一种粒子群算法与FCSS相结合的模糊球壳聚类算法

一种粒子群算法与FCSS相结合的模糊球壳聚类算法
一种粒子群算法与FCSS相结合的模糊球壳聚类算法

权重自适应调整的混沌量子粒子群优化算法

2012 年 第21卷 第 8 期 https://www.360docs.net/doc/517548407.html, 计 算 机 系 统 应 用 Research and Development 研究开发 127 权重自适应调整的混沌量子粒子群优化算法① 李欣然1,靳雁霞2 1 (中北大学 电子与计算机科学技术学院, 山西 太原 030051) 2(中北大学 仪器科学与动态测试教育部重点试验室, 山西 太原 030051) 摘 要:针对量子粒子群优化算法在处理高维复杂函数收敛速度慢、易陷入局优的问题,利用混沌算子的遍历性提出了基于惯性权重自适应调整的混沌量子粒子群优化算法。新算法首先引入聚焦距离变化率的概念,将惯性因子表示为关于聚焦距离变化率的函数,从而使算法具有动态自适应性; 其次,在算法中嵌入有效判断早熟停滞的方法,一旦检索到早熟迹象,根据构造的变异概率对粒子进行变异使粒子跳出局部最优,从而减少无效迭代。对高维测试函数的实验表明:改进算法的性能优于经典的 PSO 算法,基于量子行为的 PSO 算法。 关键词:基于量子行为的粒子群优化算法(QPSO);混沌序列;惯性权重;聚焦距离变化率;变异 Chaos Quantum Particle Swarm Optimization Algorithm With Self-adapting Adjustment of Inertia Weight LI Xin-Ran 1, JIN Yan-Xia 2 1 (College of Computer Science and Technology, North University of China, Taiyuan 030051,China) 2(Ministry of Education Key Laboratory of Instrumentation Science and Dynamic Measurement, North University of China,Taiyuan 030051,China) Abstract :A novel algorithm is presented on the base of quantum behaved particle swarm optimization ,which is aimed at resolving the problem of slow convergence rate in optimizing higher dimensional sophisticated functions and being trapped into local minima easily.Chaos algorithm is incorporated to traverse the whole solution space. First ,rate of cluster focus distance changing was introduced in this new algorithm and the weight was formulated as a function of this factor which provides the algorithm with effective dynamic adaptability. Secondly, a method of effective judgment of early stagnation is embedded in the algorithm. Once the early maturity is retrieved, the algorithm mutates particles to jump out of the local optimum particle according to the structure mutation so as to reduce invalid iteration. Experiments on high-dimension test functions indicate that the improved algorithm is superior to classical PSO algorithm and quantum-behaved PSO algorithm. Key words :Quantum-behaved Particle Swarm Optimization; Chaotic sequence; Inertia weight; Rate of cluster focus distance changing; Mutation 粒子群优化(Particle Swarm Optimization ,PSO)是 由Kennedy 和 Eberhart 于 1995 年提出的一类模拟 群体智能行为的优化算法[1],与遗传算法和蚁群算法 相比,PSO 有着算法简单,容易实现,并且可调整参 数少等特点,因此被广泛地应用于函数优化、神经网 络训练、数据挖掘、模糊系统控制以及其他的应用领 域。实验发现PSO 算法在进化过程中存在早熟收敛和局部寻优能力差等缺点,近年来国内外的许多研究者针对这些缺点作了大量的工作,并提出了各种改进的PSO 算法[2]。但这些改进的PSO 不同程度地降低了收敛速度。2004年,孙俊等人提出了具有量子行为的粒子群优化算法(Quantum-behaved Particle ① 基金项目:国家自然科学基金(61004127);中北大学青年基金(2010-12-31) 收稿时间:2011-11-06;收到修改稿时间:2012-01-15

粒子群算法和遗传算法比较

粒子群算法和遗传算法比较 优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Partical Swarm Optimization -PSO) 算法. 这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。 粒子群算法 1. 引言 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究,PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域 2. 背景: 人工生命 "人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的内容 1. 研究如何利用计算技术研究生物现象 2. 研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的. 现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信

一种更简化而高效的粒子群优化算法_胡旺

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.360docs.net/doc/517548407.html, Journal of Software, Vol.18, No.4, April 2007, pp.861?868 https://www.360docs.net/doc/517548407.html, DOI: 10.1360/jos180861 Tel/Fax: +86-10-62562563 ? 2007 by Journal of Software. All rights reserved. ? 一种更简化而高效的粒子群优化算法 胡旺+, 李志蜀 (四川大学计算机学院,四川成都 610065) A Simpler and More Effective Particle Swarm Optimization Algorithm HU Wang+, LI Zhi-Shu (School of Computer Science and Engineering, Sichuan University, Chengdu 610065, China) + Corresponding author: Phn: +86-28-85466988, E-mail: scuhuwang@https://www.360docs.net/doc/517548407.html,, https://www.360docs.net/doc/517548407.html, Hu W, Li ZS. A simpler and more effective particle swarm optimization algorithm. Journal of Software, 2007, 18(4):861?868. https://www.360docs.net/doc/517548407.html,/1000-9825/18/861.htm Abstract: The basic particle swarm optimization (bPSO) has some demerits, such as relapsing into local extremum, slow convergence velocity and low convergence precision in the late evolutionary. Three algorithms, based on the simple evolutionary equations and the extrenum disturbed arithmetic operators, are proposed to overcome the demerits of the bPSO. The simple PSO (sPSO) discards the particle velocity and reduces the bPSO from the second order to the first order difference equation. The evolutionary process is only controlled by the variables of the particles position. The extremum disturbed PSO (tPSO) accelerates the particles to overstep the local extremum. The experiment results of some classic benchmark functions show that the sPSO improves extraordinarily the convergence velocity and precision in the evolutionary optimization, and the tPSO can effectively break away from the local extremum. tsPSO, combined the sPSO and tPSO, can obtain the splendiferous optimization results with smaller population size and evolution generations. The algorithms improve the practicality of the particle swarm optimization. Key words: evolutionary computation; swarm intelligence; particle swarm optimization; disturbed extremum 摘 要: 针对基本粒子群优化(basic particle swarm optimization,简称bPSO)算法容易陷入局部极值、进化后期 的收敛速度慢和精度低等缺点,采用简化粒子群优化方程和添加极值扰动算子两种策略加以改进,提出了简化 粒子群优化(simple particle swarm optimization,简称sPSO)算法、带极值扰动粒子群优化(extremum disturbed particle swarm optimization,简称tPSO)算法和基于二者的带极值扰动的简化粒子群优化(extremum disturbed and simple particle swarm optimization,简称tsPSO)算法.sPSO去掉了PSO进化方程的粒子速度项而使原来的二阶微 分方程简化为一阶微分方程,仅由粒子位置控制进化过程,避免了由粒子速度项引起的粒子发散而导致后期收 敛变慢和精度低问题.tPSO增加极值扰动算子可以加快粒子跳出局部极值点而继续优化.对几个经典测试函数 进行实验的结果表明,sPSO能够极大地提高收敛速度和精度;tPSO能够有效摆脱局部极值点;以上两种策略相 结合,tsPSO以更小的种群数和进化世代数获得了非常好的优化效果,从而使得PSO算法更加实用化. 关键词: 进化计算;群体智能;粒子群优化;极值扰动 中图法分类号: TP18文献标识码: A ? Received 2005-11-23; Accepted 2006-04-03

粒子群优化算法介绍及matlab程序

粒子群优化算法(1)—粒子群优化算法简介 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下: 当x=0.9350-0.9450,达到最大值y=1.3706。为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。直到最后在y=1.3706这个点停止自己的更新。这个过程与粒子群算法作为对照如下: 这两个点就是粒子群算法中的粒子。 该函数的最大值就是鸟群中的食物。 计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。 更新自己位置的公式就是粒子群算法中的位置速度更新公式。 下面演示一下这个算法运行一次的大概过程: 第一次初始化 第一次更新位置

第二次更新位置 第21次更新 最后的结果(30次迭代) 最后所有的点都集中在最大值的地方。

粒子群优化算法(2)—标准粒子群优化算法 在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。这个公式就是粒子群算法中的位置速度更新公式。下面就介绍这个公式是什么。在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0, 4]最大值。并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5,x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况—x 为一个矢量的情况,比如二维z=2*x1+3*x22的情况。这个时候我们的每个粒子均为二维,记粒子P1=(x11,x12),P2=(x21,x22),P3=(x31,x32),......Pn=(xn1,xn2)。这里n 为粒子群群体的规模,也就是这个群中粒子的个数,每个粒子的维数为2。更一般的是粒子的维数为q ,这样在这个种群中有n 个粒子,每个粒子为q 维。 由n 个粒子组成的群体对Q 维(就是每个粒子的维数)空间进行搜索。每个粒子表示为:x i =(x i1,x i2,x i3,...,x iQ ),每个粒子对应的速度可以表示为v i =(v i1,v i2,v i3,....,v iQ ),每个粒子在搜索时要考虑两个因素: 1. 自己搜索到的历史最优值 p i ,p i =(p i1,p i2,....,p iQ ),i=1,2,3,....,n ; 2. 全部粒子搜索到的最优值p g ,p g =(p g1,p g2,....,p gQ ),注意这里的p g 只有一个。 下面给出粒子群算法的位置速度更新公式: 112()()()()k k k k i i i i v v c rand pbest x c rand gbest x ω+=+??-+??-, 11k k k i i i x x av ++=+. 这里有几个重要的参数需要大家记忆,因为在以后的讲解中将会经常用到,它们是: ω是保持原来速度的系数,所以叫做惯性权重。1c 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为2。2c 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。()rand 是[0,1]区间内均匀分布的随机数。a 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设置为1。这样一个标准的粒子群算法就介绍结束了。下图是对整个基本的粒子群的过程给一个简单的图形表示。 判断终止条件可是设置适应值到达一定的数值或者循环一定的次数。 注意:这里的粒子是同时跟踪自己的历史最优值与全局(群体)最优值来改变自己的位置预速度的,所以又叫做全局版本的标准粒子群优化算法。

非线性规划的粒子群算法

XX大学 智能优化算法课内实验报告书 院系名称: 学生姓名: 专业名称: 班级: 学号: 时间:

非线性规划问题的粒子群算法 1.1背景介绍 1.1.1 非线性规划简介 具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要的分支,非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的机制问题且目标函数和约束条件至少有一个是未知量的非线性函数,目标函数和约束条件都是线性函数的情形则属于线性规划。 非线性规划是20世纪50年代才开始形成的一门新兴学科。1951年H.W库恩和A.W塔克发表的关于最优性条件的论文是非线性规划正式诞生的一个重要标志。在50年代可得出了可分离规划和二次规划的n种解法,它们大都是以G.B.丹齐克提出的解线性规划的单纯形法为基础的。50年代末到60年代末出现了许多解非线性规划问题的有效的算法,70年代又得到进一步的发展。非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。 非线性规划问题广发存在于科学与工程领域,是一类比较难以解决的优化问题,没有普遍使用的解法。传统的求解该问题的方法(如罚函数,可行方向法,以及变尺度法等)是基于梯度的方法所以目标函数与约束式必须是可微的,并且这些方法只能保证求的局部最优解。 1.1.2 粒子群算法简介 粒子群算法(Particle Swarm optimization,PSO)的基本概念源于对于鸟群捕食行为的简化社会模型的模拟,1995年由Kenndy和Eberhart等人提出,它同遗传算法类似,通过个体间的协作和竞争实现全局搜索系统初始化为一组随机解,称之为粒子。通过粒子在搜索空间的飞行完成寻优,在数学公式中即为迭代,它没有遗传算法的交叉及变异算子,而是粒子在解空间追随最优的粒子进行搜索。 PSO算法的改进主要在参数选择、拓扑结构以及与其他优化算法相融合方面。据此当前典型的改进算法有:自适应PSO算法、模糊PSO算法、杂交PSO 算法、混合粒子算法(HPSO)和离散PSO算法等等。其中自适应和模糊PSO 算法是EberhartShi研究了惯性因子ω对优化性能的影响,发现较大的ω值有利于跳出局部极小点,较小的ω值有利于算法的收敛。自适应PSO算法通过线性地减少ω值动态的调整参数ω,而模糊PSO算法则在此基础上利用模糊规则动态调

基于进化状态判定的模糊自适应二进制粒子群优化算法

基于进化状态判定的 模糊自适应二进制粒子群优化算法 李浩君1张征1张鹏威1王万良2 摘要随着迭代过程的推进,二进制粒子群算法容易陷入局部最优解,后期收敛性较差.针对此缺点,文中提出基于进化状态判定的模糊自适应二进制粒子群优化算法.采用隶属函数进行模糊分类的方法,判定种群进化状态.在迭代过程前期采用S形映射函数和较大的惯性权重值,提高收敛速度,保证算法的稳定性.后期采用V形映射函数和动态增减的惯性权重值,增强算法后期全局探索能力,避免其陷入局部最优.仿真实验表明,文中算法的收敛速度较快,精度较高,搜索能力较好,可以避免早熟现象. 关键词二进制粒子群算法,进化状态,模糊分类,隶属函数 引用格式李浩君,张征,张鹏威,王万良.基于进化状态判定的模糊自适应二进制粒子群优化算法.模式识别与人工智能,2018,31(4):358-369. DOI10.16451/https://www.360docs.net/doc/517548407.html,ki.issn1003-6059.201804007中图法分类号TP18 Fuzzy Adaptive Binary Particle Swarm Optimization Algorithm Based on Evolutionary State Determination LI Haojun1,ZHANG Zheng1,ZHANG Pengwei1,WANG Wanliang2 ABSTRACT Since the binary particle swarm algorithm is easy to fall into local optimal solution and its convergence performance during later period is poor,a fuzzy adaptive binary particle swarm optimization algorithm based on evolutionary state determination(EFBPSO)is proposed.Population evolution state is determined by fuzzy classification method based on membership function.S-shaped mapping function and large inertia weight value are adopted to improve convergence speed and ensure stability of the algorithm in the earlier stage of the iterative process.V-shaped mapping function and the smaller inertia weight are employed to enhance global exploration ability of the algorithm and avoid the algorithm falling into local optimization in the later stage of iterative process.Simulation experimental results show that EFBPSO possesses higher convergence speed and accuracy and obtains better searching ability to avoid prematurity. Key Words Binary Particle Swarm Optimization,Evolutionary State,Fuzzy Classification,Member-ship Function Citation LI H J,ZHANG Z,ZHANG P W,WANG W L.Fuzzy Adaptive Binary Particle Swarm Optimization Algorithm Based on Evolutionary State Determination.Pattern Recognition and Artificial Intelligence,2018,31(4):358-369. 收稿日期:2017-12-01;录用日期:2018-02-27 Manuscript received December1,2017; accepted February27,2018 国家自然科学基金项目(No.61503340)二国家社会科学基金项目(No.16BTQ084)资助 Supported by National Natural Science Foundation of China(No. 61503340),National Social Science Foundation of China(No. 16BTQ084)本文责任编委付俊Recommended by Associate Editor FU Jun 1.浙江工业大学教育科学与技术学院杭州310023 2.浙江工业大学计算机科学与技术学院杭州310023 1.College of Education,Zhejiang University of Technology,Hang-zhou310023 2.College of Computer Science and Technology,Zhejiang Uni-versity of Technology,Hangzhou310023 第31卷第4期模式识别与人工智能Vol.31 No.4 2018年4月Pattern Recognition and Artificial Intelligence Apr.2018 万方数据

粒子群算法详解-附matlab代码说明

粒子群算法(1)----粒子群算法简介 一、粒子群算法的历史 粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。CAS理论于1994年正式提出,CAS中的成员称为主体。比如研究鸟群系统,每个鸟在这个系统中就称为主体。主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。 所以CAS系统中的主体具有4个基本特点(这些特点是粒子群算法发展变化的依据): 首先,主体是主动的、活动的。 主体与环境及其他主体是相互影响、相互作用的,这种影响是系统发展变化的主要动力。 环境的影响是宏观的,主体之间的影响是微观的,宏观与微观要有机结合。 最后,整个系统可能还要受一些随机因素的影响。 粒子群算法就是对一个CAS系统---鸟群社会系统的研究得出的。 粒子群算法(Particle Swarm Optimization, PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。 PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。在PSO中,每个优化问题的潜在解都可以想象成d维搜索空间上的一个点,我们称之为“粒子”(Particle),所有的粒子都有一个被目标函数决定的适应值(Fitness Value ),每个粒子还有一个速度决定他们飞翔的方向和距离,然后粒子们就追随当前的最优粒子在解空间中搜索。Reynolds对鸟群飞行的研究发现。鸟仅仅是追踪它有限数量的邻居但最终的整体结果是整个鸟群好像在一个中心的控制之下.即复杂的全局行为是由简单规则的相互作用引起的。 二、粒子群算法的具体表述 上面罗嗦了半天,那些都是科研工作者写论文的语气,不过,PSO的历史就像上面说的那样。下面通俗的解释PSO算法。 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下:

粒子群优化算法

1. 引言 粒子群优化算法(PSO)是一种进化计算技术 (evoluti on ary compu tatio n),有Eberhart 博士 和 kennedy 博士发明。源于对鸟群捕食的行为研究。 PSO 同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠 代搜寻最优 值。但是并没有遗传算法用的交叉 (crossover)以及变异(mutation),而是粒子在解 空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较, PSO 的优势在于简单容易实现并且没有许多参数需要调整。目前已广 泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域。 2. 背景 : 人工生命 "人工生命 "是来研究具有某些生命基本特征的人工系统 . 人工生命包括两方面的内容 1. 研究如何利用计算技术研究生物现象 2. 研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的内容 . 现在已经有很多源于生物现象的计算技巧 . 例如 , 人工神经网络是简化的大脑模型 . 遗传算法是模拟基因进化过程的 . 现在我们讨论另一种生物系统 - 社会系统 . 更确切的是 , 在由简单个体组成的群落与环 境以及个体之间的互动行为 . 也可称做 "群智能 "(swarm intelligence). 这些模拟系统利用局 部信息从而可能产生不可预测的群体行为 例如 floys 和 boids, 他们都用来模拟鱼群和鸟群的运动规律 , 主要用于计算机视觉和计算 机辅助设计 . 在计算智能 (computational intelligence) 领域有两种基于群智能的算法 . 蚁群算法 (ant colony optimization) 和粒子群算法 (particle swarm optimization). 前者是对蚂蚁群落食物采集 过程的模 拟 . 已经成功运用在很多离散优化问题上 . 粒子群优化算法 (PSO) 也是起源对简单社会系统的模拟 程. 但后来发现 PSO 是一种很好的优化工具 . 3. 算法介绍 如前所述, PSO 模拟鸟群的捕食行为。设想这样 一个场景: 这个区域里只有一块食物。 所有的鸟都不知道食物在那里。 还有多远。 那么找到食物的最优策略是什么呢。 的周围区域。 PSO 从这种模型中得到启示并用于解决优化问题。 PSO 中,每个优化问题的解都是搜索 空间中的一只鸟。我们称之为 “粒子 ”。所有的例子都有一个由被优化的函数决定的适应值 (fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前 的最优粒子在解空 间中搜索 PSO 算 法 . 最初设想是模拟鸟群觅食的过 一群鸟在随机搜索食物。在 但 是他们知道当前的位置离食物 最简单有效的就是搜寻目前离食物最近的鸟

粒子群算法(1)----粒子群算法简介

粒子群算法(1)----粒子群算法简介 二、粒子群算法的具体表述 上面罗嗦了半天,那些都是科研工作者写论文的语气,不过,PSO的历史就像上面说的那样。下面通俗的解释PSO算法。 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO.中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下: 当x=0.9350-0.9450,达到最大值y=1.3706。为了得到该函数的最大值,我们在[0,4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0,4]之间的一个速度。下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。直到最后在y=1.3706这个点停止自己的更新。这个过程与粒子群算法作为对照如下: 这两个点就是粒子群算法中的粒子。 该函数的最大值就是鸟群中的食物 计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。 更新自己位置的一定公式就是粒子群算法中的位置速度更新公式。 下面演示一下这个算法运行一次的大概过程: 第一次初始化

第一次更新位置 第二次更新位置

第21次更新 最后的结果(30次迭代) 最后所有的点都集中在最大值的地方。

升级版智能车快速转弯的模糊自适应PID控制算法[

升级版智能车快速转弯的模糊自适应PID控制算法[ 摘要: 针对智能小车在转向尤其是急弯时陀螺仪传感器输出的瞬态信号变化很快,因自身结构和工艺限制而带来的信号测不全、抓不好的问题,设计了一种以STM32转弯控制芯片和FPGA为一次仪表特性改善单元控制核心的验证方法。测试结果表明,该系统在对转弯信号采集、放大后通过级联特性改善模块可以有效地改善传统转弯下的动态特性,提高急弯下对实时信号处理的精度。 0 引言 谷歌旗下波士顿动力公司最新发布的名为Handle的轮式机器人能力拔高到新的高度,事实上这种智慧型机器人搭载了多种诸如传感采集模块、环境探测以及人机交互模块等。路况不一样造成不同弯道的曲率不同,如何在急转弯的情况下保持精准的感知与采存处理一直是研究的焦点所在[1]。 智能小车的转弯控制是一个复杂的控制过程,要建立相应的数学模型,单单选用经典的PID算法不够精准,很难做到精确测量和估计。因此,本文提出在传递函数后面串联一个动态测试修正模块[2-4]。 1 智能车弯道设计背景 智能车要想在急转弯路况下继续保持稳定、快速、安全的行驶,主要体现小车在运动控制上是否可以即时地进行监测和反馈。由于被测小车所处周边的环境复杂多变,采光条件、路面温度、自身结构产生的相对运动差以及摩擦系数都会引起智能车所带来的参数变动和毛刺现象甚至是检测盲区[5-6]。考虑到小车单方面在转弯控制下定制控制策略会使整体运行过程的稳定性、及时性出现偏差以至于冲出跑道,针对复杂多变的环境,综合得出一个合理控制策略补偿模块,使小车在弯道环境下既能保持采集的信号可靠、稳定,又能快速、高效、准确地在弯道上进行调姿与控制[7]。 2 系统硬件

粒子群算法论文

粒子群算法论文 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

粒子群算法的寻优算法 摘要:粒子群算法是在仿真生物群体社会活动的基础上,通过模拟群体生物相互协同寻优能力,从而构造出一种新的智能优化算法。这篇文章简要回顾了粒子群算法的发展历史;引入了一个粒子群算法的实例,对其用MATLAB进行编程求解,得出结论。之后还对其中的惯性权重进行了延伸研究,对惯性权重的选择和变化的算法性能进行分析。 关键词:粒子群、寻优、MATLAB、惯性权重 目录:

1.粒子群算法的简介 粒子群算法(Particle Swarm Optimization)是一种新的智能优化算法。谈到它的发展历史,就不得不先介绍下传统的优化算法,正因为传统优化算法自身的一些不足,才有新智能优化算法的兴起,而粒子群算法(PSO)就是在这种情况下发展起来的。 粒子群算法的研究背景 最优化是人们在科学研究、工程技术和经济管理等领域中经常遇到的问题。优化问题研究的主要内容是在解决某个问题时,如何从众多的解决方案中选出最优方案。它可以定义为:在一定的约束条件下,求得一组参数值,使得系统的某项性能指标达到最优(最大或最小)。传统的优化方法是借助于优化问题的不同性质,通常将问题分为线性规划问题、非线性规划问题、整数规划问题和多目标规划问题等。相应的有一些成熟的常规算法,如应用于线性规划问题的单纯形法,应用于非线性规划的牛顿法、共扼梯度法,应用于整数规则的分枝界定法、动态规划等。列举的这些传统的优化算法能够解决现实生活和工程上的很多问题,但工业和科学领域大量实际问题的困难程度正在日益增长,它们大多是根本无法在可接受的时间内找到解的问题。这类优化问题的困难性不仅体现在具有极大的规模,更为重要的是,它们多数是非线性的、动态的、多峰的、具有欺骗性的或者不具有任何导数信息。因此,发展通用性更强、效率更高的优化算法总是需要的。 起源 在自然界中,鸟群运动的主体是离散的,其排列看起来是随机的,但在整体的运动中它们却保持着惊人的同步性,其整体运动形态非常流畅且极富美感。这些呈分布状态的群体所表现出的似乎是有意识的集中控制,一直是许多研究者感兴趣的问题。有研究者对鸟群的运动进行了计算机仿真,他们通过对个体设定简单的运动规则,来模拟鸟群整体的复杂行为。 1986 年 Craig ReynolS 提出了 Boid 模型,用以模拟鸟类聚集飞行的行为,通过对现实世界中这些群体运动的观察,在计算机中复制和重建这些运动轨迹,并对这些运动进行抽象建模,以发现新的运动模式。之后,生物学家Frank Heppner 在此基础上增加了栖息地对鸟吸引的仿真条件,提出了新的鸟群模型。这个新的鸟群模型的关键在于以个体之间的运算操作为基础,这个操作也就是群体行为的同步必须在于个体努力维持自身与邻居之间的距离为最优,为此每个个体必须知道自身位置和邻居的位置信息。这些都表明群体中个体之间信息的社会共享有助于群体的进化。

粒子群算法解决函数优化问题

粒子群算法解决函数优化问题 1、群智能算法研究背景 粒子群优化算法(Particle Swarm Optimization,PSO)是由Kennedy 和Eberhart 在研究鸟类和鱼类的群体行为基础上于1995 年提出的一种群智能算法,其思想来源于人工生命和演化计算理论,模仿鸟群飞行觅食行为,通过鸟集体协作使群体达到优。 PSO算法作为一种新的群智能算法,可用于解决大量非线性、不可微和多峰值的复杂函数优化问题,并已广泛应用于科学和工程领域,如函数优化、神经网络训练、经济调度、模式识别与分类、结构设计、电磁场和任务调度等工程优化问题等。 PSO算法从提出到进一步发展,仅仅经历了十几年的时间,算法的理论基础还很薄弱,自身也存在着收敛速度慢和早熟的缺陷。如何加快粒子群算法的收敛速度和避免出现早熟收敛,一直是大多数研究者关注的重点。因此,对粒子群算法的分析改进不仅具有理论意义,而且具有一定的实际应用价值。 2、国内外研究现状 对PSO算法中惯性权重的改进:Poli等人在速度更新公式中引入惯性权重来更好的控制收敛和探索,形成了当前的标准PSO算法。 研究人员进行了大量的研究工作,先后提出了线性递减权值( LDIW)策略、模糊惯性权值( FIW) 策略和随机惯性权值( RIW) 策略。其中,FIW 策略需要专家知识建立模糊规则,实现难度较大,RIW 策略被用于求解动态系统,LDIW策略相对简单且收敛速度快, 任子晖,王坚于2009 年,又提出了基于聚焦距离变化率的自适应惯性权重PSO算法。 郑春颖和郑全弟等人,提出了基于试探的变步长自适应粒子群算

法。这些改进的PSO算法既保持了搜索速度快的特点, 又提高了全局搜索的能力。 对PSO算法的行为和收敛性的分析:1999 年采用代数方法对几种典型PSO算法的运行轨迹进行了分析,给出了保证收敛的参数选择范围。在收敛性方面Fransvan den Bergh引用Solis和Wets关于随机性算法的收敛准则,证明了标准PSO算法不能收敛于全局优解,甚至于局部优解;证明了保证收敛的PSO算法能够收敛于局部优解,而不能保证收敛于全局优解。 国内的学者:2006 年,刘洪波和王秀坤等人对粒子群优化算法的收敛性进行分析,指出它在满足收敛性的前提下种群多样性趋于减小,粒子将会因速度降低而失去继续搜索可行解的能力,提出混沌粒子群优化算法。 2008 年,黄翀鹏和熊伟丽等人分析惯性权值因子大小对PSO算法收敛性所带来的影响,对粒子群算法进行了改进。2009 年,高浩和冷文浩等人,分析了速度因子对微粒群算法影响,提出了一种基于Gaussian 变异全局收敛的粒子群算法。并证明了它能以概率 1 收敛到全局优解。 2010 年,为提高粒子群算法的收敛性,提出了基于动力系统的稳定性理论,对惯性权重粒子群模型的收敛性进行了分析,提出了使得在算法模型群模型收敛条件下的惯性权重和加速系数的参数约束关系,使算法在收敛性方面具有显著优越性。在PSO算法中嵌入别的算法的思想和技术。 1997年,李兵和蒋慰孙提出混沌优化方法; 1998年,Angeline在PSO算法中引入遗传算法中的选择算子,该算法虽然加快了算法的收敛速度,但同时也使算法陷入局部优的概率大增,特别是在优化Griewank 基准函数的优值时得到的结果不理想; 2004 年,高鹰和谢胜利将混沌寻优思想引入到粒子群优化算法中,首先对当前群体中的优粒子进行混沌寻优, 再用混沌寻优的结果随机替换群体中的一个粒子,这样提出另一种混沌粒子群优化算法。

模糊自适应PID控制器

模糊自适应PID控制器 的设计

模糊自适应PID 控制器的设计 一、 模糊自适应原理 模糊控制是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机控制方法,作为智能控制的一个重要分支,在控制领域获得了广泛应用,模糊控制与传统控制方式相比具有以下突出优点: ·不需要精确的被控对象的数学模型; ·使用自然语言方法,控制方法易于掌握; ·鲁棒性好,能够较大范围的适应参数变化; ·与常规PID 控制相比,动态响应品质优良。 常规模糊控制器的原理如图1所示: 图1 模糊控制系统框图 PID 控制规律: 1 01()[()()()] p D I d u t k e t e t dt T e t T dt =++? 式中:p k ---比例系数; I T ---积分时间常数; D T ---微分时间常数。 在工业生产中过程中,许多被控对象随着负荷变化或干扰因素影响,其对象特性参数或结构发生改变。自适应控制运用现代控制理论在线辨识对象特征参 数,实时改变其控制策略,使控制系统品质指标保持在最佳范围内,但其控制效果的好坏取决于辨识模型的精确度,这对于复杂系统是非常困难的。因此,在工业生产中过程中,大量采用的仍然是PID 算法,PID 参数的整定方法很多,但大多数都以对象特性为基础。 随着计算机技术的以展,人们利用人工智能的方法将操作人员的调整经验作为知识存入计算机中,根据现场实际情况,计算机能自动调整PID 参数,这样就出现了智能PID.这种控制器把古典的PID 控制与先进的专家系统相结合,实现系统的最佳控制。这种控制必须精确地确定模型,首先将操作人员长期实践积累

相关文档
最新文档