特殊的一元二次方程的解法—知识讲解

特殊的一元二次方程的解法—知识讲解
特殊的一元二次方程的解法—知识讲解

一元二次方程及其解法(一)

特殊的一元二次方程的解法—知识讲解(提高)

【学习目标】

1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;

2.掌握直接开平方法和因式分解法解方程,会应用此判定方法解决有关问题;

3.理解解法中的降次思想,直接开平方法和因式分解法中的分类讨论与换元思想.

【要点梳理】

要点一、一元二次方程的有关概念

1.一元二次方程的概念:

通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.

要点诠释:

识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.

2.一元二次方程的一般形式:

一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常

数项.

要点诠释:

(1)只有当时,方程才是一元二次方程;

(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.

3.一元二次方程的解:

使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.

4.一元二次方程根的重要结论

(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.

(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.

(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.

要点二、特殊的一元二次方程的解法

1.直接开方法解一元二次方程:

(1)直接开方法解一元二次方程:

利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.

(2)直接开平方法的理论依据:

平方根的定义.

(3)能用直接开平方法解一元二次方程的类型有两类:

①形如关于x的一元二次方程,可直接开平方求解.

若,则;表示为,有两个不等实数根;

若,则x=O;表示为,有两个相等的实数根;

若,则方程无实数根.

②形如关于x的一元二次方程,可直接开平方求解,两根是

.

要点诠释:

用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.

2.因式分解法解一元二次方程

(1)用因式分解法解一元二次方程的步骤

①将方程右边化为0;

②将方程左边分解为两个一次式的积;

③令这两个一次式分别为0,得到两个一元一次方程;

④解这两个一元一次方程,它们的解就是原方程的解.

(2)常用的因式分解法

提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.

要点诠释:

(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;

(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;

(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.

【典型例题】

类型一、关于一元二次方程的判定

1.判定下列方程是否关于x的一元二次方程:

(1)a2(x2-1)+x(2x+a)=3x+a;(2)m2(x2+m)+2x=x(x+2m)-1.

【答案与解析】

(1)经整理,得它的一般形式

(a2+2)x2+(a-3)x-a(a+1)=0,

其中,由于对任何实数a都有a2≥0,于是都有a2+2>0,由此可知a2+2≠0,所以可以判定:

对任何实数a,它都是一个一元二次方程.

(2)经整理,得它的一般形式

(m2-1)x2+(2-2m)x+(m3+1)=0,

其中,当m≠1且m≠-1时,有m2-1≠0,它是一个一元二次方程;当m=1时方程不存在,

当m=-1时,方程化为4x=0,它们都不是一元二次方程.

【总结升华】对于含有参数的一元二次方程,要十分注意二次项系数的取值范围,在作为一元二次方程进行研究讨论时,必须确定对参数的限制条件.如在第(2)题,对参数的限定条件是m≠±1.例如,一个关于x的方程,若整理为(m-4)x2+mx-3=0的形式,仅当m-4≠0,即m≠4时,才是一元二次方程(显然,当m=4时,它只是一个一元一次方程4x-3=0).又如,当我们说:“关于x的一元二次方程(a-1)x2+(2a+1)x+a2-1=0……”时,实际上就给出了条件“a-1≠0”,也就是存在一个条件“a≠1”.由于这个条件没有直接注明,而是隐含在其他的条件之中,所以称它为“隐含条件”.

类型二、一元二次方程的一般形式、各项系数的确定

2.已知关于y的一元二次方程m2(y2+m)-3my=y(8y-1)+1,求出它各项的系数,并指出参数m的取值范围.

【答案与解析】

将原方程整理为一般形式,得(m2-8)y2-(3m-1)y+m3-1=0,

由于已知条件已指出它是一个一元二次方程,所以存在一个隐含条件

m2-8≠0,即 m≠±.

可知它的各项系数分别是

a=m2-8(m≠±),b=-(3m-1),c=m3-1.

参数m的取值范围是不等于±的一切实数.

【总结升华】在含参数的方程中,要认定哪个字母表示未知数,哪个字母是参数,才能正确处理有关的问题.

举一反三:

【变式】关于x 的方程

的一次项系数是-1,则a .

【答案】原方程化简为x 2-ax+1=0,则-a=-1,a=1.

类型三、一元二次方程的解(根)

3.已知m ,n 是方程2210x x --=的两根,且(7m 2-14m+a)(3n 2-6n-7)=8,则a 的值等于 ( )

A .-5

B .5

C .-9

D .9

【答案】C ;

【解析】根据方程根的定义,m ,n 是方程x 2-2x-1=0的两根,∴ m 2-2m-1=0,n 2-2n-1=0.

变形可得:7m 2-14m =7,3n 2-6n =3.将变形后的式子代入已知等式中可得:(7+a)(3-7)=8,

解得a =-9.

【总结升华】当看到式子很复杂,别着急,注意与已知条件联系,运用根的定义,注意观察已知等式的

特点,将7m 2-14m 与3n 2-6n 看作整体,运用整体代入法求解.

举一反三:

【变式】(1)x=1是的根,则a= .

(2)已知关于x 的一元二次方程 22(1)210m x x m -++-=有一个根是0,求m 的值.

【答案】(1)当x=1时,1-a+7=0,解得a=8.

(2)由题意得

类型四、用直接开平方法解一元二次方程

4.解方程(x-3)2=49. 【答案与解析】

把x-3看作一个整体,直接开平方,得

x-3=7或x-3=-7.

由x-3=7,得 x=10.

由x-3=-7,得 x=-4.

所以原方程的根为x=10或x=-4.

【总结升华】应当注意,如果把x+m 看作一个整体,那么形如(x+m)2=n(n ≥0)的方程就可看作形如x 2

=k 的方

程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:

【变式】解方程: (1)(3x+1)2=7; (2) 9x2-24x+16=11.

【答案】(1)解:(3x+1)2=7×∴(3x+1)2=5

∴3x+1=± (注意不要丢解)

∴x=

∴原方程的解为x1=, x2=.

(2)解:9x2-24x+16=11

∴(3x-4)2=11

∴3x-4=±

∴x=

∴原方程的解为x1=, x2=.

类型五、因式分解法解一元二次方程

5.解方程:(x+1)2-2(x+1)(2-x)+(2-x)2=0

【答案与解析】

设x+1=m,2-x=n,则原方程可变形为:

22

20

m mn n

-+=.

∴ (m-n)2=0,∴ m=n,即x+1=2-x.

121 2

x x

==.

【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:

【变式】方程(x-1)(x+2)=2(x+2)的根是________.

【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.

∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.

∴ x 1=-2 x 2=3.

6.如果2222()(2)3x y x y ++-=,请你求出22x y +的值.

【答案与解析】

设22x y z +=,∴ z(z-2)=3.

整理得:2230z z --=,∴ (z-3)(z+1)=0.

∴ z 1=3,z 2=-1.

∵ 220z x y =+>,∴ z =-1(不合题意,舍去)

∴ z =3.

即22x y +的值为3.

【总结升华】如果把22x y +视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式

分解法可以解这个一元二次方程.此题看似求x 、y 的值,然后计算22x y +,但实际上如果把22x y +看成一个整体,那么原方程便可化简求解。这里巧设22z x y =+再求z 值,从而求出22x y +的值实际就是换元思想的运用.

易错提示:忽视220x y +>,而得223x y +=或221x y +=-.

一元二次方程的解法详细解析

一元二次方程的解法详细解析 【一元二次方程要点综述】:【要点综述】:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是学生今后学习数学的基础。在没讲一元二次方程的解法之前,先说明一下它与一元一次方程区别。根据定义可知,只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程,一般式为:。一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程。因此判断一个方程是否为一元二次方程,要先看它是否为整式方程,若是,再对它进行整理,如能整理为的形式,那么这个方程就是一元二次方程。下面再讲一元二次方程的解法。解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。如下表:方法适合方程类型注意事项直接开平方法≥0时有解,<0时无解。配方法二次项系数若不为1,必须先把系数化为1,再进行配方。公式法≥0时,方程有解;<0时,方程无解。先化为一般形式再用公式。因式分解法方程的一边为0,另一边分解成两个一次因式的积。方程的一边必须是0,另一边可用任何方法分解因式。【举例解析】例1:已知,解关于的方程。分析:注意满足的的值将使原方程成为哪一类方程。解:由得:或,当时,原方程为,即,解得.当时,原方程为,即,解得,.说明:由本题可见,只有项系数不为0,且为最高次项时,方程才

是一元二次方程,才能使用一元二次方程的解法,题中对一元二次方程的描述是不完整的,应该说明最高次项系数不为0。通常用一般形式描述的一元二次方程更为简明,即形如的方程叫作关于的一元二次方程。若本题不给出条件,就必须在整理后对项的字母系数分情况进行讨论。例2:用开平方法解下面的一元二次方程。(1);(2)(3);(4)分析:直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如的方程,其解为。通过观察不难发现第(1)、(2)两小题中的方程显然用直接开平方法好做;第(3)题因方程左边可变为完全平方式,右边的121>0,所以此方程也可用直接开平方法解;第(4)小题,方程左边可利用平方差公式,然后把常数移到右边,即可利用直接开平方法进行解答了。解:(1)∴(注意不要丢解)由得,由得,∴原方程的解为:,(2)由得,由得∴原方程的解为:,(3)∴∴∴,∴原方程的解为:,(4)∴,即∴,∴,∴原方程的解为:,说明:解一元二次方程时,通常先把方程化为一般式,但如果不要求化为一般式,像本题要求用开平方法直接求解,就不必化成一般式。用开平方法直接求解,应注意方程两边同时开方时,只需在一边取正负号,还应注意不要丢解。例3:用配方法解下列一元二次方程。(1);(2)分析:用配方法解方程,应先将常数移到方程右边,再将二次项系数化为1,变为的形式。第(1)题可变为,然后在方程两边同时加上一次项系数的一半的平方,即:,方程左边构成一个完全平方式,右边是一个不小于0的常数,即:,接下去即可利用直接开平方法解答了。第(2)题在配方时应特别注意在方程两边同时加上一次项系数的一半的平方。解:(1)二

一元二次方程专题复习讲义(知识点-考点-题型总结)-----hao---use--ok

一元二次方程专题复习 一、知识结构: 一元二次方程?? ???*?韦达定理根的判别解与解法 二、考点精析 考点一、概念 (1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 ★★3、若方程()112=?+ -x m x m 是关于x 的一元二次方程,则m 的取值范 围是 。 ★★★4、若方程2x2=0是一元二次方程,则下列不可能的是( ) 2 21 C21 1 考点二、方程的解 ⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。 针对练习: ★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 ★2、已知关于x 的方程022=-+kx x 的一个解与方程 311=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。

一元二次方程及解法经典习题及解析

┃知识归纳┃ 1.一元二次方程的概念 只含有个未知数(一元),并且未知数的最高次数是的方程,叫做一元二次方程.[注意] 一元二次方程判定的条件是:(1)必须是整式方程;(2)二次项系数不为零;(3)未知数的最高次数是2,且只含有一个未知数. 2.一元二次方程的解法 一元二次方程有四种解法:法、法、法和法. [注意] 公式法其实质是配方法,只不过省去了配方的过程,但用公式时应注意:(1)将一元二次方程化为一般形式,即先确定a、b、c的值;(2)牢记使用公式的前提是b2-4ac≥0. 3.一元二次方程根的判别式Δ=b2-4ac (1)Δ>0?ax2+bx+c=0(a≠0)有的实数根; (2)Δ=0?ax2+bx+c=0(a≠0)有的实数根; (3)Δ<0?ax2+bx+c=0(a≠0) 实数根. 4.一元二次方程根与系数的关系 一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则两根与方程系数之间有如下关系:x1+x2=,x1·x2=. [注意] 它成立的条件:①二次项系数不能为0;②方程根的判别式大于或等于0. 四大解法 一、开平方法 方程的左边是完全平方式,右边是非负数;即形如x2=a(a≥0)

二、配方法 “配方法”的基本步骤:一化、二移、三配、四化、五解 1.化1:把二次项系数化为1; 2.移项:把常数项移到方程的右边; 3.配方:方程两边同加一次项系数一半的平方; 4.变形:化成 5.开平方,求解 三、公式法 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0). 2.b2-4ac≥0. 四、因式分解法 1.用因式分解法的条件是:方程左边能够分解,而右边等于零; 2.理论依据是:如果两个因式的积等于零,至少有一个因式等于零. 因式分解法解一元二次方程的一般步骤: 一移-----方程的右边=0; 二分-----方程的左边因式分解; 三化-----方程化为两个一元一次方程; 四解-----写出方程两个解; 解题技巧: 先考虑开平方法,

一元二次方程解法的综合运用

一元二次方程解法的综合运用 [内容] 教学目标 (一)巩固、掌握解一元二次方程的四种解法: (二)提高题目难度,培养计算能力和计算技巧,渗透换元思想; (三)培养观察能力,根据题目结构,选择恰当的解法. 教学重点的难点 重点:四种方法的综合运用,选择恰当的解法. 难点:选择恰当的解法.要有一定的计算能力和技巧. 教学过程设计 (一)复习 1.一元二次方程的一般形式是什么? 2.不完全的一元二次方程有哪几种? 3.解一元二次方程有哪四种方法? (二)新课 同一个题目可能会有多种解法,我们应该根据题目的结构选取恰当的解法.在解题过 程中应该根据算理,发挥计算技能,要有毅力计算到底,并在解题过程中随时检查可能出现 的错误. 例1 解方程:x(x-1)=3x(x+1) 分析:(启发学生一起想)先化为一般形式. 解:原方程化为(1-3)x 2-(1+3)x=0,提取公因式x,得x[(1-3)x-(1+3)]=0,x=0,(1-3)x-(1+3)=0. (二次根式运算的结果,应化为最简二次根式) 例2 解方程:(3x+2)2-8(3x+2)+15=0. 分析:(启发学生一起想)不宜把(3x+2)2和8(3x+2)展开整理为一元二次方程一般形式. 观察题目的结构可见,把3x+2换元为t ,则原方程就是t 的一元二次方程. 解:设3x+2=t,原方程变为t 2-8t+15=0,(t-3)(t-5)=0.所以t 1=3,t 2=5.即3x+2=3或3x+2= 5.故x 1=31 1 3,x 2=1. 注:本题也可直接写为[(3x+2)-3][(3x+2)-5]=0,即(3x-1)(3x-3)=0,故x 1=1 3,x 2=1. 例3 解方程:144x 2=61-208x. 解:原方程化为144x 2+208x-61=0,则 a=144,b=208,c=-61.b 2-4ac=2082-4×144(-61)=2082+4×144×61. (此题数据太大,不宜大乘大除,应注意计算技巧.分解因数,提取公因数,化为连乘积) b 2-4ac=(16×13) 2+22×42×9×61=82 (4×169+9×61)=82×1225=(8×35) 2>0,原方程有实根.

一元二次方程及解法经典习题及解析

一元二次方程及解法经典习题及解析 知识技能: 一、填空题: 1.下列方程中是一元二次方程的序号是 . 42=x ① 522=+y x ② ③01332=-+x x 052=x ④ 5232=+x x ⑤ 412=+x x ⑥ x x x x x x 2)5(0143223-=+=+-。。。。⑧⑦ 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程. 4.解一元二次方程的一般方法有 , , , · 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: . 6.(2004·沈阳市)方程0322=--x x 的根是 . 7.不解方程,判断一元二次方程022632 =+--x x x 的根的情况是 . 8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 . 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根. 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 . 二、选择题: 11.(2004·北京市海淀区)若a 的值使得1)2(42 2-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2 12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( ) 3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D 13.方程02=+x x 的解是( ) x A .=土1 0.=x B 1,0.21-==x x C 1.=x D

一元二次方程典型例题解析

龙文教育学科辅导学案 教师: 学生: 年级: 日期:2013. 星期: 时段: 学情分析 课 题 一元二次方程章节复习及典型例题解析 学习目标与 考点分析 学习目标:1、通过对典型例题、自身错题的整理,抓住本章的重点、突破学习的难点; 2、通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法; 3、通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决 问题中的作用 考点分析:1一元二次方程的定义 、解法、及根与系数的关系 学习重点 理解并掌握一元二次方程的概念及解法 学习方法 讲练说相结合 学习内容与过程 一 回顾梳理旧的知识点(这些知识点必须牢牢掌握) 一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程压轴题[含答案解析]

一元二次方程 1.(北京模拟)已知关于x的一元二次方程x2+px+q+1=0有一个实数根为2. (1)用含p的代数式表示q; (2)求证:抛物线y1=x2+px+q与x轴有两个交点; (3)设抛物线y1=x2+px+q的顶点为M,与y轴的交点为E,抛物线y2=x2+px+q+1的顶点为N,与y轴的交点为F,若四边形FEMN的面积等于2,求p的值. 2.设关于x的方程x2-5x-m2+1=0的两个实数根分别为α、β,试确定实数m的取值范围,使|α|+|β|≤6成立.

3.(湖南怀化)已知x 1,x 2是一元二次方程( a -6)x 2 +2ax +a =0的两个实数根. (1)是否存在实数a ,使-x 1+x 1x 2=4+x 2成立?若存在,求出a 的值;若不存在,请你说明理由; (2)求使( x 1+1)( x 2+1)为负整数的实数a 的整数值. 4.(江苏模拟)已知关于x 的方程x 2 -(a +b +1)x +a =0(b ≥0)有两个实数根x 1、x 2,且 x 1≤x 2. (1)求证:x 1≤1≤x 2 (2)若点A (1,2),B ( 1 2 ,1),C (1,1),点P (x 1,x 2)在△ABC 的三条边上运动,问 是否存在这样的点P ,使a +b = 5 4 ?若存在,求出点P 的坐标;若不存在,请说明理由. 5.(福建模拟)已知方程组 ???y 2 =4x y =2x +b 有两个实数解 ? ????x =x 1y =y 1 和 ?????x =x 2 y =y 2 ,且x 1x 2≠0,x 1≠x 2. (1)求b 的取值范围; (2)否存在实数b ,使得 1 x 1 + 1 x 2 =1?若存在,求出b 的值;若不存在,请说明理由.

2.2《一元二次方程的解法》专题训练题及答案

湘教版九年级数学上册 第2章 反比例函数 一元二次方程 2.2 一元二次方程的解法 根据平方根的意义解一元二次方程 专题训练题 1.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( ) A .2 B .0 C .0或2 D .0或-2 2.若关于x 的一元二次方程ax 2+bx +c =0有一个根为1,则下列结论正确的是( ) A .a +b +c =1 B .a +b +c =0 C .a -b +c =0 D .a -b +c =1 3.已知m 是一元二次方程x 2-x -1=0的一个根,那么代数式m 2-m 的值等于( ) A .1 B .0 C .-1 D .2 4.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( ) A .1 B .-1 C .0 D .-2 5.已知关于x 的一元二次方程(x +1)2-m =0有实数根,则m 的取值范围是( ) A .m ≥-34 B .m ≥0 C .m ≥1 D .m ≥2 6.方程x 2-3=0的根是( ) A .x =3 B .x 1=3,x 2=-3 C .x = 3 D .x 1=3,x 2=- 3 7.一元二次方程(x +6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( ) A .x -6=-4 B .x -6=4 C .x +6=4 D .x +6=-4 8.方程-4x 2+1=0的解是( ) A .x =12 B .x =-12 C .x =±12 D .x =±2 9.方程(x -4)2=11的根为( ) A .x 1=-4+11,x 2=-4-11 B .x 1=4+11,x 2=4-11 C .x 1=11+4,x 2=11-4 D .x 1=4+11,x 2=-4-11 10.对于形如(x +m )2=n 的方程,它的解的正确表述为( ) A .都能用直接开平方法求解得x =-m ±n B .当n ≥0时,x =m ±n C .当n ≥0时,x =-m ±n D .当n ≥0时,x =±n -m 11.下列方程中,适合用直接开平方法求解的是( ) A .x 2+5x +1=0 B .x 2-6x -4=0 C .(x +3)2=16 D .(x +2)(x -2)=4x 12.方程4x 2-81=0的解为________. 13.解下列方程: (1)16x 2=25; (2)(2x +1)2-1=0.

一元二次方程的解法—知识讲解

一元二次方程及其解法(一)直接开平方法—知识讲解(提高) 【学习目标】 1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式; 2.掌握直接开平方法解方程,会应用此判定方法解决有关问题; 3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想. 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 要点诠释: 识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可. 2.一元二次方程的一般形式: 一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常 数项. 要点诠释: (1)只有当时,方程才是一元二次方程; (2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号. 3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 4.一元二次方程根的重要结论 (1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0. (2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0. (3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0. 要点二、一元二次方程的解法 1.直接开方法解一元二次方程: (1)直接开方法解一元二次方程:

一元二次方程的解法综合练习题及答案

一元二次方程之概念 一、选择题 1.在下列方程中,一元二次方程的个数是(). ①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5 x =0 A.1个B.2个C.3个D.4个 2.方程2x2=3(x-6)化为一般形式后二次项系数、?一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6 3.px2-3x+p2-q=0是关于x的一元二次方程,则(). A.p=1 B.p>0 C.p≠0 D.p为任意实数 二、填空题 1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________. 3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________. 三、综合提高题 1.a满足什么条件时,关于x的方程a(x2+x)x-(x+1)是一元二次方程? 2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么? 一元二次方程之根 一、选择题 1.方程x(x-1)=2的两根为(). A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=2 2.方程ax(x-b)+(b-x)=0的根是(). A.x1=b,x2=a B.x1=b,x2=1 a C.x1=a,x2= 1 a D.x1=a2,x2=b2 3.已知x=-1是方程ax2+bx+c=0的根(b≠0)(). A.1 B.-1 C.0 D.2 二、填空题 1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________. 3.方程(x+1)2x(x+1)=0,那么方程的根x1=______;x2=________.

《一元二次方程》知识讲解

《一元二次方程》全章复习与巩固—知识讲解(提高) 【学习目标】 1.了解一元二次方程及有关概念; 2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程; 3.掌握依据实际问题建立一元二次方程的数学模型的方法. 【知识网络】 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 2.一元二次方程的一般式:   3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释: 判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2. 对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. 要点二、一元二次方程的解法 1.基本思想

一元二次方程??? →降次一元一次方程 2.基本解法 直接开平方法、配方法、公式法、因式分解法. 要点诠释: 解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法. 要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?. (1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根. 2.一元二次方程的根与系数的关系 如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,a c x x =21. 注意它的使用条件为a ≠0, Δ≥0. 要点诠释: 1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题: (1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题. 2. 一元二次方程根与系数的应用很多: (1)已知方程的一根,不解方程求另一根及参数系数; (2)已知方程,求含有两根对称式的代数式的值及有关未知数系数; (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 要点四、列一元二次方程解应用题 1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系; 三是正确求解方程并检验解的合理性. 2.利用方程解决实际问题的关键是寻找等量关系. 3.解决应用题的一般步骤: 审 (审题目,分清已知量、未知量、等量关系等);

一元二次方程及一元二次方程的解法测试题(绝对经典)

. 第二章一元二次方程单元测验 一、选择题:(每小题3分,共36分) 1. 下列方程中是一元二次方程的是 ( ) (A )22)1(2-=-x x (B )01232=+-x x (C )042=-x x (D )02352 =-x x 2. 方程1)14(2 =-x 的根为( ) (A )4121==x x (B )2121==x x (C ),01=x 212=x (D ),2 1 1-=x 02=x 3. 解方程 7(8x + 3)=6(8x + 3)2 的最佳方法应选择( ) (A )因式分解法 (B )直接开平方法 (C )配方法 (D )公式法 4. 下列方程中, 有两个不相等的实数根的方程是( ) (A )x 2 –3x + 4=0 (B )x 2–x –3=0 (C )x 2–12x + 36=0 (D )x 2–2x + 3=0 5、已知m是方程012 =--x x 的一个根,则代数m2 -m的值等于 ( ) A 、1 B 、-1 C 、0 D 、2 6、若方程0152 =--x x 的两根为的值为则 、212111,x x x x +( ) A 、5 B 、51 C 、5- D 、5 1- 7. 以知三角形的两边长分别是2和9, 第三边的长是一元二次方程x 2 –14x + 48=0的解, 则这个三角形 的周长是( )(A )11 (B )17 (C )17或19 (D )19 8. 下列说法中正确的是 ( )(A )方程2 80x -=有两个相等的实数根; (B )方程252x x =-没有实数根;(C )如果一元二次方程20ax bx c ++=有两个实数根,那么0?=; (D )如果a c 、异号,那么方程2 0ax bx c ++=有两个不相等的实数根. 9. 若一元二次方程(1–2k)x 2 + 12x –10=0有实数根, 则K 的最大整数值为( ) (A )1 (B )2 (C )–1 (D )0 10.把方程2x 2 -3x+1=0化为(x+a)2 =b 的形式,正确的是( ) A. 23162x ??- = ???; B.2312416x ??-= ???; C. 2 31416x ? ?-= ? ?? ; D.以上都不对 11、 若方程02 =++q px x 的两个实根中只有一个根为0,那么 ( ) (A )0==q p ; (B )0,0≠=q p ; (C )0,0=≠q p ; (D )0,0≠≠q p . 12、下面是李刚同学在一次测验中解答的填空题,其中答对的是 ( ) A . 若x 2=4,则x =2 B .方程x (2x -1)=2x -1的解为x =1 C .若x 2 +2x +k =0有一根为2,则8=-k D .若分式1 2 32-+-x x x 值为零,则x =1,2 二、填空题:(每小题3分,共30分) 1、方程()()-267-x 5x =+,化为一般形式为 ,其中二次项系数和一次项系数的和为 。 2. 当x =________时,分式1 4 32+--x x x 的值为零。 3. 若关于x 的方程02)1(2 =+--m mx x m 有实数根,则m 的取值范围是______ 4.若方程042 2 =++m x x ,则m= . 5.已知0822 =--x x , 那么=--7632 x x _______________. 6. 若关于x 的一元二次方程02 =++c bx ax (a ≠0)的两根分别为1,—2,则b a -的值为______. 7. 若2 2 2 (3)25a b +-=,则22 a b +=____ 8.若一元二次方程02 =++c bx ax 中,024=+-c b a ,则此方程必有一根为________. 9、若两个连续整数的积是20,则他们的和是________。 10.某企业前年的销售额为500万元,今年上升到720万元,如果这两年平均每年增长率相同,则去年销售额为 11. 如果x x 12、是方程x x 2 720-+=的两个根,那么x x 12+=____________。 13. 已知一元二次方程x x 2 350--=的两根分别为x x 12、,那么x x 12 22 +的值是____。 14. 若方程x x k 2 20-+=的两根的倒数和是 8 3 ,则k =____________。 15.已知关于x 的方程(2k+1)x 2 -kx+3=0,当k______时,?方程为一元二次方程,? 当k______时,方程为一元一次方程,其根为______.

小专题(一)-一元二次方程的解法

专题(一)一元二次方程的解法 1.用直接开平方法解下列方程: (1)x2-16=0;(2)3x2-27=0; (3)(x-2)2=9;(4)(2y-3)2=16. 2.用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-4x-8=0; (3)3x2-6x+4=0; (4)2x2+7x+3=0.

3.用公式法解下列方程: (1)x2-23x+3=0; (2)-3x2+5x+2=0; (3)4x2+3x-2=0; (4)3x=2(x+1)(x-1). 4.用因式分解法解下列方程: (1)x2-3x=0; (2)(x-3)2-9=0;

(3)(3x-2)2+(2-3x)=0; (4)2(t-1)2+8t=0; (5)3x+15=-2x2-10x; (6)x2-3x=(2-x)(x-3). 5.用合适的方法解下列方程: (1)4(x-3)2-25(x-2)2=0; (2)5(x-3)2=x2-9;

(3)t 2-22t +18=0. 参考答案 1.(1)移项,得x 2=16,根据平方根的定义,得x =±4,即x 1=4,x 2=-4. (2)移项,得3x 2=27,两边同除以3,得x 2=9,根据平方根的定义,得x =±3,即x 1=3,x 2=-3. (3)根据平方根的定义,得x -2=±3,即x 1=5,x 2=-1. (4)根据平方根的定义,得2y -3=±4,即y 1=72,y 2=-12. 2.(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+4,即(x -2)2=5.直接开平方,得x -2=±5,∴x 1=2+5,x 2=2- 5. (2)移项,得2x 2-4x =8.两边都除以2,得x 2-2x =4.配方,得x 2-2x +1=4+1.∴(x -1)2=5.∴x -1=± 5.∴x 1=1+5,x 2=1- 5. (3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-43.配方,得x 2-2x +12=-43+12,即(x -1)2=-13.∵ 实数的平方不可能是负数,∴原方程无实数根. (4)移项,得2x 2+7x =-3.方程两边同除以2,得x 2+72x =-32.配方,得x 2+72x +(74)2=-32+(74)2,即(x +74)2=2516. 直接开平方,得x +74=±54.∴x 1=-12,x 2=-3. 3.(1)∵a =1,b =-23,c =3,b 2-4ac =(-23)2-4×1×3=0,∴x =-(-23)±02×1 = 3.∴x 1=x 2= 3. (2)方程的两边同乘-1,得3x 2-5x -2=0.∵a =3,b =-5,c =-2,b 2-4ac =(-5)2-4×3×(-2)=49>0,∴x =-(-5)±492×3=5±76,∴x 1=2,x 2=-13. (3)a =4,b =3,c =--4ac =32-4×4×(-2)=41>=-3±412×4=-3±418.∴x 1=-3+418,x 2=-3-418 . (4)将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(- 2)=11>0,∴x =3±1122 =6±224.∴x 1=6+224,x 2=6-224.

一元二次方程解法举例

https://www.360docs.net/doc/515837183.html, ------------------华夏教育资源库 https://www.360docs.net/doc/515837183.html, ------------------华夏教育资源库 一元二次方程解法举例 教学目标:1.巩固一元二次方程的四种解法 2.灵活选用一元二次方程的四种解法解方程 教学重点: 一元二次方程的四种解法的灵活运用 教学难点:能准确把握方程的特征,选用适当的解法. 教学准备:小黑板 教学过程: 复习引入:1. 一元二次方程02 =++c bx ax 的求根公式为 . 2.一元二次方程解法有哪几种?各有那些步骤? 对于方程02=++c bx ax (a ≠0,042≥-ab b ) 若b=0,则宜用 法解,其根为 ; 若c=0,则宜用 法解,其根为 ; 若b ≠0,c ≠0,则要准确把握方程的特征,选用适当的解法. 讲授新课: 范例讲解 例1 选用适当的方法解方程: (1)()922=-x ;(直接开平方法) (2)222 =-t t ;(配方法) (3)()()052432922=--+x x ;(因式分解法) (4)4.013.001.02 -=-x x ;(化小数系数为整数系数后再因式分解) (5)x x 2 21232=-;(去分母后用公式法) (6)1417522-=mx x m (m ≠0).(因式分解法) (7)()()x x x 211=-+;(先整理后,再确定适当的方法,配方法) (8)()()742322 +=+m m ;(先整理后,再确定适当的方法,公式法) (9)()()0812151222 =-+++x x .(因式分解法) 例2 (1)当x= 时,31432 +-x x 的值与22-x 的值相等.

一般的一元二次方程的解法—知识讲解

一元二次方程的解法(二) 一般的一元二次方程的解法—知识讲解(提高) 【学习目标】 1.了解配方法和公式法的概念、一元二次方程求根公式的推导过程,会用配方法和公式法解一元二次方程; 2.掌握运用配方法和公式法解一元二次方程的基本步骤; 3.通过用配方法将一元二次方程变形的过程,通过求根公式的推导,进一步体会转化的思想方法,并增强数学应用意识和能力. 培养学生数学推理的严密性及严谨性,渗透分类的思想. 【要点梳理】 要点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释: (1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式222 ±+=±. a a b b a b 2() 要点二、配方法的应用 1.用于比较大小: 在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小. 2.用于求待定字母的值: 配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 3.用于求最值: “配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明: “配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用

一元二次方程的解法(综合)

环球教育学科教师辅导讲义 学员姓名:xxx年级:初三课时数:3 班主任:xxx 辅导科目:数学学科教师:王兴华 课题一元二次方程的解法 授课时间及时段2014-06-19 授课类型T T C 教学目标 1.学习掌握通公式法和因式分解法解一元二次方程 2.灵活选择合适的方法解一元二次方程 一、回顾 ?1.一元二次方程的含义:_____________________________________________________________. ?2.一元二次方程的一般形式:_____________________________________________________. ?3.一元二次方程的解法: ①直接开平方法 *适用形式: *答题基本步骤: ②配方法 *含义: *答题基本步骤: *可以解决的题型: *处理一元二次方程和二次三项式有什么不同: 友情提醒:请在不熟的知识点上用着重符号标出,课后及时巩固训练哦!! XXX,很高兴在环球之家又见面了,孔子曰:温故而知新,可以为师矣!我们一起回 顾上次所学习的知识吧!

二、引入与讲解 ?1.求根公式法: ①用公式法解一元二次方程的前提是: *必须是一般形式的一元二次方程: )0(02 ≠=++a c bx ax . *042 ≥-ac b ②解一元二次方程的基本步骤: Step1:化为一元二次方程的一般形式; Step2:确定c b a ,,和ac b 42 -的值; Step3:代入求根公式 1.用公式法解一元二次方程。 (1)x x x 3)1)(1(=-+ (2)03322 =+-x x 练一练: (1)6)6(=+x x (2)01222=+-x x )0(02≠=++a c bx ax 还记得如何用配方法推导出一元二次方程 的解吗?(请你快速的推导一遍) XXX ,你知道为什么要确定 ac b 42-的值吗? a ac b b x 242-±-=小博士提醒:求根公式一定要熟练记忆和运用。

一元二次方程知识点复习及典型题讲解

一元二次方程复习课1)一元二次方程的概念: 中考常见题型: 例1、下列方程中哪些是一元二次方程?试说明理由。 x?22x??122x?4?(x?2)2x?43x?2?5x?3x?1(1)(2)(3)(4) 2bx+a=0, x —2、方程(2a 2在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一 —4)例次方程?2。,求m的一元二次方程(m-1)x+3x-5m+4=0有一根为2例3 、已知关于x 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项练习一、????????222y?3y2y?1??y1??2x?2?3x2 2x(x-1)=3(x-5)-4 2(m?3)x?nx?m?0x练习二、关于,在什么条件下是一元二次方程?在什么条件下是一元一的方程次方程? 2)一元二次方程的解法: 1)直接开平方法(换元思想): 2)配方法: 3)求根公式(符号问题): 4)因式分解法(十字交叉法): 中考常见题型: 例1:考查直接开平方法和换元思想。 1)(x+2)=3(x+2) (2)2y(y-3)=9-3y (3)( x-2) — x+2 =0 22( 249??1x?2x2 4)(2x+1)=(x-1) (5) 2( 2:用配方法解方程x+px+q=0(p2-4q≥0). 2例

例3:用配方法解方程: 22xx(1)-6x-7=0;(2)+3x+1=0. 2205x??2x?2x?7x?20?42(3)(50. 2x4 ())3x+-3= 2?4bacb2(x?)?2ax?bx?c?0(a?0)2aa4呢?例4:能否用配方法把一般形式的一元二次方程转化为 22-1=0 -(4k+1)x+2k取什么值时,关于x的方程2x例5、当k 方程没有实数根.有两个不相等的实数根; (2)有两个相等实数根; (3) (1) -c)x+b=0ABC的三边的长,求证方程ax-(a+ba例6、已知,b,c是△222222没有实数根. 练习:222 +n=0无实数根.,求证关于x的方程2x+2(m+n)x+m.若 1m≠n +m=0.求证:关于x的方程x+(2m+1)x-m2 22有两个不相等的实数根. 7例: 2220??x3)?65?(2x3)?(20?x?7x10?0??3992x?x)(2 1()()3 3)一元二次方程的应用(常见四类题型):

专题:一元二次方程的八种解法(后附答案)【精品】

专题:一元二次方程的八种解法 方法1 形如x2=p或(mx+n)2=p(p≥0)时,用直接开平方法求解用直接开平方法解一元二次方程的三个步骤: (1)看:看是否符合x2=p或(mx+n)2=p(p≥0)的形式; (2)化:对于不符合x2=p或(mx+n)2=p(p≥0)形式的方程先化为符合的形式; (3)求:应用平方根的意义,将一元二次方程化为两个一元一次方程求解. 1.用直接开平方法解下列方程: (1)x2-25=0; (2)4x2=1; (3)81x2-25=0; (4)(2y-3)2-64=0; (5)3(x+1)2=1 3 ; (6)(3x+2)2=25; (7)(x+1)2-4=0; (8)(2-x)2-9=0.

方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解用配方法解一元二次方程的“五步法” (1)移项:使方程的左边为二次项和一次项,右边为常数项. (2)化1:当方程的二次项系数不为1时,在方程的两边同除以二次项系数,把二次项系数化为1. (3)配方:在方程的两边同时加上一次项系数一半的平方,把原方程化成(x+n)2=p的形式. (4)开方:若p≥0,则两边直接开平方得到一元一次方程;若p<0,则原方程无解. (5)求解:解所得到的一元一次方程,求出原方程的解. 2.用配方法解下列方程: (1)x2-2x-2=0; (2)x2-10x+29=0; (3)x2+2x=2; (4)x2-6x+1=2x-15;

3.用配方法解下列方程: (1)3x 2 +6x -5=0; (2)12 x 2-6x -7=0. (3)x 2 +16x -13=0; (4)2x 2-3x -6=0; 方法3 能化成形如(x+a )(x+b )=0时,用因式分解法求解 用因式分解法解一元二次方程的“四步法” (“右化零,左分解,两因式,各求解”) 4.用因式分解法解下列方程: (1)x 2-8x =0; (2)5x 2+20x +20=0;

相关文档
最新文档