有机相变材料

有机相变材料
有机相变材料

有机相变材料

关键词:相变;PCMS;有机相变材料

摘要:有机相变材料是一种相变时吸热放热很高的材料,被广泛的应用到储能、建筑等领域,本文介绍了相变材料的分类性能,并就下一步的研究提出了自己的看法。

相变材料(Phase Change Materials,简称PCMs)是指在一定的温度范围内可改变物理状态的材料,以环境与体系的温度差为推动力,实现储、放热功能,并且在相变过程中,材料的温度几乎保持不变。它因具有储能密度大、储能能力强、温度恒定等优点,在智能调温服装、建筑及电子器件等应用领域得到了广泛关注。

PCMs按组成可分为:有机PCMs、无机PCMs和复合PCMs。按材料的相变方式可分为:固-固相变材料、固-液相变材料、固-气相变材料和液-气相变材料。后两者由于在相变过程中伴随有气体产生,体积变化较大,很少被选用。

无机相变材料储能密度大,相变时体积变化小,格低廉,主要包括碱及碱土金属的卤化物、硫酸盐、磷酸盐、硝酸盐、醋酸盐及碳酸盐等盐类的水合物。但这类材料在相变过程中容易出现过冷、相分离现象,需要添加防过冷剂和防相分

离剂增强其稳定性,延长使用寿命。例如,在CaC1

2·6H

2

O中加入NaC1和过量的水

能使CaC1

2·6H

2

O保持较好的稳定性,经过1000次加热.冷却循环相变潜热不退化。

与无机相变材料相比,有机相变材料具有无过冷及析出现象,性能稳定,可通过不同相变材料的混合来调节相变温度的突出优点。但通常存在着导热系数小,密度小,单位体积储热能力差的缺点。典型的有机类相变材料有:石蜡、脂肪酸类、多元醇类相变材料等。

复合相变储能材料主要指性质相似的二元或多元化合物的一般混合体系或

低共熔体系,形状稳定的固液相变材料,无机有机复合相变材料等。复合相变材料一般有两种形式:一种是两种相变材料混合;另一种是定型相变材料。两种相变材料混合虽制造简单,但具有一般相变材料的缺点,需要封装,容易发生泄漏,使用不安全等。定性相变材料是由相变材料和高分子组成的混合储能材料,相变材料一般为石蜡有机酸等,高分子材料一般为HDPE(高密度聚乙烯,具有较高的熔点,作为支撑物),后者作为支撑和密封材料将相变材料包容在其组成的一个个微空间中,因此在相变材料发生相变时,定性相变材料能保持一定的形状,且不会有相变材料发生泄漏。与普通相变材料相比,它不需封装器具,减少了封装成本和封装难度,避免了材料泄漏的危险,增加了材料使用的安全性,减少了容器的传热热阻,有利于相变材料与传热流体间的换热。

有机PCMs按材料的相变方式可分为:固-固相变材料、固-液相变材料、固-气相变材料和液-气相变材料。后两者由于在相变过程中伴随有气体产生,体积变化较大,很少被选用。

1 有机固-液相变储能材料

有机固-液相变储能材料主要包括脂肪烃类、脂肪酸类、醇类和聚烯醇类等,其优点是不易发生相分离及过冷,腐蚀性较小,相变潜热大,缺点是易泄露。目前应用较多的主要是脂肪烃类与聚多元醇类化合物。Ahmet Sar?等[6]合成了硬脂酸-正丁醇酯、硬脂酸-异丙醇酯、硬脂酸-丙三醇三酯作为固-液相变储能材料。从图1可以看出,合成的相变储能材料的熔化和凝固温度都在23~63 ℃和

24~64 ℃之间。相应的相变焓都在121~149 kJ/kg和128~151 kJ/kg之间,且热循环后变化不大,说明合成的相变材料储热能力大,热稳定性好,但是达到相变温度时易泄露,需要容器封装。

2 有机固-固相变储能材料

有机固-固相变储能材料是通过材料晶型的转换来储能与释能,在其相变过程中具有体积变化小、无泄漏、无腐蚀和使用寿命长等优点,目前已经开发出的具有经济潜力的固-固相变材料主要有3 类:多元醇类、高分子类和层状钙钛矿。

2.1 多元醇类

多元醇类相变材料的储能原理是当温度达到相变温度时,其结构由层状体心结构变为各向同性的面心结构,同时层与层之间的氢键断裂,分子发生由结晶态变为无定形态的相转变,释放键能。多元醇的固-固相变焓较大,其大小与该多元醇每一分子中所含的羟基数目有关,每一分子所含羟基数越多,则固-固相变焓越大。它的优点是相变焓大、性能稳定、使用寿命长;缺点是当它们的温度达到固-固相变温度以上,会由晶态固体变成有很大的蒸气压塑性的晶体,易损失。此类相变材料主要有季戊四醇(PE)、三羟甲基乙烷(PG)、新戊二醇(NPG)、2-氨基-2-甲基-1,3-丙二醇(AMP)、三羟甲基氨基甲烷(TAM)等。

2.2 高分子类

有机高分子固-固相变材料为结晶聚合物,主要包括嵌段、接枝和交联类聚合物。

2.2.1 嵌段类

Su 等用聚乙二醇1000、1,4-丁二醇、4,4′-二苯基亚甲基二异氰酸酯合成了聚亚氨酯嵌段共聚物PUPCM,它的相变焓为138.7 kJ/kg。从图2 中其偏光显微图片可以看出室温下PEG 和PUPCM 得结晶形态都是球状,且PUPCM的球粒粒径远远小于PEG,说明在PUPCM中,软段PEG的结晶受到硬段的限制,PEG的结晶被破坏;当温度上升到70 ℃时,PUPCM的球粒结构被完全破坏,说明软段PEG 从结晶态转变成了无定形态。因此,PUPCM 是一种热稳定性好、相转变温度适中、相变焓高的新型固-固相变储能材料。

2.2.2 接枝类

Meng等利用异佛尔酮二异氰酸酯(IPDI)和1,4-丁二醇(BDO)的本体聚合产物作硬段,聚乙二醇(PEG3400)做软段,合成了一种嵌段型的固-固相变储能材料PEGPU,其相转变温度及相变焓见表2。从表2中可以看出PEGPU有很高的的相变焓,在100 kJ/kg左右,且热循环对其影响不大,是一类很实用的固-固相变材料。2.2.3 交联类

Li 等用聚乙二醇(PEG)、4,4′-二苯基亚甲基二异氰酸酯(MDI)、季戊四醇(PE)合成了一种交联型高分子相变储能材料PEG/MDI/PE,图3 是PEG 和PEG/MDI/PE

的偏光显微图片。从图3可以看出25 ℃时,PEG 和PEG/MDI/PE 的结晶形态都是球状,且PEG/MDI/PE 的球粒粒径远远小于PEG,说明在PEG/MDI/PE中,PEG的结晶受到的限制;当温度上升

到80 ℃时,PEG/MDI/PE 的球粒结构被完全破坏,说明PEG 从结晶态转变成了无定形态。PEG/MDI/PE 的相变温度为58.68 ℃,相变焓高达152.97 kJ/kg,且加热到150 ℃时任能保持固态,因此它有很好的实用性。

2.3 层状钙钛矿

层状钙钛矿是一种有机金属化合物-四氯合金属(Ⅱ)酸正烷胺,它被称为层状钙钛矿是因为其晶体结构是层型的,和矿物钙钛矿的结构相似。表3列出了一些四氯合金属(Ⅱ)酸正十烷胺(C10M)的相变温度和相变热,从表3可看出,此类相变材料相变热在10~80 kJ/kg之间,储热率较低。

3 有机相变材料的热物性参数

有机相变材料具有较低的相变湿度和较高的相交潜热,过冷度低、不易发生相分离,相交过程中体积变化小,经过多次热循环热性能不退化。使用寿命长。有机类相变材料主要包括高级脂肪烃类、脂肪酸类、醇类、芳香烃类、芳香酮类、酰胺类、氟利昂类、多羰基类等.其中研究最多的是石蜡和脂肪酸类相变材料。有机相变材料的热物性参数与有机物的官能团和链长又很大关系.相同的官能团,链长越长则相变温度和相变潜热越大.对有机相变材料来,可以通过合成多元体系的方法得到更为理想的相变材料。

3 有机相变材科的相变特性

3.1石蜡类相变材料,

相变温度和相变焓是寻找相交材料的两个重要指标。石蜡等直链烷烃类相变材料因具有0~80℃的相变区间,较高的相变焓(200一-300kJ/kg),因而备受国内外专家的关注。在建筑节能领域中,C16(相变温度18.1℃)、C18(相变温度28.0℃) 因温度适宜。且来源比奇数碳原子的石蜡(如:C

)广泛,而备受关注。

17

但在应用时.与建筑材料复合过程,中会发生表面结霜等现象,同时成本居高不下、原材料的供应等问题也使其难以大规模使用。人们开始寻找正十六烷、正十八烷的替代品。大致有以下几个方向: (1)采取人工的方法对长支链烷烃进行改进; (2)采用硬脂酸丁酯为代表的醋类、脂肪酸类、多元醇类等代替; (3)采用二元或三元复合的方法达到降低成本的目的。在降温过程中,工业石蜡相转变点大致为54"C;在升温过程中,其相变范围从30℃至50℃.相交温度范围广,是因为石蜡本身具有很大的粘性,导热性差。实验中观察发现,在相转变过程中,试管壁周匿的石蜡先融化,然后才是试管中心的石蜡融化,容易产生局部受熟不均的现象。

通过尿素络合改性,工业石蜡降温过程中,相转变点从54℃降至48℃;升温过程中,相变范围基本没有变.尿素改性工业高熔点石蜡为低熔点相变石蜡,这是一种可行的翻取新型相交材料的方法,但成熟的工艺及深入的研究还有待进一步开展。

3.2脂肪酸类相变材料

脂肪酸类相交材料优点是相变焓高,融化和凝结能重复实现,且有很小的过冷度或没有过冷度。密度大。但导热系数低,价格贵是这类材料的缺点.

(1)癸酸体系:癸酸的相变温度为30℃,相变维持的时间较长,说明癸酸的相交焓较大.相变过程中没有出现过冷或相分离现象,这是由于有机酸是自成核的,具有良好的结晶性能.

(2)月桂酸体系:月桂酸的相交温度为42.6-一42.7℃,相交焙也较大。相变过程中没有过冷和相分离现象.

(3)癸酸、月桂酸混合体系:用于空调建筑相变材料,相变温度必须在20~27℃之间,而癸酸纯体系的相交温度为30℃,月桂酸纯体系的相变温度为42.6~42.7℃,均偏高,设想采用两相共混的方法来降低相变温度。通过对癸酸、月桂酸以及其混合体系热性能的研究,可

以得到,纯癸酸的相变温度为30℃,纯月桂酸的相交温度为42.6~42.7℃,对于空调建筑,它们的相变温度偏高,采用两相共混的方法,当癸酸:月桂酸为2:3时,体系的相交温度为20~23℃的混合体系,因此这个体系适用于空调建筑。3.3多元醇类相变材料

多元醇类相交材料屑塑晶类物质,存在着很大的热变换及可逆固一固转变,单一多元醇对于低温储热不太适用,当混和两种多元酵时,由于过程存在相应低的温

度,作为接近室温的储能是很有实际意义的。多元醇在低温下它们具有高对称层状体心结构,同一层中的分子间由范德华力连接,层与层之间的分子由氢键连接,这些氢键使多元醇分子“僵化”氢键长度为2.71A。高温下。当达到各自的圊一固相变温度时,变为低对称的各向同性面心结构,同时氢键断裂,分子开始振动无序和旋转无序。这个转变的过程吸收了能量。若继续升温,达到熔点时,它们将由固态溶解为液态。这些多元醇的固-液相变温度都

高于固-固相交温度,所以相交后仍有较大的湿度上升幅度而不致发生固-液相交,从而在储能时体积变化小。相交焓与所含羟基数目有关,羟基越多,相变焓越大。新戊二醇(NPG)的相变温度为47.3℃,相变焓为128.1 kJ/kg,温度显然还是偏高的.三羟甲基丙烷TMP相变温度为62.3℃,相交焓为152 kJ/kg,与文献值相变温度55℃相差比较大,主要可能是因为原料的产地不一样,而且测试方法也有一定的误差。由于单一的醇相交温度偏高。所以利用两相混和的方法来降低其相交温度。测试方法与测脂肪酸的相交温度的方法相同。样品质量百分比为NPG:TMP=80:20,作相交温度的测试,样品升温时相交温度为23℃左右,样品降温时相变温度为27℃左右,单一的多元醇相交材料相交温度偏高了,通过两相共混的方法获得了相交温度在25℃左右的复合相交材料,这种复合相交材料中含80%NPG和20%TMP(质量百分数),升温过程中相交温度为23℃,降温过程中相变温度为27℃。

4 展望

有机类相交储能材料的优点是:无过冷及析出现象,性能稳定,无毒,无腐蚀。缺点是:导热系数小,密度小,单位体积储热能力差。为了得到相交温度适当、性能优越的相变材料,将来的研究方向是将几种有机相变材料复合以形成二元或多元相交材料,以弥补二者的不足,得到性能更好的相变材料.使之得到更好的应用。

参考文献

[1] B. Gibbs, S. Hashain, DSC study of technical grade phase change heat storage materials for solar heating applications. in: Proceedings of the 1995 ASME/ JSME/JSEJ International Solar Energy Conference Part 2, 1995.

[2]A Shukla D. Buddhi R.L. Sawhney Thermal cycling test of few selected inorganic and organic phase change materials Renewable Energy 33 2008(33) 2606– 2614

[3] A. Sharma et al. Review on thermal energy storage with phase change

materials and applications Renewable and Sustainable Energy Reviews 2009(13) 318–345

[4] Hale DV, Hoover MJ, O’Neill MJ. Phase change materials hand book.

Alabaa: Marshal Space Flight Center; 1971.

[5] Ahmet AA, Hasancan O. High-chain fatty acid esters of myristyl alcohol with even carbon number: Novel organic phase change materials for thermal energy storage—1. Solar Energy Materials & Solar Cells 2011(95):2752–2762

[6]Yi W et al. Stearic acid/silica fume composite as form-stable phase change material for thermal energy storage. Energy and Buildings 2011(43): 2365–2370

相变储能材料

上海大学2011-2012学年 秋 季学期研究生课程考试 小论文 课程名称: 先进功能材料 课程编号: 102004812 论文题目: 相变储能材料综述 成绩: __________________ 任课教师: ________________________________ 评阅日期: __________ 研究生姓名: 魏敏 _______________ 论文评语: 学号:11721590

相变储能材料综述 魏敏 上海大学 材料科学与工程学院 摘要: 相变储能材料就是将暂时不用的能量储存起来,到需要时再释放, 从而缓解能量需求的矛盾, 节约能 源。本文概述了相变储能的原理、种类和特点、制备方法、性能要求以及在建筑中应用,并指出当前应用 相变储能材料存在的问题以及新的发展方向。 关键词: 相变材料;储能;建筑;节能; 引言 近年来, 当今社会能源短缺及环境污染成为我们所面临的重要难题。 开发利用可再生能 源对节能和环保具有重要的现实意义。 开发新能源提高能源利用率已成为工业发展的重要课 题。因此,相变储能材料( phase change material )成为国内外能源利用和材料科学方面 的研究热点。 相变储能技术可以解决能量供求在时间和空间上不匹配矛盾, 也就是可以在能 量多时可以储能, 在需要时释放出来, 从而提高能源利用率。 一些发达国家在推广应用相对 比较成熟的储能技术和储能材料, 以期待不断提高技术性、 经济性和可靠性。 我国也在这方 面进行了积极的研究 [1-3] 。 相变储能材料介绍 相变储能原理 相变储能材料是指在其物相变化过程中, (冷) 量,从而达到能量储存和释放的目的。 率的设施, 同时由于其相变温度近似恒定, 次 重复使用。 作为为相变材料一般须满足以下要求 组分材料不易挥发和分解;对多组分材料 无毒、无腐蚀、不易燃易爆 , 且价格低廉; 不同状态间转化 时 , 材料体积变化要小 [1] 可以从环境中吸收热 (冷) 量或向环境放出热 利用此特性不仅可以制造出各种提高能源利用 可以用来调整控制周围环境的温度, 并且可以多 : 储能密度大;能源的转换效率高;稳定性好;单 , 则要求各组分间结合牢固; 不会发生离析现象; 导热 系数大 , 以便能量可以及时地储存或取出;

VO2材料研究进展

VO2材料最新研究进展 陈宗德201121220007 核科学与技术学院 摘要:VO2是一种具有特殊相变性能的功能材料。随着温度的变化,该晶型会发生半导体态与金属态的可逆变化,同时,电阻和红外透射率等物理性质也发生突变,其相变点在68"C附近。这些优异的特性使得VO2材料在新型热敏器件、光敏器件、光电开关和红外探测等领域都有着广阔的应用前景。 关键字:VO2 相变特性热敏电阻辐射探测 Abstract:VO2 is a kind of functional phase changing material.With the change in temperature, its structure will appear the irreversible semiconductor-metal state transition, at the same time,the mutations of resistance,infrared transmission, and other physical natures will occur, the phase transition point is in the vicinity of 68℃.Moreover, it is discovered that VO2 phase transition can also be induced by changing applied electric field. The excellent transition feature brings series of valuable applications to VO2 in new thermal and photosensitive devices, photoelectric switches and infrared detector areas. Key words: VO2phase changing the mutations of resistance infrared detector 1. 引言 1958年,科学家F.J.MorinⅢ在贝尔实验室发现钒和钛的氧化物具有一种特殊的现象:随着温度的降低,在一定的温区内材料会发生从金属性质到非金属性质的突然转变,同时还伴随着晶体向对称程度较低的结构转化。接着,其它一些过渡元素金属如钨、铌、铁、镍、铬的化合物也被相继发现具有这种性质[1]。这些化合物包括:Ti2O3,Ti3O5,Ti5O9,Fe203,Fe304,V509,FeSi2,CrS,NbO2,NiS等。其中最引人注目的是一批低价钒氧化物,它们的临界相变温度如表1所示。

相变储能材料及其应用

相变储能材料及其应用 物质的存在通常认为有三态,物质从一种状态变到另一种状态叫相变。相变的形式有以下四种:(1)固—液相变;(2)液—汽相变;(3)固—汽(4)固-固相变。相变过程个伴有能量的吸收或释放,我们就可以利用相变过程中有能量的吸收和释放的现象,利用相变材料来存储能量。比如用冰贮冷,冬天,在寒冷的地区,人们从湖面、河面冻结的厚冰层中获取冰块,贮存于“冰屋”中,利月锯末隔热、冰块可 )、溶 过冷和析出两大问题。所谓过冷是指当液态物质冷却到“凝固点”时并不结晶,而须冷却到“凝固点”以下一定温度时方开始结晶;而析出现象指在加热过程中,结晶水融化,此时盐溶解在水中形成溶液。结晶水合盐的代表有芒硝、六水氯化钙、 六水氯化镁、镁硝石等 (2)石蜡:石蜡主要由直链院烃混合而成,可用通式C n H2n+2表示,短链烷烃熔

点较低,但链增长熔点开始增长较快,而后逐渐减慢。随着链的增长,烷烃的熔解热也增大,由于空间的影响,奇数和偶数碳原子的烷烃有所不同,偶数碳原子烷烃的同系物有较高的熔解热,链更长时熔解热趋于相等。在C7H16以上的奇数烷烃和在C20H44以上的偶数烷烃在7℃一22℃范围内会产生两次相变: (1)低温的固-固转变,它是链围绕长轴旋转形成的; -固 3、有机-无机混合物 带有乙酰胺的有机和天机低共熔混合物具有较为优异的特性,而乙酰胺的熔点为80℃,潜热相当大,为251.2KJ/kg,且比较便宜。 此外乙酰胺本身及其与有机酸和盐类的低共熔混合物的化学和动力学性质都很好。乙酰胺的毒性很低。但是乙酰胺对某些塑料具有溶解作用,故在容器选择上应

谨慎小心,最好选用搪瓷或玻璃类容器。此类箱变材料也是在日常生活用品开发中 很有前途的一类。 储热相变材料的遴选原则: 作为贮热(冷)的相变材料,它们灾满足的条件是: (1)合适的相变温度; (2)较大的相变潜热; 储热相变材料的应用涉及面根广,但大致分为以下几个方面:集中空调的相变贮能系统,相变节能建筑材料和构件,相变储热在太阳能领域的应用,热电冷(或热电)联供系统中的相变储能,利出工业废热的相空贮热系统,相变日用品开发。随着相变材料基础和应用研究的不断断深入(包括新的相变材料的涌现),相变材料应用的 深度和广度都将不断拓展。

相变材料

浅谈相变储能材料的热能储存技术及其应用 云南师范大学能环学院再生B班马侯君(12416181) (云南师范大学太阳能研究所 650500) 摘要:由于相变储能材料具有储能密度高、储能放能近似等温、过程易控制等特点,因此,采用相变储能材料的热能储存技术是提高热能转化和回收利用效率的重要途径,也是储存可再生能源的有效方式之一。鉴于可供选用的相变储能材料种类多、相变温度范围大,使其在许多工程应用中具有较大的吸引力,筒要介绍利用相变储能材料的热能储存技术及其在工程中的多种应用。本文对热能存储技术的主要类型和技术原理进行了简要介绍,讨论了建筑采暖系统中热能 存储技术的应用现状及发展的趋势。 关键词:相变储能材料热能储存技术工程应用建筑采暖 1 引言 利用相变储能材料的热能储存技术是协调能源供求矛盾、提高能源利用效率和保护环境的重要技术,也是储存和回收利用短期或长期需求能源的一种有效途径。它在工业与民用建筑的采暖、空调、温室、太阳能热利用、工业生产过程的热能回收和利用等多个领域得到了广泛的应用,并已逐步成为世界范围高度重视的研究领域。特别是随着相变储能材料的基础和应用研究的不断深入,利用相变储能材料的热能储存技术的应用深度和广度都将不断拓展。为此,本文着重介绍相变储能材料及其研究,以及利用各种相变储能材料的热能储存技术在工程中的多种应用。 2 相变储能材料及其研究 相变储能材料的种类 人们对相变储能材料的研究可以追溯到20世纪70年代,近几十年来国内外研究人员对相变储能材料的研究和开发进行了大量的研究工作,取得了一定的研究成果,得到了具有温度变化小、储能密度大、过程易控制并适于利用材料的相变潜热进行热能储存的多种相变储能材料。根据其相变形式可分为固-液相变储能材料、固-固相变储能材料、固-气相变储能材料、液-气相变储能材料4类,虽然固-气相变和液-气相变具有的相变热大,但其体积上的大变化使相变储能系统变得复杂和不实用,因此,后两种相变储能材料在实际应用中很少被选用,应用较多的相变储能材料主要是固-液相变储能材料和固-固相变储能材料两类。 固-液相变储能材料 在固-液相变储能材料中,主要有无机相变储能材料、有机相变储能材料及其共融混合物3类。 (1)无机相变储能材料 无机相变储能材料包括结晶水合盐、熔融盐、金属合金和其它无机物。其中,水合盐是适于温度范围在 0"--150℃的潜热式储存的典型无机相变储能材料,它也是中低温相变储能材料中重要的一类,其优点是价格便宜、单位体积储能密度大、一般呈中性;缺点是过冷度大和易析出分离,需要通过添加成核剂和增稠剂进行处理。常用作相变储能材料的结晶水合盐热物理性能见表1。 表1 常用作相变储能材料的结晶水合盐热物理性能

相变储能材料和相变储能技术

相变储能材料及其应用 物质从一种状态变到另一种状态叫物质的存在通常认为有三态,(3)(2)液—汽相变;相变。相变的形式有以下四种:(1)固—液相变;固相变。相变过程个伴有能量的吸收或释放,我们就)固-固—汽(4利用相变材料来存可以利用相变过程中有能量的吸收和释放的现象,储能量。比如用冰贮冷,冬天,在寒冷的地区,人们从湖面、河面冻结的厚冰层中获取冰块,贮存于“冰屋”中,利月锯末隔热、冰块可存放到夏季结束。这是冰块就可以起到现在冰箱的效果了。储能想变成材料一般而言,储热相变材料可以这么进行分类结晶水合盐(如 NaSO?10HO)22 4熔融盐 无机物金属(包括合金)其他无机类相变材料(如水) 石蜡 相变材料酯酸类有机物 其他有机 有机类与无机类相变材料的混合混合类

下面我们对相变储能材料进行逐一分析:液相变材料:-、固1.(1)结晶水合盐:结晶水合盐种类繁多,其熔点也从几度到几百度可供选择,其通式可以表达为AB?nHO。结晶水合盐通常是中、低2 温贮能相变材料中重要的一类,其特点是:使用范围广,价格较便宜、导热系数较大(与有机类相变材料相比)、溶解热较大、密度较大、体积贮热密度较大、一般呈中性。但此类相变材料通常存在过冷和析出两大问题。所谓过冷是指当液态物质冷却到“凝固点”时并不结晶,而须冷却到“凝固点”以下一定温度时方开始结晶;而析出现象指在加热过程中,结晶水融化,此时盐溶解在水中形成溶液。结晶水合盐的代表有芒硝、六水氯化钙、六水氯化镁、镁硝石等 (2)石蜡:石蜡主要由直链院烃混合而成,可用通式CHn表2n+2示,短链烷烃熔点较低,但链增长熔点开始增长较快,而后逐渐减慢。随着链的增长,烷烃的熔解热也增大,由于空间的影响,奇数和偶数碳原子的烷烃有所不同,偶数碳原子烷烃的同系物有较高的熔解热,链更长时熔解热趋于相等。在CH以上的奇数烷烃和在CH以上的4472016偶数烷烃在7℃一22℃范围内会产生两次相变: (1)低温的固-固转变,它是链围绕长轴旋转形成的; (2)高温的固-液相变,总潜热接近溶解热,它被看作贮热中可利用的热能。 这样就会使石蜡具有较高的相变潜热。 石蜡作为贮热相变材料的优点是:无过冷及析出现象,性能稳定,无毒,无腐浊性,价格便宜。缺点是导热系数小,密度小,单位体积贮

聚氨酯改性有机硅含氟涂层表面能的研究

高分子材料科学与工程 POLYMER MATERIALS SCIENCE & ENGINEERING 1999年 第15卷 第4期 Vol.15 No.4 1999 聚氨酯改性有机硅含氟涂层表面能的研究 田 军 薛群基   摘要 研究聚氨酯改性有机硅涂层表面与液体的润滑性能,探讨了表面结构对表面能的影响。发现基料与填料复合制成的涂层,表面粗糙会极大地影响涂层的表面能各分量,基料和填料复相构成的表面,使表面能各分量不再是一个简单的加和。 关键词 聚氨酯改性有机硅,含氟复合涂层,表面能 STUDY OF SURFACE ENERGY ON SILICONE WITH MODIFIED PU AND PTFE COATING Tian Jun, Xue Qunji (Laboratory of Solid Lubricaiton, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou) ABSTRACT The wetting property to distilled water on coating was studied, the coating was composed of silicone rubber with modified PU and PTFE powder. The surface structure of coating affected the surface energy. It has found that component of surface energy has effectiveness on roughness coating of a composite of resin and PTFE pigment. The component of surface energy on coating, which has the composition of polymer and pigment, isn′t briefly a addition function, when the pigment grain don′t give prominence to the surface and the surface is smooth enough. Keywords modified silicone PU, PTFE coating, surface energy 低表面能涂层可影响受壁面状态控制的边界层内区,从而减小航行体的阻力、噪声[1~5]和胶质在涂层表面上的粘附,是一种具有降阻节能和防污[6,7]、防蜡[8,9]多种功效的新涂层。本文研究聚氨酯改性有机硅涂层中与液体的润湿性能,探讨表面结构对表面能的影响。 1 实验部分 1.1 涂层制作 将配比好的树脂和涂料,经0.25 MPa压缩空气喷涂在低碳钢钢板上,室温固化干燥。有机硅氧烷采用含端羟基的二甲基硅氧烷,分子量5万。聚氨酯为蓖麻油醇解改性的多芳基多亚甲基多异氰酸酯(异氰酸含量5%~8%,质量)。填料为经60Co辐射的聚四氟乙烯

相变储能材料在建筑方面的研究与应用

相变储能材料在建筑方面的研究与应用 摘要:随着建筑行业的向前发展,当前人们对于居住的要求也变得越来越高,对于居住条件的舒适性、安全性成为居民居住的主要考虑因素。正因如此,智能化、生态化已经成为当前建筑材料发展的趋势。相变储能材料作为传统建筑材料与相变材料复合而成的一中新型材料,由于其具有储能密度大、能够近似恒温下的吸放热而发展迅速。另一方面,相变储能材料的应用可以保持环境舒适,节省采暖制冷所需能源而受到建筑界的欢迎。本文将从多个方面对相变储能材料进行具体的分析,为后期的深入研究奠定基础。 关键词:建筑材料;相变材料;储能技术 Energy storage materials research and application of phase change in architecture Abstract:With forward the construction industry, the current requirement for people to live has become increasingly high, the comfort of living conditions, security has become a major consideration residents. For this reason, intelligent, ecological building materials has become the current trend of development. Phase change material as traditional building materials and phase change materials in a composite made of a new material, because of its large energy density, can be approximated under constant heat absorption and rapid development. On the other hand, application of energy storage phase change material can be kept comfortable, energy-saving heating and cooling needed and welcomed by the construction industry. This article from the multiple aspects of the phase change material specific analysis, to lay the foundation for further research later. Key words:construction materials; phase change material; energy storage technology

高温相变材料的研究进展和应用

高温相变材料的研究进展和应用 摘要:随着全球性能源与环境的不断恶化,能源充分利用和新能源开发成为业界关注的重点。相变储热是利用相变材料在其物相变化过程中从环境吸收热(冷)量或向环境释放热(冷)量,从而达到能量的储存或释放的目的,并能与新能源结合应用。分析了高温相变材料的种类和各自特点,介绍了其在各行各业的应用情况,并对高温相变材料的未来发展进行了展望。 关键词:相变材料;储热材料;相变 1引言 物质相变过程是一个等温或近似等温过程,在这个过程中伴随有能量的吸收或释放。相变储热是利用相变材料在其相变过程中,从环境吸收或释放热量,达到储能或放能的目的。高温相变材料具有相变温度高,储热容量大,储热密度高等特点,它的使用能提高能源利用效率,有效保护环境,目前已在太阳能热利用、电力的“移峰填谷”、余热或废热的回收利用以及工业与民用建筑和空调的节能等领域得到了广泛的应用。现阶段 ,人们关心比较多的新能源是太阳能 ,但是太阳能利用和废热回收存在时间和空间上的不匹配的问题。相变储能材料可以从环境中吸收能量和向环境释放能量 ,较好地解决了能量供求在时间和空间上不匹配的矛盾 ,有效地提高了能量的利用率。同时相变储能材料在相变过程中温度基本上保持恒定 ,能够用于调控周围环境的温度 ,并且能重复使用。相变储能材料的这些特性使得其在电力“移峰填谷”、工业与民用建筑和空调的节能、纺织品以及军事等领域有着广泛的应用前景。 2相变储热技术

储热方法通常有3种:显热储热、化学反应储热和潜热储热(相变储热)。相变储热可以实现能量供应与人们需求在时间和空间达到一致的目的,又具有节能降耗的作用。相变储热材料按相变方式一般分为4类:固—固相变、固—液相变、固—气相变及液—气相变材料圈;按相变温度范围可分为高温、中温和低温储热材料;按材料的组成成分可分为无机类和有机类(包括高分子类)储热材料。由于固一气相变材料相变时体积变化太大,使用时需要很多的复杂装置,在实际应用中很少采用。相变储热材料在储热、放热过程中,温度波动范围很小,材料近似恒温,故可控制温度。其储热容量大,储热密度高,单位质量、单位体积的储热量要远远超过显热储热材料;且较之于化学反应储热,相变储热具有设备简单、体积小、设计灵活、使用方便等优势。 3高温相变储热材料 3.1高温固—液相变材料 固—液相变材料是指在温度高于相变点时物相由固相变为液相,吸收热量当温度下降时物相又由液相变为固相,放出热量的一类相变材料。目前固—液相变材料主要包括结晶无机物类和有机物类2种。无机盐高温相变材料主要为高温熔融盐、部分碱、混合盐。高温熔融盐主要有氟化物、氯化物、硝酸盐、硫酸盐等。它们具有较高的相变温度,从几百摄氏度至几千摄氏度,因而相变潜热较大。例如LiH相对分子质量小而熔化热大(2 840 J/g)。碱的比热容高,熔化热大,稳定性好,在高温下蒸气压力很低,且价格便宜,也是一种较好的中高温储能物质。例如NaOH在287℃和318℃均有相变,比潜热达330 J/g,在美国和日本已试用于采暖和制冷工程领域。混合盐熔化热大,熔化时体积变化小,传热较好,其最大优点是熔融温度可调,可以根据需要把不同的盐配制成相变温度从几百摄氏度

相变储能材料在建筑节能中的应用

相变储能材料及其在建筑节能中的应用摘要:相变材料具有储能密度大、效率高以及近似恒定温度下吸热与放热等优点。将该材料用于墙体天花板和地板,可提高建筑物热容量,从而可以降低室内温度波动,提高舒适度。本文介绍了相变储能材料的机理及其分类,综述了目前国内外相变节能材料的研究进展,分析了相变材料用于建筑上的应用方面,列举了相变材料在示范性建筑中的使用情况,最后提出相变储能材料的不足之处及应用前景。 关键词:建筑节能,相变,蓄能,建筑材料 Phase Change Materials and Its Application in the Construction of Energy-efficient Ji yongyu (Xi'an University of Architecture and Technology, Xi’an 710055) Abstract: A phase change material having a large energy density, high efficiency, and other advantages approximately constant temperature of the endothermic and exothermic. The materials used for walls ceilings and floors, the building thermal capacity can be increased, which can reduce the indoor temperature fluctuations and improve comfort. This paper describes the mechanism of phase change material and its classification, review the progress of the current domestic and international research phase change energy-saving materials, analysis of phase change materials for applications in buildings, citing the phase change material in an exemplary buildings usage, concludes the phase transition inadequacies energy storage materials and application prospects. Keywords: building energy efficiency, phase transformation, storage, construction materials 0 引言 近年来随着中国的经济快速发展以及人们生活水平的日益提高,人们对室内环境舒适度的要求也越来越高。在影响室内环境舒适度的诸多因素中,室温是一个非常关键的因素,而维持室温在 16.0~28.0°C 是保持室内环境舒适度的关键。为达到这一标准,人们通过利用空调和供暖系统来调节温度,但是相应的会造成能耗大幅度增加和能源消耗过快、环境污染加剧等问题。如何在室内环境舒适度、节能、环保中保持平衡已经成为建筑设计以及节能领域的热点问题 在众多的节能方法中, 近年新出现的相变储能材料, 逐渐走进人们的视野, 成为建筑节能开发的新宠。相变储能材料在很多领域都有应用, 但应用于建材的研究始于1982 年, 由美国能源部太阳能公司发起, 在我国才刚刚起步。相变储能材料的英文全称为Phase Change Material, 简称为PCM。相变储能材料是指随温度变化而改变物理性质并能提供潜热的物质,在一定的温度范围内,利用材料本身相态或结构的变化, 当环境温度升高或降低时, 它可以向环境自动吸收多余热量储存起来或释放储存的热量能起到保温作用。 1 相变储能材料介绍

相变材料应具有以下几个特点

相变材料应具有以下几个特点:凝固熔化温度窄,相变潜热高,导热率高,比热大,凝固时无过冷或过冷度极小,化学性能稳定,室温下蒸汽压低。此外,相变材料还需与建筑材料相容,可被吸收。 3相变储能材料的特点 作为相变材料主要应满足的要求有:合乎需要的相变温度:足够大的相变潜热:性能稳定,可反复使用;相变时的膨胀收缩性小;导热性好,相变速度快;相变可逆性好,原料廉价易得等。绝大多数无机物相变材料具有腐蚀性,相变过程中存在过冷和相分离的缺点。为防止无机物相变材料的腐蚀性。储热系统必须采用不锈钢等特殊材料制造,从而增加了制造成本:为抑制无机物相变材料在相变过程中的过冷和相分离,需通过大量试验研究,寻求好的成核剂和稳定剂。而有机物相变材料则热导率较低。相变过程中的传热性能差,在实际应用中通常采用添加高热导率材料如:铜粉、铝粉或石墨等作为填充物以提高热导率。或采用翅片管换热器,依靠换热面积的增加来提高传热性能,但这些强化传热的方法均未能解决有机相变材料热导率低的本质问题。固一液相变材料主要优点是价格便宜,但是存在过冷和相分离现象,从而导致储能不理想:易产生泄露问题,污染环境;腐蚀性较大,封装容器价格高等缺点。 与固一液相变材料相比,固一固相变材料具有不少优点。可以直接加T成型,不需容器盛装:固一固相变材料膨胀系数较小,相变时体积变化较小:不存在过冷和相分离现象,不需要加入防过冷剂和防相分离剂;毒性很低,腐蚀性很小;无泄露问题,对环境不产生污染;组成稳定,相变可逆性好,使用寿命长:装置简单,使用方便。固一固相变材料主要缺点是相变潜热较低,价格较高。 4 应用展望 相变储能材料的开发已逐步进入实用阶段,主要用于控制反应温度、利用太阳能、储存工业反应中的余热和废热。低温储能主要用于废热回收、太阳能储存及供暖和空调系统。高温储能用于热机、太阳能电站、磁流体发电及人造卫星等方面。此外,固一固相变蓄热材料主要应用在家庭采暖系统中,它与水合盐相比.具有不泄漏、收缩膨胀小、热效率高等优点,能耐3000次以上的冷热循环(相当于使用寿命25年):把它们注入纺织物,可以制成保温性能好、重量轻的服装:可以用于制作保温时间比普通陶瓷杯长的保温杯:含有这种相变材料的沥青地面或水泥路面,可以防止道路、桥梁结冰。因此,它在工程保温材料、医疗保健产品、航空和航天器材、军事侦察、日常生活用品等方面有广阔的应用前景。今后相变储能材料的发展主要体现在以下几个方面:(a)进一步筛选符合环保的低价的有机相变储能材料,如可再生的脂肪酸及其衍生物。对这类相变材料的深入研究,可以进一步提升相变储能建筑材料的生态意义:(b)开发复合相变储热材料是克服单一无机或有机相变材料不足,提高其应用性能的有效途径;(c)针对相变材料的应用场合,开发出多种复合手段和复合技术,研制出多品种的系列复合相变材料是复合相变材料的发展方向之一:(d)开发多元相变组合材料。在同一蓄热系统中采用相变温度不同的相变材料合理组合,可以显著提高系统效率,并能维持相变过程中相变速率的均匀性。这对于蓄热和放热有严格要求的蓄能系统具有重要意义:(e)进一步关注高温储热和空调储冷。美国NASA Lewis研究中心利用高温相变材料成功的实现了世界上第一套空间太阳能热动力发电系统2kW 电力输出,标志这一重要的空间电力技术进入了新的阶段。太阳能热动力发电技术是一项新技术,是最有前途的能源 解决方案之一,必将极大地推动高温相变储热技术的发展。另外,低温储热技术是当前空调行业研究开发的热点,并将成为重要的节能手段;(f)纳米复合材料领域的不断发展,为制备高性能复合相变储热材料提供了很好的机遇。利用纳米材料的特点制备新型高性能纳米复合

相变材料研究

简述相变材料研究 一、引言 随着人们生活水平以及对工作与居住环境舒适度要求的提高,相应地建筑能耗也增加,造成能源消耗过快,环境污染加剧。如何在维持可持续发展的前提下,使用最低能耗达到居住环境舒适度最大化已成为建筑节能领域里研究的热点。通过用相变储能建筑材料(即向普通建筑材料中加入相变材料,制成具有较高热容的轻质建筑材料)构筑的建筑构件,可以降低室内温度波动,提高舒适度,减少电力的峰谷差,优化电力的负荷,使建筑供暖或空调不用或者少用能量,提高能源利用效率,并降低能源的运行费用。 相变材料(简称PCM)是利用相变过程中吸收或释放的热量来进行潜热储能的物质,储热系统按照储热方式不同可以分为显热储热、潜热储热和化学反应储热三类。与显热储能材料相比,相变材料具有储能密度大,效率高以及近似恒定温度下吸热与放热等优点,因而可以应用于很多领域,如太阳能利用、废热回收、智能空调建筑物、调温调湿、工程保温材料、医疗保健与纺织行业等方面。但化学反应热蓄热虽然具有储能密度大的特点,由于应用技术和工艺太复杂,目前只能在太阳能利用研究领域受重视,离实际的应用还很远,因此相变材料成为了热能储存的主要应用方式。 相变材料根据其相变温度不同,主要有四方面的用途: (1)低温相变材料用来蓄冷,如已经广泛使用相变材料进行空调蓄冷。低温相变材料还可以用来跨季节蓄冷 (2)室温相变材料可以用来增加房屋的热惰性,降低房屋的温度波动,从而降低空调负荷,达到建筑节能。 (3)50~60℃相变材料可以用在太阳能应用领域,如可以用作被动太阳能房的蓄热墙或者蓄热地板,还可以用作主动太阳能房中的蓄热器,与集热器、换热器等一起构成太阳能利用系统 (4)高温相变材料则主要用于工业余热利用。 相变材料的利用方式分为两种: (1)用相变材料做成储能器件。 (2)相变材料与其他基本材料复合,制成相变储能复合材料。 二、相变材料的蓄热机理 相变材料具有在一定温度范围内改变其物理状态的能力。以固-液相变为例,在加热到熔化温度时,就产生从固态到液态的相变,熔化的过程中,相变材料吸收并储存大量的潜热;当相变材料冷却时,储存的热量在一定的温度范围内要散发到环境中去,进行从液态到固态

关于编制有机硅氟材料项目可行性研究报告编制说明

有机硅氟材料项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.360docs.net/doc/516264415.html, 高级工程师:高建

关于编制有机硅氟材料项目可行性研究报 告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国有机硅氟材料产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (11) 2.5有机硅氟材料项目发展概况 (12)

相变储热材料的制备与应用

摘要:热能储存可以通过蓄热材料地冷却、加热、熔化、凝固.气化、化学反应等方式实现.它是一种平衡热能供需和使用地手段.热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热. 关键词:相变;储热;复合材料 相变材料在国内外地发展状况 国外对相变储能材料地研究工作始于世纪年代.最早是以节能为目地,从太阳能和风能地利用及废热回收,经过不断地发展,逐渐扩展到化工、航天、电子等领域.近年来最主要地研究和应用集中在建筑物地集中空调、采暖及被动式太阳房等领域.国外研究机构和科研人员对蓄热材料地理论研究工作,尤其是对蓄热材料地组成、蓄热容量随热循环变化情况、相变寿命、储存设备等进行了详细地研究,在实际应用上也取得了很大进展. 相对于已经进入实用阶段地发达国家,我国在世纪年代末年代初才开始对蓄热材料进行研究,所以国内相变储能材料地理论和应用研究还比较薄弱.上世纪年代中期以来,国内研究重点开始转向有机相变材料和复合定形相变材料地研究开发.资料个人收集整理,勿做商业用途 相变储热材料地分类 ()从材料地化学组成来看,主要分为无机类相变材料和有机类相变材料,而在课堂上我们主要讲解地是有机类相变材料.无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物.与无机类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点.其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料地研究使用中受到广泛地重视.但石蜡类相变储能材料热导率较低,也限制了其应用范围.为有效克服石蜡类有机化合物相变储能材料地缺点,同时改善相变材料地应用效果及拓展其应用范围,复合相变储能材料应运而生 .复合相变材料由较稳定地有机化合物和具有较高导热系数地无机物颗粒制备而得,因而复合相变材料具有稳定地化学性质,无毒无腐蚀性或毒性和腐蚀性小.同时它地导热能力较有机物有较大地改善.资料个人收集整理,勿做商业用途 ()根据使用地温度不同又可以分为高、中、低温相变储热材料.一般使用温度高于℃地相变储热材料称为高温相变储热材料.以熔融盐、氧化物和金属及其合金为主.使用温度低于℃为中、低温相变储热材料,这类相变材料以水合盐、石蜡类、脂酸类为主,在低温类中也有利用液气相变型地,如液氮、氦.资料个人收集整理,勿做商业用途 ()从蓄热过程中材料相态地变化方式来看,可分为固液、固气、液气、固固四种相变.由于固气和液气两种方式相变是有大量气体产生,使材料地体积变地很大,所以实际中很少采用这两种方式.资料个人收集整理,勿做商业用途 三、相变材料地分类选择因素 ()合适相变温度; ()较大地相变潜热; ()合适地导热性能; ()性能稳定,可反复使用而不发生熔析和副反应; ()相变地可逆性,过冷度要尽量小; ()符合绿色化学要求:无毒、无腐蚀、无污染; ()使用安全、不易燃.易爆或氧化; ()蒸汽压要低使之不易挥发损失; ()材料密度较大,从而确保单位体积储热密度较大; ()体积膨胀较小; ()成本低廉,原料易得. 实用型地相变储热材料需要满足以上各项基本原则,但选用时也可以结合实际地应用情况,

相变储能材料和相变储能技术

相变储能材料和相变储 能技术 Document number:BGCG-0857-BTDO-0089-2022

相变储能材料及其应用 物质的存在通常认为有三态,物质从一种状态变到另一种状态叫相 变。相变的形式有以下四种:(1)固—液相变;(2)液—汽相变;(3)固— 汽(4)固-固相变。相变过程个伴有能量的吸收或释放,我们就可以利 用相变过程中有能量的吸收和释放的现象,利用相变材料来存储能量。 比如用冰贮冷,冬天,在寒冷的地区,人们从湖面、河面冻结的厚冰层 中获取冰块,贮存于“冰屋”中,利月锯末隔热、冰块可存放到夏季结 束。这是冰块就可以起到现在冰箱的效果了。 储能想变成材料 一般而言,储热相变材料可以这么进行分类 下面我们对相变储能材料进行逐一分析: 1、固-液相变材料: (1)结晶水合盐:结晶水合盐种类繁多,其熔点也从几度到几百度 可供选择,其通式可以表达为AB?nH 2O 。结晶水合盐通常是中、低温贮能 相变材料中重要的一类,其特点是:使用范围广,价格较便宜、导热系 结晶水合盐(如Na 2 SO 4?10H 2O ) 熔融盐 金属(包括合金) 其他无机类相变材料(如水) 无机物 有机物 石蜡 酯酸类 其他有机混合类 有机类与无机类相变材料的混合 相变材料

数较大(与有机类相变材料相比)、溶解热较大、密度较大、体积贮热密度较大、一般呈中性。但此类相变材料通常存在过冷和析出两大问题。所谓过冷是指当液态物质冷却到“凝固点”时并不结晶,而须冷却到“凝固点”以下一定温度时方开始结晶;而析出现象指在加热过程中,结晶水融化,此时盐溶解在水中形成溶液。结晶水合盐的代表有芒硝、六水氯化钙、六水氯化镁、镁硝石等 (2)石蜡:石蜡主要由直链院烃混合而成,可用通式C n H 2n +2表示, 短链烷烃熔点较低,但链增长熔点开始增长较快,而后逐渐减慢。随着链的增长,烷烃的熔解热也增大,由于空间的影响,奇数和偶数碳原子的烷烃有所不同,偶数碳原子烷烃的同系物有较高的熔解热,链更长时熔解热趋于相等。在C 7H 16以上的奇数烷烃和在C 20H 44以上的偶数烷烃在 7℃一22℃范围内会产生两次相变: (1)低温的固-固转变,它是链围绕长轴旋转形成的; (2)高温的固-液相变,总潜热接近溶解热,它被看作贮热中可利用的热能。 这样就会使石蜡具有较高的相变潜热。 石蜡作为贮热相变材料的优点是:无过冷及析出现象,性能稳定,无毒,无腐浊性,价格便宜。缺点是导热系数小,密度小,单位体积贮热能力差。 (3)酯酸类 酯酸类也是一种有机贮热相变材料,其分子通式为CnH 2nOn ,其性能 特点与石蜡相似。 2、固-固相变材料 典型的固一液相变贮热材料是水合盐及其低共熔物,它们虽有不少优点,但通常也有易发生相分层,过冷较严重、贮热性能衰退和容器价格高等缺点,但是固-固相变材料因有较高的固一固转变热、固-固转变不生成液态(故不会泄漏)、转变时体积变化小、过冷程度轻、无腐蚀、

氟硅橡胶的性能及应用领域

氟硅橡胶的性能及应用领域 氟硅橡胶,又称γ-三氟丙基甲基聚硅氧烷,是一种经过侧链改性的有机硅弹性体。通常的,用氟硅橡胶做成的制品,除了具有一般硅橡胶的特性外,还具备优良的耐油特性,包括燃油、机油、化学试剂和溶剂。因此,氟硅橡胶很好的弥补了普通硅橡胶耐油能力不足的特性,堪称有机硅弹性体中的“油斗士”。 由于氟硅橡胶优异的耐油特性和其有机硅弹性体的耐热能力,这种材料特别适合于一些需要耐高温和耐燃油的应用,如密封件、胶管、胶垫、薄膜和浸渍制品等。在汽车工业、航空航天工业、石油化学工业等领域有着广泛的应用。 一、氟硅橡胶的重要特性: 1耐油、耐溶剂、耐化学药品性 氟硅橡胶与甲基乙烯基硅橡胶相比,其耐油、耐溶剂、耐化学药品性极其优良;即使与氟橡胶相比,耐油、耐溶剂性也是良好的。在相同介质、温度、时间下浸渍后均显示出了优良的耐久性,可以说氟硅橡胶是唯一一种在-68℃~232℃下耐非极性介质的弹性体。氟硅橡胶的耐含甲醇汽油性也比较好,即使在汽油/甲醇(85vol% / 15vol%)混合体系中,其硫化胶的硬度、拉伸强度、体积变化都很小,经500h长时间的浸渍试验后,各项物性也几乎没有变化。 2耐热性 氟硅橡胶的高温分解与硅橡胶一样,即:侧链氧化、主链断裂、侧链热分解和引起各种复合反应。由于分解产物也会引起主链断裂,所以耐热性通常比硅橡胶要差一些,在200℃的温度下已开始氧化老化。但通过添加铁、钛、稀土类氧化物等少量的热稳定剂便可使其获得显著的改善,即使在250℃高温下也具有足够的耐热性。温度对氟硅橡胶影响比硅橡胶大,但比氟橡胶小。国外还研究了氟硅橡胶在150℃×2000h、175℃×5000h、200℃×4000h条件下的使用寿命,其结果是仅次于甲基乙烯基硅橡胶。 3耐寒性 氟硅橡胶与普通硅橡胶一样,低温性能良好。由于氟硅橡胶是以柔软的Si-O为主链构成的线型高聚物,所以低温特性优于以C-C为主链的氟橡胶。其中,氟硅橡胶(LS-2370U)的低温特性更好,脆性温度低达-89℃,而一般的氟橡胶约为-30℃。

中国氟硅有机材料工业协会第六届

中国氟硅有机材料工业协会第六届 理事会第一次会议决议 中国氟硅有机材料工业协会第六届理事会第一次会议于2010年12月9日在西安召开。按照《国务院国有资产监督管理委员会行业协会换届选举暂行办法》通知的精神要求,采用等额选举无记名投票的方式,选举了第六届理事会常务理事;选举了第六届理事会理事长、副理事长、秘书长;聘任了中国氟硅有材料工业协会名誉理事长、副秘书长、各专业委员会主任和秘书长、专家委员会主任。第六届理事会第一次会议决议如下: 一、选举产生了季刚、曹先军、季诚建、金健、张建宏、吴周安、严根山、李嘉、潘敏琪、王跃林、李世江、李训生、郑继德、葛方明、赵永镐、赵纯、尹超、廖俊、蔡朋发、陈世龙、陈维平、赵月初、尹和平、徐平先、来国桥、缪明松、张志杰、郑立新、何永富、李文双、王勇武等三十一名同志为中国氟硅有机材料工业协会第六届理事会常务理事(见决议1)。 二、选举了季刚同志出任第六届理事会理事长;选举曹先军、季诚建、金健、张建宏、吴周安、严根山、李嘉、潘敏琪、王跃林、郑继德等十名同志出任副理事长;葛方明同志出任秘书长(见决议2)。

三、聘任了中国氟硅有材料工业协会名誉理事长、副秘书长、各专业委员会主任和秘书长、专家委员会主任(见决议3)。 中国氟硅有机材料工业协会第六届理事会第一次会议在协会各位理事的大力支持下,取得了圆满的成功! 二〇一〇年十二月十七日 决议1

中国氟硅有机材料工业协会第六届理事会常务理事名单

决议2 中国氟硅有机材料工业协会第六届理事会理事长、副理事长、秘书长名单

决议3 中国氟硅有机材料工业协会名誉理事长、副秘书长、各专业委员会主任和秘书长、 专家委员会主任名单

相关文档
最新文档