浅谈青藏铁路冻土区片石路基施工技术

浅谈青藏铁路冻土区片石路基施工技术
浅谈青藏铁路冻土区片石路基施工技术

浅谈青藏铁路冻土区片石路基施工技术

刘厚菊

(湖南交通职业技术学院,湖南长沙410004)

[摘要]本文介绍了青藏铁路格拉段的地质概况和冻土区片石铁路路基施工方法、技术要求及冻土区采用片石施工的效果。

[关键词]青藏铁路冻土区片石路基施工技术

青藏高原素有“世界屋脊”、“地球第三极”之称。举世瞩目的青藏铁路(格尔木至拉萨段,简称格拉段)地处青藏高原腹地,是世界上海拔最高,线路最长的高原铁路。青藏高原独特的地理位置、变化多样的地貌特征、严酷的自然环境和复杂的地质条件,使得青藏铁路建设面临多年冻土、生态脆弱、高寒缺氧三大难题。其难度举世无双,是一项极具研究性和探索性的宏伟工程,被誉为人类铁路建设史上前所未有的伟大壮举。

一.格拉段的地质概况

格拉段全长1142km,其中有965km线路在海拔4000m以上,有550km穿越多年冻土地带。多年冻土按其年平均地温Tcp可分为:高温极不稳定冻土区(Tcp≥-0.5℃);高温不稳定冻土区(-1.0℃≤Tcp

<-0.5℃);低温基本稳定冻土区(-2.0℃≤Tcp<-1.0℃);低温稳定冻土区(Tcp≤-2.0℃)。气候的变化、温度场的变化、工程建设、车辆行驶以及开挖等人为扰动容易造成高温极不稳定冻土区和高温稳定冻土区的冻土上限发生变化,产生冻胀、融沉等不良地质现象。特别是高温极不稳定区和高温不稳定区的高寒冰量冻土地段(即富冰冻土、饱冰冻土和含土冰层地段),气候的变化、温度场的变化、工程建设、车辆行驶以及开挖等人为扰动会引起多年冻土的融化,产生融陷或融沉,极大地影响了铁路路基的稳定性。对于低温稳定区和低温基本稳定区的含土冰层,如果埋藏较浅且厚度较大时,也易受施工扰动和全球气温变暖的影响,一旦融化必将严重危害铁路路基的安全。为此,在这些特殊的施工区域必须采取相应的保护措施,避免暖季的热和寒季的冷传入路基基底,以保证路基基底多年冻土的自然上限基本稳定,从而提高路基的稳定性。实践证明:采取片石通风路堤和护道是保持多年冻土上限基本稳定的有效措施。

二.施工方法

1.原理

片石通风路堤是通过倾填片石层,人为的增加堤身的空隙度,使堤身存在不连续界面的块状堆积体,增强堤身、堤外热的对流传导。

在寒季,堤身温度高于堤外温度,根据温度梯度在垂直方向上的分布特征,堤外密度大的冷空气下降置换堤身内密度较小的热空气,促进堤身内热量的散逸,保证堤身内温度稳定;在暖季,堤外温度高于堤身内温度,地—气温度梯度逆转,抑制了冷热空气的对流,使堤身内温度处于稳定状态,有效地阻止了路堤底基层多年冻土的融化,保证了多年冻土路基的稳定。

2.施工方法及要求

⑴当填筑高度H ≥3.5 m时。首先对原地面进行碾压,达到验收标准后,填筑一层土拱,土拱自路基

中心向两侧设2%的排水横坡(或者根据地形设成单面坡),坡脚处的最小厚度不小于30 cm,并碾压到相应的密实度;再在土拱上从路堤两边坡脚外2.0 m开始向路堤中心码砌片石,片石粒径20~30cm,码砌片石2.0 m~3.0 m宽,中间倾填粒径20~30cm的片石;推土机平整后,再倾填粒径10~20cm

的片石,两倾填片石层的厚度不低于1.2 m;然后在片石层的顶部铺设20cm厚的碎砾石和20cm厚的中粗砂反滤层(碎砾石和中粗砂的级配要严格控制,防止碎砾石和中粗砂漏入片石层中,影响通风效果),并碾压到平整度小于2cm,密实度大于70%;最后再填筑土。

⑵当填筑高度2.5m≤H<3.5m时。施工方法和步骤同上,只是将1.2 m厚的倾填片石层改为1.0 m 厚的倾填片石层。

倾填片石通风路堤标准横断面图如下:

⑶当填筑高度H < 2.5m时,先应进行地基换填处理,挖除0.8m厚的天然地基,铺设20cm级配良好,质地坚硬的中粗砂,并碾压到平整度小于2cm后,再铺设0.06 m厚的聚氨脂板,并对接缝处的粘接质量进行检验,合格后再填土。

实践证明,采取片石通风路堤可以充分利用寒季和暖季冷热空气比重上的差异来维持多年冻土上限的热平衡,保持冻土上限位置或促使上限上升,是保护多年冻土路基稳定的有效技术措施。片石通风路堤应是寒区路基工程建设保护多年冻土区的常用工程措施之一。

青藏铁路的冻土问题

★青藏铁路的冻土问题★ 青藏铁路穿过冻土区有550公里,实际上真正的冻土地段不到400公里;而在这400公里中,属于较不稳定、不稳定多年冻土地区不会超过190公里,其中极不稳定高温冻土地段在100公里之内。 历史上对冻土开展过哪些研究 青藏铁路冻土研究涉及的内容之深、投入的人力物力之多、经历的时间之长在世界上都是罕见的 早在60年代,铁一院便与中科院原冰川冻土研究所、铁道部科学研究院西北研究所一道,在青藏高原以风火山地区为代表,开展了高原冻土的研究。这一研究已坚持开展了近40年,取得了丰硕的成果。现在可以肯定讲,青藏铁路沿线冻土的基本分布特征已基本搞清,在冻土地区修建铁路在技术上已没有大的问题,是科学的、完全可行的。 另外,1974年8月,根据中央指示和当时加快勘测设计工作的要求,曾成立了由中国科学院、铁道部、一机部、铁道兵、青海省、西藏自治区等有关领导同志组成的青藏铁路科研工作领导小组,下设盐湖冻土、高原机电设备、通信信号、施工等四个协作组;组织了全国9个部门与19个省、市、自治区的68家工厂、部队、研究所、设计院和大、专院校,共1700多名科技人员,开展了青藏铁路科研工作,进行了大量的研究与实践,并取得了卓有成效的成果,部分成果于1980年底通过了审查鉴定。 多年冻土区土建工程设计的主要原则 青藏铁路的成败决定于路基,而路基最大的问题就是多年冻土。根据不同的工程地质条件,土建工程应根据不同情况,采取相应的不同设计原则: 在年平均地温较低的稳定型多年冻土区应采取保持地基冻结状态的设计原则;在年平均地温较高、含冰量较少、基沉降量可以得到有效控制的地段,采用施工及运营期允许融化的原则;在极不稳定的冻土地段,可采用铺设保温层、通风路基、清除富冰冻土、热桩、以桥代路等综合技术措施;在不融沉或弱融沉的少冰冻土、多冰冻土地区可采取不考虑建筑物热力影响的常规设计方法;在各类冻土地区都必须加强对冻土的环境保护,对取弃土场、路基填筑方式等制定严格的技术要求。 多年冻土的解决办法与技术 目前有多种解决的办法与技术,一是适当提高路基填土高度,用天然土保温,这种方法价廉,可普遍采用。二是在路基埋设工业保温层(PU、EPS等),埋设5~10厘米保温板,在工程实践中均取得极佳工程效果。三是埋设通风管,就是在路堤中埋设直径30厘米左右的金属或混凝土横向通风管,可以有效降低路基温度。四是采用抛石路基,即用碎块石填筑路基,利用填石路基的通风透气性,隔阻热空气下移,同时吸入冷量,起到保护冻土的作用。五是在少数极不稳定冻土地段修建低架旱桥,工程效果有保证,但造价高。青藏高原温度对冻土的影响非常大,一般情况地面温度比气温高3℃~4℃,没有太阳的直接照射,设置保温层地基或者通风地基可降低原地面温度2℃~3℃。而修筑这样的保温地基和通风地基,每公里增加造价为60~200多万元。 多年冻土地区的具体工程措施 (1)合理控制路基高度,是保护冻土最有效、最经济的方法。 (2)铺设保温层,1993年在昆仑山等地推广使用,效果良好。 (3)通风路基,能起到通风保温和保护冻土的作用。 (4)以桥代路,保证工程的可靠性。 (5)桥涵工程采用桩基础,满足防冻的要求。

铁路路基施工技术培训教材电子版

第一章铁路路基工程施工简介 一、路基工程概述 1 路基工程的作用 1.1 铁路路基是轨道的基础,是经过开挖或填筑而形成的土工建筑物,其主要作用是满足轨道的铺设,承受轨道和列车产生的荷载,提供列车运营的必要条件。 1.2 在纵断面上路基必须保证线路需要的高程;在平面上路基和桥梁、隧道连接组成完整贯通的线路。 2 路基工程的主要内容 2.1 路基标准横断面如图1.2.1、图1.2.2所示。路基面形状为三角形,并由路基面中心向两侧4%的横向排水坡。曲线加宽时,仍应保持路基面三角形形状。路堤、路堑的两侧路肩宽度,当为双线时不小于1.4m;当为单线时不小于1.5m。直线地段的路基面宽度:双线时不小于1 3.8m;单线时不小于8.8m。 图1.2.1 双线路基路堤标准横断面示意图 路堑 电力电缆槽 路堤 线 路 中 心 线 线 路 中 心 线 接触网支柱 图1.2.2 双线路基路堤和路堑标准横断面示意图

2.2 过渡段 2.2.1 台尾过渡段路堤可按以下方式设计: 过渡段路堤基床表层在与桥台连接的20m 范围内基床表层的级配碎石内掺入适量的水泥,表层以下的级配碎石掺入适量水泥并分层填筑,其后采用A、B组填料填筑。级配碎石过渡段设计规范上有正梯形和倒梯形两种形式,但目前大多采用倒梯形结构。 图 1.2.3 台尾路堤过渡段设置方式示意 2.2.2路堤与横向结构物(立交框构、箱涵等)连接处,应设置过渡段。横向建筑物顶至轨底高度小于1.5m时,横向建筑物顶面以上路堤以及两侧20m范围内基床表层填筑级配碎石并掺入适量水泥,并在级配碎石连接段采用A、B组填料填筑。 级配碎石过渡段设计规范上有正梯形和倒梯形两种形式,但目前大多采用倒梯形结构。 L 基床表层 基床底层 过渡段 渗水板 横向排水管 1: 2 ≥3m ≥3m A、B组填料 1:2

青藏铁路冻土施工

冻土是一种特殊的、低温易变的自然体,会给各类工程造成冻胀和融沉的问题。在寒季,冻土像冰一样冻结,并且随着温度的降低体积发生膨胀,建在上面的路基和钢轨就会被膨胀的冻土顶得凸起;到了夏季,冻土融化体积缩小,路基和钢轨又会随之凹下去。冻土的冻结和融化反复交替地出现,路基就会翻浆、冒泥,钢轨出现波浪形高低起伏,对铁路运营安全造成威胁,其特殊性和复杂性在世界上独一无二。世界上几个冻土大国俄罗斯、美国、加拿大等都为解决冻土技术难题付出了艰辛的努力。中国在冻土研究方面起步较晚,在20世纪八十年代中期以前,中国的冻土研究基本上继承了前苏联在多年冻土方面研究的经验和理论。 青藏铁路创了两个世界之最:世界上海拔最高的铁路,全线经过海拔4000米以上地段有965公里;同时它也是世界铁路工程史上穿越多年冻土最长的铁路,达到了550公里。在冻土区修建铁路是一个世界性技术难题,对施工技术和施工能力是严峻的挑战 青藏铁路建设中的冻土难题 (2007-09-17 10:46:33) 转载 标签: 教育杂谈 多年冻土、高寒缺氧、生态脆弱是青藏铁路建设中无法回避的三大难题,其中多年冻土尤为关键,是最难啃的一块骨头。如今,青藏铁路即将全线通车试运营,这无疑表明,中国已解决了铁路穿越多年冻土地带的工程技术难题。 据了解,冻土在寒季就像冰一样冻结,随着温度的降低体积会发生膨胀,建在上面的路基和钢轨就会被“发胖”的冻土顶得凸起;到了夏季,融化的冻土体积缩小,路基和钢轨又会随之凹下去。冻土的冻结和融化反复交替地出现,路基就会翻浆、冒泥,钢轨会出现波浪形高低起伏,对铁路运营安全造成威胁。 据有关专家介绍,冻土虽然在加拿大、俄罗斯等国家也存在,但他们是属高纬度冻土,比较稳定。而青藏铁路纬度低,海拔高,日照强烈,加上青藏高原构造运动频繁,且这里的多年冻土具有地温高、厚度薄等特点,其复杂性和独特性举世无双。 针对这种情况,青藏铁路有111公里线路铺设了一种特殊的路基,即在土路堤底部填筑一定厚度片石,上面再铺筑土层的路基。这种多孔隙的片石层通风路基为国内首创。它是效果较佳的保护冻土措施,好似散热排风扇,冬季从路堤及地基中排除热量,夏季较少吸收热量,起到冷却作用,能降低地基土温度0.5 摄氏度以上。 全长11.7公里的青藏铁路清水河特大桥横架在可可西里冻土区,它是一种以桥代路的保护冻土措施,铁轨飞架而过可以不惊扰冻土。青藏铁路中这种以桥代路桥梁达156.7公里,占多年冻土地段的四分之一。据称,如此大规模采取以桥代路措施,在世界上也是首次。

高速铁路路基施工及维护

路基排水设备施工 地面排水设备的类型?分别适用于什么条件? 地面排水设备主要有:排水沟、测沟、天沟、截水沟、矩形沟槽、跌水沟和急流槽等。 排水沟是设置于路堤护道的外侧,用以排除路堤范围内的地面水和截排从田野方向流向路堤的地面水的地面排水设备。 测沟是位于路堑路肩边缘的外侧,用以汇集和排除路堑范围内的地面水。在线 路不填不挖的地段亦应设置测沟。 天沟位于堑顶边缘以外,可设一道或几道,用以截排堑顶上方流向路堑的地面水。截水沟设置于路堑边坡平台上及排水沟、测沟、天沟所在部位以外的其他地方,用以截排边坡平台以上的坡面水或所在地区的部分地面水。 矩形水槽,当水沟所在地段土质不良或地质不良,水沟易于变形,以及受地形、地物或建筑限界的限制,不能设置占地较宽的梯形水沟时,排水沟、测沟、天沟、截水沟均宜采用矩形水沟的形式。 跌水、缓流井和急流槽,在地形陡峻地段,水沟的沟底纵坡很大时,可修建跌水、急流槽和缓流井等排水设施,以减少沟内流速,降低动能。 地下排水设备的类型?分别适用什么条件? 地下排水设备的类型有:明沟与槽沟、边坡渗沟、支撑渗沟、截水渗沟与引水渗沟、渗水隧洞、水平钻孔、立式集水渗井与渗管 明沟与槽沟是敞开的地下排水设备,用于拦截、引排埋藏不深的地下水(一般为2m以内的潜水和上层滞水),并可兼排地表水。设置时,宜沿线路方向和顺沟谷走向布置,沟底应埋入不透水地层内,沟壁最下一排渗水孔的底部应高出沟底不小于0.2m。为避免开挖断面过大,明沟深度不宜超过1.2m,若再深可用槽沟;槽沟深度不宜超过2m,若再深宜改用渗沟。 边坡渗沟是为疏导潮湿边坡及引排边坡上层滞水和泉水而修建的排水设备,同时可起支撑边坡的作用。其适用于土质路堑边坡不陡于1:1 或路堤边坡因潮湿容易发生表土坍滑的部位。 支撑沟是用来支撑可能滑动的不稳定土体或山坡,并排除在滑动面附近的地下水和疏干潮湿土体的一种地下排水设备。 截水渗沟与引水渗沟,截水渗沟用于拦截地下水,使其不流入病害区;引水渗沟是用来引排山坡湿地、洼地或路基内的地下水,以便疏干附近土体和降低地下水位。

青藏铁路沿线主要次生不良冻土现象的调查和机理分析

第24卷 第6期 岩石力学与工程学报 V ol.24 No.6 2005年3月 Chinese Journal of Rock Mechanics and Engineering March ,2005 收稿日期:2004–03–30;修回日期:2004–05–20 作者简介:余绍水(1969–),男,现为博士研究生,主要从事工程管理、冻土工程和土木工程方面的研究工作。E-mail :wdpan@https://www.360docs.net/doc/515608890.html, 。 青藏铁路沿线主要次生不良冻土现象的 调查和机理分析 余绍水1, 3,潘卫东2,史聪慧1, 3,王小军4,梁 波5 (1. 中国科学院 寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃 兰州 730000; 2. 东南大学 土木工程学院,江苏 南京 210096;3. 中铁12局集团有限公司,山西 太原 030024; 4. 中铁西北科学研究院,甘肃 兰州 730000;5. 兰州交通大学 土木工程学院,甘肃 兰州 730300) 摘要:经过野外调查发现,完成施工但尚未投入运营的青藏铁路沿线出现了一些次生不良冻土现象。通过讨论这些次生不良冻土现象的分布规律和危害,认为铁路路基对地下水条件和冻土热稳定性的破坏是导致产生次生不良冻土现象的根本原因,并初步探讨了针对这些现象的工程防治措施。 关键词:土力学;青藏铁路;次生不良冻土现象;机理;调查 中图分类号:P 642 文献标识码:A 文章编号:1000–6915(2005)06–1082–04 INVESTIGATION AND MECHANISM ANALYSIS OF THE MAJOR SECONDARY HARMFUL FROZEN-SOIL PHENOMENA ALONG QINGHAI —TIBET RAILWAY YU Shao-shui 1,3 ,PAN Wei-dong 2,SHI Cong-hui 1 ,3 ,WANG Xiao-jun 4,LIANG Bo 5 (1. State Key Laboratory of Frozen Soil Engineering ,Cold and Arid Regions Environmental and Engineering Research Institute ,The Chinese Academy of Sciences ,Lanzhou 730000,China ;2. School of Civil Engineering ,Southeast University ,Nanjing 210096,China ;3. Twelve Bureau Group Ltd. Co.,China Railway Engineering Corporation ,Taiyuan 030024,China ;4. Northwest Research Institute of China Railway Engineering Corporation ,Lanzhou 730000,China ;5. School of Civil Engineering ,Lanzhou Jiaotong University ,Lanzhou 730300,China ) Abstract :A number of secondary harmful frozen soil phenomena were found along Qinghai —Tibet railway which are being developed since the completion of construction of the railway. The distribution laws and danger of these phenomena are discussed. These are mainly caused by disturbance of ground water condition and thermal stability. Some key principles to control these disasters are also discussed. Key words :soil mechanics ;Qinghai —Tibet railway ;secondary harmful frozen-soil phenomena ;mechanism ;investigation 1 引 言 不良冻土现象,是指土体在冻结和融化作用下产生的物理地质现象。在多年冻土区修筑铁路会遇到许多不良冻土现象[1],反过来,铁路的修建又会 形成新的不良冻土现象即次生不良冻土现象,对铁路路基等建筑物产生种种危害。因此,调查和研究青藏铁路沿线多年冻土区主要不良冻土现象的类型、分布和发育特征,对避免和防治次生不良冻土现象的发生和发展,保证铁路工程的稳定和安全有着非常重要的现实意义。

铁路路基施工技术要求

铁路路基施工技术要求 一、路基结构简述 1-1 路基面:路基的顶面。路基面宽度设计为11.0m,路基面两侧称为路肩,路基面应做成路拱,本段路基路拱设计为三角形,拱高0.2m,路拱底宽同路基面即11.0m,路基顶面高程为设计高程加沉降量,考虑到预留沉落加高量,边坡应较设计坡度稍后施工。 1-2 路基基床。路基基床是指路肩施工高程至其下1.2m 范围,其中:路肩高程至其下0.5m范围称基床表层,表层以下0.7m范围称为基床底层。 1-3 路堤。除路基基床部分之外的填土路基称为路堤。 二、路基填土土质要求 根据本段路基可取土土质情况,采用铁路路基填料B组中的粘砂土和砂粘土作为路基填土用土。 2-1 土质的要求:必须符合设计院对土质取样试验的标准,其参数如下:⑴液性界限(简称液限)WL:是指粘性土由可塑状态转变为流塑状态的限界含水量,以百分数计即W1=x%,路基填土所用砂粘土的液限W1≤26%.⑵塑性界限(间称塑限)Wp:是指粘土由半干硬状态转变为可塑状态的限界含水量,单位同液限。 ⑶塑性指数IP:是指粘性土的液限值与塑限值之差即IP=W1一Wp,其中:3<IP≤7为粘砂土,7<IP≤17为砂粘

土。 本段路基填土所用的粘性土,其塑性指数IP≤12. 2一2 每一个取土场必须作1一3组土质试验,符合2一1土质要求后方可用作路基填土。 三、路堤基底处理要求 3-1 当路堤经过池塘或积水洼地时,应根据具体情况,进行排水疏干,挖除淤泥及有机土等松软土层并换填渗水性土石。 3-2 对有松土或耕作土的原地面,如果松土厚度不大于30cm时,可将原地面碾(夯)压密实,若松土厚度大于30cm 时,则应翻挖松土并分层回填压实。 3-3 黄河大堤两侧坡度如果陡于1:5时,应将原坡面挖成宽度不小于1.0m的台阶。 3-4 路堤土方施工前,一律将基底原地面的树木、农作物及草皮等杂物清除干净。 四、路堤填筑要求 4-1 本段路堤分浸水路堤和不浸水路堤两种:黄河大堤以北至S32台间(即迎河面)属浸水路堤;黄河大堤以南至S33台间及S67台后至DK22+274里程间属不浸水路堤。 4-2 压实系数:是指填土经压实后的干容量(也称设计干容量)γd与填土实验求得的最大干容量γdmax之比,即K=γd/γdmax,一般情况下γdmax范围,粘砂土为18.5~

青藏铁路建设和冻土技术问题

浅析青藏铁路建设和冻土技术问题 [摘要]:本文主要分析了青藏铁路建设的冻土问题,青藏铁路建设三大技术难题的核心就是冻土问题. 我国多年对冻土的研究为青藏铁路建设打下坚实的技术基础, 但是大规模的铁路建设实践给施工建设提出了大量深层次的冻土技术问题. 以青藏铁路建设为背景, 结合冻土区科研、设计、施工和建设管理工作的实践, 对青藏铁路建设的冻土技术问题进行了分析,对高原多年冻土区的建设具有一定的参考价值. [关键词]: 青藏铁路; 多年冻土; 技术措施; 建设管理 1. 引言 冻土是一种对温度极为敏感的土体介质。冬季,冻土在负温状态下就像冰块,随温度的降低体积发生剧烈膨胀,顶推上层的路基、路面。而在夏季,冻土随着温度升高而融化,体积缩小后使路基发生沉降,这种周期性变化往往很容易导致路基和路面塌陷、下沉、变形、破裂。青藏铁路的多年冻土, 分布在铁路通过地区延长近550 km 的围. 冻土问题, 实质上是冻土区筑路技术问题, 是青藏铁路建设的三大技术难题( 高原、冻土、生态环境保护) 的核心问题. 修建在多年冻土上面的铁路工程, 受多年冻土季节融化层的热学状态和力学性质周而复始变化的影响, 导致铁路建筑物发生冻胀融沉变形. 由于自然环境条件和冻土环境条件变化以及修建铁路的工程活动影响, 导致原来多年冻土季节融化层发生一系列复杂变化, 使这种冻胀融沉变形变得复杂化,因而使工程建筑物( 路基、桥梁涵洞基础) 的冻胀和融沉变形问题成为冻土区修建铁路的面临的主要技术难题. 我们所说的青藏铁路冻土区修建铁路的主要技术问题就在于此. 2. 青藏铁路冻土区工程建设的技术基础 20 世纪60 年代以来, 以中国科学院冰川冻土研究所( 现中国科学院寒区旱区环境与工程研究所) 、铁道部高原研究所( 现中铁西北科学研究院) 和铁第一勘察为主力的青藏高原冻土研究工作, 在野外地质调查工作基础上, 以风火

高原冻土施工及环境保护讲座

青藏铁路高原冻土施工技术及环境保护 --- 辛卫(主讲) 为贯彻铁道部党组提出的“高起点、高标准、高质量”修好青藏铁路,保护好每个青藏铁路参建员工的身体健康,预防和减少高原病发生,真正体现“以人为本、科技先导、环境保护、机械化快速施工” 的施工组织原则,作为我们每个参建员工来说,都必须对青藏铁路施工技术及青环境保护进行学习,并运用于施工生产过程中去。 下面就对青藏铁路高原冻土施工技术及环境保护作概括讲述:一、青藏铁路高原冻土施工技术 1、青藏铁路格拉段概况 青藏铁路由青海省省会西宁至西藏自治区首府拉萨,全长1963 公里,其中西宁至格尔木段(长845 公里)已于1984 年交付临管运营。 格尔木?拉萨简称格拉段,为新建单线I级铁路,全长1118公 里(青海省境内564 公里,西藏自治区境内554 公里),该段处在世界上海拔最高、气候条件恶劣的青藏高原腹地,线路北起青海省西部重镇格尔木市,基本沿青藏公路南行,途径纳赤台、五道梁、沱沱河沿、雁石坪,翻越唐古拉山进入西藏自治区境内,经安多县、那曲地区、当雄县到拉萨市。沿线地质构造复杂,经过连续多年冻土地区553.758 公里(多年冻土北界位于西大滩断陷盆地,南界位于安多谷地),主要存在高原冻土、高地震烈度及活动断层等工程地质问题,在建设过程中将面临三大技术难题:高原缺氧、多年冻 土、环境保护。

2、冻土学基础理论 ( 1 )基本概念 冻土是指处于o °c以下,并含有冰的岩石和土体。包括多年冻土(指冻结状态维持在二年或二年以上的冻土)和季节冻土(指冬季冻结,来年夏季融化,冻结状态维持在二年以下的土体)。 季节融化层是指每年暖季融化、寒季冻结的多年冻土上部覆盖层。 季节冻结层是指每年寒季冻结、暖季融化的土层。 多年冻土上限是指多年冻土顶面的埋藏深度。 多年冻土下限是指多年冻土底面的埋藏深度。 多年冻土人为上限是指工程建筑物修建和运营后,多年冻土新形成的上限。 (2)不良冻土地质现象: A、冰椎:多年冻土区地下水或河流封冻后地下(河水)流出地表形成的椎状或盾状冰体。 B、冻胀丘;多年冻土区地下水在冻结土层下聚集冻结,形成透镜状厚层冰体,将地表隆起形成丘状的土丘。 C、热融湖塘:由人为作用或自然作用引起高含冰量多年冻土融化下沉所形成的积蓄水的洼地。 D 、热融滑坍:高含冰量冻土分布在平缓山坡,由于人为破坏坡 脚,高含冰量冻土暴露融化,上覆土层失去支撑而坍塌,与融化泥水混合顺坡向下滑动的坡面坍滑现象。 E、沼泽湿地:多年冻土区某些植被覆盖良好的山前平缓低地或洼地,由

铁路路基防护施工技术

编订:__________________ 单位:__________________ 时间:__________________ 铁路路基防护施工技术 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5072-34 铁路路基防护施工技术 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 摘要:铁路路基工程作为铁路工程的重要组成部分,路基防护对铁路运行安全性起重要性作用。针对路基防护工程,本文介绍常几种用防护技术及最新的绿色防护技术。 关键词:铁路路基防护绿色防护 1. 引言 人口、资源、环境问题作为当今人类社会可持续发展的三大制约因素,已为世界各国人民所共识,是21世纪人们面临的最严峻的挑战。项目开发与环境保护兼顾是经济可持续发展的重大课题,对工程建设来说,合理利用资源,保护资源,保护环境,美化环境,是我们必须正视和认真对待的问题。 铁路路基与资源和环境密切相关, 路堑开挖、路堤填筑、取土弃土、边坡防护、水土保持、地面排水

等的设计与施工都涉及到合理利用资源、保护资源、保护环境、美化环境的问题。而边坡绿色防护工程则是边坡保护和绿化的有机结合, 是生态恢复的一种有效手段, 可保护边坡, 预防和抑制崩塌、防止水土流失、保护生态环境、修饰景观等。 2. 边坡防护类型 2.1 传统的边坡防护类型 对于路基土质边坡,传统的边坡防护技术有,草皮护坡、干砌片石护坡、浆砌片石骨架草皮护坡和浆砌片石护坡等。这些护坡形式各有其适用条件和特点。 (1) 草皮护坡:指人工铺贴草皮、栽种灌木或播种草籽,是目前铁路工程常用的边坡防护措施,多用于草皮来源较易、边坡坡度不高且坡度较级的土质路堤边坡防护工程;其施工简便、工程造价较低,但成活率低,见效慢,工程质量难以保证,往往达不到满意的边坡防护效果,而造成坡面冲沟、表土溜滑等边坡病害, 导致大量的边坡病害整治、修复工程;同时,大量移植草皮易造成新的环境破坏和水土流失。

论铁路路基施工技术

论铁路路基施工技术 随着我国交通事业发展,各项路桥工程不断增多,在交通出行中,铁路成为人们重要的出行方式,只有全面保证铁路运行安全,才能维护社会稳定。铁路是一种轨道交通,在专用轨道上运行,所以说,其路基施工关系到整个铁路运行的质量,铁路的路基是整个铁路施工工程最为重要的组成部分,只有路基稳定,才能实现列车运行的安全。文章主要通过对铁路路基施工特点进行分析,进一步提出了铁路路基施工技术措施与方法,以此,全面确保路基质量,实现列车稳定安全运行目标。 标签:铁路;路基施工;施工技术要点 引言 随着我国经济的不断发展,对交通依赖程度越来越高,特别是市场经济条件下,商品流通更加丰富多样,为了全面满足社会经济发展需求,我国不断加大铁路建设投入,全面推进了铁路工程项目发展。我国幅员辽阔、地形复杂,在发展铁路事业的同时,也面临较多的困难,所以,要全面研究新技术、创新新动能,才能保证铁路项目顺利推进。面对不同的地形与环境,需要使用不同的技术进行施工,路基是铁路基础工程,对环境的要求非常严格,不同地质条件下路基施工也需要有差异性,铁路路基技术是铁路施工重要的技术之一。我国在铁路建设中不断创新发展,几次提速并改进,当前,已经在传统列车基础上,建设发展高铁事业,使铁路运输时间大大缩短,这样的速度也更加符合时代需要、市场需求,更满足了人们群众出行需要,我国铁路事业取得了巨大的发展。火车速度的提高也增加了一定的危险,所以,各个环节一定要认真严格,做到精益求精,路基建设关系到运行安全,其技术对铁路工程有直接影响,下面,就路基技术及其涉及到的相关内容做系统分析与阐述。 1 铁路路基施工的特点与要求 1.1 铁路路基施工特点 铁路最基础的工程就是路基建设,可以说,要想全面保证列车运行安全,必须要在路基建设上多研究,确保铁路工程第一步建设更加顺利,为以后的路轨施工铺装提供良好保障,路基是鐵路工程最关键的步骤,其施工具有自身的特点,一是路基整体施工周期长。铁路涉及到的地域广,在不同区域会有不同的环境,只有全面解决好环境气候问题,才能确保质量,铁路工程建设的周期较长,需要严格规划设计,才能实现优质工程目标。二是迁移量大。铁路所经区域地广人稀,但是沿线还有许多民用建筑、商业用地、集体用地等,要想取直则需要大量的时间进行迁移,保证减少投资,实现安全运行需求。三是投资投入多。铁路是一项大工程,进行建设过程中,会涉及到方方面面,路基施工在地面,投资量大,投入的精力多。四是涉及的工种复杂。铁路路基施工不同于一般的工程建设,在进行建设时,相关作业同时进行,全面提高工效,各工种之间形成一定交驻。五是

最新客运专线铁路路基工程施工技术指南

客运专线铁路路基工程施工技术指南

客运专线铁路路基工程施工技术指南 1 总则 1.0.1为了统一铁路客运专线路客运专线铁路基工程施工技术要求,保证工程质量,制定本施工指南。 1.0.2本指南适用于设计时速200-350km铁路客运专线路基工程施工。(若为无碴轨道时,路基工程施工时还应満足设计要求) 1.0.3路基工程施工应针对客运专线特点,认真编制施工组织设计,并与相关工程密切配合,正确选用施工方法,满足设计要求。 1.0.4路基工程施工必须按照批准的设计文件施工。如需变更,应符合铁路客运专线变更设计管理办法的规定。 1.0.5路基工程作为土工结构物,将地基处理、路基填筑、基床表层、边坡防护、支挡结构、路基排水及沉降观测等作为系统工程(应与相关工程同步)施工,严格按照工程质量标准进行管理,加强施工过程控制及质量检测工作,确保路基工程质量。 1.0.6路基工程施工应实行机械化施工,推广采用新技术、新工艺、新机具、新测试方法。 1.0.7路基工程施工中采用的大型机械设备、测试设备、爆破器材以及各种原材料必须符合国家和铁道部有关标准及规定。 1.0.8电缆槽、接触网支柱基础、预埋管线、综合接地、声屏障基础(基础线路基桩埋设)等工程项目做为相关工程应与路基工程同步施工。(与第五条合并,做为系统工程的一部分?不变。紧随第五条) 1.0.9 路基工后沉降未达到设计要求时,严禁进入轨道工程施工工序。 1.0.10路基工程填料作为结构物材料宜优先采用集中供应。

1.0.11路基工程施工应遵守国家有关安全生产、环境保护和文物保护等法规。 1.0.12 本施工指南未涉及到的内容应符合国家及铁道部现行有关标准的规定。

铁路路基施工技术总结报告

铁路路基施工技术总结报告 本页是精品最新发布的《铁路路基施工技术总结报告》的详细文章,。篇一:铁路路基施工技术浅谈 铁路路基施工技术浅谈 摘要:铁路路基工程作为铁路工程的重要组成部分,对地基处理、路基填筑、路基排水及沉降观测等系统工程的施工都有严格工程质量标准。本文对铁路路基工程施工的技术进行了分析和研究。关键词:铁路路基施工技术 1 施工工艺流程图 2 施工技术 2.1 地基处理若填筑范围内土质不合格,应换填渗水土,填渗水土前对基底冲击碾压,碾压遍数不少于20遍冲击能不小于20kj,影响深度1.0m,处理宽度为路堤两侧坡脚(不含护道)外 3.0们之间范围内。 2.2 填筑采用“三阶段四区段八流程”工艺流程,横向全宽、纵向水平进行分层式填筑施工。在其中一个作业区段各作业班组同时分别进行施工,并顺序转入下一作业区段,各道工序流水作业在同一区段上形成,在不同区段上各作业班组平行施工。 ①填土。现场划分方格堆料,利用方格法上料。a标高控制和放线。按照设计宽度每侧加宽50cm,最全面的沿线路方向线路中桩、填筑边线宽度每20m测量放出,提高边坡碾压质量。b画网

格:在填筑范围内,松铺厚度为35cm控制,每层压实厚度为 30cm,运输车辆按照用白灰标识的方格、网格顺序倾倒填料。c松铺厚度控制。由现场施工员严格按照标识指挥自卸车卸放,厚度控制在35cm。d控制填料含水量。填料的含水量较高时,翻松晾晒;采用洒水措施处理填料较低的含水量。 篇二:路基施工总结 目录 1、工程概述....................................................... ......................................................... .. (1) 1.1 工程概况....................................................... ......................................................... ..........1 2.2 主要工程数量表....................................................... .. (1) 2、编制依据....................................................... ......................................................... ....................1 3、施工组织安排.......................................................

铁路路基施工技术 毕业设计

第1章绪论 1.1 研究背景与意义 1.1.1研究背景 目前,在建新线规模达到3.3万公里,投资规模达到2.1万亿元。上海-杭州、南京-杭州、杭州-宁波、南京-安庆、西安-宝鸡等客运专线,兰新铁路第二双线、山西中南部铁路通道等区际干线,以及贵阳市域快速铁路网,武汉城市圈、中原城市群城际铁路等相继开工建设。并且,在建工程项目进展顺利,京沪高速铁路累计完成投资1224亿元,哈尔滨-大连、上海-南京客运专线线下工程基本完成;北京-石家庄、石家庄-武汉、天津-秦皇岛、广州-深圳(香港)、上海-杭州等客运专线和上海-武汉-成都、太原-中卫(银川)、兰州-重庆、贵阳-广州、南宁-广州等区际大通道项目加快推进。随着经济的发展和技术的提高,铁路的覆盖将越来越广,速度越来越快,因此,提高铁路路基在不同地质条件下的施工技术成为一种必然选择。 1.1.2研究意义 通过对不同地质条件下铁路路基施工技术、工艺的总结归纳以及对各种支挡结构的分析。以便更好掌握路基的关键问题,实现对不同地质条件的分析,把握住应该采用何种技术才能更好地为保证铁路运输的安全通畅从而使铁路路基施工技术提高到一个新的水平。 1.2 铁路路基施工技术国内外现状 1.2.1国外铁路路基发展现状 国外铁路的发展方向是重载和高速铁路。发展重载铁路(轴重25~30t)的国家有美国、澳大利亚、前苏联等;发展高速铁路的国家有法国、日本、德国等。这些国家都制定了较高的路基技术标准和严格的施工工艺,其特点如下: (1)强化路基基床:包括路堤、路堑及不填不挖地段,特别是对基床表层的填料和强度有严格要求。如日本在新干线上设置了强化基床表层,采用级配矿碴层或或增设沥青混凝土表层等,并用直径为30cm的平板荷载试验求出的地基系数k控制压实效果;法国在制定TGV线路技术条件前曾对全国既有铁路的路基进行了详细、全面的调查,发现轨枕下道床加垫层的厚度对防止路基病害的产生有重要作用。当总厚度超过60cm时,线路良好,基床病害的发生概率很小。 可以说,各个国家都根据本国的情况进行研究,采用不同的结构形式和强度标准对路基基床进行强化,根据土质、承载能力、防冻要求、线路等级、运输荷载条件以及线

攻克青藏铁路的瓶颈——冻土

攻克青藏铁路的瓶颈——冻土 冻土,是指温度在0℃以下,并含有冰的各种岩土和土壤。是一种对温度极为敏感的土体介质,含有丰富的地下冰。一般可分为短时冻土、季节冻土以及多年冻土(数年至数万年以上)。冻土具有流变性,其长期强度远低于瞬时强度特征。正是由于这些特性,在冻土区修筑工程构筑物就必须面临两大危险:冻胀和融沉。其中起重要作用的是水的存在形态,当水变成冰时体积增大,使土体膨胀,地表因此而拱起升高,这就是冻胀;当土中的冰转变为水时,体积收缩,地表便发生融化下沉,简称融沉。在这两种现象的反复作用下,道路或房屋的基底就会出现破裂或者塌陷。 世界上多年冻土区的大量工程实践也证明:发生病害或破坏的工程建筑多数属高温冻土。而青藏高原是全球气候变化的“启动器”和“放大器”,其升温将高于全球平均值。如果以青藏高原未来50年气温升高2℃来预测,多年冻土将会退化乃至消失,从而引起路基塌陷、桥基失稳。因此,高温冻土加温室效应,使青藏铁路的修筑面临着双重挑战。 青藏铁路沿线的冻土现象主要有:冻胀丘、热融滑塌、热融洼地、石海、冻胀草丘、冰锥、冻拔、热融冲沟、石环、斑土等。青藏高原纷繁复杂的冻土环境,成为制约青藏铁路建设的瓶颈。 1961年,为了攻克青藏高原多年冻土区筑路技术难关,中国惟一的青藏高原冻土观测站在海拔4900多米的风火山诞生。几代科技工作者与高原冻土展开了艰苦卓绝的斗争。 *中国高原冻土筑路科学研究城 40多年来,风火山观测站开展了气象观测、太阳辐射比观测、地中热流观测、不同地表热对比观测、冻土力学观测、深孔地温观测、23个试验路基观测等工作。每一项观测内容,每一个基础数据,都直接关连着青藏高原生态环境的稳定,关连着青藏铁路的成败。西北院科技人员共测取了1200多万个涵盖高原冻土地区各种气象条件和地温变化的数据,积累了极为宝贵的第一手资料,为突破高原冻土筑路技术难关奠定了坚实的科技基础。 如今,风火山上已修筑厚层地下冰地段试验路基523米,包括路堑、半路堑、零断面、低路堤、高路堤和涵洞;建立气象观测达12个项目,地温观测建立80余孔,其中,在1960年钻成的35米深的冻土地温观测孔,已由人工观测变成自动观测系统;建立工程变形观测点10多个;建立公路黑色路面温度观测、桥涵变形、下沉地温观测和桩基试验观测10多个。这里被誉为“中国高原冻土筑路科学研究城”。 *解决冻土问题的三类方法 目前,青藏铁路现有的冻土工程措施可分为三类。一调控辐射,即在路基顶部和路基边坡铺设遮阳棚、遮阳板,减少到达地面的太阳辐射。二调控对流,即通过路基结构形式强制土体产生对流效应,有效利用自然冷能资源来保护多年冻土,如片石通风路基。三调控传导,路基铺设保温材料、热棒(桩)、加高路基高度等措施,改变土体热传导过程。在青藏铁路,有一种特殊的铁路路基,即在土路堤底部填筑一定厚度片石,上面再铺筑土层的路基。这种多孔隙的片石层通

浅谈铁路工程路基施工技术

浅谈铁路工程路基施工技术 发表时间:2015-12-21T14:14:38.417Z 来源:《基层建设》2015年15期供稿作者:蔡福全 [导读] 铁四院(湖北)工程监理咨询有限公司湖北省武汉市武昌区杨园本文就以云桂铁路路基施工浅谈铁路工程路基施工技术为课题进行简单的探析。 蔡福全 铁四院(湖北)工程监理咨询有限公司湖北省武汉市武昌区杨园 430063 摘要:随着城市化建设的发展,人们生活水平的提高,当下可供人们外出的交通选择也越来越多,大多数在综合评价各种交通工具后,对于火车的快速和价格的低廉最为满意,由此看出铁路事业的发展前景是十分广阔的,在铁路工程的施工过程中路基施工的质量就是整个铁路工程的基础保障之一。铁路工程的路基施工技术,对于整个铁路工程的建设上具有十分重要的作用。本文就以云桂铁路路基施工浅谈铁路工程路基施工技术为课题进行简单的探析。 关键词:铁路工程;路基施工;质量安全 铁路的建设中的质量安全问题是值得广泛关注的一个重要问题,铁路的质量安全关系到火车的安全、乘客的人身安全,所以在国家铁路的施工过程中,对铁路的质量安全进行严格的管控,而铁路工程路基的施工就是整个铁路工程的基础,所以近些年来,铁路的施工人员在路基施工技术上,不断的进行创新和改善,来促进铁路事业的发展。 一、铁路路基的技术原理和要求 (一)铁路路基的技术原理 众所周知,铁路路基是整个铁路工程的命脉,对于不同的铁路建设路基的形式要求是各不相同的。对于普通铁路的路基建设来讲,主要就是按照它的要求进行建设就可以了,但是对于高速铁路的路基建设而言,相较于普通的铁路路基所需要的工艺就更加的繁琐化,技术的要求就比较高。高速铁路的路基建设要求,首先对土体就有强度高、稳定性好、刚度大、耐性久的特点,这样火车在高速行驶的过程中,能确保其安全。在铁路路基的建设中将路基按照其横断面形式的不同主要分为路堤和路堑。路基和河堤不同因为它还存在动载荷下的工作面情况,由土石修筑而成的土体,路基的基面就是它的顶面,在很多情况下,铁路的路基面是较高于一般的路面,这对于开挖的山体来讲,它的底面就成为了路基面,且低于地面[1]。 (二)铁路路基的施工要求 在铁路的具体施工当中,对于路基面来讲,它的宽度是铁路建设中的一项重要的技术,这关系到火车的安全行驶和乘客的人身安全,此外对于建筑工程的工期和工程的全部造价也产生巨大的影响。根据相关的标准,可以知道铁路基面的宽度为13.2米,铁路路肩的宽度要控制在50厘米,而修筑铁路两线之间的距离是4.4米,在铁路修建的过程中还牵扯到拐弯的问题,这对于铁路的曲线弯度的要求是非常高的,这里在建设时要注意的问题就是,曲线的半径的幅度大小要和其他的条件相互适应进行调整,为了方便火车拐弯的平稳运行。在建造铁路路基面的坡度方面是值得重视的重要问题,路基面的坡度对于工程的土体的稳定和行驶火车时的耗能有着重要的联系。在铁路路基的施工的具体要求,其坡面的高度在地质条件优越的前提下,边坡的高度小于18米,路堤的边坡要控制在10米左右为宜成1:1.5的大小比例,但是路堑的边坡要控制1:1.75的坡度内。 二、铁路工程路基施工技术工艺和施工标准 (一)铁路工程路基施工技术工艺 铁路路基的施工工艺在不同环节具有不同的表现的特征,在路基试验段的情况下,在路基施工前,施工人员要按照具体的施工图,其路基的设计师选择一段距离的路基,配合技术人员先进行施工前的抗压修筑的测试工作。从而获得真实的可靠数据,根据数据值选择要填充的材料和填层的厚度大小,从而进一步的获取最可靠的路基施工方法和工艺参数。此外,在处理地表面时要按照具体的设计要求和施工规范对于地表进行施工,来为路基施工奠定好优良的基础。当路基进行填筑时要按照不同的阶段进行不同的工作处理,确保每个施工环节的合理和质量的过关。当路堑在具体的开挖阶段,根据当地的地理情况,因地制宜的进行项目工程的实施工作,当然在具体施工时会遇到,因施工土质的不同导致施工工作的难度加大,这时候就需要派遣勘察队,对于不同的土质,做好相关的施工工作的处理,这里要注意的就是,施工人员要理解设计人员的设计理念,根据其设计进行进一步的施工工作。在针对不同的土质可以尝试不同的方法,如爆破法就是在土质比较硬的情况下进行使用。施工员在施工结束后,路基工程要分别进行路基的质量检测和沉降检测,来确保路基的安全通行[2]。 (二)铁路工程路基施工技术标准 在铁路建设的全过程中,最重要的就是铁路路基稳定性。铁路路基和其他建筑物的不同点在于铁路同时承受的是连续动荷载和侧向偶然动荷载的双重压力。铁路工程的目标要求首先就是安全,在确保其安全性能下追求其稳定性最后是高效性。无论是安全、稳定还是高效,这些性能都是以线基的稳定性、平顺性的完美融合。路基作为铁路工程的基础性项目,对于路基的施工技术、施工标准方面,要求都是十分严格的,为了延长铁路工程的使用年限,在路基建设的开始对于路基施工的技术要求就非常高,为了确保路基的安全性、稳定性需要对路基进行多方面的检测工作,以便更有效的进行铁路的施工。 三、铁路工程路基施工技术的具体案例和应用分析 A单位承包了时速200公里的铁路项目建设项目,全线长度为23.8公里,路基的土石方大约231.7万方,因为整条铁路工程的土质情况不一,为了保证其铁路施工的质量安全和提高经济效益,从简单的路基施工方面进行介绍。 施工前对于整个铁路的全线工程进行全面详细的勘察,设计计划方案,在具体的测量上,确保其数据的准确符合国家的铁路测量的技术标准。路基施工时,首先要做好路基的试验段,试验段长度为100米,进行路基的基地处理工作,分别在填筑、压实等环节进行重点的施工处理,保证铁路的耐久性和稳定性。接着就进行路基实验段的具体的施工工作,按照事先的设计方案,按部就班的进行施工,施工完毕后,检验施工的质量标准,得出最佳的施工标准数据[3]。 在正式的施工时,对于路基面的施工技术要求较高,路堤填筑按“三阶段、四区段、八流程”施工,(步骤方面也较为繁锁,其中重要的几个步骤是填筑、摊铺、碾压。)在路基的填筑时,首先要选择合格的料场,根据设计要求进行分层的填筑工作的处理,在同一个断面要用同种的材料进行填筑。根据填筑地面的高度进行不同方法的处理,如原地面高低不平就要从最低处开始填筑,保证其填筑的质量和稳

青藏铁路关于冻土问题综述

关于青藏铁路冻土问题综述 摘要:冻土是指零摄氏度以下,并含有冰的各种岩石和土壤。一般可分为短时冻土(数小时、数日以至半月、季节冻土(半月至数月)以及多年冻土(又称永久冻土,指的是持续三年或三年以上的冻结不融的土层)。冻土是一种对温度极为敏感的土体介质,含有丰富的地下冰。因此,冻土具有流变性,其长期强度远低于瞬时强度特征。正由于这些特征,在冻土区修筑工程构筑物就必须面临两大危险:冻胀和融沉。随着气候变暖,冻土在不断退化。本文主要概述在修筑青藏铁路过程中的冻土问题和解决方法。 引言:青藏铁路是世界上海拔最高、线路最长的高原冻土铁路,建设中的青藏铁路格拉 段全长1142km,新建1110km,穿越连续多年冻土地区约550km,岛状冻土区82km,全 部在海拔4000m以上。受多年冻土的工程特性决定,青藏铁路建设面临的核心技术难题之一在于如何在高温、高含冰量多年冻土地基上修筑稳定的线路。 一、青藏铁路沿线的冻土特征 青藏高原冻土区是北半球中、低纬度地带海拔最高、分布面积最广、厚度最大的冻土区,北起昆仑山,南至喜马拉雅山,西抵国界,东达横断山脉西部、巴颜喀拉山和阿尼马卿山东南部,冻土面积为141万平方公里,我国领土面积的14.6%。青藏高原的腹部分布着大片多年冻土、周边为岛状多年冻土及季节冻土。青藏高原多年冻土的生存、发育和分布主要受到地势海拔的控制,导致青藏高原冻土发育的差异性,因而它不单一地服从纬度地带性的一般规律,而且随着地势向四周地区倾斜形成闭合的环状。马辉等人将青藏铁路沿线的冻土根据地形地貌及工程地质特点,自南向北划分为15个单元[1]: (1) 西大滩断陷谷地,冻土类型为少冰冻土及多冰冻土,融沉系数小,属于弱融沉 性。 (2) 昆仑山中高山区 ,冻土分布为整体状,厚度60 ~ 120m,年平均地温为- 2.0 ~- 4.0℃ ,天然上限1.5~ 2.5m。高含冰量地段占冻土段长的62.4% ,无厚层地下冰存在,大部地区也无层状冰。 (3) 楚玛尔河高平原,冻土分布以网状组构为主,厚度15 ~ 40m,年平均地温为–0.5 ~ -2.0℃ ,天然上限2.0 ~ 5.0m,在清水河地区发现有尚不衔接的多年冻土。 (4)可可西里区,冻土分布以层状、斑状组构为主,高含冰量地段占冻土段75.1% 。 (5) 北麓河盆地,冻土分布以层状、网状结构为主,高含冰量地段占冻土段全长的 15 .7%。 (6) 风火山山区,冻土分布以层状组构为主,冻土厚度变化幅度大,厚层地下冰发育, 高含冰量地段占冻土段全长的 42.8% 。 (7) 尺曲谷地,以低含冰量冻土为主,冻土不良地质现象分布较少。 (8) 乌丽盆地,该段地层以粗颗粒土为主,融区所占比重近90%,以高含冰量冻土为主。 (9)乌丽山区,该段主要为乌丽山低高山区,海拔4500 ~4700m,山坡沟壑发育,切 割较深,山顶平缓,岸坡陡, 基岩裸露, 植被稀疏。 (10) 沱沱河盆地,以岛状多年冻土与融区相间分布,多年冻土主要分布在沱沱河南北两岸低洼谷地内。

相关文档
最新文档