=11.5408N/KN 2.列车牵引功率计算 八轴轴机车质量168t;根据我国的具体情况铁路旅客列车大都为20节,总重量为1100t 。 列车回转系数 γ=0·06。 a 的取值在0.03~0.05之间(列车牵引计算) 0ω=11.0652N/KN(8轴200k/h) 0ω=12.98067N/KN(8轴220k/h) 0ω=10.8016N/KN(6轴200k/h) 0ω=12.6577N/KN(6轴220k/h) 电力机车所需的功率:(kw )表1

在文献《浅析200km/h速度等级客运机车的功率选择》借用《牵规》中SS8的阻力基本公式和《高速试验列车技术条件》估算了200km/h电力机车的功率,作者认为在高速时由于列车有减阻措施,计算结果前者偏大后者偏低。当速度为200km/h时,按《高速试验列车技术条件》计算比《牵规》计算的结果小12%左右,考虑到两种方法结果的偏差,本文在此以《牵规》计算结果减小5%作为电 较合理。 机车牵引功率选择时,需考虑列车最高运行速度时剩余加速度的大小和列车达1·1vmax速度时,仍需具有一定的剩余加速度(参照《牵规》暂定0·02m/s2)。根据计算电力机车所需功率,现有最大的单轴功率为1600kw,6轴机车只有当剩余加速度为0.04时才刚好满足要求,并且还不能满足1.1v时剩余加速度为0.02的要求。如果要使用6轴机车则必需减小列车的编组。所以选择8轴机车单轴功率为1500 kw /1600 kw、总功率为12000 kw /12800 kw比较合适。 3.剩余加速度计算 8轴机车牵引1100t列车的剩余加速度 果可知: 8轴机车牵引方案总功率为12800kw牵引1100t时,速度200km/h时,剩余加速度能到达0.052,同时但能满足1·1vmax时,仍具有0.02加速度的要求;总功率为12000kw速度为200km/h时,剩余加速度能到达0.042,在速度为1·1vmax时,剩余加速度为0.011略显不足。 4.机车的坡道起动条件 欧洲高速运输的满载列车,需满足在牵引力下降25%和35‰坡道上以0·05 m/s2加速度启动达到60km/h。考虑到我国高速和快速客运专线的线路坡度通常不大于12‰,困难区段不大于20‰。文中仅对12‰和20‰坡道进行分析比较计算。分析机车牵引1100t,在12‰和20‰坡道, 75%牵引力时的启动加速度。 根据《我国200km/h客运机车的动轴数分析》计算的结果,8轴机车具有很好的坡道启动加速性能,并且优于6轴机车。 速度为60时的单位阻力: / 0(60) ω=2.7636 // 0(60) ω=2.5232 20‰坡道时的启动加速度

单轨吊简介

第一章单轨吊的发展与应用前景 第一节、单轨吊的发展历史及现状 一、传统的运输方式的优缺点分析。 目前,我国大多数煤矿的采掘工作面的辅助运输广泛采用小绞车(回柱机)对拉、接力运输方式,这种运输方式运输能力低,运输环节多,占用设备多,占用人员多,需要铺设大量的中间车场,安全隐患大,成为制约矿井安全和机械化发展的老大难问题。近几年来,推广了卡轨车(梭车)运输,对于解决上述问题发挥了重要作用,特别是对于掘进矸石运输效果更为突出。但是卡轨车对巷道长度、坡度和弯道、轨道、变形等条件的要求比较严格。随着煤矿开采深度的加大,巷道变形严重,大大限制了卡轨车运输方式的推广应用。下面就两种运输方式进行分析。 (一)、小绞车运输 1、用途:目前我矿绝大多数是采用小绞车运输方式,主要用于采区顺槽掘进矸石、物料和综采设备的运输。 2、存在突出问题 (1)、运输能力低。由于多部小绞车运输环节多,大量时间消耗在人工多次倒车、连车和摘挂钩上,而且小绞车本身速度不快(25KW绞车为 1.086m/s,40kw绞车为1.305m/s),因此运输能力低,是目前影响运输效率提高的关键因素。 (2)、运输环节多,占用人员多,效率低,劳动强度大。因小绞车的最大运输距离不超过400m,当运距大于400m以后,至少需要4台小绞车,各小绞车需配备司机,各车场需设把钩工,造成采掘巷道需要安排大量人员从事辅助运输工作,效率十分低下。 (3)、占用设备多。需占用大量的小绞车,开关电缆及各种小型电器,增加了安装和维护工作量。 (4)、轨道系统复杂,受巷道变形影响严重,维护量大。 (5)、需要增加大量的中间车场。为保证行人安全方便,各类车场需加大断面,这样既浪费材料又费时费工,同时还增加了排矸量,不利于巷道支护。 (6)、安全隐患大。由于小绞车的使用环境差,造成小绞车排绳乱,钢丝绳损坏

柴油机单轨吊的优化选型及应用

柴油机单轨吊的优化选型及应用 摘要:柴油机单轨吊机车是一种挂在单轨铁路上运行的、通过柴油机液压驱动的机车。分析了某矿采用柴油机单轨吊方案的可行性,讨论了机车选型时的考虑因素、配置方案和效率分析,对轨道系统的选型和悬挂方式进行了合理设计。 关键词:单轨吊;可行性;配置;选型;轨道 引言 据统计,我国煤矿井下辅助运输人员约占井下职工总数的1/3以上,与国外采煤技术先进国家相比差距很大。单件设备重量不断加大,采掘工况复杂,产量增加等对辅助运输量(效率)要求不断提高。辅助运输作业也属易发生事故的薄弱环节。我国矿井辅助运输事故约占井下事故总数的30%,仅次于顶板事故,而且呈上升趋势。采用传统辅助运输方式,钢丝绳在牵引过程中容易产生火花,同时由于钢丝绳的磨损会发生断绳的危险。轨道系统线长面广,绞车运输倒换摘挂环节多,涉及的人员多,发生意外事故的概率较高。 1.采用柴油机单轨吊的可行性分析 针对上面提到的这些问题,工程技术人员根据该矿实际情况和矿上对人员、材料及液压支架的日常运输要求,提出在该矿西翼采区轨道巷使用柴油单轨吊系统。 1.1.巷道物理条件适用性分析 支架运输时的总高度应包括以下几个部分:巷道顶板到轨道底端的高度0.8 m,轨道底端到起吊梁底部的高度0.979 m,液压支架高度2.725 m和距底板安全运输距离0.2 m。即总高度为0.8+0.979+2.725+0.300=4.704m,此高度为单轨吊运输支架时所需巷道高度。 物料运输时的总高度应包括以下几个部分:巷道顶板到轨道底端的高度0.8 m,轨道底端到起吊梁底部的高度0.633 m,普通矿车专用固定框架高度0.417m,普通矿车高度 1.15 m和距底板安全运输距离0.2 m。即总高度为0.8+0.633+0.517+1.15+0.2=3.2m,此高度为单轨吊运输物料时所需巷道高度(普通矿车高度1.15m为例)。 人员运输时的总高度应包括以下几个部分:巷道顶板到轨道底端的高度0.8 m,轨道底端到起吊梁底部的高度0.633 m,人车舱高度1.620 m,底板安全运输距离0.2m。即总高度为0.8+0.633+1.62+0.2=3.253m,此高度为单轨吊运输人员时所需巷道高度(以人车仓高1.620m为例)。 以上巷道高度是根据机车在运人、运料、运支架时对巷道的最低要求,另外

单轨吊施工方案

天津嘉里中心酒店幕墙工程单轨吊施工方案 编制人: . 审核人: . 批准人: . 嘉特纳幕墙(上海)有限公司

目录 第一章工程概况 (3) 第二章单轨吊安装拆除说明 (5) 第三章单轨吊使用说明 (11) 第四章单轨吊使用注意事项 (13) 第五章单轨吊验收检查 (14)

第一章工程概况 1、概述 塔楼单元体总共有4672 樘,施工期间单元体以每日运输40 块单元体进场,每天需进3车,场地及时间都有较多限制,需总包大力协助,指定一处板块放置的专用场地和配置夜间照明设施。 单元体采用小吊车配合环形轨道进行单元板块安装,小吊车用于单元体的垂直运输,环形吊装轨道用于单元体的水平运输,卸货及地面水平运输运输用5吨叉车。 单元体吊装操作步骤 操作步骤说明: ○1先用固定在一点的小吊车把所要安装的板块从地面吊到安装高度。

○3通过手动跑车把单元板块运到安装位置,使用手动葫芦进行竖向调节安装板块。 吊装轨道设置

第二章单轨吊安装拆除说明 单轨吊机是悬挂在楼板四周的工字钢轨道与电动葫芦所组成的吊装设备。用于幕墙单元板吊装的专用设备,它具有操作方便、灵活、安装速度快等特点,第一次安装在20层楼面,此后安装在33层(根据施工进度及现场情况架设)。 1、安装拆除方法 1)、定做好的单轨吊(工字钢)运输到需要安装的楼层,分别放置在需要安装的位置旁边。 2)、因单轨吊安装在结构楼板的外边,所以安装时要防止坠落,必须采取有效的安全措施。 3)、安装程序: 单轨吊车安装流程图 安装悬挑工字钢及环形轨道的工字钢的操作安全措施: 轨道安装控制两个方面的安全:防止操作时轨道的坠落伤人和操作

机车牵引计算1

牵引计算 1. 新牵规粘着系数计算: 国产各型内燃机车: 5.9 0.2487520j v μ=++ (1) 2. 机车粘着重量的确定: 2.1限坡启动能力对机车粘着重量的要求 在限坡道上,保证列车能启动的条件为: /// 1000q i jo q i P G ωωμωω+≥-- (2) 式中 P ——所求的机车粘着重量(t ) G ——列车重量(t ) /q ω——机车的单位启动阻力,按牵规取5N/KN //q ω——列车的单位启动阻力,按牵规取3.5N/KN i ω——单位坡道阻力,取6N/KN(对应坡道为6‰) jo μ——起动时的粘着系数,按表1取值 2.2限坡通过能力对机车粘着重量的要求 为了保证线路的通过能力,列车通过限坡的速度一般不宜低于30km/h ,机车牵引列车以30km/h 的均衡速度通过限坡并保证轮轨粘着的条件: //0/01000i j i P G ωωμωω+≥ -- (3) /0ω——机车牵引运行时的单位基本阻力,按《牵规》中的东风4型机车公式取值, /20 2.280.02930.000178v v ω=++ (4) 当速度为30km/h 时,/ 0ω=3.3192N/KN //0ω——列车单位运行阻力,重货车,滚动轴承货车按《牵规》计算公式取值,

//200.920.00480.000125v v ω=++ (5) 当速度为30km/h 时,//0 ω =1.0487N/KN j μ——按表1取值 按(3)计算,牵引不同吨位的货运列车以30km/h 的速度通过6‰坡道,所需的机车粘着重 2.3计算机车粘着重量结果分析 结合表2和表3可以得出以下结论: 在坡度6‰和机车起动条件下,牵引4000t 的列车,现有的6轴机车就可以满足要求,一旦将列车重量提高到5000t 以上,机车的粘着重量上升到151吨以上,现有的内燃机车就不能满足要求,则需要单节的八轴机车或多机重联牵引。 3. 对机车功率的需求 3.1重载时,平直道上能达到最高运行速度的条件 ///009.813600P G N V ωωη +≥? (6) 式中 N ——所求的柴油机的装机功率(kw ) P ——机车粘着重量,当列车重量为5000t 以下时取150t η——柴油机功率利用系数,取0.8 按照(6)计算,牵引不同的吨位时的柴油机装机功率如表4。 表 4 3.2快速货运列车 一般现在的快速货运列车,以专列编组为P 65货车来看,取25辆编组,载重量在1800t 左右,现在取载重量为2000t ,计算不同速度下的柴油机装机功率的需求,如表5。

关于单轨吊运输系统调研报告)

关于单轨吊运输系统使用情况调研报告 2013年6月24日,根据公司安排机电、地质、设计、通防防冲等专业共计11人,到临矿集团古城煤矿对井下采用单轨吊运输进行调研学习,下面我们就把这次调研的感受,并结合高煤公司目前井下运输设备装配的情况及下一步在辅助运输方面的建议作出如下汇报: 一、调研目的 (一)主要学习和调研古城煤矿单轨吊辅助运输设备的使用范围、条件、效果及冲击地压的治理情况。 (二)结合我公司的实际情况为下一步的运输装备升级和改造提供规划和设想,从而达到以装备置换人,以新装备、新技术实现运输本质安全的超越提升。 二、古城煤矿简介 山东能源临矿集团古城煤矿是经国家计委批准建设的国有大型现代化矿井,1996年5月开工建设,2001年投入生产,设计年生产能力90万吨,核定年生产能力220万吨,系统最大生产能力300万吨,现有职工2780人。与矿井生产能力相配套的有铁路专用线,年入洗量180万吨的精煤洗选厂、装机容量为24MW的综合利用电厂。矿井开采深度最大达1300米,应力集中程度高,属于超井深、厚煤层开采、强冲击地压,受冲击地压威胁较大。 三、古城煤矿地质采矿及支护方式 (一)古城煤矿主采煤层为山西组3煤,煤层顶板为砂质泥岩厚度、底板岩性厚度,矿井整体划分为3个水平,即-500水平、-850水平、-1030水平,开采最深的地方达到负1000m以下,主要

采用建下宽条带开采工艺。 (二)古城煤矿工作面到采区到全矿井顶、底板岩性进行深入了解: 1、古城煤矿3205工作面 该作面标高-1000~-1220m、地面标高+52.86~+54.75m、煤层倾角8°~11°。3煤顶、底板情况见(表1) (表1) 2、古城煤矿33采区 该作面标高-640~-1050m、地面标高+55.37m、煤层倾角5~25°平均14°°、3煤厚度8.75m,硬度系数f=2-4。 3、煤顶、底板情况见(表2) (表2)

机车牵引计算

电机车牵引车辆计算(一) 一、原始数据: 1、设计生产率:设计生产率是根据班生产率,并考虑到运输不均衡系数而确定的。矿用电机车的运输不均衡系数采用1.25。 2、加权平均运距: 计算公式: L=(A1L1+ A2L2+·····)/(A1+A2+·····)(Km) A1,A2-装车站班生产率,t/班; L1,L2装车站至井底车场运距。 3、线路平均坡度: 计算公式: ip=1000(H2-H1)/L0=(i1L1+i2L2+·····+i n L n)/(L1+L2+·····+L n)‰ 式中:i 1、i 2、 i n —各段线路的坡度,‰; L 1 、L 2 、L n —各段线路的长度,m; L0—运输线路长度,m;H2—线路终点的标高,m;H1—线路起点的标高,m。 二、选择电机车的粘着质量: 我矿原设计年产120万吨,经过扩能技改将达到年产300万吨。矿井的发展需要多种机车运输才能达到要求。为此,矿井地面采用XK8-6/110两台、CTY8-6/130一台备用;井下采用XK10-6/550六台、CTY5-6/84十台。牵引MGC1.1-6矿车运输,矿车自重为610kg,牵引矸石车时,最大载重量为1800kg。运输线路平均坡度为3‰。 三、列车组成计算: 列车组成计算必须满足以下三个条件: 1、按照电机车的粘着质量计算。 2、按牵引电动机的允许温升计算。 3、按列车的制动条件计算。 从以上三个条件的计算结果中选取最小者,作为列车组成计算的依据。 (一)按电机车的粘着质量计算重车组质量: F=1000(P+Q Z)[(ωz+ip)g+1.075a](N) 式中F-重列车上坡启动时电机车所需给出的牵引力N; P-电机车质量t; Q Z-重车组质量t; ωz-重车组启动时的阻力系数,取0.0120; ip-运输线路平均坡度,取3‰ g-重力加速度,取9.8m/s2; a-启动时的加速度,一般取0.03-0.05m/s2,计算时取0.04。 根据电机车的粘着条件公式:F≤1000P N gψ(N) 式中:P N -电机车粘着质量,t; ψ-粘着系数(按撒沙启动时计),取0.24。 得出:1000(P+Q Z)[(ωz+ip)g+1.075a]≤1000P N gψ 即:Q Z≤[P N gψ/(ω z +ip)g+1.075a]-P (1)采用10t机车运输时: Q Z10≤[P N gψ/(ωz+ip)g+1.075a]-P=[10×9.8×0.24/(0.0120+0.003)×9.8+1.075×0.04]-10=113.789t (2)采用8t机车运输时: Q Z8≤[P N gψ/(ωz+ip)g+1.075a]-P=[8×9.8×0.24/(0.0120+0.003)×

单轨吊方案

***煤矿单轨吊方案 、巷道基本条件 1、单轨吊运输线路如图一说示,单轨吊服务于一采胶带上山,主要用于综掘设备的运输以及锚杆、锚索、锚网等材料的运输,运输过程中的最重物体为综掘机,高1500mm重20吨。 2、单轨吊运行线路中最大坡度为18°,井底车场断面宽度为4.6m,皮带巷断面宽度4.8m,联巷断面宽度4.2m。目前巷道正在掘进过程中。 图一单轨吊运输线路图 CS10 二、机车的选型 1、选用柴油机车DZ1800 3+3型的,机车重量8700kg,长度 20.448m,牵引力120KN制动力180KN J起吊梁选用SLG8.1.2的,自身重4633kg,长13.1m。携带掘进机时,机车重量加载荷总重为 G=8700+4633+20000=33333kg 查速度曲线图表一得:坡度为18°时,机车所需要的牵引力约为110KN则选用DZ1800 3+3型柴油机车完全可以满足吊运20吨重物的要求。

速度曲线图表 Fig. 1:驱动图表DZ1800 3+3,摩擦轮? 340,发 动机470 cm 3, 12/8 发动机 2、机车的配置初步为SLG8.1.2起吊梁1套,8吨的起吊梁2套。 SLG8.1.2起吊梁用来运输综掘机等重量大的设备;8吨的起吊梁用来 运输物料 及其它小型设备。 S s s irt M J ■ 、 p? \ X li _■ 詈黑JL Gunns 芒 mqa srt TEE 一 」01m 噩 UJLIEnppnJq 一星 Q 导■巨豈c 一墨京皆至丢总駁 sft - -Um 一 ^UJnCLc Neigung in Grad _■ ddurlm-」 o ¥a.wd i5MESJeqn 00GI4u-<匸 上 @世?壘 V-UJ > HeNB-PUPHrQSse

机车牵引单轨吊运输能力计算

机车牵引单轨吊运输能力可按下式计算: Q =d d G f g F -+) cos sin αα( =7.8) 9cos *3.09sin *8.9120-+( =7.8)9877.0*3.01564.0*8.9120-+( =7.8030.27- =18.33 式中:d f __运行比阻力(KN/t );水平直道不大于300 N/t ,水平弯道不大于550 N/t Q __运输能力;g __重力加速度9.8;F __牵引力;d G __机车及配套设备自重 机车牵引单轨吊车运送物料、设备的机车台数可按下列公式计算: 1、机车往返一次运行时间可按下式计算: y t = v k L s 602 y t =0 .1*8.0*601500*2 y t =48 3000 y t =62.5 式中:v __运行速度(m/s ) s k ___速度速度影响系数,一般取0.8 2、每台机车每班往返次数可按下式计算: P =d y t t T +60 P =45 5.626*60+ P =3.35

式中:P __往返次数(次/台*班) d t ___装载和调车辅助时间(min ) 3、每班需用列车数可按下式计算: n N = y b ZG kQ n N =5 *43*33.18*2.1 =3.30 式中:n N __列车数(列/班) k___运输不均衡系数,取1.2 3、单轨吊机车台数可按下式计算: N =P N n 无轨胶轮车运输 1、一般规定 1.1在下列条件下矿井井下的设备、材料和人员的运输,条件适宜时的矸石运输。要采用防爆无轨胶轮车: 1 地质条件简单,采用小倾斜角开拓或平硐开拓的近水平煤层的矿井。 2 全风压通风高瓦斯矿井进风的主要运输巷道。 3 瓦斯矿井中掘进岩石巷道、主要回风巷和采区进(回)风巷道。 1.2无轨胶轮车运行的倾斜巷道倾角不宜大于60,运行转弯半径应根据设备相应的技术恨不能选取。 1.3 立井开拓,条件适宜时井下辅助运输也可采用防爆型无轨胶轮车,在井底车场或就近合适地点应设置换装站。 2、无轨胶轮车选型计算 2.1 无轨胶轮车所需最大牵引力可按下式计算: F =αωαcos )sin )1h i h i Q q g Q q g +++(( 式中:1ω___胶轮与路面的滚动摩擦系数,混凝土路面取0.010~0.012;处理后的碎石路面取0.012~0.020;碎石、砂石路面取0.020~0.025。 2.2 无轨胶轮车运行速度应按照机车的牵引特性曲线选定。

相关文档
最新文档